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Today’s Lecture
• EE240 CMOS Technology

• Passive devices
• Motivation
• Resistors
• Capacitors
• (Inductors)

• Next time: MOS transistor modeling
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EE240 Process
• 90nm 1P7M CMOS

• Minimum channel length: 90nm
• 1 level of polysilicon
• 7 levels of metal (Cu)
• 1.2V supply
• Models for this process not “real”

• Other processes you might see
• Shorter channel length (45nm / 1V)
• Bipolar, SiGe HBT
• SOI
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Process Options
• Available for many processes

• Add features to “baseline process”

• E.g.
• Silicide block option
• “High voltage” devices (2.5V & 3.3V, >10V)
• Low VTH devices
• Capacitor option (2 level poly, MIM)
• …
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CMOS Cross Section
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Dimensions

Drawing is not to scale!
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Why Talk About Passives?
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Resistors
• No provisions in standard CMOS
• Resistors are bad for digital circuits 

• Minimized in standard CMOS
• But, often want big, well-controlled R for 

analog…
• Sheet resistance of available layers:
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How about an N-Well Resistor?
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Silicide Block Option

• Non-silicided layers have significantly larger sheet 
resistance

• Resistor nonidealities:
• Temperature coefficient:  R = f(T)
• Voltage coefficient:  R = f(V)
• Manufacturing Variations
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Resistor Example
Goal:  R = 100 kΩ,    TC = 1/R x dR/dT = 0

Example Solution:  N+ and P+ poly resistors in series
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Voltage Dependence
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Voltage Coefficient
Example:
Diffusion resistor

Applied voltage 
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width
(cross-section of 
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Resistor Matching
• Types of mismatch:

• Run-to-run variations
• Global differences in thickness, doping, etc.

• Systematic (e.g. contacts)
• Random variations between devices

• Run-to-run variations in absolute R value: 20+%
• Can be problematic for termination, bias current, etc.

• Best case: make circuit depend only on ratios
• E.g., use feedback to control opamp gain
• With careful layout, can get 0.1 – 1% matching
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Systematic Variations from Layout
• Example:

• Use unit element instead:

R
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Common Centroid and Dummies
Example:       R1 : R2  =  1  :  2 gradient

R1

0.5 * R2 - ∆R

0.5 * R2 + ∆R

Dummy  

Dummy  
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Resistor Layout (cont.)
Serpentine layout for large values:

Better layout (mitigates offset due to thermoelectric effects):

See Hastings, “The art of analog layout,” Prentice Hall, 2001.
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MOSFETs as Resistors

• Triode region (“square law”):

• Small signal resistance:

• Voltage coefficient:
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MOS Resistors
Example: R = 1 MΩ • Large R-values realizable in 

small area
• Very large voltage coefficient

• Applications:
• MOSFET-C filters: (linearization)

Ref: Tsividis et al, “Continuous-
Time MOSFET-C Filters in VLSI,”
JSSC, pp. 15-30, Feb. 1986.

• Biasing: (>1GΩ)
Ref: Geen et al, “Single-Chip 
Surface-Micromachined Integrated 
Gyroscope with 50o/hour Root Allen 
Variance,” ISSCC, pp. 426-7, Feb. 
2002.
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Resistor Summary
• No or limited support in standard CMOS

• Large area (compared to FETs)
• Nonidealities:

• Large run-to-run variations
• Temperature coefficient
• Voltage coefficients (nonlinear)

• Avoid them when you can
• Especially in critical areas, e.g.

• Amplifier feedback networks
• Electronic filters
• A/D converters

• We will get back to this point 
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Capacitors
• Simplest capacitor:

substrate

• What’s the problem with this?
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Capacitors
• “Improved” capacitor:

substrate

• Is this only 1 capacitor?
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Capacitor Options

BigBig~ 1000Junction caps

120Poly-substrate

50Metal-poly

30Metal-substrate

302050Metal-metal

25101000Poly-poly 
(option)

BigHuge10,000Gate

TC
[ppm/oC]

VC [ppm/V]C [aF/µm2]Type
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MOS Capacitor
• High capacitance in 

inversion

• SPICE:
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MOS Capacitor

• High non-linearity, 
temperature coefficient

• But, still useful in many 
applications, e.g.:
• (Miller) compensation 

capacitor
• Bypass capacitor 

(supply, bias)

EECS240 Lecture 2 26

Capacitor Layout

• Unit elements
• Shields:

• Etching
• Fringing fields

• “Common-centroid”
• Wiring and interconnect 

parasitics

Ref.: Y. Tsividis, “Mixed Analog-Digital VLSI Design 
and Technology,” McGraw-Hill, 1996.
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MIM Capacitors
• Some processes have MIM cap as add-on option

• Separation between metals is much thinner
• Higher density

• Used to be fairly popular
• But not as popular now that have many metal layers 

anyways
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Capacitor Geometries
• Horizontal parallel plate
• Vertical parallel plate
• Combinations

Ref: R. Aparicio and A. Hajimiri, “Capacity Limits and Matching Properties of 
Integrated Capacitors,” JSSC March 2002, pp. 384-393.

EECS240 Lecture 2 29

“MOM” Capacitors

• Metal-Oxide-Metal capacitor.  Free with modern CMOS.
• Use lateral flux (~Lmin) and multiple metal layers to realize high 

capacitance values
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MOM Capacitor Cross Section

• Use a wall of metal and 
vias to realize high 
density

• More layers – higher 
density
• May want to chop off lower 

layers to reduce Cbot

• Reasonably good 
matching and accuracy
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Distributed Effects

• Can model IC resistors as 
distributed RC circuits.

• Could use transmission line 
analysis to find equivalent 
2-port parameters.

• Inductance negligible for 
small IC structures up to 
~10GHz.
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Effective Resistance

• High frequency resistance depends on W, e.g.:
• W=1µ 10kΩ resistor works fine at 1GHz
• W=5µ 10kΩ resistor drops to 5kΩ at 1 GHz 

• May need distributed model for accurate freq 
response
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Capacitor Q

• Current density drops as you go farther from 
contact edge…
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Double Contact Strucutre

• If contact on both edges,
• R drops 4X
• Can be a good idea even if not hitting distributed effects
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• Mostly not used in analog/mixed-signal design
• Usually too big
• More of a pain to model than R’s and C’s
• But they do occasionally get used

• Example inductor app.: shunt peaking
• Can boost bandwidth by up to 85%!
• Q not that important (L in series with R)
• But frequency response may not be flat 

What About Inductors?
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Spiral Inductors

• Used widely in RF circuits for small L (~1-10nH).
• Use top metal for Q and high self resonance 

frequencies.  
• Very good matching and accuracy – if you model them right


