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Abstract 

 

 

The Integrated Digital Event Archiving and Library (IDEAL) project of Virginia Tech provides 

services for searching, browsing, analysis, and visualization of over 1 billion tweets and over 65 

million webpages. The project development involved a problem based learning approach which 

aims to build a state-of-the-art information retrieval system in support of IDEAL. With the primary 

objective of building a robust search engine on top of Solr, the entire project is divided into various 

segments like classification, clustering, topic modeling, etc., for improving search results. Our team 

focuses on two tasks: clustering and social networks. Both these tasks will be considered 

independent for now.  

The clustering task aims to congregate documents in groups such that documents within a cluster 

would be as similar as possible. Documents are tweets and webpages. The k-means algorithm is 

employed for clustering the documents. Two methods were employed for feature extraction, 

namely, TF-IDF score and the word2vec method. Evaluation of clusters is done by two methods – 

Within Set Sum of Squares (WSSE) and analyzing the output of the topic analysis team to extract 

cluster labels and find probability scores for a document. The later strategy is a novel approach for 

evaluation. This strategy can be used for assessing problems of cluster labeling, likelihood of a 

document belonging to a cluster, and hierarchical distribution of topics and cluster. We execute our 

algorithms on different collections and present the results. The social networking task will extract 

information from Twitter data by building graphs. Graph theory concepts will be applied for 

accomplishing this task. 

  Using dimensionality reduction techniques and probabilistic algorithms for clustering, as well as 

improving the cluster labelling and evaluation, are some of the things that can be improved on our 

existing work in the future. Also, the clusters that we have generated can be used as an input source 

for Classification, Topic Analysis and Collaborative filtering tasks in order to obtain more accurate 

results. 
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1. Overview 
 

Social media provides staggering amounts of data. Extracting knowledge from these 

volumes requires automation. Computing quickly over this data is a challenge for both 

algorithms and architectures. Recently, microblogging has become a popular trend which is 

responsible for a large amount of information dissemination. The most prevalent 

microblogging service is Twitter - a popular tool for short, frequent communication. 

Twitter users tweet about any topic, status or event and follow others to receive their 

tweets. Anyone around the world can use Twitter to talk about daily activities and seek 

information. Observing such a high usage of Twitter has urged many businesses and 

research groups to analyze these tweets to evaluate possible connections and outcomes 

(predictions). Several APIs and tools have been developed around this notion to predict 

future events.  

As the importance of Twitter rises, the associated research in the fields of 

information science, corporate and civil society sectors is booming. We attempt to develop 

a network graph (based on graph theory) considering users as nodes. Edges between them 

would attribute to characteristics like following, re-tweet, etc. We also make an effort to 

group these tweets into clusters in an unsupervised manner via flat clustering. The 

technology stack will primarily include Java, Scala, Spark and its associated libraries.  

We realize that analyzing tweets is challenging due to the short text and non-

conformance to grammatical rules. These short messages are generated at a prodigious 

rate, which makes us consider timestamps of the tweets. A tweet can originate from 

various sources like newspaper, website, TV, etc. Each tweet shows the interest of the 

publisher.  So, it is natural to consider human factors in the Twitter data analysis.  

Keeping in mind these challenges, we will first try to build a social network, which 

shows the interaction between user accounts and the importance of each account. Then, we 

can use that information to find the similarity between contents to reveal their importance. 

For clustering, we will have to be cautious in identifying the words that form the essence of 

the tweets and use this further for extracting URLs/webpages. We will employ clustering 

for grouping tweets w.r.t. multiple attributes. Clustering tweets effectively will influence 

the search functionality of the system. 

 The remainder of this report provides further background on clustering in 

information retrieval and graph representations for social networks. 
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2. Literature review 
 

2.1 Why analyze tweets? 
Social media has made social networks ubiquitous, and also given researchers 

access to massive quantities of data for empirical analysis. These data sets offer a rich 

source of evidence for studying dynamics of individual and group behavior, the structure of 

networks and global patterns of the flow of information. For example, Facebook consists of 

over 400 million active users sharing over 5 billion pieces of information each month. [5] 

The microblogging services like Twitter, are causing a worldwide craze.  

 

Figure 1: What happens in a Twitter minute. 
Courtesy: http://www.adweek.com/socialtimes/happens-Twitter-minute-infographic/207992 

 

Over 280 million monthly active users send more than 500 million tweets per day, 

and 80 percent of those active users send tweets from mobile, according to information 
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from the company [4]. With more than 1.45 million queries every minute, search is one of 

the most popular activities on Twitter. The next most popular activity is timeline viewing 

— there are 1.22 million timeline views every minute. The volume of tweets is also 

enormous, with more than 347,000 140 character messages going out every 60 seconds 

[4]. Tweets can be categorized into trends, and are related with tags and 

follower/following social relationships. The categorization is neither accurate nor effective 

due to the short length of tweet messages and noisy data corpus. 

 

Figure 2: Hurricane Sandy conversations on Twitter 
Figure courtesy – [6] 

 

Twitter data has been a center of attraction for deriving meaning of the short 

messages posted by people. We can group people belonging to similar geo-locations who 

are tweeting on particular events. We can derive a public opinion about certain 

happenings. Above all of these, we can even help predict certain events to come in the 

future or what is its likeliness. Twitter gives us a great power to predict elections, analyze 

natural hazard data or social TV interactions [6][7][8]. Twitter has opened up a whole new 

arena for exploring various domains.  

As a part of the IDEAL project at Virginia Tech, our team will develop an approach 

for clustering tweets as well as clustering webpages from tweets. With such an 

overwhelming amount of data, it is definitely challenging to identify and group webpages 

resulting from crawls or sited in tweets. Setting up crawlers and finding data for building a 

network also tends to be challenging. 
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2.2 Clustering 
Clustering is a process of partitioning a set of data (or objects) in a set of meaningful 

sub-classes, called clusters. It helps users understand the natural grouping or structure in a data 

set. Clustering has a wide range of applications, from spatial data analysis to market 

research. The key input to a clustering algorithm is the distance measure. In Figure 3, the 

distance measure is distance in the 2D plane. This measure suggests three different clusters 

in the figure. In document clustering, the distance measure is often also Euclidean distance. 

Different distance measures give rise to different clusters. Thus, the distance measure is an 

important means by which we can influence the outcome of clustering. 

 

     Figure 3: Clustering in 2-D plane 

 
Clustering can be broadly classified into flat clustering and hierarchical clustering.  
 

2.2.1 Flat clustering 
Flat clustering, also called as partitioning clustering, creates flat set of clusters 

without any explicit structure that would relate clusters to each other. Flat clustering 

methods are conceptually simple, but they have a number of drawbacks. Most of the clustering 

algorithms, like k-means, require a pre-specified number of clusters as input and are non-

deterministic. 

Flat clustering may be viewed as an optimization problem. An instance is a 
particular clustering setting: a set of objects, a representation with a similarity measure, 
and a number of clusters. An assignment is a clustering in this setting. The 
objective/criterion function returns a value for all clusters and the goal is to find a 
clustering scenario with an optimal value. In most cases, to find such a clustering would 
require an exhaustive search, and most partitioning clustering algorithms are local search 
strategies that are only guaranteed to find a local optimum. 
 

2.2.2 Hierarchical clustering 
Hierarchical clustering builds a cluster hierarchy, or in other words, a tree of clusters. 

Hierarchical clustering output is structured and more informative than flat clustering. 
Hierarchical clustering algorithms are further subdivided into two types: 

a. agglomerative methods - a bottom-up cluster hierarchy generation by fusing objects 
into groups and groups into higher clusters.  
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b. divisive methods - a top-down cluster hierarchy generation by partitioning a single 
cluster encompassing all objects successively into finer clusters.  

Agglomerative techniques are more commonly used. Hierarchical clustering does not 
require knowing the pre-specified number of clusters. However, this advantage comes with 
the cost of the algorithm complexity. Hierarchical clustering algorithms have a complexity 
that is quadratic in the number of documents compared to the linear complexity of at 
algorithms like k-means or EM.  Figure 4, shows an example of how data can be clubbed for 
flat and hierarchical clustering. 

 

Figure 4: Flat and hierarchical clustering 
Image courtesy: http://www.the4cs.com/~corin/research/aws/ 

  

Here, we will focus on clustering in information retrieval systems. In terms of our 
task of clustering documents (tweets and webpages) we can say that, the expected output 
has to be a collection of tweets (documents) that are “similar” to one another and thus, can 
be treated collectively as one group; but as a collection, they are sufficiently different from 
other groups. Applications of clustering in the information retrieval domain include search 
result clustering, collection clustering, cluster based retrieval for high precision, clustering 
to increase recall in language models and so on. [1] 

 

 

 

 

 
 

http://www.the4cs.com/~corin/research/aws/
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2.2.3 k-means clustering algorithm 
The k-means clustering algorithm is known to be efficient in clustering large data 

sets. This algorithm is one of the simplest and best known unsupervised learning 
algorithm. The k-means algorithm aims to partition a set of objects, based on their 
attributes/features, into k clusters, where k is a predefined constant. The algorithm defines 
k centroids, one for each cluster. The centroid of a cluster is formed in such a way that it is 
closely related, in terms of similarity (where similarity can be measured by using different 
methods such as Euclidean distance or Extended Jacquard) to all objects in that cluster. 
Technically, what k-means is interested in, is the variance. It minimizes the overall 
variance, by assigning each object to the cluster such that the variance is minimized.  
The basic steps of the k-means clustering algorithm are as follows: 

 
i. Pick k objects at random and let them define k clusters. 

ii. Calculate cluster representatives.  

iii. Make new clusters, one per cluster representative. Let each text belong to the 

cluster with the most similar cluster representative.  

iv. Repeat from (ii) until a stopping criterion is reached. 

Figure 5, below, depicts the algorithm described above. 

 

Figure 5: k-means clustering 
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The first step defines a random initial partition. There are many other ways of 
constructing it and the result depends on which one is used. As cluster representative the 
mean (the centroid) of the objects in the cluster is usually used. Other variants are to let the 
median or a few specific objects represent the cluster. When the clustering is fuzzy, objects 
may belong to several clusters and thus, the cluster representative may be calculated 
taking this into consideration.  

The stopping criterion is normally when no objects change clusters, or when very 
few change clusters between iterations. It may also be to stop after a predefined number of 
iterations, since most quality improvement usually is gained during the first iterations. 

The time complexity of the k-means algorithm is O(knI), where k is the number of 
clusters, n the number of objects and I the number of iterations (which is dependent on the 
stopping criterion). In each iteration the cluster representatives and the kn similarities 
between all objects and all clusters must be computed. The k-means algorithm requires a 
number of clusters as input. That is, one has to guess the appropriate number. Of course it 
is possible to run the algorithm with several different numbers of clusters and report only 
the clustering with the best result. In a general partitioning algorithm both splitting and 
division of clusters are allowed and theoretically the result has the optimal number of 
clusters. 
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2.3 Social network graph 
Social networks have emerged as a critical factor in information dissemination, 

search, marketing, expertise and influence discovery, and potentially an important tool for 
mobilizing people. 

What is social network on Twitter 
In traditional society research, social network refers to the social connections 

among people. In the movie “Social Network”, it refers to Facebook or other online tool 
which extend the social connections in society to the internet. On Twitter, social network is 
the connections among Twitter accounts. In this research, three kinds of connections: 
following, followed and retweet are considered. 
 
Social network on information retrieval  

Different from Facebook, where people extend their social connections to internet, 
people on Twitter can follow anyone they want without following back. People follow 
celebrities, news agencies and authorities to get the latest updates (news information); 
people retweets important (or interesting) tweets so it flows on the network.  In 
information retrieval, when there is a user try to find information on Twitter using a query, 
the social network information can be used to rank the importance of all the query results.   
 

With interfaces that allow people to follow the lives of friends, acquaintances and 
families, the number of people on social networks has grown exponentially since the turn 
of this century [10]. A social network is a social structure made up of a set of social actors 
(such as individuals or organizations), sets of dyadic ties, and other social interactions 
between actors. The social network perspective provides a set of methods for analyzing the 
structure of whole social entities as well as a variety of theories explaining the patterns 
observed in these structures [9]. 

 

 

Figure 6: A sample social network graph 
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Figure 7 shows proposed work on using social network on information retrieval. For each 

given query, the search algorithm will return a bag of results based on the content 

similarities to the query. We extract the social network behavior to give an impact factor 

(IF) to Twitter and tweet. In the end, we present the bag of results ranking from high IF to 

low IF. 

 

 

Figure 7: Influence factor on for information query 

 

Figure 8 shows the process of calculating an influence factor from social network data. We 

mimic the process PageRank by using following, followed and retweet counts. When a 

tweet is broadcasted or retweeted from a high IF account, it will accumulate higher IF. Also, 

the IF of Twitter accounts are accumulated from tweets they broadcasted or retweeted. 
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Figure 8: IF calculation using network data 

 

A quick note on the work done: 

We crawled the follower counts of all the accounts in our dataset. We crawled all the 

following information as well. The retweet relationship was extracted using the RT tag and 

@tag. 
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3.   Requirements 
 

The clustering task will focus on creating meaningful clusters for tweets and 
webpages which will help the scoring mechanism in order to improve search results. We 
need to make sure that documents in the same cluster behave similarly with respect to 
relevance to information needs [1]. The social network graph is going to aid in discovering 
the connections between user accounts based on various attributes like re-tweet, follower, 
etc. 

 

3.1 Functional requirements 
 

3.1.1 Clustering 
The functional requirements for clustering (shown in Figure 9) can be divided into 

the following: 

a. Feature extraction 

b. Model building and evaluation 

c. Storing the results 

 

 

Figure 9: Functional component of clustering 

 

3.1.1.1 Feature extraction 

In order to build the model for clustering using k-means as an algorithm, we need to 
prepare data. For this purpose, we will have to find out which attributes from the 
documents (tweets and webpages) can be used as grouping attributes. This is the feature 
extraction process. We will primarily focus on hashtags (#) and username mention (@) in 
the tweets creating clusters of users. In further versions, we can plan to incorporate the re-
tweet information, important terms in the document w.r.t. the hashtags and the latest 
timestamp of the tweet. This data will be prepared in a matrix form or any other 
representation required by the clustering model. 
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3.1.1.2 Model building 

The inputs to the clustering algorithm will be the number of clusters, number of 
iterations and the distance measure (key factor). An iterative approach will be adopted to 
obtain better accuracy for clusters. 

3.1.1.3 Evaluation of clusters 

Evaluation of clustering is categorized in 2 broad areas: internal evaluation criterion 
and external evaluation criterion. Internal criterion evaluates the result with respect to 
information intrinsic to the data alone. We look for high intra-cluster similarity and low 
inter-cluster similarity. The external criteria will evaluate the result with respect to a pre-
specified structure. It is based on gold standard classes derived from inter-judge 
agreement. These measures include purity, normalized mutual information, Rand index 
and F measure [1] [12]. The evaluation section in chapter 4, will provide details about 
evaluation done for the clustering task. 

3.1.1.4 Storing results in HBase 

The results are stored in the HBase schema. The proposed schema design as of now 
comprises of two tables in HBase. We will have a single table for tweets and webpages. The 
second table will have topic and word information. This table will be populated by the topic 
analysis team. The class might consider having two more tables in future, one for tracking 
user activities through the logs and the second to store graph.  

The column families for clustering are illustrated in Figure 8: 

 

Figure 10: Schema design for clustering 

 

The clustering task has to deal with only one table – the table for tweets and 
webpages. This table is illustrated in Figure 10. Clustering task will have two column 
families, column family for tweets as “clustering_tweets” and column family for webpages 
as “clustering_webpages”. Each row will be uniquely identified by a rowkey. The rowkey is 
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decided by the Solr team. The rowkey for tweets will be the tweet id and for webpages it 
will be URL or a combination of URL and timestamp or anything appropriate. The figure 
shows a random number as a rowkey for webpages as a mere example. The rowkey for 
webpages is subject to change in future.  

Let us consider the tweet column family. This column family will have several fields 
(columns) which will be output of various other teams. For e.x., the collection management 
team might have ‘cleaned tweet text’, ‘hashtag’, ‘timestamp’, ‘mention’ as fields in the tweet 
column family. Similarly, the clustering task has two fields which belong to the tweet 
column family, namely, ‘cluster number’ and ‘cluster labels’. Cluster number will specify the 
number to which a tweet belongs. This number has no semantic meaning, because 
clustering is unsupervised and we have unlabeled data. Cluster labels will be terms or 
phrases that describe the cluster. 

Let us consider the webpage column family. This column family will have several 
fields (columns) which will be output of various other teams. For e.x., the collection 
management team might have ‘URL’, ‘timestamp, ‘title, etc., as fields in the webpage column 
family. Similarly, the clustering task has two fields which belong to the webpage column 
family, namely, ‘cluster number’, ‘cluster labels’ and ‘collection’. Cluster number will specify 
the number to which webpage belongs. This number has no semantic meaning, because 
clustering is unsupervised and we have unlabeled data. Cluster labels will be terms or 
phrases that describe a cluster of webpages. The collection field has no usage right now. 
This is kept for future use by Solr team or any other group as per the suggestion of Prof. 
Fox.  

 

3.1.2 Social network 
The functional requirements basically involved the crawler which will get 

information of Twitter accounts required for building the network. Refer to Figure 19, from 
chapter 5 section 5.2, for the functional requirements. A crawler was written to fetch the 
account details like number of friends and followers each account has, along with their 
identifiers. Following is a sample output of the Twitter account crawler which was written 
by Lijie. Please note that this is just a sample output. 

 

Figure 11: Sample output of Twitter accounts crawler 
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Explanation of the keys in the sample output :- 

GreenHokie : username of the Twitter account. 

userID: In this example, it is the identifier of user with username ‘GreenHokie’ 

friendCounts : how many friends does the user ‘GreenHokie’ have on Twitter. 

followerCounts : how many followers does the user ‘Green Hokie’  have on Twitter. 

followerID : Identifiers list of the followers for the user ‘GreenHokie’. 

 

3.2 Collaboration with other teams 
 

3.2.1 Clustering 
a. Collection management team 

- This team will provide us cleaned data for our feature extraction task. 

b. Topic analysis team 

- This team will help us with the problem of labelling and evaluation of clusters. 

c. Solr team 

- This team will utilize the results stored in the HBase. 

d. Front end team 

- In future versions, we might be able to give input to the front end team for facets. 

 

3.2.2 Social network 
a. Collection management team 

- We will get cleaned data from this team which will be used for building the 

network graph. 

b. Front end graph team 

- This team will help us visualize the network created out of the documents 

(tweets and webpages). 

 

3.3 Technology requirements 
 

3.3.1 Clustering 

The clustering task will demand knowledge of HBase, Apache Spark and Scala. Apart 

from these technologies, we will also require domain knowledge about clustering 

algorithms in information retrieval. 
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3.3.2 Social network 
The social network task will use Python for building the network graph. The 

crawling task is written in Python as well. Python is a great programming language for fast 

text data processing. Active developer communities create many useful libraries that 

extend this language for various applications. One of those libraries is ‘tweepy’. It is open-

sourced and hosted on GitHub. Tweepy provides an easy way for your Python code to get 

the Twitter information through its APIs. 
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4.   Design and implementation 
 

The design of the components of the existing system along with the new flow is 

illustrated in Figure 12, which was provided by the research assistants supporting the 

project.  

 

Figure 12: Flow diagram of the system 

Before we look into the design of clustering and social networking tasks for our team, we 

will have a brief overview of where our module is in the overall system. The box 

highlighted in orange on the right side, is the module on which the team works 

(clustering and preparing a social network). As mentioned in the ‘Requirements’ chapter 

the clustering will use Spark and Scala, whereas social network preparation will use 

Python. We will have access to HBase for cleaned tweets. We will now see the detailed 

design, implementation and evaluation of the clustering and social networking tasks of 

our team. 
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4.1 Clustering 
 

4.1.1 Design and implementation  

We start with flat clustering methods and initially we focus on k-means. We use the 
MLlib package of Spark for executing our clustering algorithms.  

4.1.1.1 Tweet clustering 

For tweet clustering based on the tweeted data, we use the cleaned dataset provided 

by the collection management team. The cleaned dataset is read into a Spark RDD. Each 

tweet is converted into a key value pair with key being the tweetID and the values being a 

list of words in the tweet. The list of words is then converted to a numerical vector. The 

term weights are decided using TF-IDF scores. 

 

 

 

 

 

 

 

 

           Figure 13: Clustering of tweets based on tweet data 

 

 

 

 

 

 

 

  

 

 

            Figure 14: Clustering of users based on hashtags 
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In the second part, we use the raw input[a] that we received before we had the 

cleaned tweet data from the collection management team. We filter the data to extract only 

the hashtag information and the user name from each tweet. We eventually create a list of 

key value pairs, where key represents the username and the value represents a list of all 

the hashtags that user has used in his tweets[b]. Clustering is performed by converting the 

lists to vectors using the TF-IDF weighting, and then performing K-means [13].  

4.1.1.2 Webpage clustering 

We make an initial attempt at clustering the webpage collection where we use the 

data given by the Collection Management Team. We filter the collection to use only 

individual webpages without any Twitter information. Table 4 summarizes the results for 

clustering webpages using the standard TF-IDF model for feature extraction and 

normalization using the ||L2|| norm. 

4.1.1.3 Refining feature extraction procedure 

One of the deficiencies of the TF-IDF model for vector generation is that it ignores 

the semantic relation of different words. Each word is treated independently, irrespective 

of its order in a sentence. To overcome this, we do a few refinements on the work we did 

till now. First, we normalize the data using the ||L2|| norm. We extract feature vectors using 

a different method called word2vector generation[c]. 

This feature extraction procedure is superior because it takes into account the 

sequence of words in feature vector extraction. The semantic and the syntactic information 

is maintained during the vector generation. For instance, if V(“word”) represents the vector 

of “word”, then for vectors generated by this model, we have 

V(“King”)-V(“Man”) +V(“Woman”) ≈  V (“Queen”) 

The word2vec model needs a text collection for training. Here, we treat each tweet as a 

sentence and combine all of them in a single document for training the model and 

generating vectors of each word. We create a vector representation of a document by 

taking a linear combination of all the vectors of the words in the document[d]. Section 5 

summarizes the results and provides comparison of feature vector extraction using TF-IDF 

and word2vec models. Using word2vec model provides a better and a uniform clustering as 

compared to the TF-IDF based model.  
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Notes: 

[a] The raw input is a .csv file containing tweet information. Since we had already 

performed the processing using this dataset, we chose not to change it for this report. 

We would also be using the cleaned datasets provided by the collection management 

team for further evaluations.  

[b] A user may have multiple tweets. We combine all the hashtags from all tweets of a 

user. For the moment we ignore the timing information. In the future, a more 

meaningful clustering can be obtained, if we consider tweets by the same user within a 

certain time frame only. 

[c] word2vec method was invented by Google in 2013 which uses 2-layer neural 

network to learn patterns of words in text. There are models built using the entire 

Wikipedia, to give an effective vector representation of each word. 

[d] It is ongoing research to find the most effective ways of combining the word vectors 

into a vector representation for documents. We use a linear combination of word 

vectors for generating document vectors. 
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4.2 Creating social network 
For our specific task of Twitter social network, the Twitter accounts are used as the 

social network nodes. We consider three levels of connection between those accounts: 1) 

following; 2) retweet; and 3) mention (@). The other interactions like comment or ‘like’ 

(the action for a tweet) are not considered in our research, because we don’t have such 

data. 

 

Figure 15: The Twitter social network (Red line is two direction following and black is one direction following) [10] 

 

In those 3 levels of connection, the (1) following is a binary relationship between accounts, 

and the other two are content related and countable (counts of (2) retweet or (3) mention 

between accounts). In building the social network, we should combine those three levels by 

giving them different weights on the analysis. 

 In Figure 16, we can cluster the social network according to the nodes and edges 

information. As all the contents on Twitter are generated by those nodes (accounts), the 

clustering of social network will provide one criteria to cluster the user generated content 

(e.x., tweets). In the end, the clustering of tweets according to both content and social 
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network could be used in our IR system to estimate the relevance factor for a given query. 

[11] 

 

Figure 16: Network and clustering 

4.2.1 The data crawler: 

Crawler one: user information 
Beyond the data from IDEAL project, we crawled additional data from using Python—Tweepy package 

from Twitter. The code is included in the code package as ‘sncrawler.py’, and Figure  17 shows the 

header of the code. 

 

Figure 17: Crawler 1: User information crawler 
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User information crawler will do the following things: 1) get the username / ID from original data; 2) 

crawl the metadata for this user including: following counts/follower counts; 3) crawl the follower list 

for each user. According to the Twitter API rule, the crawler sets up two sleep modes: one-minute sleep 

for large follower list, and, 15 minutes sleep for over the limit. Crawler is designed to start from where it 

is paused, so it could be kept running until the task is finished. 

 

Crawler two: tweets crawler 
Tweets were provided by the original data source. However, it missed the information of account 

interaction, e.g. favorite, retweet and comment. Those interactions are essentially important in Social 

Network. Our crawler will go back to the tweets collected, and get the current retweet/favorite counts. 

This crawler is also included in the code package.  

 

4.2.2  The social network builder: 
A social network is a directed network. There is a social network node for each Twitter account, and 

edges are the interaction between those account. We build the social network using the accounts we 

have in original data as the nodes and the follow information and retweet information as the edges. 

 The code is included in the package as ‘tweetsSN.py’. The retweet information is gathered using: 

1) tweets crawler and 2) the ‘RT @’ sign in the retweeted tweets.  

 The product, as showing in Figure 18, is a matrix of Nodes and Edges. Nodes are the account 

name and the edges are the from/to nodes of retweets. The weight on the edges are the total number 

of retweets count on this edge. 



 

26 
 

  

Figure 18: sample of Social Network Matrix 

 

4.2.3 The social network visualization 
With the node and edges information, we can visualize the social network in any platform including: D3, 

Gephi or nodeXL. We choose Gephi in this work, because: 1) it provide a easy way to cluster the 

network; 2) the result from Gephi can be exported for D3 visualization, and in this way we can build a 

better D3 product for the web application. We included a Gephi result in the final submit. And one view 

from that Gehpi file is shown in figure 19: 
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Figure 19: visualization result: entire network 
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5. Evaluation 
 

In the evaluation phase, we will extend section 3.1.1.2 from chapter 3.  

 

5.1 Within Set Sum of Squared Errors - WSSE 
 

Refining feature extraction procedure 

 

Figure17: Comparison of cluster sizes 

 Word2vec model provides a better and a more uniform clustering as compared to 

the TF-IDF based model. We find that the WSSE score is 4637 using word2vec as compared 

to 7744 for TF-IDF based clustering (with normalization) which is a significant 

improvement[c]. Thus we would be using word2vec model for vector generation for rest of 

our project. 

 

Clustering of tweets 

At present we are using within set sum of squared errors (WSSE)[a] for deciding the 

optimum number of clusters in the dataset. 
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 A: Using TF-IDF[d]                     B: Using  word2vec 

 Figure 18: Evaluating the cluster number using WSSE for z700 collection 

 

Based on the figure 18 B, 6 is the optimal number of clusters. [b] We assume that 6 should be 

the optimum number of clusters for other collections too, to maintain consistency between 

collections and also facilitate the Solr team for indexing the collections. Also majority of the 

clusters have 6 as the optimum cluster numbers 

 

Clustering of users for tweets 
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Number of 
Clusters 

WSSE for Clustering 
of Users 

3 7.97 
4 7.94 
5 7.92 
6 7.77 
7 7.76 

Clusters Users per cluster 
1 4 
2 146 
3 11 
4 1 
5 34 
6 13331 

Table 1: Evaluation of users for tweets with WSSE 
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     Figure 19: WSSE scores vs number of clusters 

The WSSE scores indicate that 6 is the best number of clusters. However, a closer look into 

the number of members per cluster suggest that most of the users are clustered in one 

cluster. This is due to several reasons primarily because the dataset used is for a particular 

topic and a lot of users use common hashtags which results in our clustering algorithm 

predicting that most of the users are connected.  

 

 

 

 

 

 

 

 

Notes: 

a. Individual WSSE scores mean nothing. A high decrease in values w.r.t. increase in 

number of clusters indicates better clustering.  

b. Last year’s report suggested that 5 was the best clustering size, but their conclusion 

was based on empirical results and observations. We use a quantitative way of 

evaluating the optimum number of clusters. The elbow point in the graph indicates 

optimal number of clusters [11]. After the elbow point the WSSE continues to 

decrease but at a lower rate. 

c. We can compare the WSSE scores for the two models since we normalize the data to 

the same scale. 

d. The high WSSE scores are because the data was not normalized as this plot was 

created at the very beginning of the project 
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Clustering of different collections 

Next we present a comparison of clustering on the webpages and tweets of the same 

collection. Interesting insights can be drawn here. Figure shows z541 collections have 

similar distribution among tweets as well as webpages. The webpage collection for z602, 

z668 and z696 collection are dominated by two clusters. Figure shows that the z686 

collection for tweets have high noise and that there are 3 main clusters that summarizes 

the collection. 

 

Figure 20: Collection: #NAACPBombing 

 

Figure 21: Collection: #GermanWings 

 

 

Tweets z541

1 2 3 4 5 6

Webpages z541

1 2 3 4 5 6

Tweets z602

1 2 3 4 5 6

Webpages z602

1 2 3 4 5 6
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Figure 22: Collection: #houstonflood 

 

 

 

Figure 23: Collection: #Obamacare 

 

 

Tweets z668

1 2 3 4 5 6

Webpages z668

1 2 3 4 5 6

Tweets z686

1 2 3 4 5 6

Webpages z686

1 2 3 4 5 6
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Figure 24: Collection: #4thofJuly 

 

5.2 Analyzing the output of topic analysis team 
Our second approach towards evaluation will involve using output of the topic 

analysis team to check how well the documents have been clustered. We anticipate 

answers for the following questions - 

a. Can terms carrying a higher weight across topics help us tune the feature 

vectors? 

b. How can we influence the initial seed selection for k-means using the topic 

association with a document in the cluster? 

c. Can we evaluate the cluster formation by considering the overall distribution of 

topics for a document? 

d. Can we address the problem of cluster labeling at least partially using the output 

from topic analysis? 

 The topic analysis team’s output represents a document-topic matrix. Clustering output 

represents a document-cluster matrix. Refer to the Tables 2 and 3. 

Document Topic 1  Topic 2 Topic 3 Topic 5 Topic 6 

Doc 1 0.5 0.15 0.02 0.45 0.08 

Doc 2 0.45 0.08 0.009 0.18 0.20 

Doc 5 0.18 0.20 0.09 0.42 0.17 

Doc 7 0.42 0.17 0.18 0.15 0.02 

Doc 9 0.15 0.02 0.45 0.08 0.009 

Doc 11 0.08 0.009 0.18 0.20 0.09 

Doc 12 0.20 0.09 0.42 0.17 0.18 

 

Tweets z696

1 2 3 4 5 6

Webpage z696

1 2 3 4 5 6

Table 2: Output of topic analysis team, document-topic matrix 
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Document Cluster ID  

Doc 1 1 

Doc 2 2 

Doc 5 1 

Doc 7 2 

Doc 9 2 

Doc 11 2 

Doc 12 1 

 

Table 2 gives the topic distributions for each document. For e.g., there is a 50% chance that 

Doc 1 belongs to topic 1 and so on. Doc 1 represents Topic 1 and Topic 2 better than Topic 

3. We understand this based on the probability. Table 3 is the output of our clustering 

algorithm which tells us which document (tweet) belongs to which cluster. Both these 

tables show dummy and arbitrary data. 

 Figure 25 represents the approach we propose for evaluation with topic analysis 

output. We pick one third number of topics (out of the total number of topics) with highest 

weightage for every document. We will then group these documents by clusters. We will 

compute a mean topic frequency matrix over all clusters individually. After this 

computation, we find the deviation of each topic from the topic frequency matrix across all 

documents in a cluster. Once this computation is performed for all clusters, we will pick the 

top 3 topics with least deviation for each cluster. 

We pick 2 topic values with highest weightage for every document from Table 2. 

Then we group the documents by their cluster, with help of information in Table 3.  Let us 

say we get Table 4 after this computation. T<no> represents e.x., Topic 1 = T1 

Document Top Topics Cluster no 

Doc 1 T1=0.5, T5=0.45 1 

Doc 2 T1=0.45, T6=0.20 2 

Doc 5 T5=0.42, T2=0.20 1 

Doc 7 T1=0.42, T3=0.18 2 

Doc 9 T3=0.45, T1=0.15 2 

Doc 11 T5=0.20, T3=0.18 2 

Doc 12 T3=0.42, T1=0.20 1 

 

 

 

 

 

Table 3: Output of clustering team 

Table 4: Aggregation of topic analysis data and clustering data 
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Topic 8 represents the topic frequency matrix which takes the mean of a topic weight in 

across documents in the cluster and records its frequency of occurrence. 

Cluster no Topic Mean Topic frequency 

1 T1=0.35, T5=0.435, T2=0.20, T3=0.42 T1=2, T5=2, T2=1, T3=1 

2 T1=0.34, T6=0.20, T3=0.27, T5=0.20 T1=3, T6=1, T3=3, T3=3, T5=1 

 

 

We now compute the deviation by using Table 4 and Table 5. Our goal is to find out how 

relevant and tightly coupled the topic is to the cluster. We will choose the top 2 topics with 

the highest frequency for that cluster. These are highlighted in blue color in Table 5. Now, 

we will find the deviation for Topic 1 and Topic 5 in cluster 1. Let us do this for Topic 5. 

From Table 4, we know that Topic 5 occurs in Doc 1 and Doc 5, having values 0.45 and 0.42 

respectively. We calculate deviation by following formula: 

Deviation of topic= ∑ |topic mean – actual weight| / total number of documents in cluster 

Deviation for T5 in cluster 1 = (0.435-0.45) + (0.435-0.42) / 3 = 0.01 

We will similarly find this value for the topics highlighted in blue in Table 8, across all 

documents by cluster. We will then pick up top k topics with least deviation as the topics 

that represent the cluster. 

 

Figure 25: Evaluation of clusters based on topic analysis output 

 

Table 5: Mean topic frequency across clusters 
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Let us say, for example, cluster 1 resembles Topic 1, Topic 5 and cluster 2 

represents Topic 1, Topic 3. We can then further infer; both these clusters have Topic 1 in 

common. Hence, we see that we can extract local topics specific to each cluster and global 

topics shared by all clusters, by evaluating the output from the topic analysis team [14] 

[15]. Figure 25 represents this in a diagrammatic way. 

The output of the topic analysis team has another table which comprises of top 10 

words for each topic, called as the topic-word matrix. We can further extend the work 

mentioned above, by extracting the top 5 words for each topic and possibly label the 

clusters with these words.  

 In order to summarize, the topic analysis team’s output of document-topic matrix 

will help us evaluate clusters and find local topics specific to each cluster and global topics 

shared by all clusters. The topic-word matrix helps labeling the clusters. 

 For number of clusters = 7, and topic analysis team giving us 5 topics for each 

document for the small dataset z_700, we have the following topic-cluster distribution: 

Cluster no Topics representation Cluster labels 

0 Topic 5, Topic 3 Reporter, watch, youtube, slain, 

brainstelter 

1 Topic 5, Topic 3 Reporter, watch, youtube, slain, 

brainstelter 

2 Topic 2, Topic 3 Suspect, people, victim, youtube, 

slain, brainstelter 

3 Topic 2, Topic 3 Suspect, people, victim, youtube, 

slain, brainstelter 

4 Topic 5, Topic 3 Reporter, watch, youtube, slain, 

brainstelter 

5 Topic 4, Topic 3 Heartbroken, condolence, 

survivor, youtube, slain, 

brainstelter 

6 Topic 5, Topic 3 Reporter, watch, youtube, slain, 

brainstelter 

 

This evaluation process was run on the following tweet collections - 602, 668, 694, 541, 

686. 

There are three outcomes of this evaluation process: 

I. Probability of a document belonging to a cluster 

II. Cluster labeling (from topic words as well as heuristic labeling) 

III. Hierarchical mixture of topics and clusters 

We will describe each outcome briefly in the below sections. 

 

Table 6: Evaluation output defining local and global topics and cluster labels from topic words 
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Probability of a document belonging to a cluster 

The probability of each document belonging to a particular cluster is calculated by 

adding the original probability weight of topics for a document w.r.t to the cluster it 

belongs. For example, let us calculate the probability for Doc 1, that it belongs to cluster 1. 

We will add probabilities for the values for Topic 5 and Topic 3 (Refer Table 9). These 

values will be picked up from Table 5. 

Cluster labeling 

Cluster labels can be extracted from topic words as well as heuristic methods to label 

clusters. The extraction of labels from topic words is shown in Table 6. Sample evaluation 

results for heuristic cluster labeling is shown below. 

 

Table 7: Heuristic cluster labeling after extracting top 2 topics for clusters in collection tweets 602 

 

Hierarchical mixture of topics and clusters 

We have come up with 2 representations of hierarchy, each highlighting different aspects. 

The output helps us observe a hierarchical relationship between clusters and also helps us 

understand how popular certain topics are in the cluster and how they are clubbed 

together. Observation in Figure X helps us understand that Topic 1 and Topic 4 have been 

very popular in the dataset. Observation of Figure X helps us understand that we have a 

hierarchy within topics and clusters. 
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Figure 26: Hierarchical representation 1 of evaluation output 

 

 

Figure 27: Hierarchical representation 2 of evaluation output 
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6. Milestones and work progress 
 

6.1 Clustering 
 
 

No. Tasks for clustering Week/Date Done by 

1.  Reading of previous year’s reports, finalizing goals 
for the project 

Week 1 Saket, 
Swapna 

2.  Setting up virtual machine in laptops, getting familiar 
with the development environment 

Week 2 Saket, 
Swapna 

3.  Co-ordination between clustering and social network 
tasks 

Will be done 
throughout 
the semester 

Swapna 

4.  Literature Survey Week 3, 
Week 5 

Swapna 

5.  Formalizing deliverables, interim report 1 Week 4 Saket, 
Swapna 

6.  Exploration of clustering algorithms Week 3, 
Week 4 

Saket, 
Swapna 

7.  Feature extraction from raw input for creating user-
hashtag lists 

Week 3, 
Week 4 

Saket, 
Swapna 

8.  Vector generation and clustering of users based on 
hashtags using raw data 

Week 4, 
Week 5 

Saket 

9.  Vector generation and clustering of tweets using data 
provided by collection management team 

Week 6 Saket 

10.  Compilation of the entire interim report 2, 
incorporating the suggestions from previous reports 
as well as inputs from social networking component 

Week 5, 
Week 6 

Swapna 

11.  Report 2 -  
Design, implementation for clustering. 
WSSE evaluation for clustering. 
Developer’s manual 

Week 5 
Week 6 

Saket 

12.  Clustering of webpages, improving feature 
extraction. 

Week 8-9 Saket 

13.  Extraction of cluster labels Week 10-12 Swapna 

14.  Evaluation of clusters 
Collaborating with topic analysis group to verify and 
evaluate results in more detail.  

Week 10-12 Swapna 

15.  Compilation of the entire interim report 3, 
incorporating the suggestions from previous reports 
as well as inputs from social networking component 

Week 10 Swapna 
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16.  Report 3 – 
Design, implementation for clustering 
WSSE evaluation for clustering webpages 

Week 10  Saket 

17.  Implementing the clustering algorithms on all 
datasets for evaluating tweets webpages 

Week 13-14 Saket 

18.  Compilation of entire interim report 4, incorporating 
suggestions 

Week 12 Swapna 

19.  Further exploration for cluster evaluation – assigning 
probabilities and cluster labeling 

Week 13-14 Swapna 

20.  Compiling report 4, as per required guidelines, 
updating various sections, manuals, etc. 

Week 14 Swapna 

21.  Uploading entire project work in VTechWorks 3 May Saket 

22.  Interim report 3 31 Mar Done 

23.  Interim report 4 20 Apr Done 

24.  Final project presentation and report 3 May Done 

*Week 1 starts from 24 Jan. 2016 
 

Table 8: Clustering task breakup 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The social networking component is undertaken independently by Lijie Tang. 
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6.2 Social network    
 

Following is the task list for building a social network graph:  

a. Crawl information from Twitter (tweepy package in Python) 
b. Build re-tweets and mention edges from current tweets data  
c. Combine above information to create a social network 
d. Calculate an importance factor for each node in the network. 

 

Work done until now: 

a. The web crawler on tweets in order to collect the account information  
b. The social network builder using Python is in place 
c. Basic visualization is ready for the social network in D3. (Note: This task was done 

before the front end visualization team existed) 
 
 
The following diagram gives a comprehensive review of the social networking task: 

 
Figure 28: Comprehensive overview of social network task timelines and functional requirements. 
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7.  Developer manual 
 

7.1 Using Scala and SBT as build tool for Eclipse on CDH 5.3 
To aid development on local machine and quick debugging, it’s better to setup Scala 

in Eclipse. 

1) Install Scala IDE for Eclipse Juno 

Go to Help->Install New Software  

Paste the link for Eclipse Juno and appropriate Scala version from here 

 

Figure 29: Scala IDE for Eclipse Juno 

 Select the required packages and click on next tabs to finish installation 

2) Install SBT for Centos. The instructions are here 

3) Install Eclipse plugin for SBT. For this make a new directory at  ~/.sbt/0.13/plugins 

and create a new file plugins.sbt. Add the following line to this file: 

 addSbtPlugin("com.typesafe.sbteclipse" % "sbteclipse-plugin" % "4.0.0") 

4) In the project folder run  

sbt eclipse. 

5) Make sure that the build.sbt is present and all the dependencies are included in it. 

6) In Eclipse, import this project. Make sure that Eclipse is running as root, else there 

would be dependency issues. 

7) In Project Properties, go to Scala Compiler and uncheck Use project settings 

8) Run the Scala program, Spark would start inside the Eclipse console. All the auto-

correct and suggestion features of Eclipse would be available. 

http://scala-ide.org/download/prev-stable.html
http://www.scala-sbt.org/release/docs/Setup.html
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7.2 Feature Extraction and Normalization 
 We use two different techniques for feature extraction. First is the TF-IDF based 

technique and the second is the word2vec technique. Spark offers standard libraries for 

both the methods and comprehensive documentation can be found for both of them [3]. 

The word2vec models provides better results in terms of feature extraction.  These models 

are shallow, two-layer neural networks, that are trained to reconstruct linguistic contexts 

of words: the network is shown a word, and must guess which words occurred in adjacent 

positions in an input text. 

7.2.1 TF-IDF weighting 

 Scala provides us the necessary API for computing the TF-IDF scores for a document 

collection. 

 

 

Here DF(t,D) is the number of documents in which term t occurs in the collection D 

 

Figure 30: Vector generation using TF-IDF 

 

Here, the RDD “values” consists of the documents collection in form of RDD[Seq[String]]. 

The HashingTF object creates the necessary vector for TF values. We then use the IDF 

object to create the IDF scores. Note that we set the parameter minDocFreq =10. This 

ensures terms that occur in very low number of documents are filtered out. Terms that 

have very high occurrence are given low IDF scores by definition. Thus we do the necessary 

filtering here. 

The normalizer object normalizes the generated vectors using ||L2|| norm. This helps in 

getting better clustering results as k-means provides better results for normalized data 
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7.2.2 Word2vec  

TF-IDF ignores the sematic and the syntactic relation of the words. It simply treats the 

documents as a bag of words model and computes its scores. To improve feature 

extraction, we use the word2vec model which uses a neural network to learn bigram 

relations between words. 

 

Figure 31: Training word2vec model 

 

Corpus can be any collection from which we want to train our word vectors. Using the 

generated model, we create a vector for each word in a document and sum up all the 

vectors to get a document vector.  

Figure 32: Generating document vectors 
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7.3 Clustering using MLlib 

MLlib is a Spark library for machine learning methods. It provides different flat 

clustering algorithms like k-means, streaming k-means, bisecting k-means, etc. However, 

support for hierarchical clustering algorithms is not available. We use k-means as our 

initial clustering algorithm. MLlib provides a great API for using k-means which simplifies 

the task. (source: http://spark.apache.org/docs/latest/mllib-clustering.html) 

 

 

 

Here k-means object is used which returns a k-means model. Various evaluation methods 

are available for this model, e.g., WSSE 

  

The k-means object expects the data as RDD[Vector] ,the number of clusters, number of 

iterations as its arguments. Our steps for clustering are shown in Figure. We run out 

clustering algorithm for 10 iterations and then compute the cluster sizes as well as the 

WSSE scores. 

An improvement over the  k-means implementation in Mahout is that k-means in MLlib 

offers support to use algorithms for selection of initial cluster centres like k-means++ and  

k-means|| rather than randomly picking up the initial centres. Selection of initial cluster 

centers in k-means has a lot of effect on the eventual clustering. Thus we have better 

clustering with the use of k-means++ and k-means||. 

 

Figure 33: Main clustering steps 
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7.4 Evaluation using LDA (topic analysis) and clustering output 

  

Software/Tools requirement: Java 1.7 and above 

Code structure and description: 

Before deploying and running the evaluation code, it is recommended to read the ‘readme’ 

file shared with the code base. The instructions and details will be mentioned in this 

manual as well. The code is a simple standalone java program (1.7 and above), using a 

parsing library called ‘opencsv’ for parsing input files for evaluation. 

The project consists of 3 files: 

Files Description 
src/edu/vt/ir/Main.java Contains the core logic for deriving results 
src/edu/vt/ir/objects/DocumentPoints.java POJO which contains metadata for a 

document 
src/edu/vt/ir/objects/TopicPoint.java POJO containing measures for a topic and 

its metadata 
Table 9: Files for evaluation 

 

The project has following important folders that will be needed to run the evaluation: 

Folders Description 
clusterOutput Collection wise clustering output files. 

(Tweets: 700, 541, 694, 668, 602, 686 
Webpages: 686) 

ldaOutput Collection wise LDA output files from topic analysis team. 
(Tweets: 700, 541, 694, 668, 602, 686 
Webpages: 686) 

firstRunOutput Preliminary stage output for a collection, showing the 
topics to which the cluster correlates. 

finalOutput Final detailed output for a collection. These are tab 
separated files which are uploaded into the HBase 
schema. 

Table 10: Folder structure for evaluation task 

Samples of files in each folder from Table 10, for tweet collection 541 are shown below: 
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Figure 34: Clustering output for tweets-541 

 

 

Figure 35: LDA output for tweets-541 

 

 

Figure 36: LDA output for tweets-541, with top 5 topic words and their probabilities 
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Figure 37: Intermediate evaluation output for tweets-541 mentioning top 2 topics resembling the cluster 

 

 

Figure 38: Final evaluation output for tweets-541 

 

The Table 11, follows the output format in Figure 38 that is uploaded into HBase schema. 

HBase schema design: 

 

Table 11: HBase schema design 

 

The evaluation process consists of the following steps: 
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Figure 39: Conceptual workflow of evaluation 

 

Executing the code: 

Code has been tweaked multiple times, for matching the output format of both clustering 

and LDA. Major changes have been commented. Debugging is made easier by putting in log 

statements, which are commented otherwise. 

The ‘Main.java’ is the main file which does the execution of evaluation. The run is made per 

collection. (tweets and webpages collections separately) 

3 inputs are required for this file to run successfully: - 

I. Cluster output file location 

II. LDA output file location 

III. Output file location 

IV. Collection number 

The following snapshot shows the changes to be made in main.java 

 

Figure 40: Input parameters 

Input files and output files for collections which were shared for evaluation are present in 

the code at locations specified in Table 10 
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Clustering output is based on word2vec feature extraction. For collection 668 tweets, we 

tried it with tf-idf feature extraction as well.  The evaluation results show same grouping, 

hence that gives good confidence about the results. 

Two output files will be created.  

a.  partial-tweet-evaluation-<collection_number>.txt 

b. TweetSchemaOutput<collection_number>.txt 

Cluster labeling is done with heuristics, however, code has a section where labels are 

generated using LDA topic words as well. 

Run the main.java file in steps as described below. 

For a new collection, run the main.java once only till step 4. Then with the top topic words 

generate a label from LDA topic words or using heuristics. Add these labels in the code. 

Now, run the entire code from step 1 to step 6 again.  

These are the 6 steps to execute the code: 

I. Read clustering output 

II. Combine it with LDA output by clusters 

III. Create frequency matrix 

IV. Find relevant topics for documents in a cluster 

V. Get labels from cluster by topic from the table OR heuristics 

VI. Calculate probabilities for documents  

These steps have been fleshed out from Figure 39. Following snapshots (Figures 41-45) 

will show the code snippets of the important calculations pertaining to the 6 steps. 

 

Figure 41: Reading clustering output 
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Figure 42: Read LDA output 

 

 

Figure 43: Calculating topic frequency per cluster 
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Figure 44: Finding mean and deviation of topics in cluster 

 

 

Figure 45: Calculate probability score for each document 

 

Loading final output in HBase: 

Following are the steps to load the data in the HBase schema: 

a. The file should be in a tab separated format. The sequence of entries in the file 

should be as mentioned in the schema diagram, Table 11. 

b. Assume your local collection data to be imported is named “clustered_tweets.txt”. 

We assume that this file is present on your VM. Now you move it to the Hadoop 

cluster, using following command. 
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i. hadoop fs -put clustered_tweets.txt 

ii. hadoop fs -ls 

c. Now you have to go to HBase shell and add your column family to the specified table 

(ideal-cs5604s16). After successfully completing this task, exit from the HBase shell. 

i. hbase shell 

ii. alter 'ideal-cs5604s16','clustered-tweets' 

iii. describe 'ideal-cs5604s16' 

iv. exit 

d. After that, run importTsv MapReduce job to import your collection into the 

corresponding column family. 

hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -

Dimporttsv.columns=HBASE_ROW_KEY,clustered-tweets:cluster-no,clustered-

tweets:cluster-label,clustered-tweets:doc-probability ideal-cs5604s16 

clustered_tweets.txt 

 

For further details, you can refer to the file ‘HBaseImportTutorial’ uploaded on Canvas 

by the Solr team. 
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8.  User manual 
 

8.1 Running the Scala-Spark program on shell 

Currently the dataset is accessed by the Spark driver program from the HDFS. The 

datasets are expected to be at the location /user/cs5604s16_sn/input/ [a]. The filtered 

tweets provided by the collection management team are used for tweet clustering and the 

raw Twitter data we received initially is used for be used for clustering of users. 

The Scala code can be run directly in the Spark-Scala shell by first launching the Spark-Shell 

 

Here - -driver-memory parameter represents the memory needed for the driver program 

and - -executor-memory represents the memory of the executor core. Higher number of 

clusters needs higher memory. We found that using the current configuration, clustering 

can be done on the dataset upto 10 clusters. Using higher memory led to task scheduling 

problems on Spark, which we have already informed the Research Assistants. 

Load the program in the spark-shell  

Scala> : load <path to file> 

Spark-shell will indicate the Scala object has been successfully loaded. 

Execute the function main with the necessary input parameters. Refer file inventory for 

more description. The below example runs word2vec.scala using 6 clusters on z541 

collection. 

Scala> word2vec.main(6,”541”) 

Calling the main function executes the code. The argument for the main function is the 

number of clusters to be used for clustering and the collection number 

 

All the scala objects expect the input files to be present at   ~/input/tweets/ for tweets and 

~/input/webpages for webpages on HDFS 

The output of the code includes the number of members in each cluster and the Within Set 

Sum of Squares (WSSE) for the clustering displayed on the clusters. The clustering results 

are stored at HDFS location /user/cs5604s16_sn/output/ as part files.  

Note that the input and output file locations can be changed by modifying the file paths in 

the scala objects. 

Here each entry indicates the tweetID and the clusterID it belongs to.  
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Figure 46: Clustering results based on tweets 

 

Figure 47: Clustering results based on users 

 

 

Figure 48: Clustering based on webpages, indexed by tweet ID 

 

 

Figure 49: Clustering is webpages indexed by URL 
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8.2 Evaluation of clustering result with LDA output 
 

Software/Tools requirement: Java 1.7 and above 

Code structure and description: 

Before deploying and running the evaluation code, it is recommended to read the ‘readme’ 

file shared with the code base. The instructions and details will be mentioned in this 

manual as well. 

The code is a simple standalone java program (1.7 and above), using a parsing library 

called ‘opencsv’ for parsing input files for evaluation. 

The project consists of 3 files: 

Files Description 

src/edu/vt/ir/Main.java Contains the core logic for deriving results 

src/edu/vt/ir/objects/DocumentPoints.java POJO which contains metadata for a 
document 

src/edu/vt/ir/objects/TopicPoint.java POJO containing measures for a topic and 
its metadata 

Table 12: Files for evaluation 

 

The project has following important folders that will be needed to run the evaluation: 

Folders Description 
clusterOutput Collection wise clustering output files. 

(Tweets: 700, 541, 694, 668, 602, 686 
Webpages: 686) 

ldaOutput Collection wise LDA output files from topic analysis team. 
(Tweets: 700, 541, 694, 668, 602, 686 
Webpages: 686) 

firstRunOutput Preliminary stage output for a collection, showing the 
topics to which the cluster correlates. 

finalOutput Final detailed output for a collection. These are tab 
separated files which are uploaded into the HBase 
schema. 

Table 13: Folder structure for evaluation task 

 

Samples of files in each folder from Table 13, for tweet collection 541 are shown below: 
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Figure 50: Clustering output for tweets-541 

 

Figure 51: LDA output for tweets-541 

 

 

Figure 52: LDA output for tweets-541, with top 5 topic words and their probabilities 
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Figure 53: Intermediate evaluation output for tweets-541 mentioning top 2 topics resembling the cluster 

 

 

Figure 54: Final evaluation output for tweets-541 

 

The Figure 54, follows the output format in Table 14 that is uploaded into HBase schema. 

HBase schema design: 

 

Table 14: HBase schema design 

 

Executing the code: 

Debugging is made easier by putting in log statements, which are commented otherwise. 

The run is made per collection. (tweets and webpages collections separately) 

3 inputs are required for this file to run successfully: - 
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V. Cluster output file location 

VI. LDA output file location 

VII. Output file location 

VIII. Collection number 

The following snapshot shows the changes to be made in main.java 

 

Figure 55: Input parameters 

Input files and output files for collections which were shared for evaluation are present in 

the code at locations specified in Table 13 

Two output files will be created.  

c.  partial-tweet-evaluation-<collection_number>.txt 

d. TweetSchemaOutput<collection_number>.txt 

Cluster labeling is done with heuristics, however, code has a section where labels are 

generated using LDA topic words as well. 

Run the main.java file in steps as described below. 

For a new collection, run the main.java once only till step 4. Then with the top topic words 

generate a label from LDA topic words or using heuristics. Add these labels in the code. 

Now, run the entire code from step 1 to step 6 again.  

These are the 6 steps to execute the code: 

I. Read clustering output 

II. Combine it with LDA output by clusters 

III. Create frequency matrix 

IV. Find relevant topics for documents in a cluster 

V. Get labels from cluster by topic from the table OR heuristics 

VI. Calculate probabilities for documents  

Loading final output in HBase: 

Following are the steps to load the data in the HBase schema: 

e. The file should be in a tab separated format. The sequence of entries in the file 

should be as mentioned in the schema diagram, Table 14. 
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f. Assume your local collection data to be imported is named “clustered_tweets.txt”. 

We assume that this file is present on your VM. Now you move it to the Hadoop 

cluster, using following command. 

iii. hadoop fs -put clustered_tweets.txt 

iv. hadoop fs -ls 

g. Now you have to go to HBase shell and add your column family to the specified table 

(ideal-cs5604s16). After successfully completing this task, exit from the HBase shell. 

v. hbase shell 

vi. alter 'ideal-cs5604s16','clustered-tweets' 

vii. describe 'ideal-cs5604s16' 

viii. exit 

h. After that, run importTsv MapReduce job to import your collection into the 

corresponding column family. 

hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -

Dimporttsv.columns=HBASE_ROW_KEY,clustered-tweets:cluster-no,clustered-

tweets:cluster-label,clustered-tweets:doc-probability ideal-cs5604s16 

clustered_tweets.txt 

 

For further details, you can refer to the file ‘HBaseImportTutorial’ uploaded on Canvas 

by the Solr team. 
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9.  Future work 
 

The following work can be taken up in later stages: 

 Use probabilistic models for clustering 

 Clustering evaluation 

- Evaluate clusters with internal and external criteria 

- Implement Silhouette scoring in Spark-Scala 

- Establish ground truth for comparison of evaluation results (probabilities) 

 Labeling of clusters 

- Label extraction from clusters words 

- Compare cluster labeling methods 

 Clustering as a start point 

- Feed clustering results to LDA/classification/collaborative filtering for more 

accurate results. 

 Feature Vectors 

- Principal Component Analysis (PCA) for dimensionality reduction 

- Exploring consideration of timestamp in the feature vectors of tweets 

There are several problems we faced in finishing the social network: 

 Crawler speed limit: crawling the user metadata is fine, but crawling the follower’s 

list is hard since some public accounts have millions of followers. This will extend 

the crawling time to unacceptable. Right now, in our solution we only crawl a 

maximum of 50,000 followers. We may need a better idea to solve this problem. The 

number of tweets are also far more than the number of accounts. So the tweets 

crawler also faces this problem. 

 Tweets tracking: in retweet process, the tweet ID of the original will not be kept and 

sometimes the content will be altered. It’s hard to identify the entire process of 

retweet in our program right now. We need to find a solution for this problem. 

 Visualization in D3: an interactive visualization tool is the objective of the 

visualization work, and we want it to be web based. We don’t have a good example 

on this work so we need to figure this out in the future.  
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Appendix A - Abbreviations 
 

 

RDD- Relational Distributed Databases 

TF-IDF- Term Frequency-Inverse Document Frequency 

EM – Expectation Maximization 

WSSE – Within Set Sum of Squares 
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Appendix B - File Inventory 
 

The entire code repository, report and final presentation for the project will be available at 

VTechWorks.  

 Sourcecode.zip – All the necessary code and readme files are present here. Please refer user 
manual and developer manual for the individual files. This includes code for clustering and 

comparison with the topic analysis team 

 ClusteringReport.doc/ClsuteringReport.pdf – Our report for the project 

 ClusteringPresentation.ppt/.pdf -Our presentation 

 CollectionStats.xls – Contains all the data collected which was used for plotting various 

graphs in the report. 
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