Clustering Reduced Order Models for Computational Fluid Dynamics

Gabriele Boncoraglio, Forest Fraser

Abstract

We introduce a novel approach to solving PDE-constrained
optimization problems, specifically related to aircraft design.
These optimization problems require running expensive com-
putational fluid dynamics (CFD) simulations which have pre-
viously been approximated with a reduced order model (ROM)
to lower the computational cost. Instead of using a single
global ROM as is traditionally done, we propose using multi-
ple piecewise ROMs, constructed and used with the aid of ma-
chine learning techniques. Our approach consists of clustering
a set of precomputed non linear partial differential equations
(PDE) solutions from which we build our piecewise ROMs.
Then during the optimization problem, when we need to run
a simulation for a given optimization parameter, we select
the optimal piecewise ROM to use. Initial results on our test
dataset are promising. We were able to achieve the same
or better accuracy by using piecewise ROMs rather than a
global ROM, while further reducing the computational cost
associated with running a simulation.

1 Introduction

Improving the design of aircrafts often requires solving PDE-
constrained optimization problems such as maximizing the
lift with respect to some parameters, .

drag
Lift(p)
max —————
Wed Drag(w) 1
s, Lift(p) > Lifto (1)
M < B My

Here p is an optimization vector containing parameters
that we want to optimize. It is also common practice to have
a lower bound g1, and upper bound g1, on this vector p.

To find the optimal p4 we must update it iteratively, run-
ning a computational fluid dynamics (CFD) simulation at
each optimization step. In figure (1) we can see the multi-
ple queried points to find the optimal solution.

D c RVe e K2
’~ /’\’l Y Ui |
Uo! | 4 __,' Ha Aﬂs
‘ ”1 ‘lfsx - /._/

Figure 1: Optimization process

lift

drag for the mAEW-
ing2 glider with parameters p = [y, pa, i3] € D = R?® where

In our case, we want optimize the

w1 modifies the dihedral angle of the wing and {p9, p3} mod-
ify the sweep angle of the wing. Figure (2) shows how the
different parameters modify the shape of the aircraft.

Figure 2: p; changes the dihedral angle (left) and {us, us}
changes the sweep angle (right) of the mAEWing2

In figure (3) we can see the result of running a CFD sim-
ulation on this aircraft, where we are calculating how the
pressure varies along the surface of the aircraft for a specific
choice of p.

Figure 3: CFD simulation of the mAEWing2

CFD simulations are very computationally expensive. One
technique in order to speed up CFD simulations is to use a
reduced order model (ROM) [1]. The objective of this project
is to accelerate the optimization process further by using clus-
tering/classification techniques to generate and use multiple
piecewise ROMs for less expensive, yet still accurate simula-
tions.

1.1 High Dimensional Model (HDM)

Fluid flow problems are governed by nonlinear partial differ-
ential equations (PDE). Solving these equations, using CFD
techniques such as finite volume method, is equivalent to solv-
ing a set of nonlinear equations:

(2)

where p is the set of parameters for our simulation and w
is the unknown vector of dimension N, w € RY, called the
“state” vector. Specifically, a row of the state, w[i], repre-
sents a property of the fluid flow, such as pressure, at point

r(w(p),p) =0

i of the CFD mesh. Thus, the CFD mesh has N points. In
figure (4) we can see some of the points of the mesh of the
mAEWing2.

Figure 4: Mesh for the mAEWing2

Computing w allows us to compute the lift and drag gen-
erated by the mAEWing2 during the flight. This high dimen-
sional model (HDM), Eq. (2), can be solved in a least squares
sense by considering the following problem

3)

Unfortunately, this problem is very expensive to solve when
N is large, as it is in the case of solving CFD problems where
N is in the order of thousands or millions.

. 2
nin r(w(p),)l

1.2 Reduced Order Model (ROM)

In order to solve CFD problems faster, a reduced order model
(ROM) can be used in order to approximate the HDM, (2),
reducing the number of unknowns in Eq. (3) and hence re-
ducing the cost of solving the least squares problem. The
fundamental assumption made in reduced order modelling is
that the state w belongs to an affine subspace of RY, where
the dimension n of the affine subspace is typically orders of
magnitude smaller than N. Therefore, we search for an ap-
proximated solution for w in the form

(4)

where Vg € RV*" denotes the global reduce order basis
(ROB), and w, € R™ denotes the new vector of unknowns,
called the “reduced state”. Substituting Eq. (4) into Eq. (2)
results in the following system of N nonlinear equations in
terms of n variables w,.

W(’J’) = Vglwr (IJ’)

r(Vgw,(p),p) =0

Now the least squares problem to solve is

min |r(Vgw:(p), 1)[3
w,.ER™

1.2.1 Global Reduce Order Basis (ROB) V,

To build a ROM we first need to find the global reduced order
basis (ROB), V. This is done by solving the non linear
equation (2) for many optimization vectors p. Thus, given a
specific vector pu; we can define the solution state vector:

r(w(p;), pi) = 0 < w(p;) (7)

Therefore, for a set of k optimization vectors, {u}¥, we solve
(3) and we get a set of state vectors, {w(g;)}¥. Once we have
all the state vectors, we create the “solution matrix” M

M= |wim) wu) - wlu) (8)

Finally, we perform a singular value decomposition (SVD) on
the matrix M to compute the global ROB Vy:

M = USD = [V, V3] [Ed‘ﬂ 202] [[];9;]

(9)
Here, V4, is computed by only selecting the first n columns
of the matrix U and therefore V,l € RN*". Thus, the global
ROM has dimension n and can be used in the entire domain
D:

w(p) = Vgw,(pn), peD (10)

1.3 Piecewise ROMs in the Design Space

In this project we propose creating multiple piecewise ROMs
in the domain D, each having smaller dimensions than a global
ROM would. These piecewise ROMs do not need to be ac-
curate in the entire domain D but only in limited region of
the design space D. By using machine learning techniques
we hypothesize that we can improve quality of the reduced
order basis (ROB) within a given design space D. Then, us-
ing these piecewise ROMs, will allow us to solve even cheaper
least squares problems than (6), whilst maintaining a similar
or better level of accuracy relative to the HDM.

To do this we must group the precomputed solutions
{w(p;)}¥ into multiple clusters and then create multiple piece-
wise reduced order basis {V;}{ where ¢ is the number of clus-
ters. For instance, choosing two clusters, in figure (5) we
can see a schematic comparison of a global ROM versus 2
piecewise ROMs built by clustering {w(u;}} into 2 clusters.
On the left, all the training solutions {w;}1° computed solv-
ing (2) using {p;}1° are used to create V; and therefore a
global ROM. On the right, we first cluster the training solu-
tions {w;}1° into 2 clusters and then we construct 2 reduced
order basis Vi and V3. V; is built using the solutions com-
puted using the parameters {p1, s, e, 7, 10} and Vo us-

ing {peo, p3, pa, ps, o}

D c RMs D c RV

Figure 5: On the left global ROM approach. On the right our
proposed piecewise ROM approach

As such, the global ROM uses V, € RV*". The two
piecewise ROMs, instead use Vi € RV*™ and V, € RV*™2

respectively, where, by construction n; < n and ny < n.
Therefore, the first piecewise ROM makes the following ap-
proximation using V;

w(p) = Viw, () (11)
and the second piecewise ROM makes another approximation
using Vs:

w(p) = Vow, (p) (12)
Therefore by using either (11) or (12) we can solve
: ' 2
Juin r(Viw (1),)3 (13)

where 7 indicates which piecewise ROM i is used.
Using this method with piecewise ROMs gives rise to two
machine learning problems that we must solve.

1. Given multiple precomputed solutions {w;}¥, how do
we cluster them most effectively into {V;}$?

2.2 Clustering

Since our goal is to break our domain D into smaller sub
domains, we believe clustering the training points based on
the euclidean distance between features will be most effective.
We have applied three algorithms in order to implement this;
K-Means, Expectation-Maximization (to fit a gaussian
mixture model) and Agglomerative Clustering.

In terms of clustering features, we have considered using p

) lift
in addition to the dhft drag
rag

2
and S from our precomputed solu-
tions. Intuitively if two vectors p1 and po are close together in
terms of euclidean distance, then fluid flow properties should
also be similar. Therefore, they should be clustered together
as the resulting ROB can efficiently represent both w () and

. . o -lift_
w(p2). We considered dl;—ffg and —52= a features as they pro-
vide more information on the physics problem we are trying
to solve and obviously lift and drag are both related to the

fluid state.

2. Given an arbitrary u, which piecewise ROM {V,}§ should 2.3 Classification

we use to best represent the HDM?

In the next section we describe the methods we have imple-
mented for addressing the above problems.

2 Methods

2.1 Overview

Our proposed methodology to solve a PDE-constrained op-
timization problem operates in two phases, an offline phase
and an online phase. In the offline phase, we cluster precom-
puted training solutions, from which we build our piecewise
ROMs that are used in the online phase. Figure (6) shows
the outline of this phase.

Offline Phase
{Il1:W1}:

{”2 IWZ}

[Input features H Clustering

{”s'ws}:
{ﬂs'ws}

Figure 6: Offline phase scheme

In the online phase, we query multiple p, during the opti-
mization process. For each queried u;, we need select which
piecewise ROM (V;) to use. Then we run the simulation to
compute w(u;) and dligg (7). Figure (7) shows the outline of
this phase.

Online Phase

Figure 7: Online phase scheme

The number of training points used when constructing ROMs
are relatively low when compared with other machine learn-
ing problems. Additionally, we do not have ground truth
values for our classifications, and only are able to determine
how well our algorithms performs after doing a ROM sim-
ulation. Therefore we have chosen to evaluate two simple
methods, Nearest Centroid and Multinomial Logistic
Regression as our algorithms for performing classifications.
For Nearest Centroid, we simply select the piecewise ROM
whose clustered points have the closest centroid to the queried
point, while Multinomial Logistic regression is trained using a
cross entropy loss and the labels output from clustering dur-
ing the offline phase. Since during the online phase we will
not have access to the lift or drag for a given query point, we
are only able to use pu as a feature for classification.

3 Design of Experiment

In order to to create a train/validation/test set we sampled
the parameter domain D < R? to compute 90 solutions {w(u;)
The sampling strategy adopted here is to use latin hypercube
sampling in order to generate controlled random samples. Us-
ing this sampling strategy we created 90 vectors {u;}3° € D <
R3. Once we created this set of vectors, we also compute the
solutions of the HDM for each p;, thus {w(p;)}{°. We then
randomly split our data into training/validation/test sets of
size 50, 30 and 10 respectively. In our case, the validation set
is used for finding the optimal clustering and classification al-
gorithms and parameters, while the test set is used to do one
final comparison of our piecewise ROM versus a global ROM.

4 Experiments Results

For all of the following experiments we define our error to be
the difference in % calculated with a ROM and dl;—f;g calcu-
lated with the HDM. We refer to MSE as the mean squared
error across our test points and Max Error % as the highest

percentage deviation from the dlif calculated with the HDM.

H Number of clusters MSE Max Error % H

— (dlifngoM - dlifngDM) (14) 2 clusters 0.255 23.072
dl;;tg DA 3 clusters 0.288 23.520

4 clusters 0.354 26.133

5 clusters 0.417 29.826

4.1 Model Parameter Experiments

For our first set of experiments we determine the best parame- Figure 11: Error with different numbers of clusters

ters for our methodology, given our design space. Specifically,

we use the validation set to determine the: From the above experiments we see that K-Means with
lift
features {pu, ;‘:g }, Multinomial Logistic Regression performs

better than Nearest Centroid and lower numbers of clusters
reduce the error.

e clustering algorithm
e classification algorithm
e clustering features

e number of clusters

4.2 Global ROM Comparison

With our optimal clustering/classification algorithms and fea-
tures derived from subsection (4.1), and clusters of size 2 and
4, we tested the accuracy of our methodology versus a global
ROM approach for calculating the ;igg, the objective function
of the optimization problem. For the test with two clusters,

we show the offline clustering phase in figure (12).

For each experiment we ran three tests, each with 20 train-
ing points folded from our total 50 training points and test the
error on our validation set. In subsection (4.3) we investigate
using a predictor to automatically determine our parameters
without having to run any simulations on a validation set.

First we tested for the best clustering algorithms; fixing
our classification algorithm to Nearest Centroid, the number

of clusters to 4, and clustering features to {u, dlif:g .

008

H Clustering analysis

MSE Max Error % H

K-Means 0.327 23.117
Gaussian mixtures 0.421 28.898
Agglomerative clus. 0.340 23.917

Figure 8: Error of different clustering methods

lift
O 3rag

Figure 12: On the left, gradient —5*% of the training points.
On the right, training points clustered into two clusters.

Second, we tested various different classification algorithms;
fixing our clustering algorithm to K-Means, the number of

clusters to 4, and clusters features to {u, dlif:g}.

In figure (13) we show how the test points are labeled
after classification, in order to chose which ROMs to use for
the simulation.

H Classification algorithm MSE Max Error % H

0.341 29.490
0.318 29.490

Logistic regression
Nearest centroid

Figure 9: Error of different classification methods

Next, we determined the best cluster features, fixing the
clustering algorithm to K-Means, the classification algorithm
to Nearest Centroid, and number of clusters to 4.

H Cluster features MSE Max Error % H

(1, 42 0.3543 30.955
P Figure 13: Testing point labeled after classification.

<u7 g;g) 0.3145 30.955

. o Lift
(u, T M) 0.3409 30.955 [Method # Clusters ROM Sizes MSE Max Error % ||

Cluster 2 (12, 8) 0.051 7.726
Figure 10: Error with different clustering features Cluster 4 (5,7,5,3) 0.200 17.439
Global - 14 0.194 21.156

Finally, we tested the effect of using different numbers of

clusters. We used K-Means for clustering, Nearest Centroid

for classification, and {pu, as the clustering features.

lift
drag

Figure 14: Relative error with different methods

The results in table (14) show that the cluster method ei-
ther with two clusters or four clusters is able to have the same
or better accuracy of the global ROM using a smaller ROM
size. Here the ROM size indicates the number of columns of
the reduced order basis (ROB), V;, used for the ROM ap-
proximation w(u) = V,;w,.(u).

4.3 Predictor for ROM Accuracy

In practice, users would not want to have to use a valida-
tion set to determine the best clustering parameters, as the
time required to do this may outweigh any efficiency savings
from using piecewise ROMs. Therefore a predictor for a re-
liable set of clustering parameters is necessary for real world
applications. We tested different cluster scoring methods, in-
cluding Silhouette Score [2], Calinski-Harabaz Index [3] and
Davies-Bouldin Index [4], on all combinations of the clustering
parameters described in subsection (4.3). Each combination
was trained using 20 points from our training set, and the
error calculated our validation set. Extreme outliers in terms
of relative error were also removed. We then calculated the
Pearson correlation coefficient for each scoring method, rel-

ative to the average error of the approximated dlgfg for our
validation points.
H Cluster Scoring Method Correlation H
Silhouette Score -0.68548199
Calinski-Harabaz Index -0.68738437
Davies-Bouldin Index -0.50457497

Figure 15: Clustering score correlation with relative error

0.080
0.080

0075 0075

@ 00704 0070

& 0065 0.065

Average Relative Error

0.060 0,060
0.055 0,055

0.050 . 0,050

028 030 032 034 036 038 0.40 b} 1
Cluster Silhouette Score

Figure 16: On the left, Silhouette Score versus average relative
error. On the right, Calinski-Harabaz Index versus average
relative error.

5 Discussion

From our results we see that the K-Means and Agglomera-
tive clustering perform somewhat similarly, compared to the
Gaussian Mixture Model. This makes sense as the points used
in the offline phase are not necessarily Gaussian distributed,
while K-Means and Agglomerative clustering less strong of an
assumption. As for clustering features, the difference between
feature sets is relatively small. This makes sense as for many
points in the design space our optimization vector, p will be
highly correlated with the lift and drag.

We are also able to see an interesting trade off when it
comes to the number of clusters used. From the results we
can clearly see that the error decreases with the number of
cluster sizes. This is sensible because as we increase the num-
ber of clusters, the number of points are assigned points used
to create each ROB decreases, decreasing the accuracy of the
ROM approximation. However as the number of points used
to build the ROB decreases, so does the computation cost of
running a simulation with the corresponding ROM. There-
fore the number of clusters used should be chosen on a per
application basis, where the user would select the number of
clusters corresponding to the acceptable error.

Overall, we can see that the our proposed methodology is
superior when compared with using a global ROM. We can
see that we are either able to get a much higher accuracy than
the global ROM with a similar computational cost (related to
the ROM size), or we are able to achieve a similar accuracy
with half the computation cost of the global ROM.

With regards to predictors for parameter selection, we can
see that all three cluster scoring methods show some indica-
tion that they could be used as a predictor for cluster ROM
accuracy, at least for our design space. Silhouette Score and
the Calinski-Harabaz Index may be slightly more correlated
than the Davies-Bouldin as the distance between points on
the edges of clusters are reflected in their scores, rather then
only accounting for the distances between cluster centroids.
However more rigorous testing is needed, especially we do not
know if it will generalize to other PDE-constrained optimiza-
tion problems.

6 Conclusion & Future Work

In conclusion, we present a novel approach to solving PDE-
constrained optimization problems by utilizing multiple piece-
wise ROMs. This approach has proven to be both more ac-
curate and more computationally efficient than using a single
global ROM. It shows particularly strong promise for time
constrained applications with high dimensional design spaces.
In these scenarios, the global ROM would need to be very
large in order to be accurate across the whole design space
and thus it might not be able to meet real-time deadlines.
Piecewise ROMs on the other hand, can be more efficient and
thus able to meet the timing constraints.

We would like to continue testing the performance of our
approach in more realistic, higher dimensional design spaces
(50-60 parameters). For this project we chose a limited de-
sign space due to time constraints, as running tests in higher
dimensional design spaces is naturally more computationally
expensive and takes more time. We would also like to continue
research on predictors for clustering effectiveness, as this is a
key component for this approach to be practical in real world
problems.

References

[1] Kyle M. Washabaugh, Matthew J. Zahr, and Charbel Farhat. (2016). ”On the Use of Discrete Nonlinear Reduced-
Order Models for the Prediction of Steady-State Flows Past Parametrically Deformed Complex Geometries”, 54th ATAA
Aerospace Sciences Meeting, ATAA SciTech Forum, (ATAA 2016-1814).

[2] Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis”.
Computational and Applied Mathematics 20: 53-65.

[3] Calinski, T., Harabasz, J. (1974). “A dendrite method for cluster analysis”. Communications in Statistics-theory and
Methods 3: 1-27.

[4] Davies, David L.; Bouldin, Donald W. (1979). “A Cluster Separation Measure” IEEE Transactions on Pattern Analysis
and Machine Intelligence. PAMI-1 (2): 224-227.

7 Contributions

The first part of this project was discussing and creating a new methodology for solving PDE-constrained optimization
problem. This was a significant part of the project where both Forest and Gabriele discussed on the optimal approach to
take. To implement this methodology, Gabriele wrote code to build and run ROMs from a set of training points in addition
to writing code to generate the data to start the experiments. Forest was responsible for implementing the machine learning
algorithms from external libraries as well as automating testing. Both Gabriele and Forest contributed towards research
and decision making for the use of machine learning techniques in this project in addition writing routines to output and
post-process results for analysis.

8 Code

Unfortunately the code must be run on a super computer with many external libraries from the Stanford Aeronautics &
Astronautics department. We have included a zip file containing the only the code written for this project available at:

https://drive.google.com/file/d /1BP4iW6RIR _Cn3hxWL58cF-Pi5XppSI4W /view?usp=sharing

https://drive.google.com/file/d/1BP4iW6RIR_Cn3hxWL58cF-Pi5XppSI4W/view?usp=sharing

	Introduction
	High Dimensional Model (HDM)
	Reduced Order Model (ROM)
	Global Reduce Order Basis (ROB) Vgl

	Piecewise ROMs in the Design Space

	Methods
	Overview
	Clustering
	Classification

	Design of Experiment
	Experiments Results
	Model Parameter Experiments
	Global ROM Comparison
	Predictor for ROM Accuracy

	Discussion
	Conclusion & Future Work
	Contributions
	Code

