CMOS Analog Integrated Circuits: Models, Analysis, & Design

Dr. John Choma, Jr. Professor of Electrical Engineering

University of Southern California Department of Electrical Engineering-Electrophysics University Park; Mail Code: 0271 Los Angeles, California 90089-0271

> 213-740-4692 [OFF] 626-915-7503 [HOME] 626-915-0944 [FAX] johnc@almaak.usc.edu (E-MAIL)

> > **EE448**

MOS Circuit Level Models

Fall 2001

Lecture Overview

•Static Model

- Cutoff Region
- Ohmic (Triode) Region Model
- Saturation Region Model
- Subthreshold Model

•Short Channel Effects In Saturation

- Channel Length Modulation
- Substrate/Bulk Phenomena
- Mobility Degradation
- Carrier Velocity Saturation

•Small Signal Model In Saturation

- Forward Transconductance
- Bulk Transconductance
- Capacitances

Sample Circuit Analysis (Inverter) Gain Bandwidth

Characteristic Curves: Cutoff And Ohmic Regimes

- Cutoff Regime: $V_{gs} < V_{hn}$
 - $I_d = 0$
 - $V_{hn} \rightarrow$ Threshold Voltage, Function Of Bulk–Source Voltage
- Ohmic Regime: $V_{gs} \ge V_{hn}$ and $V_{ds} < V_{gs} V_{hn}$
 - $\blacksquare I_{d} = K_{n} \left(\frac{W}{L}\right) V_{ds} \left(V_{gs} V_{hn} \frac{V_{ds}}{2}\right)$

•
$$K_n = \mu_n C_{ox} = \frac{\mu_n \varepsilon_{ox}}{T_{ox}}$$

- Comments
 - W/L Is Gate–Channel Aspect Ratio, <u>A Designable Parameter</u>
 - $V_{ds} = V_{gs} V_{gd} < V_{gs} V_{hn}$ Implies $V_{gd} > V_{hn}$
 - Temperature Effects (Holes And Electrons):

$$\mu(\mathbf{T}) \approx \mu(\mathbf{T}_{o}) \left(\frac{\mathbf{T}_{o}}{\mathbf{T}} \right)^{3/2}$$

Resistance For Small Drain–Source Voltage:

$$\frac{\partial I_{d}}{\partial V_{ds}} \triangleq K_{n} \left(\frac{W}{L}\right) \left(V_{gs} - V_{hn} - V_{ds}\right) = \frac{I_{d}}{V_{ds}} \left(\frac{V_{gs} - V_{hn} - V_{ds}}{V_{gs} - V_{hn} - \frac{V_{ds}}{2}}\right) \approx \frac{I_{d}}{V_{ds}}$$

Characteristic Curves: Saturated Regime

• Saturation Regime: $V_{gs} \ge V_{hn}$ & $V_{ds} \ge V_{gs} - V_{hn}$

$$I_{d} = \frac{K_{n}}{2} \left(\frac{W}{L} \right) \left(V_{gs} - V_{hn} \right)^{2}$$

- $V_{dss} \triangleq V_{gs} V_{hn} \rightarrow Drain Saturation Voltage$
- $I_{dss} = \frac{K_n}{2} \left(\frac{W}{L} \right) V_{dss}^2 \rightarrow Drain Saturation Current$
- Comments
 - Square Law Voltage–Controlled Current Source
 - Drain Current Shows Negative Temperature Coefficient Because Of Its Proportionality To Mobility
 - Differential Current Of Two Matched Devices Is Linear With Differential Gate–Source Voltage (V_{DM}) Provided Common Mode Gate–Source Voltage(V_{CM}) Is A Constant

$$I_{d1} - I_{d2} = \frac{K_{n}}{2} \left(\frac{W}{L} \right) \left[\left(V_{gs1} - V_{hn} \right)^{2} - \left(V_{gs2} - V_{hn} \right)^{2} \right]$$
$$I_{d1} - I_{d2} = K_{n} \left(\frac{W}{L} \right) \left(\frac{V_{gs1} + V_{gs2}}{2} - V_{hn} \right) \left(V_{gs1} - V_{gs2} \right)$$
$$I_{d1} - I_{d2} = K_{n} \left(\frac{W}{L} \right) \left(V_{CM} - V_{hn} \right) V_{DM}$$

Characteristic Curves: Subthreshold Regime

Subthreshold Regime: $V_{gs} < V_{hn} + 2 n V_T \& V_{ds} = 3 V_T$

•
$$V_T = \frac{kT}{q} = 26 \text{ mV} @ 27 \text{ 8C}$$

•
$$1.2 < n < 2.0$$

$$\mathbf{V} = 2 \mathbf{K}_{n} \left(\frac{\mathbf{W}}{\mathbf{L}}\right) \left(\frac{\mathbf{n} \mathbf{V}_{T}}{\mathbf{\epsilon}}\right)^{2} \mathbf{e}^{(\mathbf{V}_{gs} - \mathbf{V}_{hn}) / \mathbf{n} \mathbf{V}_{T}}$$

Comments

- Bipolar Type I–V Action Indigenous To Subthreshold Regime
- Subthreshold Operation Corresponds To Gate–Channel Interface Potentials Lying Between One And Two Fermi Potentials
- Useful Only For Low Speed, Low Power Applications

Sample Simplified MOS Static Characteristics Drain Current (microamperes)

• Modified Saturation Regime Current $I_{d} = I_{dss} \left(\frac{L}{L-\Delta L}\right) = \frac{K_n}{2} \left(\frac{W}{L}\right) (V_{gs} - V_{hn})^2 \left(1 + \frac{V_{ds} - V_{dss}}{V_{\lambda}}\right)$ $V_{dss} = V_{gs} - V_{hn}$ $V_j = \frac{kT}{q} \ln \frac{N_D N_A}{N_{iB}^2}$ $V_{\lambda} = L \sqrt{\left(\frac{2 q N_A}{\epsilon_s}\right) (V_{ds} - V_{dss} + V_j)}$

Parameters

- $N_A \rightarrow$ Average Substrate Impurity Concentration
- $e_s \rightarrow$ Dielectric Constant Of Silicon (1.05 pF/cm)
- $q \rightarrow$ Electronic Charge Magnitude
- $V_l \rightarrow$ Channel Length Modulation Voltage
- $V_j \rightarrow$ Built In Substrate–Drain/Source Junction Potential

• Note

- Large Channel Length Reduces Channel Modulation
- Small Substrate Concentration Increases Channel Modulation

Substrate/Bulk Phenomena

• Effect On Threshold Voltage

$$I_{d} = \frac{K_{n}}{2} \left(\frac{W}{L} \right) \left(V_{gs} - V_{hnc} \right)^{2} \left(1 + \frac{V_{ds} - V_{dss}}{V_{\lambda}} \right)^{2}$$

• $V_h = V_{ho} + 2\sqrt{V_{\theta}(V_F - V_T)} \left[\sqrt{\left(1 - \frac{V_{bs}}{2(V_F - V_T)}\right)} - 1 \right]$ • $V_{\theta} = \frac{q N_A \varepsilon_s}{C_{ox}^2} = q N_A \varepsilon_s \left(\frac{T_{ox}}{\varepsilon_{ox}}\right)^2$ (High Hundreds Of μ Volts)

•
$$V_F = V_T \ln \left(\frac{N_A}{N_{iB}}\right)$$
 (Few Tenths Of Volts)

- Parameters
 - $V_F \rightarrow$ Fermi Potential; Renders Channel Surface Intrinsic
 - $N_{iB} \rightarrow$ Intrinsic Carrier Concentration In Substrate
 - ε_{ox} \rightarrow Dielectric Constant Of Silicon Dioxide (345 fF/cm)

Note

- Small Oxide Thickness Reduces Threshold Modulation
- Small Substrate Concentration Reduces Threshold Modulation

Threshold Voltage Modulation

Mobility Degradation Due To Vertical Field

Electric Field Problems

- Thin Oxide Layers Conduce Large Gate -To- Channel Fields For Even Small -To- Moderate Gate–Source Voltages
- These Enhanced Fields Impart Increasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities

• Mobility:
$$\mu_{neff} \approx \frac{\mu_n}{1 + \frac{V_{gs} - V_{hnc}}{V_E}}$$

 $V_E \approx (500)(10^6) T_{ox}$ (Low Hundreds Of Volts)

Parameters

- $\mu_{neff} \rightarrow$ Effective Carrier Mobility In Channel
- $V_E \rightarrow$ Vertical Field Degradation Voltage Parameter
- Crude One Dimension Approximation To Two Dimensional Problem
- T_{ox} in MKS Units Yields V_E In Volts

Impact Of Mobility Degradation

• Static Drain Current

$$K_{n} = \mu_{n} C_{ox} \longrightarrow K_{neff} = \mu_{neff} C_{ox}$$

$$I_{d} = \frac{K_{n}}{2} \left(\frac{W}{L} \right) \left[\frac{\left(V_{gs} - V_{hnc} \right)^{2} \left(1 + \frac{V_{ds} - V_{dss}}{V_{\lambda}} \right)}{\left(1 + \frac{V_{gs} - V_{hnc}}{V_{E}} \right)} \right]$$

- Other Effects
 - Reduced Bandwidth And Increased Carrier Transit Time
 - Smaller Current For Given Gate–Source Bias
 - Reduced Forward Transconductance

Mobility Degradation Due To Lateral Field

Electric Field Problems

- Short Channels Conduce Large Drain -To- Source Fields For Even Small -To- Moderate Drain–Source Voltages
- These Enhanced Fields Impart Increasing Energies To Carriers, Thereby Causing More Carrier Collisions And Degraded Mobilities
- At Very Large Horizontal Fields, Carrier Velocities Ultimately Saturate To A Value Of ^vsat, Which Is About 0.1 μm/pSEC
- Saturation Occurs When Horizontal Field, E_h, Equals Or Exceeds A Critical Value, E_c, Which Is About 5 V/μm

Mobility And Field

$$\mu_{ne} \approx \frac{\mu_{n}}{1 + \frac{E_{h}}{E_{c}}} = \frac{V_{sat}}{E_{c} + E_{h}}$$

$$v_{sat} = \mu_{n} E_{c}$$

$$v = \mu_{ne} E_{h} \approx \frac{\mu_{n} E_{h}}{1 + \frac{E_{h}}{E_{c}}}$$

$$E_{h} \approx \frac{V_{gs} - V_{hn}}{L}$$

Velocity – Mobility – Field Relationships

Mobility And Lateral Field

Mobility And Field

Electric Field Problems

- Crude Approximation For Horizontal Field, ^E_h
- Free Carriers Exist Only Over Channel Where Voltage With Respect To The Source Is At Most $V_{dss} = (V_{gs} - V_{hnc})$
- Channel Length, L, Should Be Effective Channel Length, L', But This Shrinkage Is Already Accounted For By Channel Length Modulation Voltage Parameter, V₂
- LE_c Is About 1.75 Volts For $L = 0.35 \mu m$

Volt-Ampere Impact Of High Lateral Field

• Static Drain Current

$$K_{n} = \mu_{n} C_{ox} \longrightarrow K_{neff} = \mu_{neff} C_{ox}$$

$$I_{d} = \frac{K_{n}}{2} \left(\frac{W}{L} \right) \frac{(V_{gs} - V_{hnc})^{2} \left(1 + \frac{V_{ds} - V_{dss}}{V_{\lambda}} \right)}{1 + \frac{V_{gs} - V_{hnc}}{L E_{c}}}$$

• Very High Fields

$$V_{gs} - V_{hnc} >> L E_c$$

$$I_{d} \approx \left(\frac{WC_{ox}V_{sat}}{2}\right) \left(V_{gs} - V_{hnc}\right) \left(1 + \frac{V_{ds} - V_{dss}}{V_{l}}\right)$$

Comments

- Drain Current Scales Approximately With W, As Opposed To W/L
- Drain Current Almost Linear W/R To Gate–Source Voltage

$$\rightarrow \text{Gate-Drain Capacitance}$$

$$\rightarrow \text{Gate-Source Capacitance}$$

$$\rightarrow \text{Drain-Bulk Capacitance}$$

$$\rightarrow \text{Drain-Bulk Capacitance}$$

$$\rightarrow \text{Source-Bulk Capacitance}$$

$$\rightarrow \text{Drain Overlap Capacitance}$$

$$\rightarrow \text{Source Overlap Capacitance}$$

$$\rightarrow \text{Drain Ohmic Resistance}$$

$$\rightarrow \text{Source Ohmic Resistance}$$

$$\rightarrow \text{Bulk Ohmic Resistance}$$

$$\rightarrow \text{Bulk Spreading Resistance}$$

$$\begin{bmatrix} C_{gd} + C_{old} \approx C_{old} = W L_d C_{ox} \\ C_{gs} = W L C_{ox} \left(\frac{2}{3} + \frac{L_d}{L} \right) \\ C_{db} = \frac{A_d C_{jo}}{\sqrt{1 - \frac{V_{bd}}{V_j}}} \\ C_{sb} = \frac{(A_s + W L)C_{jo}}{\sqrt{1 - \frac{V_{bs}}{V_j}}} \\ C_{sb} = \frac{W L_d C_{ox}}{\sqrt{1 - \frac{V_{bs}}{V_j}}} \\ C_{ols} = W L_d C_{ox} \\ A_d \rightarrow Drain-Bulk Junction Area \\ A_s \rightarrow Source-Bulk Junction Area \\ C_{jo} \rightarrow Zero Bias Depletion \\ Capacitance Density \\ \end{bmatrix}$$

- Assumptions
 - All Series Ohmic Resistances Are Negligible
 - Transistor Operates In Saturation Regime
 - "Long Channel" Approximation Invoked For Static Drain Current
 - Model To Be Used As A Precursor To Computer–Based Studies

Hypothetical Device

Physical Parameters $N_A = 5(10)^{14} \text{ cm}^{-3}$ $N_D = 5(10)^{20} \text{ cm}^{-3}$ $N_{1B} = (10)^{10} \text{ cm}^{-3}$ $\epsilon_s = 1.05 \text{ pF/cm}$ $\epsilon_{0x} = 345 \text{ fF/cm}$ $\mu_n = 400 \text{ cm}^2/\text{ volt-sec}$ $E_c = 4 \text{ volts} / \mu \text{m}$

- Device Parameters $T_{ox} = 50$ Angstroms
 - $L = 0.35 \ \mu m$ $V_{hn} = 0.65 \ volts$ $T = 300 \ 8K$ W / L = 5

- Circuit Parameters
 - $V_{ds} = 2 \text{ volts}$ $V_{gs} = 1.2 \text{ volts}$ $V_{bs} = -3 \text{ volts}$

Static Performance

- Peripheral Calculations $V_F = 280.0 \text{ mV}$ (Fermi Potential) $V_j = 917.4 \text{ mV}$ (Junction Potential) $V_u = 176.4 \mu \text{V}$ (Body Effect Potential) $V_{\text{hnc}} = 685.2 \text{ mV}$ (Compensated Threshold) $\rightarrow \Delta V_{\text{hn}} = 35.2 \text{ mV}$ $V_{\text{dss}} = 514.8 \text{ mV}$ (Drain Saturation Voltage) $V_{\lambda} = 669.7 \text{ mV}$ (Channel Length Voltage) $L E_c = 1.4 \text{ volts}$ (Lateral Field Voltage) $K_n = 276.0 \mu \text{mho} / \text{volt}$ (Transconductance Parameter) $f_{\lambda} = 2.218$ (Channel Length Parameter) $f_c = 0.368$ (Lateral Field Parameter)
- Static Drain Current
 - I $_{d}$ = 182.9 μ A (Long Channel Drain Current)
 - $I_d = 430.2 \,\mu A$ (Short Channel Drain Current)
 - Note Short Channel -To- Long Channel Ratio of 2.35; Ratio Is Generally Between 1.5 And 3.0

Small Signal Parameters

- Forward Transconductance
 - $g_{mf} = 1.09 \text{ mmho}$ (Ignoring Short Channel Effects)
 - $g_{mf} = 1.25$ mmho (Incorporating Short Channel Effects)
 - Note Short Channel -To- Long Channel Ratio of 1.14; Ratio Is Generally Between 0.5 And 2.0

Bulk Transconductance

- $\lambda_b = 5.0 \ 2 \ (10)$ (Bulk Parameter)
- $g_{mb} = 6.25 \,\mu\text{mho}$ (Incorporating Short Channel Effects)
- Note Bulk Transconductance Is About 200 Times Smaller Than Forward Transconductance

Drain–Source Conductance

- $g_0 = 199.7 \,\mu\text{mho}$ (Incorporating Short Channel Effects)
- Corresponds To Shunt Output Resistance Of About 5 KΩ
- Mandates Conductance Enhancement Strategies When Designing High Performance Transconductors

Common Source Inverter

Schematic Diagram

AC Schematic Diagram

