
CMOS IC LAYOUT

CMOS IC LAYOUT

Concepts, Methodologies,
and Tools

Dan Clein
Technical Contributor: Gregg Shimokura

Boston Oxford Auckland Johannesburg Melbourne New Delhi

Newnes is an imprint of Butterworth–Heinemann.

Copyright © 2000 by Butterworth–Heinemann

A member of the Reed Elsevier group

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, record-
ing, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Butter-
worth–Heinemann prints its books on acid-free paper whenever possible.

The contents of this CD are provided on an “as is” basis without warranty of any
kind concerning the accuracy or completeness of the software product. Neither the
author, publisher nor the publisher’s authorized resale agents shall be held respon-
sible for any defect or claims concerning virus contamination, possible errors, omis-
sions or other inaccuracies or be held liable for any loss or damage whatsoever
arising out of the use or inability to use this software product.

No party involved in the sale or distribution of this software is authorized to make
any modification or addition whatsoever to this limited warranty.

All trademarks and registered trademarks are the property of their respective
holders and are acknowledged.

DEMO L-Edit™ V7.5 IC Layout Editor is the property of Tanner EDA, a division of
Tanner Research, Inc.

Beyond providing replacements for defective discs, Butterworth-Heinemann does
not provide technical support for the software included on this CD-ROM.

Send any requests for replacement of a defective disc to Newnes Press, Customer
Service Dept., 225 Wildwood Road, Woburn MA. 01801-2041 or email
techsupport@bhusa.com. Be sure to reference item number CD-71947-PC.

Butterworth–Heinemann supports the efforts of American Forests and the Global
ReLeaf program in its campaign for the betterment of trees, forests, and our
environment.

Library of Congress Cataloging-in-Publication Data

Clein, Dan, 1958–
CMOS IC layout : concepts, methodologies, and tools / Dan Clein;

technical contributor, Gregg Shimokura.
p. cm.

ISBN 0-7506-7194-7 (pbk. : alk. paper)
1. Metal oxide semiconductors, Complementary — Computer-aided

design. 2. Integrated circuits — Computer-aided design. I. Title.
TK7871. 99.M44C485 1999
621.39¢732 — dc21 99-44934

CIP

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:
Manager of Special Sales
Butterworth–Heinemann
225 Wildwood Avenue
Woburn, MA 01801-2041
Tel: 781-904-2500
Fax: 781-904-2620

For information on all Newnes publications available, contact our World Wide Web
home page at: http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

To my wife Emilia, who has put up with my hobby
of layout design for the past 15 years.

To my kids Noran and Nathan.

Preface xi...

Acknowledgments xvii...

1 Introduction 1..

2 Schematic fundamentals 7.............................

3 Layout design 22...

4 Layout design flows 68.....................................

5 Advanced techniques for specialized
building-block layout design 91..........................

6 Advanced techniques for building-block
interconnect layout design 137.............................

7 Layout design techniques to address
electrical characteristics 154................................

8 Layout considerations due to process
constraints 183...

9 Layout design techniques in an
uncertain environment 201....................................

10 Computer-aided design (CAD) tools for
layout 216..

Appendix A Audit checklists 245..........................

Appendix B Database management 249..............

Appendix C Scheduling 254..................................

Index 257...

PREFACE

Once upon a time, around about 1988, after finishing a very stressful but suc-
cessful project within Motorola Semiconductor Israel (MSIL), the entire team was
invited to a special lunch. Everybody was happy that we finished the “project”
ahead of time, and we were there to enjoy the victory of “tape-out.” Instead of
sitting in separate groups, IC circuit designers, CAD support people, and IC layout
designers sat intermixed around round tables. I had the opportunity to sit beside
Zvi Soha, who was at the time the CEO of MSIL. After enjoying a very special
meal, but before the dessert arrived, Zvi asked each of us to tell him what would
make each one of us more efficient, happier, and thus more productive. I list the
various answers below:

The IC design engineer asked for faster workstations, more copies of the
simulation software, and more engineers.

The IC layout designer asked for faster machines, place-and-route tools, more
people, and better support from the CAD group.

The CAD representative said that all they needed were more and more people,
because they wanted to provide Motorola with a complete software solution that
would enable the CEO to “push a button and have a complete chip instantly
ready.” The idea was that if Zvi needed a new chip, the software would ask him
to fill in the fields of a pop-up form with the required specification numbers, and
pushing the “enter” button would result in the final design. The CAD represen-
tative went on to explain, “With such powerful software you will not need all
these design engineers and layout people that were always asking for more soft-
ware and hardware.”

After a few minutes Zvi’s answer was:
“Well, you know, if I have such powerful software, I will not need you (CAD)

either. . . .”
The moral of this real-life story is that in the past decade, most people

thought that with the help of very advanced and sophisticated software, all the
major problems would be solved.

It is true that as the gate length of devices became smaller, the density of
the chips increased, the design complexity increased, and the time-to-market

xi

requirements shrank, teams of designers had to find new ways of dealing with
the many challenges.

What is very difficult for design automation partisans to understand is that
by the time a new design automation tool is widely accepted, the challenges have
changed.

For example, when block sizes and design complexities grew to a point
beyond human capabilities to lay out manually, floorplanners and place-and-route
tools were introduced to automate the layout process.

In the beginning these tools were driven by schematic-based design styles.
But when the circuit complexity and size grew, CAD adapted and synthesis
appeared.

The next step was to adapt the place-and-route tools to synthesis, and so on.
. . . If we analyze the development of all automation software, we may find that
all the development was driven by people who were ready to change, but who
knew why things are the way they are and what they could do to change to find
new solutions for the new problems.

Yes, automation helps—but the change and evolution in design was always
driven by people who understood the basic concepts, tried new methodologies,
and drove CAD software designers forward to develop new tools.

So it is under this umbrella that I will try to help all interested designers,
both circuit and layout, and CAD developers to understand more about the real
world of layout. That’s why my book will talk mostly about concepts, method-
ologies, and tools related to CMOS layout design.

A few years ago at the Design Automation Conference, I was invited to par-
ticipate in a demo of a new floorplanner. I was so impressed by the performance
of the tool during a 10-minute demonstration on the trade show floor that I asked
to see a private 40- to 50-minute demonstration.

In the same room there were about five people from different companies.
The software developer was very proud of his remarkable tool and started to
explain all about the features of the tool. For almost 30 minutes he amazed all of
us with many screens full of options for floorplanning at different levels of inte-
gration. Everybody was impressed with the vast capabilities of the tool.

During the last 5 minutes we, the potential users, were invited to ask ques-
tions. The room was very quiet . . . everybody left fast, after only one very banal
question was asked.

When I was alone with the developer, I had my own simple list of questions.
I asked him the following:

During the development of the tool, did somebody think about potential
users—who they were, and what their level of software knowledge was? Based
on the number of things they had to set up, this was not an easy job. Assuming
that people with limited software background will use the tool, there were 200+
fields that needed to be completed, and many others that were automatically set.
Only then did you push the button and get an idea of the results. If more tweak-
ing was required, then the driver of the tool would need to ask an expert for help
or would have to learn the advanced features and capabilities of the tool.

The answer was, “We didn’t think about this. . . .”
The sales pitch for such a tool should demonstrate more than just advanced

capabilities. Ease of use was a critical issue that was overlooked!

xii PREFACE

I suggested that the development team should have had an advisory
committee that is made up of a variety of potential users from different
companies with varied requirements and methodologies. Did this happen in
their case?

After a few more questions like this, I realized that in this case 20 software
engineering Ph.D.s with very limited experience or knowledge about physical
layout created a wonder of a tool based on a dry specification but without feed-
back or cooperation with any potential users.

This was another moment when I thought about this book. It is very difficult
to design and build a tool for layout without knowledge about layout concepts
and methodologies.

I am sorry to say that this “wonderful” tool is still not on the market so we
the users can benefit from its capabilities (sorry, but no company names).

Similar things have happened to me many times over the years, so in this
case I decided to give the tool developers a hand. Yes, we need better tools, but
we have to help tool developers to understand more about our philosophy as
users. At the same time, we as users have to understand more about the philoso-
phy of the tool. When a tool is to be designed, the technical marketing depart-
ment that generated the specification had something in mind, and the final tool
should reflect this view.

Using new tools means that we as users have to adapt our thinking and our
methodologies to accommodate the new tools. The best example to demonstrate
this is the application-specific integrated circuit (ASIC) flow. Only companies that
started from scratch or built groups based on the new flow and methodologies
were able to survive the problems of changing the way to design with the complex
and different tools brought on by the new trend.

A smaller initial capital investment than before is required and less exper-
tise is needed to use these new tools, as an ASIC flow has enabled a great many
new companies to enter the IC and system design marketplace.

Most big companies have internal training courses for all levels of design,
internal CAD groups to develop design tools, and a lot of resources for research,
but there are advantages to being small. You can adapt faster to the new trends,
methodologies, and flows.

Without having the overhead of internal tool development programs, small
companies have to be more creative in finding solutions with much more limited
resources. Small companies have to adapt to the offerings of external vendors such
as Cadence, Mentor, Synopsys, and Avant!.

Their tools are not built specifically for any of us. Instead, they reflect market
trends more than any internally developed CAD tool. These vendors do not
operate completely independently: if one company buys 1,000 copies of a soft-
ware package and another buys 20, the first company’s voice is considerably
stronger for the vendor in influencing new features for the tool. There is always
the threat of competition just around the corner, so there is still much more incen-
tive to be right the first time. . . .

Let’s briefly list the major challenges of an IC designer in CMOS today. I
would have liked to call this preface the “umbrella” chapter, because the prob-
lems from one project to the next are like a heavy downpour, and I hope that my
10 chapters will help all of you to survive the flood.

Preface xiii

PART ONE: THE BASICS

Where does layout design fit in the overall chip development process? Chapter 1
gives a nontechnical overview of the entire process so that we can understand the
layout designer’s role.

The mandate of an IC layout designer is to create the layout masks of
various portions of a chip in compliance with engineering drawings, netlist or
simulation results, and process design rules. To be capable of understanding
and respecting engineering drawings, the designer needs to understand basic
electricity rules and all the concepts related to the layout of gates. This will be
covered in Chapter 2.

Chapter 3 describes the manufacturing process and definition of layers. After
we understand how the layers are coordinated to generate devices and connec-
tivity, we learn about design rules. These are the manufacturing rules that must
be followed to ensure that the chip can be reliably manufactured. The process
engineers determine the minimum manufacturing grid, polygon, minimum dis-
tance between layers, etc. The design rules are the rules that are the factor, which
together with the engineering drawings, netlist, etc., will fundamentally decide
the architecture of the chip.

PART TWO: LAYOUT STYLES

If a Layout Designer does not respect design requirements, the chip won’t work.
If the design rules are not respected, then the chip may not make it out of the pro-
totyping phase. The art of a good layout designer is to combine both, while taking
into consideration all the other aspects of a normal project: time to finish, final
size, quality, and so on. . . .

None of the chips just mentioned can claim that they are made up of only
one type of design style these days, so in Chapter 5 we talk about specialization
in design. We discuss full custom, standard cells, gate arrays, and other types of
techniques used in today’s ICs and the advantages and disadvantage of each type.
We talk about various techniques and methodologies used in complicated chips
for specific applications. The list is long, but some of them are clock generators,
datapath or register files, I/O cells, and memory types. We end the chapter with
chip finishing techniques.

PART THREE: ADVANCED TOPICS

The topic of Chapter 6 is related to the requirements of big chips for adequate con-
nectivity and power routing. We learn about methodologies to address all these
and discuss placement impact to routing, floorplanning techniques and results,
preplanned signals, etc.

Chapter 7 assumes that we know the basics and we start dealing with analog
problems, such as capacitors, electromigration, and 45-degree layout, to mention
only a few.

xiv PREFACE

Special process requirements are explained in Chapter 8. Learning about slits
in wide metals, step coverage, latch-up, and special design rules is possible now
that we understand even the most complicated process rules.

When the environment is uncertain, meaning that the process is not defined
yet or the design not 100 percent simulated, the layout designer has to face new
challenges. That’s why, in Chapter 9, we learn about contacts as cells, test pads,
spare logic gates and spare lines, and laying out a circuit with changes in mind.

PART FOUR: TOOLS OF THE TRADE

Perhaps the most exciting chapter is Chapter 10. This chapter analyzes various
EDA layout design tools required to face the challenges of any kind of layout
design. From crude polygon generation to place-and-route, from generators and
silicon compilers to verification tools, from plotting devices and software to trans-
fer formats, we try to show you a path through this maze of names, concepts,
methodologies, and usage. This chapter does not try to rate or recommend specific
tools, but it does try to enlighten the novice user about the choices in the mar-
ketplace and how these tools might be adapted to different methodologies, and
vice versa.

This book is intended to help you protect yourself in a downpour of com-
plicated design methodologies pitched by EDA vendors, a world in which the
names of companies and tools change all the time, the hot topic each year is dif-
ferent, and every year pundits at the Design Automation Conference are announc-
ing new catastrophes and solutions.

For example, first the machine was too small (CALMA). Then UNIX came
along and more memory was needed. Place-and-route appeared, along with
verification tools, extraction tools, and new terms like Deep Sub-Micron (DSM),
and so on. Even if the tools are solving most of today’s problems the market
requirements (prices) are always generating new “unsolved mysteries.”

This book is meant to help you prepare to understand the basic and
advanced concepts, and to learn how to analyze new methodologies and to under-
stand the philosophy of new tools. I hope that it will be useful for all of you, and
I will be more than happy to receive your comments. Please write me at the
following address:

Dan Clein
826 Riddell Avenue North
Ottawa, Ontario
Canada
K2A 2V9
cometic@ieee.org

Preface xv

ACKNOWLEDGMENTS

Unlike any other book, this one is the product of people’s communication and
willingness to spend time and explain why things are the way they are. I have
tried to list all the “contributors” who, over the past 15 years, helped me to learn
and understand concepts, methodologies, and the tools used for layout. This book
is not only mine; it is theirs as well, because these are the people who believe that
teaching others will make their life easier and the companies they work for more
successful. The list is in chronological order, not necessarily related to the impor-
tance or quantity of information that I received from them. Together with you, I
thank the following:

Miriam Gaziel-Zvuloni—she was the person who saw potential in me and
hired me as IC layout designer even though I barely knew Hebrew. She was the
first teacher for all the basic layout I have learned. (INTEL—Israel)

Zehira Sitbon-Dadon—my manager for more than 5 years, who pushed me
to learn and develop many advanced layout concepts. She offered me the oppor-
tunity to became the layout teacher, to manage projects, and be responsible for all
the layout tools and interfaces with vendors, engineering, and CAD within
Motorola—Israel.

Nathan Baron—the first circuit designer who invested time in teaching
layout designers what, how, why, etc., engineers expect when designing a
schematic. His favorite saying to any new problem was, “First let’s sit, and slowly,
slowly (relaxed) we will find a solution to any problem!” (Motorola—Israel)

Israel Kashat—the Director of Engineering who always helped by answer-
ing all the process questions by saying: “What a nice problem. It is good that we
found a problem. If we do not find any problems and have to solve them, why
will somebody pay us a salary?!?” (Motorola—Israel)

Steve Upham—a very enthusiastic Application Engineer who spent 5
months trying to promote new tools and methodologies within Motorola Israel,
who explained to me in great detail the philosophies of symbolic editors and
place-and-route tools for the first time. (Cadence—England)

Carina Ben-Zvi, Nachshon Gal, and Eshel Haritan—CAD people who
worked with me to develop various internal tools for layout and many times had

xvii

to explain software limitations, concepts, and philosophies. They often helped me
to become better prepared to understand software developers from various
vendors. (Former Motorola Israel employees)

Jean-Francois Côté—the first Canadian engineer who introduced me to
DRAM layout secrets. His approach was then, “The more I teach others how to
do what I know, the more time I have to learn new things . . .” I really believe that
he is right. (Former MOSAID—Canada)

Graham Allan and Cormac O’Connell—my teaching experts in designing
memories. They taught me most of what I know today about layout concept
related to analog layout, DRC weird rules, and DRAM process requirements.
(MOSAID—Canada)

Ed Fisher—being Mentor Graphics’ “guru” in the IC Graph polygon editor,
he enhanced my knowledge of the capabilities of such tools, including my first
encounter with device generators. (Mentor Graphics)

Jim Huntington—the Cadence “guru” in verification tools who helped us
learn, install, and successfully use DRACULA on 16-Mbit chips.

Glenn Thorsthensen—another Mentor application engineer who spent a lot
of time with the MOSAID layout group explaining place and route and compactor
tricks. (Mentor Graphics)

Michael McSherry—he is the technical marketing person who introduced
me to hierarchical verification concepts and implementation. (Mentor
Graphics)

Steve Shutts—the first software developer who explained more than the
ROSE tool, he taught me how symbolic layout tools and layout synthesis can make
a difference in an IC layout designer’s work. (Rockwell)

Dennis Armstrong—a layout designer who moved to tool benchmarks and
enhancements. For all of the past 10 years, he has helped me understand a lot
about various tools. We began to talk while I was working for Motorola, and we
continued to exchange tool information over the years. (Motorola-Austin)

Dan Asuncion—layout teacher for the Institute for Business and Technology
(IBT), Santa Clara, California, who generously shared with me a lot of layout
teaching experience and his course curriculum. He is one of the people who con-
tinuously encouraged me to write this book by promising me that he would use
it as the reference for his classes.

Mark Swinnen—former Silvar-Lisco application engineer who helped me
understand more about placers, routers, and analog and digital considerations in
the place-and-route environment.

Ron Morgan—one of the owners of GERED Corporation who sent
me without too many questions the curriculum of their training courses so I
could base my Canadian IC Layout course on an established North
American style.

Roger Colbeck—the VP of Engineering in the Semiconductor Division of
MOSAID who gave me the opportunity to manage and build the first trained IC
Layout Group in Canada.

Tad Kwasnivski and Martin Snelgrove—professors at Carleton University-
Ottawa who encouraged me to come and teach VLSI students what the industry
wants them to know. Being in front of students without any written training mate-
rial pushed me to start working harder to write this book.

xviii ACKNOWLEDGMENTS

Simon Klaver—an application engineer from Sagantec who introduced me
to all the secrets of migration tools and provided a general presentation that is on
the CD.

Jim Lindauer—from Tanner Research, he agreed to provide me with a free
copy of L-Edit software for the writing of the book. Special thanks to Tanner
Research for providing a demonstration copy of their layout editor including the
cross-sectional viewer so that the readers of this book can experience the thrill of
IC layout design.

But most of all I thank Gregg Shimokura, the technical contributor to the
book. We worked together in MOSAID for more than 5 years, and he was always
ready to help me and others to know more about VLSI design. During this time
he became the Manager of the IC CAD Technologies group, and we worked
together to develop new methodologies that can enhance design capability. After
so many years of wanting to write this book, I began because he offered volun-
tarily to help me. Everything you will read in this book was initially started by
me, but Gregg is the master who placed them in the right flow, reviewed my
English, and made many additions to the raw material that he had to work with.
Gregg added to this book the engineering view. We hope this view will help stu-
dents understand how to become better engineers by knowing more about the
results of their work in layout. Thank you again, Gregg, for all the long nights and
working weekends that helped this book to be born.

Acknowledgments xix

1.1 HISTORY OF THE PROFESSION

During the past two decades, the electronics industry has grown very fast both in
size and in complexity. Designers began talking about chip design only 25 years
ago. At the beginning, the idea was to design chips to reduce the computer size.
Instead of room-sized computers, we have now ended up with PCs running at a
speed that back then was considered “impossible to imagine.” The application of
IC technology has exploded into many parts of our lives.

IC layout design was originally hand-drafted on special paper called Mylar.
This was a long and laborious task. The market demands and advances in tech-
nology brought about an immediate need to develop software and hardware solu-
tions to improve the time-to-market of the chip designs and especially to automate
the entire process. Accuracy of the final masks was also a driving force in the com-
puterization of layout design.

The first platforms were custom built to ensure that graphics applications
ran quickly and had sufficient capabilities. Companies such as CALMA (Data
General) built mainframe-sized machines and developed specialized software for
printed circuit board (PCB) and integrated circuit (IC) applications.

The disk size was huge by today’s standards. The top-of-the-line computer
had 220MB of disk space and only 0.5MB of DRAM was available at the time.
The price tag was around $1 million U.S., and not everybody could afford to be
involved in this kind of design. As the market and the chip sizes grew and more
companies were involved in chip design, the hardware and software developers
came up with faster, smaller, and cheaper solutions.

The biggest revolution in hardware was the development of the “engineer-
ing workstation,” which ran a version of the UNIX platform. Workstations have
developed over the years to incredible speed and complexity. They are used for
all kinds of engineering design, so the prices are very affordable. HP, Sun,
and IBM are only a handful of survivors in this field, Daisy being one that has
disappeared from the market. Today there is tremendous pressure to go to even

1

CHAPTER ONE

Introduction

cheaper and more popular platforms, such as PCs with Linux and Windows NT
platforms.

As the hardware platforms evolved, software development progressed at an
even faster rate. Companies such as Mentor Graphics, Cadence, Compass, and
Daisy gained larger and larger shares of the IC and PCB design tools market. For
the PC platform, a company such as Tanner, with a product called L-Edit, is an
example of how the software development market has grown for IC design (more
details are given in Chapter 10).

The direction for development of the software has really been toward more
and more automation of the tasks that are labor intensive: for example, designs
with hundreds of transistor blocks, where interconnection analysis is impossible
to do by human eyes, or verification of a 256-MB memory chip (more details in
Chapter 10).

Significant examples of automation include the following:

Layout synthesis: Layout can be created from “code” instead of the
traditional methods of manually drawing the polygons.
Layout migration: Alternatively, layout can be “migrated” from one set of
design rules to another using mapping and sophisticated compaction
techniques.
Layout verification: These tools perform an increasing number of checks on
the final layout before it goes to production. For example, minimum size
rules are checked to ensure that the design is manufacturable.
Circuit synthesis: Similar to layout synthesis, in this case schematics can be
automatically generated from specialized “code” (i.e., VHDL or Verilog).
This has had a huge impact on layout design, as the sheer volume of
circuitry produced by these circuit synthesis tools created a need for more
layout automation such as place-and-route tools.
Place-and-route: Instance placement for literally millions of cells as well as
optimizing the placement for minimum connectivity and maximum circuit
performance.

Today, layout design is carried out in an environment that is ever changing.
The software tools and approaches, computing platforms, the companies provid-
ing these tools, the customers we serve, the applications that are being imple-
mented, and the market pressures we face are all changing year by year.

These changes make this industry an interesting one in which to be involved.
However, let’s not forget that the fundamental concepts behind producing quality
layout are based on physical and electrical properties that never change. This is
the basic principle on which this book was written.

1.2 WHAT IS LAYOUT DESIGN?

We define layout design as follows:

The process of creating an accurate physical representation of an engineering
drawing (netlist) that conforms to constraints imposed by the manufacturing

2 INTRODUCTION

process, the design flow, and the performance requirements shown to be feasible by
simulation.

Let’s look at this definition in greater detail as there are numerous implica-
tions buried within.

A process: First and foremost, layout design is a process with many steps that
should be followed in a logical order for optimal results. For example, the
“process” of layout design may include setting up a database or suite of tools with
the appropriate layers; defining the floorplan of each cell or chip; and/or running
verification checks in the proper order.

Creation: “Design” and “creation” are usually synonymous, and layout
design is no exception. Implementing one schematic in two different technologies
usually results in layouts that look quite different, thus demonstrating the creative
nature of the trade. In the same way, a schematic that will be used in two differ-
ent regions of the chip may result in two different architectures, adapted to their
geographical location.

Accuracy: Although layout design is a creative process, we must not forget
that the first requirement of the final layout must be that it is equivalent on a tran-
sistor-by-transistor basis to the engineering drawing. Redesigning the configura-
tion of transistors to “improve” the circuit is not the role of the layout designer
unless you plan to take over (or already have taken over) the circuit design
task as well.

Physical representation: CMOS ICs are made using an extremely complicated
process that in the end results in tiny transistors and wires being constructed and
connected on a silicon substrate. Layout design is the art of drawing these tran-
sistors and wires as they look like in silicon; thus, the layout can be thought of as
the physical representation of the circuit.

Engineering drawing: This may sound a bit old-fashioned, but it is accurate.
Transistor-level or gate-level schematics have historically been the primary
“drawing” and in many companies they remain so. Fancier methodologies these
days result in some layout designers receiving a large text-based file called a
“netlist.” However, in order for humans to understand a netlist, it is usually
accompanied by a block-level schematic or drawing. Engineers (or equivalents)
are the main providers of the drawings, but as the industry changes this may
change as well.

Conform: By conforming, we mean “meeting the requirements of” and
not necessarily “the smallest or best design possible.” There are many
trade-offs to be made in the process of design: reliability, manufacturability,
flexibility, and (perhaps most importantly) time to market, to name a few. Of
course, there are minimum requirements that have to be met, but to achieve the
optimal design at the expense of the project schedule is not practical in today’s
marketplace.

Constraints imposed by the manufacturing process: These constraints include
layout design rules such as the smallest width a metal track can be, but also many
other manufacturability or reliability guidelines that will improve the overall
quality of the layout. For example, in the case of a metal track, a wider line may
improve the manufacturability of the design and thus should be used where
space permits.

What Is Layout Design? 3

Constraints imposed by the design flow: These constraints include guidelines
established to enable all other tools that are to be used in the design flow to be
able to efficiently use the completed layout. For example, some routers like to have
connections to cells on a regular pitch, while others do not care. Another example
is the methodology to add text to layout so that the text can be used later for
identification purposes.

Constraints imposed by the performance requirements shown to be feasible by
simulation: An engineer completing a circuit design without detailed knowledge
of how the circuit will be implemented in layout is required to make some
assumptions. For example, the engineer designing the circuit will not know
the exact area of the block without implementing the circuit in layout and so
must make an educated estimate based on the information available. The total
area figure may be important to know so that the maximum line length
within the block is also known. This normally cannot be avoided, and the trick
is to try to communicate these assumptions and thus constrain the layout
accordingly. In our example the total area estimate used by the circuit designer
should also be used by the layout designer as a target area, and differences from
this estimate on the low or high side should be fed back to the circuit designer for
resimulation.

In summary, layout design encompasses many different areas; it requires
many different skills; and there are many trade-offs and decisions to be made that
affect the quality of the final implementation. Great layout design requires a sound
understanding of all of these issues, and we hope to cover all of them in various
degrees throughout this book.

1.3 IC DESIGN FLOW

Where does layout design fit in the overall scheme of things? As defined in Section
1.2, layout design occurs once an engineering drawing is complete. Let us look at
layout design in the context of an IC’s complete life cycle and where it fits in
the “flow.”

There are many kinds of design flows based on the specific design under
development. Let us consider a general conceptual flow through which all product
concepts pass on their way to market (Figure 1.1).

1. First, it is normally the marketing department that defines the product to be
developed.

2. The definition of the architecture or behavior of the design is the next step.
Circuit design engineers decide the architecture of the chip to perform the
market and/or IDEA functions.

3. System simulation is done by a group of engineers who define and verify
the definition of the individual blocks to be integrated into the final chip.
This step validates that the architecture defined in step 2 is sound and clearly
defines manageable blocks to implement further.

4. Circuit design groups perform all the digital and analog simulations to verify
the circuit solutions and gate connectivity, as well as the sizes of the gates

4 INTRODUCTION

(to meet timing specifications). These groups interface with the layout design
groups who adapt the circuit to the floorplan of the chip.

5. Layout design is done by engineers and layout designers. Their work con-
sists of laying out polygons. Transistors, substrate connections, connections
(using 1 to 6 layers of metal), etc., are implemented for all of the blocks using
the schematics generated by the circuit group. The final design going to mass
production is the layout of the entire chip.

6. After the first wafers are manufactured, a group of test engineers will try to
test the chips. First, they will check if the process parameters are within the
acceptable tolerance levels. The following step is to test the chips using an

IC Design Flow 5

Figure 1.1 IC design flow.

engineering tester in order to find all the specification violations and to try,
on the spot, to fix them.

7. If and when all the errors are fixed (process and/or logical), the chip will
move to mass production and to market.

Remember that this is a conceptual flow. In reality, there are many feedback
loops and iterations of the design as it moves through the different stages.
Changes to the design occur as a result of many different factors, including many
that arise from layout limitations or constraints. Anticipating these issues or
problems before they occur is where understanding the basic fundamentals
differentiates great designers from good ones.

Where do we start? From a layout designer’s point of view, the work starts
once a schematic or netlist is created. On to Chapter 2.

6 INTRODUCTION

You have been given or have designed a schematic and are ready to move to
layout. What’s next? In this chapter we will learn the basic building blocks of a
schematic and the fundamentals of preparing yourself to implement the design
in layout. We start by presenting the basic building block of all CMOS circuits—
the transistor. We then continue by making sense of a typical schematic drawing,
and we also lay the groundwork for more advanced topics.

2.1 THE MOS TRANSISTOR: THE BASIC CIRCUIT STRUCTURE

The transistor is the smallest building block or device that we need to understand
to effectively implement or layout a design. Let’s first consider the functionality
of the transistor and try to provide a basic understanding of the operation of a
transistor so that we can maximize the performance of the design.

CMOS stands for complementary metal oxide semiconductor. This name
is appropriate because there are two flavors of transistors, PMOS and NMOS,
and together they complement each other, as we shall see in this section.
Typically, a schematic might denote PMOS and NMOS transistors as shown in
Figure 2.1. Note that the drain and source nodes are reversed as drawn in the
diagrams.

In most cases the “Bulk” connection is always connected to the logical “1”
level for PMOS and logical “0” level for NMOS. For this reason most schematics do

7

CHAPTER TWO

Schematic Fundamentals

Figure 2.1 PMOS and NMOS
transistors.

not show the bulk connection; it is implied. Of course, this is not always the case.
For the moment, in the following schematics we will ignore the “bulk” connection.

The gates of the PMOS and NMOS transistors are open or the transistors are
“on” under different conditions. PMOS transistors are “on” when the gate is at a
logical “0” level. Conversely, the NMOS transistor is “on” when the gate node is
at a logical “1” level. The way to remember this is that the bubble on the gate of
the PMOS looks like a “0” and the NMOS gate looks like a “1” (Figure 2.2).

Both transistors operate very much like a “switch” or a valve in a water pipe.
Like a valve, the “gate” controls whether the switch is open or closed. Positive
current flow is defined as the action of “draining” water or charge from the drain
side of the transistor to the water or “source” side when the gate is open. If the
gate is closed, current (or water) does not flow.

A simpler way to visualize the operation of the transistors is as a resistor
when it is “on” (Figure 2.3).

The amount of current that flows through the transistor is limited by the
equivalent resistance of the transistor. As we shall see later, the sizing of the tran-
sistors directly affects this equivalent resistance. We will use this simpler resistor
model in analyzing the operation of the transistors from this point on.

Now let’s consider the case when the source is connected to a static logic
level. Generally, logical “1” levels are denoted on a schematic by the highest
supply voltage for the design. Typically this high supply voltage would be labeled
as VDD, VCC, or perhaps VPP. Conversely, logical “0” levels are denoted on a
schematic by the ground level of the chip. VSS, GND, or GROUND are typical
names. Under these conditions and with the gates of the transistors open the drain
nodes are naturally driven to the same level as the source.

Due to the physical nature and limitations of the PMOS and NMOS devices
(not to be discussed here), PMOS transistors are almost always used to establish
logical “1” levels and NMOS logical “0” (Figure 2.4), although there are excep-
tions, of course. This is why PMOS and NMOS together have been termed “com-
plementary”: they complement each other because, together, they simply and
reliably generate both logic levels. For this reason, Boolean logic is easily imple-
mented using PMOS and NMOS transistors, which is one of the main reasons why
CMOS circuitry is so popular today.

Let’s not completely forget the bulk connection mentioned earlier in this
section. Remember that the bulk is generally connected to the respective logic
levels, and the implied connections to the supply levels are shown in Figure 2.5.

The size of the transistor should also be identified on the schematic (Figure
2.6). Each PMOS and NMOS has a length and a width. These dimensions will be

8 SCHEMATIC FUNDAMENTALS

Figure 2.2 PMOS gate open and NMOS gate open.

explained in detail in a later chapter, and for now take this as a given. Typically
the length of either transistor may not be shown and has a default value. This
value is usually the minimum allowable as limited by the process technology, and
it is this number that is quoted to specify the technology. For example, a 0.25-mm
process typically means the default gate length is 0.25mm and thus is not shown
on the schematic because it is redundant information.

In Figure 2.6 the width of the PMOS transistor is 5mm, and that of the NMOS
is 10mm. Generally, the width value is always stated first. The PMOS transistor
length is 0.5mm, and since the NMOS is not shown, it is assumed to be the default
value for the process, which is 0.25mm.

When we start to look at the layout of transistors, it should become more
obvious that the resistance of the transistor will decrease and the current drive of
the transistor will increase as the width of the transistor is increased or the length
of the transistor is decreased. For this chapter, please take this as a given.

The Mos Transistor: The Basic Circuit Structure 9

Figure 2.3 PMOS resistor model and NMOS resistor model.

Figure 2.4 PMOS generating a “1” and NMOS generating a “0.”

Figure 2.5 MOS transistors showing
implied bulk connections.

Figure 2.6 MOS symbols showing
device sizes.

2.2 LOGIC GATES

The majority of schematics today are not filled with transistors. The reasons for
this are many, but the main ones are that it is impractical because of the com-
plexities of the designs that are undertaken, and that transistors are grouped into
what is called a logic gate or “gate.” A logic gate could be confused with the gate
of a transistor, but we hope that the context in which the term is used will be
sufficiently obvious.

Logic gates are implemented directly or in combination to form Boolean
logic functions. Theoretically, almost any Boolean logic function can be imple-
mented with a single logic gate, but in practice this is not done. We hope that,
after reading this book, you will fully understand why.

In general, most logic functions are implemented in CMOS using inverters,
two to four input NANDs, two to four input NORs, and transmission gates. Let’s
begin to learn about these gates by understanding the simplest of all logic gates:
the inverter.

2.2.1 Inverter

As the name implies, the inverter is the simplest logic gate. Its function is to invert
the signal received on the input node to the opposite polarity to the output node
(Figure 2.7).

Let’s use our knowledge of transistors. Knowing that the PMOS is “open”
when receiving a “0” means that the “1” is driven to the output. In this case the
NMOS is off and does not affect the output level. Conversely, by the same rules,
a “0” is produced when the input is a “1” (Figure 2.8).

CMOS logic by its very nature is always inverting. Also note that the NMOS
and PMOS are never “on” at the same time. This demonstrates the reason why
CMOS is a low-power style of circuit design. Once the gate switches state, there
is no DC current path between VDD and VSS; such a path, if it existed, would
consume DC power.

In specifying the inverter size, now two device sizes are required
(Figure 2.9).

• The “P” and “N” identifiers specify the device type. Again, generally the
widths are stated first.

• In this case the PMOS transistor width is 2mm, and that of the NMOS
is 1mm.

• The PMOS transistor length is 0.5mm, and since the NMOS is not shown it
is assumed to be the default value for the process.

In the next sections NAND and NOR gates will be covered. NANDs
are inverted AND gates and NORs inverted ORs. They both are single-stage
gates, and this is one reason why they are the basic building blocks of
CMOS logic.

10 SCHEMATIC FUNDAMENTALS

2.2.2 Two-Input NAND Gate

When a logical decision is required to be made between different signals, NAND
and NOR gates will do the job. By following the operation of the individual tran-
sistors under each input condition in the truth table of Figure 2.10, you will see
that the desired output is produced with the transistor configuration shown.

The “Not AND” function (OUT = “0”) is produced when both IN1 and IN2
are both “1.” The requirement for both inputs to be “1” simultaneously is achieved
by connecting the two NMOS transistors in series. At the same time, the PMOS
transistors are connected in a complementary fashion by being in parallel.

Logic Gates 11

Figure 2.7 Inverter.

Figure 2.8 Inverter operation.

Figure 2.9 Inverter sizing.

This configuration not only produces the correct functionality from the gate,
but also results in eliminating static DC power consumption by ensuring that there
is never a condition in which a PMOS path to VDD and an NMOS path to VSS
are “on” simultaneously.

Three or more input NAND gates are easily implemented by extending
the series connections of the NMOS and the parallel connections of the PMOS
transistors.

In specifying the NAND gate transistor sizes, four device sizes are now
required. In most cases, however, all PMOS transistors will be the same size and,
similarly, all NMOS transistors will be the same size; therefore, once again typi-
cally only two values are required (Figure 2.11). This is also true of NOR gates,
and indicating sizes on the NOR gate is done in a very similar way.

• The “P” and “N” identifiers specify the device type. Again, generally the
widths are stated first.

• In this case the PMOS transistor width is 15mm, and 5mm for the NMOS.
• The PMOS and NMOS transistor are assumed to be the default value for the

process.

If distinct sizing for the two separate PMOS transistors is required, typically
this would be indicated by a subscript to the “P” identifier such as “P1, P2,” and
additional values would be given.

12 SCHEMATIC FUNDAMENTALS

Figure 2.10 Two-input NAND gate.

Figure 2.11 NAND gate sizing.

2.2.3 Two-Input NOR Gate

The NOR gate is the mirror or complementary configuration to the NAND. In the
NOR gate the series/parallel connections are reversed between the NMOS and
PMOS transistors—the PMOS transistors are in series and the NMOS in parallel
(Figure 2.12).

Once again, the potential for DC power consumption is eliminated under all
input conditions, and three or more input variations of the NOR are easily made
by increasing the series and parallel connections of the PMOS and NMOS
transistors, respectively.

Transistor size values are indicated in much the same way as for NAND
gates, and a description of a typical convention will not be repeated here.

2.2.4 Complex Gates

As mentioned previously, almost any Boolean logic function can be implemented
in a single-stage CMOS logic gate. The term complex gates is the name given to
logic gates that have a “complex” function, usually a combination of AND, OR,
NAND, and NOR, all implemented in one logic stage.

Because complex gates are implemented in a single stage, in almost all cases
power consumption, area, and speed benefits are achieved.

Figure 2.13 is an example of a complex logic function implemented in mul-
tiple gates.

If we do a simple transistor count for this logic we find that there are 16 tran-
sistors in all with 3 stages of logic. It is very common to find that an engineering
schematic would not be designed this way but in a single stage of logic repre-
sented by a symbol such as that shown in Figure 2.14.

By combining the inverters with their respective driving gates, you can see
that the NAND–inverter combination becomes an AND and the NOR–inverter
combination becomes the OR. The output NOR remains the same.

What does the transistor representation of this gate look like? We need this
representation to do our layout design.

Logic Gates 13

Figure 2.12 Two-input NOR gate.

This type of complex gate is very efficient to use and build, but somehow
cumbersome to draw. To determine the transistor representation we analyze the
logic starting from the output gate and work backward (i.e., from right to left).

First consider the output of a two-input NOR. The idea is to combine a
NAND function representing the AND gate as well as a NOR function repre-
senting the OR gate into the output NOR to create the final logic gate.

Why do we use an input NAND instead of AND? Similarly, why NOR
instead of OR?

The answer is that the output NOR gate provides an extra stage of logic
inversion, which we take advantage of in implementing the final gate. Since there
is an inherent inversion in the output NOR gate, we do not need to implement
input AND or OR functions; NAND and NOR functions are just what we need.
It is wise to work this through and prove it to yourself.

Before we can perform the transistor merging as described later, the prepa-
ration step is to determine the logic gates at the input that will be merged into the
output gate. This is done by simply inverting the logic at the inputs. In our case
we invert the AND to NAND and the OR to a NOR.

1. We replace the AB PMOS transistors with the parallel PMOS transistors of
an input NAND and the AB NMOS transistors with the respective series
NMOS transistors of the same input NAND.

2. Now we use the same methodology, but for the CD devices. Replace the CD
PMOS transistors with the series PMOS transistors of the input NOR and
the CD NMOS transistors with the respective parallel NMOS transistors.
There—you’re done! (See Figure 2.15.)

If you check the truth table of the final configuration you should find that
the 8-transistor logic gate is logically equivalent to the 16-transistor, 3-stage logic
function presented earlier.

14 SCHEMATIC FUNDAMENTALS

Figure 2.13 Complex logic.

Figure 2.14 Complex gate example.

Figure 2.15 Complex gate solution.

Use this technique to expand and understand the simplicities of
complex gates!

Because of the greater number of transistors for a typical complex gate, indi-
vidual transistor sizes may or may not be indicated on the schematic. In most
cases each transistor would have a different size, and so transistor sizes are typi-
cally omitted from the symbol. Size information must be determined by looking at
the transistor-level schematic. Even if sizes are indicated, the mapping of these sizes
to the transistor configuration should be manually checked before layout begins.

2.3 TRANSMISSION GATES

Let us consider one more configuration of transistors that may appear in a
schematic.

In the case of the inverter, the source of both transistors is connected to a
power supply. In the case of combination gates, series connected transistors form
part of a chain that eventually connects to a power supply, and thus the transis-
tors should be treated similarly to the simple inverter.

The transmission gate is a fairly common case where both the drain and
source nodes are used as signals. In this case, the output generally follows the
input based on the state of the controls A and B. Note that this configuration allows
for noninverting propagation of the input signal, as well as the blocking of the
input signal when both control signals disable the PMOS and NMOS transistors.
These are powerful features of this gate; transmission gates are used quite
frequently and need to be designed carefully (Figure 2.16).

Remember we said that in general PMOS transistors are connected to gen-
erate logical “1” levels and NMOS logical “0,” and almost never the reverse. The
truth table for the transmission gate shows one of the reasons why this is so. PMOS
transistors are able to pass “0” levels, but they do so somewhat unwillingly and
degrade the “0” level. The same is true for NMOS transistors and “1” levels. This
is what is meant by “Weak Levels” in the truth table. Unless specifically intended,
these weak-level conditions are generally avoided in robust logic designs. Usually
both controls are implemented such that the transmission gate is either completely
“on” or “off” (both transistors) but not halfway.

16 SCHEMATIC FUNDAMENTALS

Figure 2.16 Transmission gate.

Understanding the Schematic Connectivity 17

Figure 2.17 Schematic example.

TABLE 2.1 Schematic Connections

Schematic
Representation Description

Simple wire connection. These signals are local signals to be routed and implemented within
the schematic under consideration.

>> On page connector. A virtual connection is achieved with this symbol. The connection name
or node name is used to identify where on the schematic the net is to be routed. In our
example the two nodes labeled CLKD are electrically connected but are not visibly
connected. Generally, this is done to avoid cluttering the schematic with wires.

Port or pin connector. This symbol identifies a net that enters or exits the schematic under
consideration and is part of the “interface” of the schematic to the outside world. These
signals may have special considerations attached to them for performance or reliability
reasons, so it is important to find out if such conditions exist.

Global connector. We have seen this as the bulk connection to the transistor. A global
connector identifies an electrical node that is required internally and externally to the
schematic block. The “VDD” net in this case is used everywhere and is global. Again,
drawing the wires to show the implied connectivity is impractical.

>

VDD

2.4 UNDERSTANDING THE SCHEMATIC CONNECTIVITY

In implementing the layout of any schematic, there is more to the final design than
is explicitly shown. Connections appear on a schematic as a simple line drawn
from point A to point B, or a simple connection of two transistors in series or in
parallel. In reality, a line represents a signal path that needs to be physically
implemented and optimized. Let’s look at an example (Figure 2.17).

The gates and transistors should look familiar, and the different transistor
representations of the various gates have been described. The challenge now is to
understand the connectivity of the devices. We have already seen that a bulk
connection to each transistor is required but is not explicitly shown. Table 2.1 out-
lines the different types of symbols.

2.5 REVIEW OF FUNDAMENTAL ELECTRICAL LAWS

IC layout design is fundamentally the art of implementing an electrical circuit in
terms of polygons and shapes, which represent transistors and connections to
form the final design. The important concept that we must not forget is that
the final design will have electrical characteristics that are very much defined by
the characteristics of the physical layout.

The intent of this section is to review a few basic electrical laws and princi-
ples that should be understood, so we can establish a good foundation upon
which we can move forward and develop efficient and effective layout
methodologies.

2.5.1 Ohm’s Law

This is the most basic and fundamental law:

V = I ¥ R

Voltage = Current ¥ Resistance

We have seen that MOS transistors operate as “resistors” when they are “on”
or when the gate is “open.” The current flow induced by the opening of the gate
creates a voltage swing across the transistor. This demonstrates the application of
Ohm’s law! Given the resistance of the transistor and a positive current value, the
resulting voltage change is explained by Ohm’s law (Figure 2.18).

Similarly, when the gate is “off” the current is “0.” By Ohm’s law, the voltage
change is also “0,” which makes sense since the gate is “closed” and it acts like
an open circuit.

In reality, the resistance of the transistor is dynamic, as is the amount of
current flowing through the transistor. Therefore, this is a very simplistic model,

18 SCHEMATIC FUNDAMENTALS

Figure 2.18 PMOS model (left) and NMOS model (right).

Review of Fundamental Electrical Laws 19

but it effectively explains how Ohm’s law works and gives us the concepts behind
how a transistor operates.

Ohm’s law is a powerful principle to remember and is the foundation for
circuit and layout design alike.

2.5.2 Kirchoff’s Current Law

Kirchoff’s current law is another fundamental law that helps us to explain
certain concepts in future chapters. Kirchoff’s current law states that the sum of
currents into any electrical node is to zero. In this case currents coming into a node
are deemed to be positive currents by convention, and currents passing out of a
node are deemed to be negative currents, so their overall sum should equal zero:

I1 + I2 + I3 + . . . + IN = 0

Another way of stating the same thing is that the sum of currents into a node
must equal the sum of currents out of a node (Figure 2.19).

2.5.3 Resistance

We have already mentioned the concept of resistance without really explaining it
in more detail. We have used the resistor to model the transistor in the “on” state.

In simple terms resistance can be thought of as the inability (or ability) of a
conductor to conduct charge. Using a water analogy, a pipe of large diameter has
a lower resistance than a smaller diameter pipe because it can pass a larger amount
of water. The cross-sectional area of the pipe is larger in this case. This assumes
that the two pipes are the same lengths. As a pipe or conductor increases in length,
the resistance also increases.

The convention in IC design for resistance calculation is to characterize each
conductor layer in terms of resistance per “square.” One “square” is defined as
the condition when the length of the conductor equals the width.

The formula for calculating the resistance of a conductor is

R = r ¥ l/w

where “r” is the resistivity of the layer measured in W/�, l is the length, and w
is the width of the conductor.

Figure 2.19 Node currents and
Kirchoff’s law.

2.5.4 Capacitance

In simple terms, capacitance can be thought of as the amount of charge a body or
conductor can hold per unit of voltage between the node in question and another
reference node. Using our water analogy, a capacitor should be thought of as a
dammed lake that is filled with or emptied of water based on the electrical power
needs of consumers.

The amount of capacitance a conductor has is determined by the area of the
conductor and how far it is away from the reference node. Again using our water
analogy, let’s consider a lake. How much water will it take to fill the lake (think
how much charge will it take to charge up the capacitor)? The answer is, it
depends on the surface area of the lake and how deep it is.

The tricky part of this concept is that the distance between the reference
node, the bottom of the lake, and the surface of the lake determines the depth of
the lake. The farther the reference node is away from the conductor, the shallower the
lake is. If the reference node is very close, the lake will be deeper and thus the overall
capacitance is greater. The concept behind this is that the charge in the conductor
is attracted to the reference node by an electric field attraction associated
with opposite charges. Closer bodies have larger electric fields and thus larger
capacitance values.

There is also a dependency on the material that separates the two nodes.
Some materials isolate the attraction to a better degree than others do.

A very simple model for the capacitance of a conductor is calculated as

C = e ¥ A/d

where A is the surface area of the specific conductor, d is the physical distance
between the conductor and the reference node, and e is a constant repre-
senting the characteristics of the insulating layer between the conductor and the
reference node.

2.5.5 Delay Calculation

Without going into gory theoretical detail, let us consider a simple example of a
inverter driving a wire or conductor. The wire is represented as a single resistor
and a lumped capacitance (Figure 2.20).

20 SCHEMATIC FUNDAMENTALS

Figure 2.20 Delay calculation circuit.

Our goal is to calculate the delay from IN to node A. The total delay is
dependent on two factors:

• The associated switching delay of the inverter. This inverter delay is depen-
dent on the size of the resistor and the capacitor. This delay is normally
calculated or measured from simulation, so we will not consider it
formally here.

• The delay of the wire is due to the resistor and the capacitor. A first-
order approximation of the delay through the wire as an independent
component is

Delay = R ¥ C

This simple equation gives us an easy formula to analyze the delay through
different wiring scenarios and allows us to make the appropriate trade-offs in
laying out the final design.

If it is required to minimize the delay through a given circuit, we need to
consider reducing both the resistance and the capacitance of the wire. Using our
knowledge of resistance and capacitance, we can optimize our layout to minimize
the delay by doing the following:

• Minimizing the length of the conductor. This reduces both the resistance and
capacitance terms.

• Optimizing the width of the conductor. Decreasing the width of the
conductor decreases the capacitance of the wire; however it increases
the resistance!

• Increasing the spacing of the conductor to other reference nodes. This
decreases the capacitance of the wire. Usually this means running the wire
in areas that are free from other polygons or shapes or using a top metal
layer instead of the lower one.

Review of Fundamental Electrical Laws 21

In Chapter 1 we defined in great detail layout design as follows:

The process of creating an accurate physical representation of an engineer-
ing drawing that conforms to constraints imposed by the manufacturing
process, the design flow, and the performance requirements shown to be
feasible by simulation.

Summarizing once again, a layout designer is a person who knows basic
electrical concepts, process limitations, and properties; has a talent for seeing and
feeling space and floor plans; and can learn and use various CAD tools.

Let us understand in greater detail the manufacturing process and how it
relates layout to the physical representation of the design.

3.1 INTRODUCTION TO CMOS VLSI MANUFACTURING
PROCESSES

There are many kinds of design processes, but this text discusses only CMOS
technologies. We will first discuss the manufacturing order of layers (Figure 3.1)
without going into the details of how each step is physically realized.

We start with a bare silicon wafer. Between steps an isolation layer is grown
to protect areas that are not to be patterned.

P and N bulk regions are defined by differentiating different areas of the
wafer with “wells” or “tubs” of the appropriate type.

The polysilicon that forms the gate areas is added next.
Source and drain areas are defined by diffusing areas on either side of the

gate polysilicon. Other active areas such as substrate contacts and guard rings are
formed at the same time.

In order for interconnect layers to be connected to the polysilicon and/or
active areas, contact holes are created in the isolation layer on top of the layer to
be connected.

22

CHAPTER THREE

Layout Design

The interconnect layers are deposited and fill the contact holes created in the
previous step.

The last layer is called the passivation layer with openings for wire bonding
connections. The passivation layer is a glass layer that isolates the chip from the
external world.

This diagram is a very simple explanation of the manufacturing process.
Different process technologies have significantly different manufacturing steps.

DRAM memories for example have four layers of polysilicon to construct
the memory cell capacitor. ASIC designs have only one polysilicon and more
layers of metal, which are used to connect many, many logic gates. Using five to
six layers of metal, microprocessors, and other complex ASIC designs can be
produced (Figure 3.2).

3.2 LAYERS AND CONNECTIVITY

Let us simplify the types of layers that are used and introduce the concept of mask
layers and drawn layers.

If we analyze most CMOS processes, we find that there are four basic
layer types:

1. Conductors: These layers are conducting layers in that they are capable of car-
rying signal voltages. Diffusion areas, metal and polysilicon layers, and well
layers fall into this category.

Layers and Connectivity 23

Figure 3.1 CMOS manufacturing
process.

2. Isolation layers: These layers are the insulator layers that isolate each con-
ductor layer from each other in vertical and horizontal directions. This iso-
lation is required in both the vertical and horizontal direction to avoid “short
circuits” between separate electrical nodes.

3. Contacts or vias: These layers define cuts in the insulation layer that separates
conducting layers and allow the upper layer to contact down through the
cut or “contact” hole. Metal vias or contacts are examples of these. Openings

24 LAYOUT DESIGN

Figure 3.2 Example of cross-section process steps.

in the passivation layer for bonding pads are another example of a
contact layer.

4. Implant layers: These layers do not explicitly define a new layer or contact,
but customize or change existing conductor propriety. For example, diffu-
sion or active areas for PMOS and NMOS transistors are defined simulta-
neously. A P+ mask is used to create P+ implant areas that define certain
diffusion areas to P-type by the use of a P-type implant.

Using a combination of these four types of layers, transistor devices,
resistors, capacitors, and interconnections are created.

In almost all cases, the number of layers that are drawn by the layout designer
has been reduced to the minimum number required for the mask-making process.
This minimum number of layers is referred to as the set of drawn layers. Minimiz-
ing the number of drawn layers reduces human error and layer management, as
well as the computational requirements of the CAD software.

The mask layers, or the layer shapes that are translated to the optical masks,
are sometimes different from the drawn layers. First, there may be many more
mask than drawn layers. In this case, the additional mask layers are automatically
generated from the drawn layers.

Additionally, the mask layers may be resized from the drawn layers to
account for variances in the manufacturing process. This resizing is also done
automatically by the mask-making process.

Note that isolation layers are never drawn but are always implied from the
mask layers as part of the manufacturing process.

From this point on any reference to a layer should be interpreted as meaning
a drawn layer.

Of course, all of the layer entry is done with sophisticated CAD software,
and the subsequent manipulation of layers is also done with computers and com-
plicated software.

Every shape that is drawn is entered either as a “polygon” or a “path.” There
are subtle differences between the two, which are partly related to the way com-
puters handle and process the layout database. There are situations where poly-
gons are better suited to layout than paths, and vice versa. These differences will
be explained in the next two sections.

3.2.1 The Polygon

As the name implies, a polygon is an N-sided shape that geometrically has N + 1
vertices, which define the shape (the computer sees N + 1 vertices because there
is one vertex that is double counted because it is counted as both the origin and
the end point).

The typical uses for polygons are places where the designer has to cover
areas that are not necessary a simple rectangle—for example, cell boundaries, tran-
sistors, n-wells, contacts, diffusion areas, and transistor gates. In addition, poly-
gons are flexible enough to be used to define areas because they can be
implemented in various angle modes such as 90 or 45 degrees or in some rare
cases as freehand shapes.

Layers and Connectivity 25

The pros of using polygons include the following:

• Can be used to enclose an odd-shaped area
• Can be easily drawn, added to, or subtracted from
• Can be easily merged with other polygons at the same level of hierarchy

and same layer

See some examples of polygons in Figure 3.3.
The cons of using polygons include the following:

• Not easy to modify complex polygons for consistency. An example might be
when a uniform width is desired and to modify all portions of a polygon is
tedious.

• Requires more computer database space compared to a “path” in situations
where paths are useable.

3.2.2 The Path

As the name implies, a path is a shape that is defined by a start and end point,
intermediate vertices, and a width value. It is used primarily to connect devices
and run signals from point to point because a path has a consistent width.

A path is easily manipulated and uses fewer computer resources than a
polygon in terms of data. The vertices define a centerline (or sideline) for the path,
and an additional variable defines the path’s width. Path lines can also follow
90-degree, 45-degree, or freehand angle modes.

Paths can be designed as centered, left, or right justified. This means that the
shape of the path appears either centered or to the left or right sides of the vertices.

An additional attribute of a path is the way the path is ended. The length of
the path relative to the start and end points can be fixed, extended beyond the
end points by a certain amount, or perhaps rounded.

All of these features need to be implemented with many things in mind: the
target manufacturing process, the CAD tools, and design requirements. Some
examples of paths are shown in Figure 3.4.

26 LAYOUT DESIGN

Figure 3.3 Examples of polygons.

Figure 3.4 Examples of paths.

As we can see, the path has a lot of potential in having different termina-
tions and vertex formats for different layout styles and design requirements.

An efficient use of paths is to generate layout using multiple paths. Once the
desired shape is defined, we can flatten the paths to get polygons (see Figure 3.5).
Generating the first version of the layout using paths is much quicker and more
efficient. We can still convert the paths to polygons if so desired. The reverse is
very limited. A path cannot be generated easily from a polygon.

Depending on the type of layout and the designer’s working habits, the more
paths that are used, the more efficient the layout is. Paths are easier to change and
contain less computer data. For example, moving a section of a path requires
moving one edge. Moving an equivalent section of a polygon requires moving the
two edges on each side of the polygon.

Efficient work habits will save time and money in the long run because
minimizing the size of the layout database minimizes several other factors:

• Disk space required to store the layout database
• Workstation memory usage while working
• Screen redraw time
• Workstation CPU time required to process the entire layout database for the

mask making process

The only disadvantage of the path is that some CAD tools do not support
the merging of a line of paths into one polygon when merging is desired.

3.3 INTRODUCTION TO TRANSISTOR LAYOUT

Before we start to discuss the layout of transistors, let us review the schematic
fundamentals presented in Chapter 2. The top half of Figure 3.6 shows the basic
symbol representations of both PMOS and NMOS transistors. The length and
width of the transistors are shown. Also remember that the bulk connection is
there, but is hidden from view to avoid cluttering the schematic.

In Chapter 2 we stated that the amount of current flow is determined by the
device size. We hinted that the current flow is increased as the width of the device
is increased or the length of the device is decreased. Let’s see why this is by under-
standing the physical characteristics of the transistor as determined by the layout
of the device.

Figure 3.7 shows a simple MOS transistor layout. Note the following:

28 LAYOUT DESIGN

Figure 3.5 Multiple paths flattened to a single polygon.

• All four terminals of the transistor are shown and labeled.
• The gate of the transistor is defined by a polygon of polysilicon.
• Areas of active or diffusion adjacent to the gate of the transistor define the

source and drain areas. Note that the source and drain labels are in fact
interchangeable!

• This transistor happens to be a PMOS transistor and the active areas are
doped P-type by the P+ implant layer.

• This PMOS transistor is located in an N-type well called an N-well. This
forms the transistor bulk node.

Introduction to Transistor Layout 29

Figure 3.6 PMOS and NMOS transistors.

Figure 3.7 Simple PMOS transistor layout.

• An N-type active area (without the P+ implant layer) forms a connection
to the N-well because the N-well and active areas are of the same type
(N-type).

• The source, drain, and well connection are themselves connected by another
contact layer. This contact layer would typically be the contact layer for the
first layer of metal.

• The width and length are labeled correctly. The width is greater than the
length!

The length and width of a transistor are the two most important dimensions
of a transistor that we need to fully understand.

As we stated previously, when people in the industry talk about the gate size
of a specific technology, they are referring to the minimum gate length. Note the
following:

• In terms of layout design, the length of the transistor is the distance between
the source and the drain of a transistor. This may not be intuitive, because
the physical dimension of the transistor length is smaller than the width. The
next paragraph should explain the reasoning behind this convention.

• In terms of transistor performance, the length of the transistor is the distance
electrons have to travel when the gate is “on” or “open” to produce a mea-
surable current flow. Remember, it is the gate voltage that controls the
flow of current. If the distance between the source and drain is reduced,
the gate voltage has a stronger influence in enabling current flow. The
bottom line is that in the same process technology, if two transistors have
the same width but different lengths, the transistor with the shorter gate
length will produce more current. More current conceptually means faster
performance.

• The length of a transistor in terms of manufacturing capabilities is the
narrowest possible piece of polysilicon (poly) that can be manufactured
reliably. Smaller poly dimensions and thus smaller transistors results in
smaller ICs, so it is attractive to use the minimum gate length to minimize
chip area.

Let’s now consider the width of a transistor.
The width of a transistor should be thought of as the number of parallel

channels that are available for current to pass from the source to the drain. Wider
transistors have more channels available; more channels mean more current.

Once again comparing two transistors, this time each having identical gate
lengths but different gate widths, the transistor with the larger gate width will
produce more current.

To help you remember the convention of transistor length and width, think
of a transistor like a bridge. The length of the bridge is the distance between the
two sides of the river and the width of the bridge is the number of lanes of traffic
that the bridge can accommodate. The amount of traffic that can cross the bridge
is limited by the length and width of the bridge in the same way that current is
limited by the length and width of the transistor.

30 LAYOUT DESIGN

If the design of the bridge is to allow 100 cars to cross over in 1 minute, then
the bridge needs to be made wide enough to achieve this goal. In most cases the
length of the bridge is fixed (similar to the minimum allowable gate length) and the
only degree of freedom we have to achieve our goal is to adjust the width.

One last concept to consider. There are cases when we might want a slow
or weak transistor! This is easily achieved by minimizing the width of the tran-
sistor and/or increasing the transistor gate length. Delay elements or weak
feedback devices are examples where slow transistors are desired. It may turn out
that in these cases the gate length does turn out to be greater than the width
(Figure 3.8).

The first important thing to remember is the difference between the length
and width of a transistor and how to apply this to transistor layout!

For completeness, Figure 3.9 shows the layout of an NMOS transistor.

Introduction to Transistor Layout 31

Figure 3.8 Weak feedback inverter.

Figure 3.9 Simple NMOS transistor layout.

• This NMOS transistor is not located in any type of well and thus sits in the
bare substrate. In this case, the substrate can be deduced to be P-type. The
substrate forms the transistor bulk node.

• A P-type active area (with the P+ implant layer) forms a connection to
the substrate because the substrate and active areas are of the same type
(P-type).

3.3.1 Bulk Connections

Now that we know how the two basic kinds of transistors work and look, let’s
review the bulk connection node and see how it is connected. This is most easily
understood by understanding a cross-section of the wafer and transistor. Note

32 LAYOUT DESIGN

Figure 3.10 Wafer cross-section showing bulk connections.

Figure 3.11 Cross-section inverter bulk connections.

that a layout designer can only understand this concept and cannot influence
its design.

Most (but not all!) raw silicon wafers these days are P-type, so of the two
transistor types, an NMOS transistor is the easier to design. The transistor layout
is simply implemented in the bare substrate (see right-hand side of Figure 3.10).

To generate PMOS transistors we need to create a separate bulk node and
therefore need another layer. This is typically called an N-well; when imple-
mented, it forms an island of N-type substrate. Implementing P-type active
regions within this N-well creates a PMOS transistor with a bulk connection as
defined by the N-well (see center area of Figure 3.10).

The left-hand side of Figure 3.10 also shows an NMOS transistor design that
has a different bulk node than that of the substrate. A retrograde well (R-well) or
P-type well (P-well) has been implemented in the N-well. This region creates a
separate P-type bulk node for the transistors implemented within this region. This
is an example of substrate connection in a DRAM process.

In the case of an N-type wafer, the polarities of the transistor connections
are simply the reverse of those shown previously. Figure 3.11 shows substrate
connections for an inverter in an ASIC process.

3.3.2 Conductors and Contacts

From a layout design point of view, conductors and contacts are straightforward.
Let’s look at the formation of contacts from a manufacturing point of view so that
as layout designers we can understand their use and limitations.

Different technologies have drastically different process definitions. A
typical ASIC process has one type of polysilicon for the gate and two to four types
of layers of metal for interconnection. An advanced ASIC process can have up to
six layers of metal for interconnect and use a low-level metal called metal0 for
source/drain connections. For DRAM memories, a typical process today has four
types of polysilicon and three to five metals for interconnectivity. In any of these
cases the conductor layer definition for the process is quite complex.

There is a subtle difference in the industry between the names contact and
via. A contact typically refers to the lowest level metal hole that contacts from the
lowest level of metal to the polysilicon or diffusion layers. The holes that allow
higher layers of metal to connect between each other (e.g., metal1 to metal2 or
metal2 to metal3) are called “vias” or “through holes.”

We will use vias throughout this text and for easier understanding of these
holes. For an illustration of contacts and vias, please refer to Figure 3.12.

As you can see from the cross-section shown in Figure 3.12, there are various
isolators between the various conductor layers. I1 is the isolator between the dif-
fusion regions and polysilicon. I2 is the isolator between the diffusion regions and
metal1. A hole in this isolator generates a “contact” between the passing metal1
and the lower active source/drain layer. I3 is the isolator between metal1 and
metal2, and a hole in it represents a via.

In most cases there is a distance to respect between the “contact” hole and
the “via” hole, but in most modern processes the via can be placed on top of the
contact. In some very complicated processes where the size of the chip is very
important (read cost), the process may allow all the vias to be aligned one on top
of each other. They are called “stacked” via processes.

Introduction to Transistor Layout 33

Each metal has various characteristics in terms of resistance (R), capacitance
(C), and topology requirements. Something to think about is that the higher metal
layers in the process require more vias to connect down to the transistor layers.
These vias add resistance. We will analyze later in the book how to deal with these
electrical characteristics of the process and how to take advantage of them.

3.3.3 Inverter Layout

Now that we have all the basic concepts of transistor layout design, let’s
once again look at the simplest combination of transistors, the inverter
(Figure 3.13).

As you can see, the transistor representation is very simple, and now we are
able to generate a layout since we know how a transistor looks and where it is
connected. Let’s see what we can observe from analyzing Figure 3.14.

• The PMOS is connected to VDD in the schematic as well as in layout.
• The NMOS is connected to VSS in both pictures.
• NMOS and PMOS transistors have the same IN signal on their gates and

same OUT on their drains—in both pictures.
• The widths are different—the PMOS is twice as big as the NMOS transistor

in this example.
• The lengths look similar, but they are different, and the difference cannot

be seen.
• For N-well there is a N+ connection to VDD. This connection is implied in

the schematic.

34 LAYOUT DESIGN

Figure 3.12 Illustration of contacts and vias.

• For substrate there is a P+ connection to VSS. This connection is implied in
the schematic.

The design of this inverter will be presented in later sections, and this
inverter is shown to give us an idea of how a complete layout cell should look.

3.4 PROCESS DESIGN RULES

Design rules are the rules that have to be respected when a given design is laid
out. There are design rules for all of the components we have been introduced to:
polygons and paths, transistors, and contacts. Fundamentally, these design rules
represent the physical limits of the manufacturing process.

Process Design Rules 35

Figure 3.13 Inverter representations.

Figure 3.14 Inverter layout and
transistor schematic.

Within a company that has the capability to manufacture integrated circuits,
there is a group of people who define and optimize the manufacturing process. This
“processing” group defines the design rules by trading off the cost-to-manufacture
and yield, among other things, against the minimum feature size that is manufac-
turable by the equipment and processing steps. Other factors that influence the
definition of design rules could be the maturity of the manufacturing tools and
process or the market requirements for an IC or foundry service.

Overall, design rules are put in place to help layout designers understand
and account for physical three-dimensional limitations and manufacturing
tolerances within the CAD and layout tool environment.

3.4.1 Width Rule

The minimum width of a polygon (during mask-making, all paths are converted
to polygons) is a critical dimension, which defines the limits of the manufactur-
ing process (Figure 3.15). The minimum gate length of a transistor is the prime
example of this rule.

A violation in a minimum width rule potentially results in an open circuit
in the offending layer. The manufacturing process will not reliably produce a con-
tinuous connection or wire below a specific value, and breaks in the path would
result at the point at which the width rule was violated.

In addition to single polygons, width rules can also be applied to structures
such as transistors or to single polygons with electrical or other special charac-
teristics. An example of a polygon with special electrical characteristics is a metal
layer that is connected to a power supply. The larger currents that pass through
these metal polygons necessitate that they have a width greater than the minimum
design rule, and the correct value may depend on the size of the current rather

36 LAYOUT DESIGN

Figure 3.15 Examples of the width rule.

than being a fixed value. Large currents passing through a narrow metal track
cause the track to act like a fuse, and over time or during a large current peak the
metal polygon will break under the stress.

The length of a polygon (or path) is usually unlimited; however, in some
processes there may be rules about minimum area requirements (for example, in
the case of a contact or via where a width and a length rule together must be met).
Please refer to the examples in Figure 3.15 for clarification.

3.4.2 Space Rule

Another critical dimension is the space rule, which is the minimum distance
between two polygons. Generally, the space rule is applied to avoid an unwanted
short circuit between the two polygons.

Together with the width rule on a single layer, the space and width rules
define a layer pitch. The pitch of a layer is important when considering intercon-
nect and routing porosity. The routing area consumed by n metal lines is easily
calculated by multiplying the number of lines by the layer pitch. Please refer to
the CD-ROM data for examples of pitch calculations.

Figure 3.16 illustrates the following points:

• 1 and 2 are examples of the metal1 to metal1 minimum space rule checked in
parallel and diagonally between corners.

• 3 is an example of the poly to poly space rule where the polygons are running
in parallel at a 45-degree angle.

• 4, 5, and 6 are spacing rule examples related to metal2 to metal2 spacing for
polygons at a 90- and 45-degree angle.

• 7 is an example of the active to active spacing rule checked with a single dis-
tance (top example) or within a corner (bottom example).

Process Design Rules 37

Figure 3.16 Examples of the space rule.

• 8 is an exception to example 3—the spacing rule between two polysilicon
polygons may depend on their location. A typical example of this is in the
case where gate polysilicon within a transistor structure has a different
spacing value than that for polysilicon outside transistor structures.

Like the width rule, spacing rules are applied to polygons on the same layer,
but also to polygons or structures on different layers or under different conditions.
An example of a spacing rule on different layers is the spacing required between
a contact to active and gate polysilicon. An example of a spacing rule between dif-
ferent structures would be the distance between the exposed pad circuitry and
sensitive internal circuitry to ensure reliable and consistent operation under all
conditions.

Many of the spacing rules defined in a set of design rules can easily be under-
stood when looking at a process in a cross-sectional view. This is explained fully
in Section 3.5, Vertical Connection Diagram.

In Figure 3.17 we can observe that the spacing between the gate polysilicon
and the contacts is not the same in the two transistors. In looking at the cross-
sectional view, the first thing to note is that the source and drain areas of the
two transistors are not the same.

More importantly, the spacing rule of the contact to the gate polysilicon on
the left-hand transistor has been violated to the extent that the gate polysilicon
has been placed directly underneath the contact. A short circuit between the metal
and the gate polysilicon has been created. We can easily observe the problem in
the three-dimensional view. The cross-section cut line was placed in the middle
of the lower contacts.

38 LAYOUT DESIGN

Figure 3.17 Another example of the space rule.

3.4.3 Overlap Rule

As its name implies, the overlap rule is defined as the minimum overlap or sur-
round of one polygon by another. The overlap of a metal layer over a via or contact
is a prime example of this rule.

Note that this rule always involves polygons that exist on different layers,
and this fact is the principal reason why this type of rule is required. Whenever
structures are to be manufactured using polygons on two different layers, there is
a significant chance that there will be a misalignment between the desired and
actual relative placement of the two polygons. Misalignment between polygons
can result in both undesired open and short circuit connections, depending on the
layers involved. Fundamentally, overlap rules reduce the impact of a small mis-
alignment between layers in the manufacturing process by ensuring that the
desired connectivity is maintained.

Let’s consider an example where there is a contact between two interconnect
layers. Physically, a contact polygon turns into a hole in the insulator between the
two interconnect layers. The upper layer material must fill the hole and make
contact with the underlying layer for the connection to be achieved.

The overlap rule states that the two layers in question must not only overlap
each other; one layer must surround the other by a certain value. This value is the
value for the overlap rule. In the case of the contact, the upper and lower layers
must completely overlap the contact and surround the contact hole by the overlap
rule value. If one of the layers does not sufficiently overlap and surround the contact
hole, then the connection will not be reliable under all manufacturing conditions.

Process Design Rules 39

Figure 3.18 Example of the overlap rule.

40 LAYOUT DESIGN

Figure 3.19 More examples of the overlap rule.

What does the overlap rule achieve? In the case where the physical polygons
are not aligned perfectly, there still will be enough upper material to fill the hole.
If the upper or lower layers do not completely overlap the contact hole, the area
that is available for the electrical connection is reduced. This results in a poor or
weak connection (unreliable!).

In Figure 3.18, in examples 1 and 2, observe the result of poor contacts
between active and metal1. If the active is not completely overlapping the contact
polygon, the contact base is not wide enough. If the metal is not completely over-
lapping the contact polygon, then the contact hole is not completely filled and the
contact will again result in a smaller connection surface area. In the third case we
have an overlap problem between metal1 and metal2. The via has no metal1
overlap, so the connection, if any, is minimal.

The example in the figure demonstrates a case where an open circuit has a
greater likelihood of happening. Let’s consider another example where a short
circuit is created when an overlap rule is not obeyed.

In this case let’s consider different transistor layouts where gate polysilicon
is combined with an active layer. To ensure that the transistor size is accurate and
that a short circuit is avoided between the source and drain nodes, there are special
rules related to transistors.

In general there are two overlap rules: active overlapping the gate and the
gate overlapping the active areas. Figure 3.19 shows four different cases.

Node Out4 is an example of adequate overlap of the gate layer by the active
polygon. Node Out4 is well defined. Contrast this example to node Out3. It is
likely that the thin area of node Out3 will not be created.

Out1 and Out2 are examples of the gate layer overlapping the active layer.
You can see that because the gate layer does not fully overlap the active area, nodes
Out2 and VDD are shorted to each other, as they are part of one polygon of active.

3.5 VERTICAL CONNECTION DIAGRAM

In the majority of ASIC processes there are very straightforward rules for con-
nectivity. An ASIC process has one poly for the gate and three to six metals. That
means that we have to work with one contact type and two to five types of vias.
The connectivity is easy to understand because to connect from active to metal6
we need all the possible contacts and vias.

In more complicated processes, it is advisable to generate a vertical diagram
of layer connectivity so the layout designer can fully understand the connectivity
scheme. Figure 3.20 shows a DRAM process that is made with four poly layers
and three metal layers. In this type of process there are restrictions on layer uses
and connection rules.

Vertical Connection Diagram 41

Figure 3.20 Vertical diagram of connectivity for a DRAM process.

3.6 A GENERAL PROCEDURE TO FOLLOW

Figure 3.21 shows a general layout design flow that is applicable for all
design types.

This procedure is straightforward and self-explanatory and could be applied
to almost any engineering task. Of course we will concentrate on how it applies
to layout design.

Step 1 will be covered in detail, as it is crucial for getting started on the right
track. It is in this step that we collect and review our knowledge of layout design
and apply it to the specific circuit design under consideration. The aim is to
produce a strategy for attacking the design by documenting the general areas
where all components and signals will go.

Step 2 is simply implementing the design: executing and possibly revising
the floorplan based on the realities of implementation. One way to think of the
design process is to “plan top down,” then “implement bottom up.” By this we
mean that we first floorplan general areas and approaches with a top-level view.
With this plan in place we implement the design by starting with the lowest level
components first and fill the areas defined in the plan. The lower level design tasks
are easier because the constraints imposed on them were defined in the top-level
floorplan. As the general areas are completed, we adjust our plan for future
work. With a sound floorplan, adjustments are minor and the completion of the
design is easy.

Computer-based checks (which will be covered in Section 3.10) form the bulk
of step 3. These checks should be done in a certain order as outlined in Section

42 LAYOUT DESIGN

Figure 3.21 Layout design procedure.

3.10. On top of the computer-based checks a visual inspection is recommended,
as the automatic computer checks are only as good as the rules that are coded into
them. Make a plot of your design and look at it. Also, there are many aspects of
most designs that cannot be checked by computer. An example of this is the degree
of symmetry of a balanced layout. These visual checks should be part of the audit
checklist as a reminder.

Step 4 is a final sanity and cross-check to confirm that all requirements have
been met and none missed, along with a final extraction step.

One comment is necessary about the procedure and flowchart presented
in Figure 3.21 and all procedures presented in this chapter. They all show that after
each step in which the design is modified and evolved, it is necessary to go back to
a previous step to readdress a requirement that may no longer be valid. Note that
there are no shortcuts in the flow. All the arrows are going up only on the right side,
and therefore all previous steps should be revisited after every modification.

3.7 PREPARING TO START

The most important stage in any kind of layout design is the planning stage.
Quality in layout means that the end results, the final layout, meets the customer’s
(i.e., the design engineer’s) requirements. To achieve quality results, a layout
designer has to prepare a list of input requirements, taking into consideration all
the specifications and a list of output requirements in order to ensure that output
layout requirements are met.

3.7.1 Developing a Layout Floorplan

Now that we understand how to build single transistors and the concepts behind
design rules and manufacturing process, we can start to plan our layout with some
sound fundamental knowledge.

We need to remember the concepts presented in Chapter 2. The schematic
or netlist that we have been given to lay out has undocumented or implied elec-
trical and performance characteristics that need to be implemented for an optimal
design. Ideally, a list of documented requirements is supplied with the circuit
design. Ask for it!

We have one suggestion that can be of tremendous benefit at this point in the
design process but is not indicated in the procedure. Depending on your familiar-
ity with the type of layout you are about to start, it is always a great idea to do a bit
of research to familiarize yourself with the circuit involved. It is extremely rare that
you are about to attempt something that has never been done before!

Ask to see previous designs of the same type or in the same process. Ask
who the expert is on this type of circuit. Review the concepts in this book if it
has been a while since you last did a layout of this type. An appropriate amount
of time to look for information to reuse and help you in your work usually pays
off. Get a second opinion on your work (by reusing someone else’s) before you
even start!

Of course, the flip side of this approach is that it also pays to make your
work and knowledge available to everyone else as well.

Preparing to Start 43

To ensure that nothing is missed, a prelayout checklist from the notes
from your research is a great way to plan out a strategy for laying out a design.
Figure 3.22 shows an example of a general procedure for creating a layout plan
based on the circuit design requirements.

The first step, 1.1, is related to the planning of the layout of the power sup-
plies and/or global signals. The power supply connectivity is typically called the
power grid. Power supply resistance from the interface to all parts of the design
must be considered. In this case special attention must be applied to the width of
the supply lines and the grid or mesh of power lines through the design. Again
the interface to other designs is important, especially in the case of a cell design
where it may be desired to array it or have seamless abutment requirements to
other cells. Let’s not forget that tub and substrate contacts are typically connected
from the power supplies, so a strategy to lay out these contacts must also be
considered.

Step 1.2 is to list all of the input and output signals. Each signal is assigned
a position on the interface of the design to the neighboring designs. The interface
is defined as the boundary of the design. In some cases certain signals will have
a specific or nondefault signal width assigned to them. Special considerations for
signals may include clock signals, signal buses with multiple bits that need to be
matched between them, critical path signals, and shielded signals.

In Step 1.3 we have to deal with special design requirements such as layout
symmetry, specific requirements for latch-up protection, or noise immunity. More
examples of special design requirements might be that the design must be pitch
matched (i.e., limited in size in one direction), must have a very specific critical
path signal, or might be a nonstandard part of the design.

Step 1.4 is very important to help finalize the size of the design and estimate
the feasibility of meeting all of the design requirements within the area and sched-
ule constraints. Using any previous knowledge about older designs of the same
complexity and the process design rules, a layout designer can approximate the
size of each component and the complete design. The number of different com-
ponents to be implemented can be identified and the overall hierarchy or parti-
tioning of the design can be completed. Areas for internal routing and signal
connections should be allocated. The routing layer in each interconnect area
should be identified. Extra signals or space should be reserved since we have only
an educated estimate as to the size of the final design.

At this point we should have a preliminary floorplan and implementation
strategy. The floorplan should comprise a definition of the interface or boundary
with all of the signal ports assigned to their proper locations. Signals with special
requirements are identified, and the area impact of these special signals is
included in the total area estimate. If it is a hierarchical design, subcomponents
are also known with their respective interfaces defined. Spare space and spare
signal lines are included in this plan.

Step 1.5 is a sanity and cross-check to confirm that all requirements have
been met and none missed. There are requirements related specifically to layout
guidelines and styles for the process, but also circuit design requirements as well.
The floorplan is a communication tool between the layout and circuit designer, as
the circuit designer most likely had defined some specific requirements for his or
her design and had assumed some kind of layout floorplan in modeling the design

44 LAYOUT DESIGN

Figure 3.22 Layout planning procedure.

for its environment. It is very important to involve the circuit designer in the aud-
it process.

The layout audit also relates to the next level of integration for the piece that
you designed. The “brick” that you have now floorplanned has to interface per-
fectly to all of its neighbors and their interfaces; otherwise, when put together
it won’t work exactly as planned. As an example, the top-level chip design has to
fit within the context of the chip package, so a review of any floorplan is very
important. The person responsible for integrating your design should audit
this floorplan as well to review the requirements related to size of the design, the
layout architecture or approach, and your designs interface, among other things.

It is not uncommon for audits of really complicated floorplans to require two
people: one to check the engineering requirements and another to check the layout
needs. The auditor(s) should be a person who is not directly involved in the
design, but who has the expertise to evaluate and appreciate the floorplan quality,
and to make constructive comments. To help the auditor perform a proper audit,
ideally a checklist is used for each type of layout design. Refer to the
addendum checklists for some examples.

3.7.2 Stick Diagrams

Stick diagrams are a simple way of floor planning a circuit in preparation for
layout. In many cases it is very useful for circuit design engineers to sketch for
themselves a simple layout drawing without respecting any design rules, in order
to imagine more realistically how the layout can be done and if it can be done at
all. Circuit design involves many assumptions about how the final layout may
look, so an easy and fast stick diagram can enhance the chance of a successful
design. Stick diagrams can be done with various levels of detail that we will
not go into here. An example is shown in Figure 3.23.

Step 1 shows a preliminary placement of all of the devices. In this case the
VDD and VSS power line architecture has been predefined, as has the orientation
and location of PMOS and NMOS transistors.

Step 2 shows the procedure for identifying which actives are connected to
the same potential, and also the effect of flipping devices in order to take advan-
tage of “sharing” these nodes.

Step 3 shows the final result of the active sharing. This is, in fact, the final
layout with the interconnect optimized. The cell is narrower than in the previous
steps. We can use this last version of the stick diagram as a floorplan for the audit
mentioned in Section 3.7.1.

3.7.3 Hierarchical Design

As mentioned in Section 3.7.1, the circuit design analysis and resulting floorplan
may indicate that it makes sense to have a hierarchical design. A hierarchical design
is one that has a reference or uses another component as part of its construction.
These subcomponents in turn may reference other components. This is similar to
the concept of a subroutine in a computer program.

Building a design using subcomponents makes a lot of sense for the
following reasons:

46 LAYOUT DESIGN

Preparing to Start 47

Figure 3.23 Example stick diagram layout.

• Computer resource management: Data that is already occupying disk and
memory space is easily referenced as opposed to making a separate copy of
the data.

• Component reuse: Designers can reuse components that are already fully
completed—they have been designed, verified, and audited, preferably by
experts in those areas.

• Concurrent engineering: Partitioning a design into different subcomponents
allows many different tasks to be completed in parallel.

In terms of layout design we refer to these reusable subcomponents as leaf
cells. The term leaf cells comes from the fact that a hierarchical design resembles a
tree with a trunk, more primary branches, many more smaller branches, and
finally, many, many, many leaves.

A few comments about leaf cells:

• They are repeatable layout designs that can be reused in many different
regions of the chip.

• They can be made out of one polygon—i.e., contact cells; can be made out
of three polygons—i.e., contact cells made with the surrounding layers
(metal1, metal2, via12); or can be a complete circuit—i.e., inverter, NAND,
flip-flop.

• They may have different versions of the layout for one version of the
schematic because an inverter of equivalent size in the I/O region will have
a different cell environment or interface than one in the memory region of
the chip.

• Any group of polygons using a standard interface makes sense to be made
as a leaf cell. For example, a library of logic gates all generally have a stan-
dard power supply layout interface, and so it makes sense for each of the
gates to be a cell. If a design of multiple logic gates is to be implemented, it
is not recommended that the design be done at the transistor level. Making
logic gate cells first is preferred.

• If global changes are required to a design, it is much easier if cells are used.
Imagine updating a design with 100 inverters. Consider the case of one
design with an inverter cell instantiated 100 times versus another “flat”
design with 200 transistors connected as 100 inverters. A change is required
to all 100 inverters. In the case of the inverter cell design, the inverter cell is
updated. Depending on the change required in the 200-transistor case it is
likely that it would be more efficient to start the design over from scratch
using cells than to try to update all 200 transistors.

• Conversely, using our 100-inverter example again, we must be very careful
if only 1 of the 100 cells requires updating. We cannot change the inverter
cell without affecting the other 99. In this case a second inverter cell is
required that reflects the required updates and we replace the one outdated
inverter with the new one.

• Every cell in a design needs a unique identifier even if it is a second instanti-
ation of an already designed cell. In our example of the design with 100 instan-
tiations of a cell called INV, we need to identify each one uniquely (i.e.,

48 LAYOUT DESIGN

INV001, INV002) and the identification of the cell should match the name that
is used in the circuit design if there is an electrical correspondence. This
instance name is needed to differentiate each of the physically identical INV
cells. This is very useful in our example of changing 1 out of the 100 invert-
ers, as we can use the instance name to identify the outdated inverter.

• Cells can be flipped and rotated much more easily than groups of polygons.
• If a symmetrical layout is required, one cell representing one-half of the design

is all that is needed, and this techniques guarantees that the resulting layout
is perfectly symmetrical!

• Cells can be scaled, although this is risky because of issues with polygon
coordinates becoming off grid.

• Computer screen redraw resources is minimized using cells as all polygons
within a cell need not be shown. It is often necessary to show only the key
interface polygons and leave the details of the cell hidden.

• Cells can be “arrayed” to save more computer resources. An array can be
thought of as the definition of a matrix of cells. For example let’s consider
the case of implementing a 10 ¥ 10 matrix of memory cells. We are given a
single memory cell as the leaf cell. One option is to instantiate the memory
cell 100 times (this results in 100 X,Y coordinates, or 200 numbers that not
only must be stored—we have to generate them as well!). A better option is
to define an array that requires an X,Y origin, an X,Y offset, and the number
of rows and columns (six numbers!).

• The use of cell arrays also reduces computer screen redraw time. For example,
certain software packages have options to display only the border cells of an
array. Another option would be to display only the corner cells.

• Hierarchical layout verification tools can take advantage of the repeated use
of a smaller number of cells versus many individual ones. In our example
of a design with 100 instantiations of a single inverter cell, conceptually a
layout verification tool needs only to verify the inverter cell once and then
check how each of these cells interfaces to each other. This approach is much
faster than verifying the case of 200 transistors connected as inverters.

Figure 3.24 shows examples of cells instantiated in a design with instance
names and different orientations. The stylized letter F attached to the cell origin
shows the layout designer the orientation of the cell.

From Figure 3.24, please note the following:

• Base cell name = AGBC in all cases
• PDC is the name of the top hierarchical cell/block
• Instance names are different every time a cell AGBC is instantiated in the

design, e.g., comp001, comp002, comp003
• The first example shows all the cells are oriented at 0 degrees relative to the

origin of the PDC block
• The second example shows the instance comp002 is flipped versus the other

cells—observe the two arrows that define the mirror axis
• The third example shows an array implementation

Preparing to Start 49

3.8 GENERAL GUIDELINES

Now that we have considered a layout floorplan, it is time to implement the
design. There are general guidelines that should be followed both in planning and
implementing the design, and the fundamental ones are listed in this section.

50 LAYOUT DESIGN

Figure 3.24 Examples of hierarchical designs.

3.8.1 Guidelines for the Layout of Power Lines

Power supply lines have to be determined before starting the layout of any cell.
Specific guidelines for power lines include the following:

• Determine line width based on the following:
Does the line provide power only for internal use, or is there a
requirement for the line to feed other cells and be a part of the chip’s
power grid? This is critical information that can be determined from the
layout floor plan.
Use resistivity information of the different layers to determine the
appropriate width of the lines.

• Use lowest level of metal for power for transistor level cells. It is important
to consider that using higher layers of metal for power requires vias and
local interconnect polygons to connect transistors to supplies. This will take
space and limit the porosity of the cell. Generally use the lowest level of
metal for power that the process and design allows.

• Avoid notching power lines. Power lines carry large amounts of current;
therefore, it is important to make sure that they are routed with a consistent
width and never notched. Any notches in a line create potential fuses that
may break the power line under high current conditions.

• Avoid over the cell power routing. Unless the power is routed using auto-
mated tools, it is not advisable to run power supply lines over the cell.
Keep the power lines inside the cell to ensure that the cell is correct by
construction. Power routing outside the cell is ideally limited to connections
between cells.

3.8.2 Guidelines for the Layout of Signals

The following is a list of guidelines specifically for routed signals. More details on
each of these concepts are presented in later chapters.

• Choose routing layers based on process parameters and circuit requirements.
For each process a standardized list of routing layers should be determined
based on layer resistance and capacitance. Layers such as N-well, active, and
high-resistance poly gate are not used for routing. Priorities between routing
layers can also be standardized using the same criteria.

• Minimize the width of input signals. Minimizing the routing of the signals
within the design is also important. This reduces the input capacitance for
the signal. This is important for signals that are part of cells that are used
many times. An example of this would be a clock signal within a cell.

• Choose routing width carefully. The choice of the width of a routing signal
should be made judiciously. It is tempting to simply use the minimum design
rule line width as the routing width. This is not practical in all cases because
connections must be made to every line.

These connection points require a via or contact, and as you can see in
Figure 3.25, the space required for a via or contact is generally wider than
the minimum width rule for the routing layer.

General Guidelines 51

52 LAYOUT DESIGN

It is perhaps more efficient to use a width of line that accommodates
both a via and contact. This line would be wider but is much easier
to manage and maintain as it avoids jogging other signals around the
contact point.

• Maintain a consistent routing direction within a cell or block (Figure 3.26).
Then, when a layout designer wants to change signal direction, it will take
only one type of via and it will not interfere with the porosity of the cell. In
general it makes sense to keep a consistent metal direction for each layer and
alternate the direction from layer to layer. For example, if metal1, metal3,
and metal5 are routed horizontally, then metal2, metal4, and metal6 should
be routed vertically.

• Label all important signals. This is very important for the layout verification
process, especially LVS. Error diagnosis, short isolation, and LVS run time
are all easier when nodes are labeled.

• Determine the minimum number of contacts for every connection. Don’t
assume that a single contact or via for every connection is enough. Some
memories, for example, are using double contacts everywhere possible to
increase reliability.

3.8.3 Guidelines for the Layout of Transistors

The following is a list of guidelines specifically for a cell-level design environment.

• Use a predefined template for PMOS and NMOS transistor placement.
The architecture of a cell should be defined beforehand, and this template
should encapsulate the basic floorplan of a group of cells. Figure 3.27 shows
an example of a cell template.

Figure 3.25 Routing line width considerations.

Figure 3.26 Routing direction.

• Use transistor fingering for large and critical transistors. A cell template
similar to Figure 3.27 defines the maximum width of a transistor by the cell
height. How do we lay out a transistor that exceeds this height? The solu-
tion is to “finger” the transistor into multiple transistors that are connected
in parallel.

Figure 3.28 shows three equivalent layout designs of a transistor that
is 100mm wide.

There is an advantage with an even number of fingers: the active capac-
itance is less, because the drain region is surrounded with gate poly instead
of field.

Another reason to use fingering is to optimize the resistance of the gate
poly along the width of the transistor. Since the gate poly is driven from one
end and gate poly is resistive, there may be reason to have a guideline that
states the maximum width of a single finger. Fingering is the only way to
meet this guideline for large transistors.

Fingering multiple transistors that are connected in series is trickier.
Figure 3.29 shows an example of fingering a two-input NAND gate.

Fingering the PMOS devices is straightforward; however, fingering the
series NMOS devices is more difficult because the order of connectivity of
the devices must be maintained.

• Share power supply nodes to save area. Sharing nodes whenever possible is
a concept that is easy to understand. Power supply nodes are most easily

General Guidelines 53

Figure 3.27 Example cell template.

shared because they are very common and easy to connect. Very significant
area savings can be achieved.

The main reason that area is saved is that both sides of a row of con-
tacts are used and there is no need to space two active regions apart from
each other. Figure 3.30 illustrates this technique.

Note that power nodes can be shared between transistors of different
widths with a slight overhead of inserting a poly to active space at the end
of the smaller transistor.

54 LAYOUT DESIGN

Figure 3.28 Fingering of transistors.

General Guidelines 55

• Determine minimum number of contacts for source and drain connections.
One simple rule might be to fit as many as you can using the minimum
design rule between two contacts. This guideline is most reliable and maxi-
mizes the performance of the transistor. The downside of this approach is
that the routability over the transistor is limited.

If increased routability is required and accounted for in the circuit
design, fewer than the maximum number of contacts may be optimal for the
overall layout design. This approach must be considered carefully and
accounted for in the circuit design process.

Figure 3.29 Example of fingering a NAND gate.

In general, ASIC cell libraries use a minimum number of contacts
within the cells, but for some high-frequency designs or analog parts, the
transistors are fully contacted.

• Use 90-degree polygons or paths whenever possible. Most designs are done
this way. The reason is that with orthogonal shapes the computer has to store
a minimum amount of data and the layout process is much easier.

You should reserve 45-degree layout design for areas that have tight
area and performance constraints. The reason is that 45-degree layout is
more difficult to modify and maintain. The extra effort to use 45-degree
layout design techniques is not worthwhile for the average layout cell.

Examples where 45-degree layout design is worthwhile are for memory
cell and pitch limited layout, as well as datapath and large power supply

56 LAYOUT DESIGN

Figure 3.30 Transistor power sharing example.

lines. However, 45-degree contacts and vias cause many problems for many
CAD programs, so they are to be avoided.

• Plan for and standardize tub and substrate connection locations. Plan and
place connections of the N-well to the logical “1” power (VDD, VCC, VPP)
and the P+ substrate to ground or VSS.

The floorplan of the cell should include the general area where these
contacts are to be placed. There are two basic methodologies: to place them
between PMOS and NMOS transistors, or to place them on the outside of
the transistor region. Between the transistors is better for latch-up protection
(to be discussed later), but this complicates a cell layout.

• Avoid “soft connected” nodes. A “soft connected” node is one that has been
connected through a nonrouting layer (Figure 3.31). Nonrouting layers are
usually identified as such because they are highly resistive and result in poor
circuit performance.

Typically, active and N-well layers are not routing layers, but it is still
possible to inadvertently use these layers to make electrical connections. The
problem with this is that the DRC and LVS will pass, but the circuit perfor-
mance will be poor. Only a very detailed layout extraction and simulation will
find this type of “soft” error. Typically, this type of work is not practical, so a
correct-by-construction approach is taken to avoid this effect.

Figure 3.31 shows two examples of soft connections. The N-well ex-
ample shows how a transistor is electrically connected to VDD, but the signal
path flows through N-well as part of the connection. The second example
shows how the transistor performance may be compromised by a connection
to the drain that is not completed in metal. In this case the single contact does
not help in any way, and an equivalent layout would be one without it.

Special checks built into the layout verification process can help to
identify these problems; however, they are difficult to debug, and it is best
to simply avoid making the error in the first place.

General Guidelines 57

Figure 3.31 Example of soft connections.

58 LAYOUT DESIGN

3.8.4 Guidelines for the Layout of a Hierarchical Design

• Develop and use a floorplan plan. This cannot be emphasized enough, and
it should be done at all levels of layout design.

• Define the hierarchy of a design in the planning stage. There are no hard-
and-fast rules for defining the hierarchy of a design, but common sense
is hard to beat. Common guidelines for determining different levels of
hierarchy include the following:
Circuits that are to be instantiated many times need to be cells
Divide designs into functional or area-specific blocks
Divide designs into blocks that allow multiple designers in parallel to
work on them
If symmetrical layout is desired, use a single half cell and mirror it to
complete the design

The use of hierarchy is discussed in many areas throughout the book.
• Develop and obey standards for layout near the boundary of a cell. The

floorplan and the type of cell that is being implemented should define how
the cell should interface to its neighbors. The interface requirements of any
design should be known and understood in the planning stage.

Here are some techniques and guidelines to properly design the
interface for a cell:
Use template cells to define global characteristics—cell dimensions and
the placement of power supplies and wells are good candidates to define
the interface of the cell. Consistent use of templates ensures that all cells
conform to a standard and will integrate together smoothly.
Assume that a boundary interface is fixed—if any polygon is required to
cross the boundary of the cell, then the floorplan at a higher level in the
design needs to be consulted before it is allowed. This avoids overlapping
polygons with those that are unseen.
Half design rule approach—if the cell is to abut to itself or other cells with
similar boundary conditions, then a correct-by-construction approach
would be to ensure that all internal polygons are spaced away from the
boundary by a value that is half the specific design rule. In this way, when
the cell abuts to another cell, spacing rules will not be violated.
Verify the cell with its neighbors—this technique guarantees that the cell is
correct in all cases.

3.8.5 Quality Metrics

Once the essential requirements have been met and/or we become experienced in
doing layout, the following list outlines more subtle topics and metrics that will be
covered later in the book. We only mention them here to introduce the topics so
that we can anticipate and potentially plan ahead for these advanced requirements:

• Area
• Performance
• Porosity

• Manufacturability (i.e., is it all minimum design rules? If not, then it could
be considered more manufacturable)

• Maintainability (i.e., will the layout be easy to change or optimize if the
process changes?)

• Reliability over the long term (i.e., electromigration)
• Interface compatibility (i.e., does it abut and fit well in all instantiations?)
• Shrinkability (i.e., does the layout lend it self to future shrinks of the

process?)
• Reuseability (i.e., does the layout lend itself to migration or retargeting to

different processes?)
• Compatibility to layout flow (i.e., is the layout friendly for all downstream

tools and methodologies such as P&R?)

3.9 IMPLEMENTING THE DESIGN

Let us now put all of the knowledge we have learned so far to work. At this point
we have all of the fundamental knowledge to complete a basic layout design.

First, let’s review the key concepts presented so far (Table 3.1). If you have
mastered these fundamental concepts, you should be able to tackle almost any
layout task.

We have learned that before we start any layout design, we must make a plan.
Before we go ahead and execute this plan, it is always important to anticipate what
the next steps are and keep these in mind as we implement our design. In this way
we minimize or eliminate the amount of rework caused by our own ignorance.

Component placement (Step 2.1 from Figure 3.32) based on the floorplan is
another area where we will always achieve a good return on the effort invested
in doing a proper placement of components. The ability for the design to be com-
pletely routed is usually limited by the placement of components. These compo-
nents can be other transistors, tub contacts, power supply lines, or interface

Implementing the Design 59

TABLE 3.1 Concept Review

Chapter Concept Summary Comment

1 What is layout design? Also covers how layout design fits in the IC design flow

2 How do I read a schematic? A schematic has more information than meets the eye!

3.2 Layer definition An introduction to CMOS processes

3.3 CMOS transistor layout A basic introduction

3.4 Design rules These define the limits of what you are able to do

3.5 Layer connectivity This defines what can be connected to what

3.6 A procedure to follow General instructions

3.7 Developing a plan Potentially the most important step for success!

3.8 General guidelines Concepts to follow to do it right the first time

locations for signals, in addition to instantiated components. Any extra effort in
the placement stage will be rewarded in the long run by having an easily routable
design.

It is at this stage that signal lines or interfaces should be labeled and identified
to avoid connection errors. This would include power, signal, feed-through, and
other polygons.

Step 2.1 can be considered to be an initial placement to validate that the
floorplan is feasible. In Step 2.2 we start to consider finer details, where we have to
deal with special design requirements such as the critical path signals, substrate
contacts, layout symmetry, specific requirements for latch-up protection, or noise
immunity. Detailed placement will occur in this step as well as the routing of impor-
tant or difficult signals. Power supplies and clock signals fall into this category. In
addition, extra space for components and routing should be allocated in anticipa-
tion of new design requirements after the layout has been started or completed.

With a good floorplan and final placement of components, Step 2.3 becomes
very easy. Without the former, completing interconnect routing while respecting
special design requirements is usually difficult and time consuming. Remember
that the floorplan should have considered the routing layers, the direction of
routing, and the space for routing all signals, so by this time completing the
routing should be fairly straightforward.

Let’s now examine issues related to specific types of layout designs.

3.9.1 Cell Layout

The leaf or logic cell is in general a layout that is drawn from a transistor-based
schematic; therefore, the majority of components to be used in this type of design
would be polygons, transistors, contacts, and signal pins. “Polygon pushing” is
the layout design style used here, as we are implementing circuitry at the lowest
level of abstraction and we need detailed knowledge of the entire set of layers and
layout design rules. Formally, this is known as a “full custom” design style.

The key concepts to be addressed at this level of layout include the
following:

• Detailed knowledge of the entire set of layers and layout design rules.
• The size of the design, estimated from the number of transistors in the design

and the layout design rules.
• Attention to transistor-level placement and interconnect to implement

logic gates.
• Careful floorplanning and architecture definition to minimize area and max-

imize performance. These leaf cells are potentially used thousands of times,
so the extra effort in achieving area savings for each cell is justly rewarded
in the finished chip.

• Careful design of the power supply implementation. This also includes
consideration of substrate and tub contacts. If this is done well, the power
supply routing and bulk connection requirements of an entire block or chip
can be met by building these requirements into the design of the leaf cells.

• Attention to the design of the interface to other cells. As mentioned previ-
ously, these leaf cells may be used many, many times, and area savings can

60 LAYOUT DESIGN

Implementing the Design 61

be achieved by minimizing the overhead required to place two leaf cells adja-
cent to each other. Ideally, leaf cells should be designed to abut directly to
all possible cells that may be placed adjacent to them.

3.9.2 Block Layout

The difference between a cell and a block is open to interpretation, but in general
a cell is referred to as a block when it incorporates circuitry of medium complex-
ity and functionality and is mainly composed of instantiated cells. Blocks are
larger and more complex than cells and are implemented by designers with more
experience than those who can design cells. We consider this design style to be a
“semi-custom” design style, as it combines cell-based design with full custom
design. The layout flow described in Figure 3.32 still applies.

The important factors to keep in mind for block level design are as follows:

• The size of the design is estimated from the number of cells in the design
and the number of external and internally routed signals.

• It is most common in blocks to have a significant amount of space allocated
for spare components and signals as well as signals that may simply pass
through the block. These signals are referred to as feed-through signals.

• Some blocks will have functionally different components such as a mix of
digital and analog cells. In this case there may be special considerations for
the different circuit requirements such as latch-up and noise immunity.

In general, when the layout designer has all the above information, it is time
for placement of the previously made cells, transistors (if any), and interconnect
routing.

In general, blocks are defined based on the circuit functionality and the
layout style. Examples that are common might be row cells, standard cells, data-
path or register files, I/O (input/output) ring, analog blocks, and memory blocks.

3.9.3 Chip Layout

Implementation of the full chip layout is conceptually identical to that of a large
block in that the steps from layout planning through to auditing remain the same.

Full chip layout designs will incorporate blocks and cells of diverse types,
so detailed knowledge of all layout design styles is required to maximize the
chance of success.

Aspects that must be addressed at the chip level and generally nowhere else
include the following:

• Design partitioning of very large and diverse blocks. Defining the many
interfaces of a complex chip is a complicated task.

• Defining and planning the interface to the outside world. This involves
knowledge about pad and I/O circuitry and the intricacies associated
with them.

• Planning and implementing critical signals that are routed over the entire
chip. This would include global power supplies and clock signals.

Figure 3.32 Layout implementation procedure.

• Floorplanning techniques and maintenance are of paramount importance
here. At the full chip level the floorplan is critical as a communication tool
as well as a layout implementation tool.

• Estimating the chip size is a significant task in itself. Estimates from previ-
ous designs and previous experience should play a role in completing this
task. Compare the process parameters of the current project to previous ones.
This is one area in which expertise in floorplanning tools can really help.

• In the role of a layout leader responsible for a full chip layout, there is also the
requirement to define layout methodologies, task allocation, and scheduling for
the entire team. Also, an understanding of the suite of layout design and layout
verification tools is important in ensuring that the team performs efficiently.

Overall, it is the complexity of the task of the full chip layout that makes it
one of the most challenging and interesting roles in layout design.

3.10 VERIFICATION

Now that the implementation of the layout is complete, we move to the verification
step (Figure 3.33). This is not a small task, and it is a very important one. There are
many failure mechanisms in IC design, and fixing errors is very expensive. Unlike
fixing a car, where access to components for replacement and modification is rela-
tively quick and easy, fixing design errors can take months. We should take the
approach that we only have one chance to get our design right, because a revision
to a design is a very lengthy and costly process (somewhat like trying to fix a
satellite after it is in orbit—possible, these days, but extremely costly).

In spite of all of the planning and checklists, a robust verification plan is
required for best results. Each step in the plan checks different aspects of the design.

3.10.1 Design Rules Check (DRC)

The design rule verification step checks that all polygons and layers from the
layout database meet all of the manufacturing process rules. As described in
Section 3.4, these design rules define the limits of a manufacturable design. Width
and space rules fall into this category.

Meeting the manufacturing requirements is the absolute minimum rule set
that must be checked and corrected. Because this is the first level of verification
once the layout is implemented, typically many methodology, connectivity, and
guideline rules are checked as well. We refer to these as a set of supplementary
rules. An example would be an illegal use of layers (ESD layer in the logic area)
or illegal devices or connections.

Tip: A truly complete DRC verification approach would be to verify not only
the design that you, as a designer, have implemented, but also your design placed
within the context in which it is going to be used.

If the specific components that will interface or be adjacent to your design
are available, perform a DRC check with this interface cell included. If your cell
is a general-purpose design, then a more intricate and exhaustive check should
be performed, perhaps including all possible interface cells as well as different

Verification 63

Figure 3.33 Layout verification procedure.

orientations and combinations that may occur. These approaches really eliminate
the possibility of errors as your design is integrated into the overall chip.

3.10.2 Layout versus Schematic (LVS)

LVS verification is checking that the design is connected correctly. The schematic
is the reference circuit and the layout is checked against it. In principle, the fol-
lowing is verified:

• Electrical connectivity of all signals, including input, output, and power
signals to their corresponding devices

• Device sizes: transistor width and length, resistor sizes, capacitor sizes
• Identification of extra components and signals that have not been included

in the schematic; floating nodes would be an example of this

The last item overlaps into the items checked in the electrical rules check,
which is described next.

3.10.3 Electrical Rules Check (ERC)

As noted in Figure 3.33 the ERC is sometimes an optional or seldom used as an
independent verification step. Many of the issues are caught by the LVS check,
and thus the ERC has become redundant.

Electrical rules checked in this step are usually limited to errors in connec-
tivity or device connection. Examples include the following:

• Unconnected, partly connected, or extra devices
• Disabled transistors
• Floating nodes
• Short circuits
• Special checks not checked elsewhere (i.e., antenna rules)

As a subset of the LVS check, an ERC generally executes more quickly
and therefore is useful to accelerate debugging problems such as a VDD-to-VSS
short circuit.

3.11 FINAL STEPS

Despite tremendous advances over the past 10 years in tools for IC design, and
despite the best intentions of the top designers, there is always room for improve-
ment and opportunity for something to be overlooked. The complexity and
variety of process design rules over time also creates new challenges to old prob-
lems. For these reasons, a final sanity and cross-check in the form of an audit is
time well spent (Figure 3.34).

Compared to many, many years ago, audit checklists today may be smaller,
but the burden has simply shifted to the personnel responsible for the setup and
maintenance of the layout CAD tools and layout flow. CAD verification tools

Final Steps 65

check many issues, but it still takes a knowledgeable person to ensure that the
tools are doing their job.

The secret of proper audit results is to have an auditor who understands the
concepts behind the issues and the extent of any problem, and who can also
propose solutions. It is a good idea to have a third-party auditor: a person who
has not been directly involved in the project or design being audited. This
eliminates any predisposed bias or assumptions.

The procedure is straightforward. The auditor should review the require-
ments and documentation for the design and, using checklists specific to the type
and complexity of the design involved, verify the final design against these
requirements. The checklist generated in the floorplanning step is a prime example
of documentation for the design.

Issues that are raised are documented. At this point it is a good idea to involve
the circuit designer in the audit process as well as the person responsible for inte-
grating the design into the next higher level. This way a solution to any problem
identified can be dealt with efficiently and with all the relevant information at hand.

All issues are signed off by the auditor who identified the problems, once
the solutions have been implemented.

The very last step in the process is to generate an extracted layout.
Extraction is a hand-off step back to the circuit designer. A version of the

final layout design compatible for simulation is given back to the circuit designer
for final resimulation. Tweaks to the design may occur after simulation.

Extraction is the process of automatically generating from the layout a netlist
compatible for simulation that includes information that corresponds with all the
device connectivity, device sizes, and routing capacitance and resistance.

66 LAYOUT DESIGN

Figure 3.34 Final steps.

Final Steps 67

The extracted netlist is a good communication mechanism between the
layout and circuit designer. It also indicates that the layout design is complete
pending the final simulation result.

3.11.1 Verifications

In terms of verifications of the final files, here are some considerations.
Because the mask shop requires GDSII file type, the final verification will be

done on the same file that goes to manufacturing. If the layers shipped to the mask
shop are different from the ones used for design, the final verification has to be
done on the GDSII required by the mask. The database has to be translated from
the design layers that were used and verified online into the mask shop layers
and verified as the final “golden” verification. However, there are a few structures
that we add for the processing needs that won’t pass DRC or LVS verifications
without errors. These structure-generated errors must be checked very carefully,
and not ignored, because they can touch real sensible logic circuitry, and then we
have a problem.

Most important factor is that the final verification be done using “frozen”
GDSII generated from a “frozen” database, which means that nobody can touch
the original online data. This way you can ensure unique data.

3.11.2 Audits

At this level audits have to be performed by an experienced person who has
already passed through one or more tape-outs. As a baseline check, the layout
designer can use the checklist provided earlier, adding any company- and process-
related questions. The other important issue is to audit the newly placed keys that
may not conform to the DRC command file. (Refer to the checklist.)

A very important task, that is sometimes forgotten, is to re-audit the design
if the command files for DRC and LVS include verifications for layers that are not
designed in layout but generated using CAD software before mask making. One
example is the N+ layer that surrounds the N transistors placed on the P+ sub-
strate. In general, it is not drawn by layout designers and is generated only before
mask manufacturing. In our experience, we have found that layers like this can
generate problems if they are not checked before mask preparation.

3.11.3 Tape-out Procedures

When people talk about tape out procedures they are referring to the steps
detailed above plus specific documentation sign offs and release procedures. For
each chip released to the mask shop, there are internal company procedures that
have to be followed. For example, the division management, together with the
project leaders and the circuit and layout designers, should review all audit
reports, additional company standard sign off procedures, and sign and release
the tape and the accompanying documents and data.

It is a good practice to take care that all the macros, documents, verification
results, audit reports, and command files related to the chip that has been taped
out are filed for easy access in future releases. If there are any problems with the
released project, it will be easy to access all the related setups and documents.

In Chapter 1 we defined what layout design is and explained where layout design
fits in the overall process of IC design. The term “flow” was used many times
throughout the text.

In this chapter, we will try to define what a flow is, why there are many dif-
ferent flows, how all these flows were developed, and what are the most common
types of flows today. Examples of the most popular design flows today will be
explored. We will close this chapter by summarizing the three basic design flows
and the specific types of tools used to address their needs.

4.1 WHAT IS A FLOW?

We define a flow as follows:

An effective methodology of capturing and verifying a useable representation of an
idea such that the final result exhibits the appropriate characteristics for its
intended use.

A methodology is “how” to do something. A methodology defines a series of
steps to follow, but also includes knowledge about what issues to be aware of,
tricks of the trade, and other goodies as we pass through these steps.

An effective methodology is one that is appropriate for the task at hand. This
is important to the validity of any design flow. The flow that is used must match
the requirements of the style of design that is being attempted; otherwise, failure
is certain.

When is a flow effective?
The absolute minimum requirement for any design flow is to be able to

capture a useable representation of an idea. A useable representation of the idea is the
key concept to be understood. An idea can be captured on paper, but it is not
useful other than for communicating the idea. The data must be useful and be a

68

CHAPTER FOUR

Layout Design Flows

functional representation of the idea. A computer database of schematics, block
diagrams, netlists, and layout drawings is the useable representation of the idea
that all IC design is based on.

Without this minimum level of functionality we do not really have a flow at
all, so this does not really answer the question of the effectiveness of a flow. If we
must choose between two flows that can capture and implement our idea, how
do we determine the effectiveness of each?

The more effective flow is the one that can produce a design that exhibits the
appropriate characteristics for its intended use in the shortest amount of time or for
the least cost.

Characteristics include issues you would expect in a formal specification of
the design (Table 4.1).

It is no wonder that designer expertise is still in high demand, as it should
be apparent that CAD tools cannot address all of the issues listed in Table 4.1. In
fact, there has been a proliferation of tools as new vendors and new tools try to
specialize and solve some of these issues individually that were previously not
addressed in existing flows.

Appropriate characteristics for its intended use implies that our design need
only “meet the requirements” for each characteristic, and not necessarily exhibit
the “smallest or fastest” characteristic that is humanly possible. If a flow produces
a sports car, but a hatchback was required, then the flow is not effective even
though all performance specifications were exceeded.

How is the design’s appropriateness measured as the flow is executed? The
characteristics are constantly verified and measured at each step in the flow.

In a competitive marketplace it is ultimately business issues such as revenue
and market share that determine the success or failure of the product. This is
where an effective flow can amplify differences between companies. Some com-
panies will produce an equivalent design more quickly than others (thus gaining
market share before anyone else), others will produce a design that exhibits supe-
rior characteristics (such as speed), and still others will produce a design for a
lower cost (thus being more efficient).

In summary, a flow is an encapsulation of knowledge of how things should
be done. A flow defines a sequence of steps and a set of design tools for a specific
type of design style. Successful companies are able to evolve and optimize their
design flows in step with the business requirements for delivering their products.
In the area of layout design, this book will explain the fundamental principles that
form the foundation for any design flow.

Historically, all the designs were done in a full-custom fashion, meaning that
each piece of the project was hand designed, verified, and laid out. As soon as the
first computers started to provide proper platforms and specialized software for

What Is a Flow? 69

TABLE 4.1 List of Design Characteristics

Behavior Timing Power Area Interface

Process Maintainability Reliability Porosity Flow compatibility

Complexity Noise immunity Yield Electromigration Latch-up immunity

IC design, developers of new products started to adapt their design flow to the
new tools. In the past, methodologies and flows were dependent on the type of
the design (i.e., full-custom, ASIC, memories), but more and more, they have
become a mix and match of different flows.

We will try to define the most important changes over time of the standard
flows and our perception of the reasons flows had to evolve:

• Time to market pressures: An integrated flow, even a full-custom one, is far
more efficient than no flow at all. A flow is an approach that promotes
faster design and proper allocation of tool resources, and most importantly,
it shortens the time to tape-out. For example, a chip of 10,000 gates
was designed in 6 months as compared to an earlier chip which took 2 years
to design.

• Increasing chip complexity: A full-custom flow and tools cannot enable a team
of designers to produce a design of 100,000+ transistors fast enough, even
with development of faster tools and computer hardware. Chip designers
had to develop not only new chips, but also new methodologies to cope with
the increased complexity of the designs.

The solution was to implement the designs at a higher level of abstrac-
tion and trust the design tools to work with more abstract models and reduce
the time spent for the design of each transistor. HDL-based design method-
ologies matured at this point and enabled logic circuitry to be designed at
the RTL level instead of the transistor level.

• Growth of design services and fabless semiconductor companies: The next market
reality was that many experienced designers decided to leave their big com-
panies and go out on their own. Startup companies in general were trying
to address markets that were too small or were not understood by the big
companies.

As fabless companies, these startups designed chips and had their
ideas manufactured by semiconductor companies under a business model
now known as an ASIC model. These new companies demanded and bought
new tools and methodologies to support their business.

• Increasing chip size and shrinking device geometries: Everybody tried to improve
profits and to fit more and more transistors on a chip, so the process
technology has been constantly evolving. The transistor gate size moved
from 5 to 0.5mm in less than 10 years and from 0.5 to 0.18mm in the
following 5 years. Using such small dimensions for their devices, chips can
support up to 10,000,000 transistors for a microprocessor and 256,000,000 for
a DRAM.

The small transistors, capacitors, and resistors mean that many analog
and physical effects influence the performance of the designs. Logic design-
ers now have to contend with effects that previously only analog or
RF/microwave designers had to deal with. An emphasis on signal integrity
and accurate layout extraction tools is a major concern within design
flows today.

• System on a chip designs: The large chip sizes have enabled the ability to inte-
grate many different applications on a chip for more efficient system design.

70 LAYOUT DESIGN FLOWS

This is referred to as the concept of system on a chip (SOC). No single tool or
platform can be used to design a chip with such complexity in a short time
without having huge design groups that are specialized in all the various
applications.

Instead of designing the many applications internally, a new market of
selling and buying different functional blocks has evolved. These blocks are
referred to as intellectual property (IP) blocks, and this business approach
promotes design reuse and is intended to increase the productivity of the
design teams.

In this case, a design team will develop specifications for a full chip,
but will design only the blocks that are in their area of expertise. For all the
other blocks they will import, at different levels, blocks already designed and
proven functionally by other teams or companies.

These are a few examples of the important revolutions that changed the way
people design VLSI chips. Design teams have been required to adapt to market
and schedule pressures, knowledge limitations, and changing process capabilities;
new flows and methodologies are key to ongoing success.

What determines the flow that is used, or how is a flow defined? The answer
is that it is the type of chip that is to be designed and the different blocks on the
chip. The flow may be different for different blocks on the chip, especially for SOC
designs. Microprocessors require one design flow for timely completion, while
memories required another. Common products that are recognizable to most and
their respective flows will be discussed in the following sections.

4.2 MICROPROCESSOR DESIGN FLOW

The most famous microprocessors are the Intel Pentium series, Digital’s Alpha,
and the workstations’ RISC chips. Otherwise, small microprocessors are widely
used as control devices for household appliances, business machines, cars,
toys, etc.

An MPU, or microprocessor unit, is an extremely complicated integrated
circuit that accepts coded instructions, executes the instructions received, and
delivers the requested result.

Microprocessors are the most complicated chips, so in general every step is
very well defined and checked at high levels of abstraction. Only after the con-
cepts are proved are they entered in a normal full-custom design flow. The fol-
lowing is a very simplified example of a development flow for a microprocessor
(Figure 4.1).

1. Chip functional specification: The first step is to define from marketing infor-
mation the kind of functionality that is required for the chip. Based on the
blocks and possible applications, the project leader decides to pursue a
known standard architecture or develop a new one.

The chip must comply with standards for bus interfaces, timing speci-
fications, and manufacturing packages; therefore, the project leader has to
decide the order of importance and priorities for each of them. Generally,

Microprocessor Design Flow 71

not every possible requirement can be met, because it would take too much
time to address them all. After all, a chip that is perfect but does not come
out in time for the market does not bring revenue to the company.

2. Chip architecture: The architecture of a chip is essentially the way the chip is
broken down into functional blocks and how the blocks are connected
together. In defining the architecture it is the choice and definition of differ-
ent blocks that is optimized to meet the desired performance goals.

In a layout sense, the architecture denotes where and how big each
block has to be, where it makes sense to place the blocks, what the logical
relationship is between them, and what the important signals are, among
many others. At this level the chip looks like a chip with numerous empty
blocks inside surrounded by a frame of pads.

3. Digital simulations: Digital or functional simulations are performed as part
of validating a behavioral model of the intended design. The simulation
verifies that the chip architecture is feasible and will perform the desired
operation.

4. Schematic design: At this point the different blocks are refined as schematics
that represent the design to the transistor level. At this level the designer has

72 LAYOUT DESIGN FLOWS

Figure 4.1 Full-custom flow for a microprocessor.

to deal with real-world phenomena, such as dissipated heat, power con-
sumption, resistance, and capacitance of devices and lines. Functionality and
size of the design are also verified.

5. Layout: Layout is the design step when a simulated schematic is delivered
to the layout designers to generate the polygon-based representation of the
circuit.

6. Tape-out to manufacturing: Once the layout of a full chip is finished and
checked against process requirements and against the final schematic, it is
the time to prepare the data for manufacturing.

4.3 ASSPs

An application-specific standard product (ASSP) is a standard product that has
been designed to implement a specific function, as opposed to a general-purpose
product such as a DRAM. In general, at first big companies had a monopoly over
VLSI design, and most of them developed products that would sell in large quan-
tities. These are standard products, not ASSPs.

Startup companies looking to leverage a certain area of expertise or define
niche applications typically produce ASSPs. Today we have chips in almost every
part of our lives: answering machines, car diagnostic computers, Global Posi-
tioning Systems (GPS), cellular phones, coffeemakers, and power supplies for
various appliances. Each of these applications requires specific chips, and to be
profitable in a competitive environment, the startup companies had to develop
new methodologies that required new tools.

Designers of different ASSPs use slightly different design flows, because the
ASSPs can be classified into different types as outlined in the following sections.

4.3.1 DSPs

Digital signal processing, or DSP, is carried out by digital circuits designed to
address a broad class of problems in signal reception and analysis that have tra-
ditionally been solved using analog components. DSP is rapidly replacing analog
signal processing functions where requirements for stability over time and tem-
perature variations are critical. DSP is used to enhance, analyze, filter, modulate,
or otherwise manipulate standard real-world functions, such as images, sounds,
radar pulses, and other signals, by analyzing and transforming waveforms (e.g.,
transmitting data over phone lines via a modem).

Based on the complexity of the design or the cost of development, DSP
designs can be implemented in an ASIC flow or in a flow that is similar to the
microprocessor flow, in that it is primarily a full-custom flow.

4.3.2 ASICs

Application-specific integrated circuits (ASICs) are semiconductor circuits speci-
fically designed to suit a customer’s particular requirement, as opposed to
DRAMs or microcontrollers, which are general-purpose parts.

ASSPs 73

The challenge of an ASIC flow is that typically the design is new and
specialized, and there is no previous history on which to base architectural
decisions. In this case there is significant emphasis on defining and verifying the
architecture of the design.

Another characteristic of ASICs is that the designs are heavily biased toward
logic structures. The design entry of this type of circuitry is tedious in a full-
custom environment and not practical for designs exceeding 5,000 transistors.
HDL methodologies therefore are standard for these designs where transistors are
completely hidden from the designer.

In terms of layout, the picture is very similar. The layout designer is no
longer involved in transistor-level design and architecture, but in block-level
using advanced place-and-route tools. He may not actually see the full layout
view of the library because for place-and-route purposes the obstruction shades
are enough to generate complex blocks or chips. We will develop the library
concept further in the next chapter.

Now, let’s see how an ASIC flow works and what the various stages are to
complete a design (Figure 4.2).

1. Architectural/behavioral design: See the definition of chip architecture in
Section 4.2.

2. RTL design: Designers are developing and reviewing system-level and func-
tional Register Transfer Level HDL code and implementing the desired func-
tionality. Verilog and VHDL are the standard languages used for this
function.

3. Logic design: Digital or functional simulations are performed as part of vali-
dating a behavioral model of the intended design. The simulation verifies
that the chip architecture is feasible and will perform the desired operation.

4. Logic/timing optimization: This step is the most famous one and has revolu-
tionized IC design from the days of full-custom schematic-based designs.
The HDL code implemented in previous steps is useless without the ability
to synthesize the code.

In this stage, synthesis tools require two inputs: the design functional-
ity in terms of RTL code, and a standard cell library with synthesis views
and timing information. For each function coded within the HDL, the syn-
thesis tool will chose the most appropriate library cell or combination of
library cells to perform the job. The end result of synthesis is a netlist that
contains standard cells and their connectivity.

5. Place-and-route: Place-and-route tools (P&R) are automated tools that require
the following:
• Standard cell library physical information, i.e., cell sizes, points of con-

nectivity, timing, routing obstructions
• A synthesized netlist that details the instances and connectivity relation-

ships including constraints and critical paths in the design
• All the process requirements for connectivity layers, including design

rules of the routing layers, resistance and capacitance, power consump-
tion, and electromigration rules for each layer

Using this information, the layout is implemented automatically and
optimized for minimum area and ideal timing.

74 LAYOUT DESIGN FLOWS

6. Timing extraction: This is a step to extract and calculate the timing of inter-
connect signals after the cells are placed and routed. Delay information is
produced that is fed back to the circuit simulator for reverification of the
design after layout. The result of extraction is a file in a format such as Stan-
dard Delay Format (SDF). This file will be used to go back and annotate the
netlist with the real values from the physical design.

7. Signal analysis: Using this new netlist, the designer can now resimulate the
design and find if the functionality and the timing specifications are met.
In general, there are many cycles of P&R, extraction, resimulation, and
synthesis until the specifications are met.

ASSPs 75

Figure 4.2 Detailed ASIC flow.

8. Tape-out to manufacturing: When the circuit specifications and layout design
rules are met, the layout data goes to manufacturing.

This is the basic ASIC flow that has evolved over the past 15 years. As the
complexity of designs grew, the tools and methodologies improved. Improve-
ments to the basic layout flow include the following:

• Increasing tool capacity: One competition in the P&R marketplace was about
who can place and route more gates in one run. When the size of the chips
grew to more than 250,000 placed objects, it became inefficient to do the job
flat, so the market moved to hierarchical design.

• Introduction of floorplanning tools to the ASIC flow: Hierarchical layout is
accomplished using floor planning tools that were previously used by
the full-custom chip designers to coordinate hierarchical requirements
between blocks.

In order to select the cells used by the synthesis tools, we must make many
assumptions related to the interconnect delays. The initial methodology was to
use statistical models of interconnect loading before a place-and-route job.

When the timing delay was 100 ns, it was possible to make an error of ±10
ns because of the variation in the placement and routing tools and the expertise
of the designer. When the processes got to 0.25mm and the timing of critical signals
dipped below 10ns, nobody could afford a 10-ns mistake. Therefore, the solution
was to bring some physical information into the ASIC flow sooner.

How can we bring layout data into the floorplan before the chip has real cells
and real interconnect data? By running a global placement algorithm and a global
router, we can extract from layout for top-level routing loading information for
these signals. The data is not 100 percent accurate, but it is much closer to reality
than the assumptions made before.

Without floorplanning and global routing it took five to ten iterations to get
to a final layout. Using floor planning and physical information earlier reduces
the process to two or three iterations per design. It is not a single-pass flow, but
it is converging more quickly to the desired result.

As will be discussed in detail in Chapter 10, there are many links between
tools. Especially in the case of P&R, it is recommended that the links between the
floorplanner, placer, and router be very close. Tight integration of all of these tools
is essential.

4.3.3 ASM

Application-specific memory (ASM) is a chip based on the ASIC flow, but con-
taining a large memory block. Almost every chip today contains memory parts.
They can be static RAM, dynamic RAM, ROM, etc., but in general they are no
more than 512 kbits in size. An ASM is a chip that requires a lot of memory, from
1Mbit up to 64 Mbits. Examples are video RAM (VRAM), synchronous graphic
RAM (SGRAM), and in some cases more complicated designs.

The design of a memory block as described fully in the next section is done
in a full-custom style. If memory expertise is part of the overall design process,

76 LAYOUT DESIGN FLOWS

then the chip could be implemented in a full-custom flow as well, or an embed-
ded memory block (IP) could be the answer. Large ASMs would really be classified
as a system-on-a-chip flow as described in Section 4.5.

4.4 MEMORIES

A very wide variety of memories are on the market today. Memories are a com-
modity part, as they are produced in high volumes for general-purpose con-
sumption. A memory is conceptually simple: its job is to store data for retrieval at
any time.

Examples of memory ICs are ROMs, dynamic and static RAMs, EPROMs
and EEPROMs, SDRAMs, FRAMs, and SLDRAMs. The full list is quite long. Here
is a short glossary of the different types:

• ROM (read-only memory): The contents of memory are fixed and can only
be read.

• SRAM (static random access memory): Operates very quickly and remembers
the data as long as power is supplied to the chip.

• DRAM (dynamic random access memory): Similar to an SRAM, but denser and
needs to be refreshed periodically or else the data is lost. The data is
dynamic.

• PROM (programmable read only memory): Generally programmed once and
used as a write-once, read-many-times device. Can be electrically pro-
grammed and/or erased as well.

• HDRAMTM (high-density random access memory): An embedded memory
macrocell implemented in an ASIC process technology. The advantage of this
is that a special manufacturing process is not needed. MOSAID Technolo-
gies Inc. has patented many of the techniques used for HDRAM.

In terms of design flow, memories are all very area intensive. Key metrics to
memory effectiveness are the density and efficiency of the memory.

The relationship with the process specialists is very tight because memory
processes are in general one generation ahead of others. They have to be ahead in
terms of minimum manufacturing gate size, i.e., 0.25, 0.18, or 0.11mm, because the
memory chip depends heavily on process characteristics. If in a microprocessor
we can get today 10 million transistors, in a DRAM memory the number has easily
passed 256 Mbit for production.

Memories are implemented using full-custom techniques, and this fact
shows the emphasis on area as the key issue. Every micron counts in memory
design! Consider that current DRAM memories contain 256 Mbits per chip. Any
reduction in the area of the memory cell reduces the chip’s area by the same
amount—multiplied by a factor of 256,000,000!

An obvious feature of a memory is that it is a very repeated structure with
many cells that are pitch-limited in one direction. Therefore, in terms of design
flow, the memories have a very interesting bottom-up and top-down design
methodology. The chip and memory architectures are defined first, and then all

Memories 77

layout starts from the memory cell and builds outward. The chip size is deter-
mined primarily by the memory cell size and the associated layout around the
memory cell, so careful full-custom layout techniques are used.

4.5 SYSTEM ON A CHIP, OR SOC

The hottest design flow today (1999) is system on a chip, or SOC. This is the case
when there is a need for a very big and complicated chip and there is no time to
design everything from scratch.

The magic words in these types of chips are design reuse and intellectual
property (IP) blocks. In design reuse, the individual blocks are design from the
start with reuse in mind. The disadvantage to this methodology is that time to
have a block designed for reuse is longer than a normal flow. The reasons are
obvious:

• The specifications must cover common problems, not just specific ones for
the current project

• More general-purpose simulations must be done
• If the blocks are implemented in a specific process, then the architecture will

not be custom designed for it
• Additional consideration must be given to process variations

There are, however, big advantages when reusing the block as a core for
future designs:

• Preservation of the IP—some experts may be busy on the next design (or
have left the company)

• Time to design the second or third one is lower by up to 50 to 70 percent,
depending on the kind of the imported block (hard, soft, etc.)

• The block or concept was verified in silicon, a fact that gives the next design
team confidence that the block works

In terms of the entire design flow a SOC design will be a mix and match of
different flows based on the type of each particular block. There might be control
blocks done in an ASIC style and analog blocks or memories that require full-
custom techniques. The integration of all of these block types is the real challenge
of SOC design.

Let’s see now how we can determine a flow that meets the requirements of
SOC designs. The flow will depend on many factors and should be determined
after many issues are understood. Here are some things to consider:

• Technology selection: What kind of process will be used? In the case of embed-
ded memory, perhaps a blend process will do it.

• Type of board on which the chip will be assembled: From this it may be possible
to determine the packaging type, footprint, die size, price, pin positions and
assignment, and power consumption limitations.

78 LAYOUT DESIGN FLOWS

• Availability of core/blocks internally or on the external market sold by vendors: Are
they soft or hard cores?

• Libraries available for the chosen process: Are they silicon proven? What power
consumption, speed, and tools are they compatible with?

• Levels of testability to be addressed in the design: This is another hot topic of the
year—design for testability (DFT).

• Limitations of the manufacturing process: Time frame, special layers, reticle lim-
itations, packaging limitations, etc.

• Reliability of the chosen process: Is it experimental, first-time trial, proven over
a few working chips?

In terms of layout, the biggest job in these designs is to prepare a hierarchical
design that has clear definitions of all the interfaces between blocks, whether inter-
nal or imported—floorplanning. Importing IP blocks can be tricky if the provider
did not take into consideration any available standards such as those set by the
Virtual Socket Initiative Alliance (VSIA), or if the process is not the same.

Blocks may be “soft” in that they are not process specific and need to be care-
fully implemented in the target process. In the case of “hard” blocks, the layout
must be instantiated or migrated at the block level, extracted, and back annotated
into the simulation to check timing and functionality in the new process.

No matter how up-to-date the flows presented here may be, by the time this
book is on the market, design engineers, process specialists, and software devel-
opers will have found new problems. Remember that we, the user community,
have interesting jobs in which we must use creative thinking to solve day-to-day
design problems.

4.6 CAD TOOLS AS PART OF A FLOW

Each step in a flow is usually based around a specific CAD tool to perform the
required operation. The choice or understanding of a tool within any flow depends
on many factors, and it is these factors that we will discuss in this section.

The first concept to understand is that fundamentally all CAD tools fall into
one of these two categories:

• Design entry: Methodology to implement the idea into a useable form with
all the desired characteristics

• Design validation: Methodology to analyze and verify that the design has
been entered correctly (i.e., it functions appropriately, performs as required,
and is manufacturable)

Different tools address these two requirements in different ways or may
address different issues. It is these different approaches that have spawned an
entire industry in which each vendor tries to find the magic formula to develop
the most effective design flow.

Over time, the number of tools to choose and understand has dramatically
increased because there has been a tremendous growth in the variety of the
following:

Cad Tools as Part of a Flow 79

1. Design types: For example, the flow for a microprocessor design differs
greatly from that for an analog component; therefore, a different set of tools
is used. In this example there are design size and complexity differences to
manage as well, which necessitates a different flow between them.

2. Capture techniques: Certain tools operate at different levels of abstraction in
order to enable designers to capture their design ideas more efficiently. The
difference between floor planners and polygon editors demonstrates this
concept. They are both layout entry tools, but they capture design ideas at
the block level (floor planners) or the transistor level (polygon editors).

There are different capture techniques in the circuit entry domain as
well. Schematic capture is one type; use of an HDL (high-level description
language, usually VHDL or Verilog) is another. Schematic design captures a
design at the transistor level; use of an HDL captures a design at the RTL
(register transfer level).

The difference between these two types of circuit entry has great impact
on the layout design, as there are significant differences in the database
format, size, and complexity of the resulting circuit design. An RTL-based
design may result in anywhere up to millions of instances to layout. The
flow for this design will be quite different from schematic-based flow, which
produces much smaller designs.

3. Design size and complexity: One category of tools is one that automates tasks
that would be logistically impossible for a designer to complete by manual
techniques. Place-and-route tools that can implement millions of instances
are examples of automation tools in this category.

4. Degrees of specialization: Each tool focuses on solving or addressing a small
number of the required characteristics for a layout design. For example,
the steps of routing signal lines within blocks and doing the same between
blocks are often separate and use different tools, as they each have different
requirements or constraints that cannot be covered by one tool.

It is likely that there are separate tools available for each of the char-
acteristics listed in Table 4.1, thus leading to a complicated flow for sophis-
ticated designers who need to address all of these issues.

5. Interface points: There has been a significant trend toward having feedfor-
ward and feedback loops in the design flow. This has increased the number
of interface points for each step in the flow. For example, floorplanners give
interface information to other layout tools as well as to circuit verification
tools. Layout editors must also be able to feed their results back to the floor-
planning tool as well.

Circuit design information should be flowing from the circuit design-
ers forward to layout (as constraints or goals), and the results of layout at
each step should be fed back to the circuit designers for verification. If this
information is transferred more often and to greater levels of accuracy, then
the overall design process will produce a much better result.

6. Accuracy requirements: Design tools have had to increase their abilities and
accuracy to be able to implement new process technologies. Extraction tools
have increased in accuracy, with examples such as 3D field solving tech-
niques for near-body capacitance calculations.

80 LAYOUT DESIGN FLOWS

7. Acceleration techniques: Often an existing step in the flow can be accelerated
using a new tool that approaches the problem in a novel way. The func-
tionality of the step is unchanged, but the algorithm in the tool accelerates
the process. An example is the emergence of hierarchical layout verification
that is many orders of magnitude faster than the previous flat hierarchy
approach and provides identical functionality.

8. Database formats: Some companies develop proprietary database formats for
their tools. These companies also develop tools of equivalent functionality
to those already available in order to provide designers the complete capa-
bilities they need using the proprietary database formats. Alternatively, they
develop translators that interface other database formats to theirs.

There are also issues with database compatibility for the case when cir-
cuitry to be implemented has come from a previous design or from a third-
party supplier. In some cases, leveraging the experience of others through
reuse or block-based design may affect the choice of tools in the flow. Typi-
cally, tools and/or steps in the flow are added to verify and translate the cir-
cuitry so that it is compatible with the current set of tools in the flow.

Using specific examples, the remainder of this chapter concentrates on the
impact to the flow of the different design types that are common today. The type
of design usually defines the tool set, mainly because the design size and com-
plexity dictates the tool set that will accomplish the design in a reasonable amount
of time. These examples will demonstrate the concepts we have presented in order
to help you understand the appropriate set of tools for a specific design type.

4.6.1 Analog IC Design Flow

The greatest number of ICs shipped today fall into this category of products. The
functions of analog ICs range from single transistor devices to complex functions
that are characterized by very precise operating characteristics. Operational
amplifiers, converters, and phase-lock loops are only a very small sample of these
device types.

These devices are designed to exhibit extremely accurate analog character-
istics. Output voltage levels and power consumption are very carefully controlled.
Extremely detailed control of the manufacturing process is required because
the circuitry on the chip is very sensitive to small variations of the transistor
characteristics. Yield and reliability issues are examined more thoroughly
than other device types because a large number of devices are produced. Table 4.2
summarizes key characteristics that are of most concern in the design of
analog ICs.

Cad Tools as Part of a Flow 81

TABLE 4.2 Critical Characteristics of Analog ICs

Behavior Timing Power Area Interface

Process Maintainability Reliability Porosity Flow compatibility

Complexity Noise immunity Yield Electromigration Latch-up immunity

Typically, understanding and capturing the fundamental behavior of the
circuitry is straightforward. A small proportion of the circuit designer’s time is
spent to verify that the behavior of the design has been captured correctly.
Compared to other design types, the number of transistors within the design is
very small.

What type of flow is used to design this type of IC?
The answer is that it is probably one of the oldest design flows that exists

unchanged today. At one time all IC design was done using the fundamental flow
presented here.

This type of flow is generally known as a “full-custom” design flow (Figure
4.3), a term that comes from the freedom to completely customize all aspects of

82 LAYOUT DESIGN FLOWS

Figure 4.3 Full-custom (or analog) design flow.

the design. Transistor sizes and the layout implementation are both carefully
designed to ensure that the final design will perform as intended.

The flow shown in Figure 4.3 is straightforward. From the specification, the
circuit is entered and validated. Once complete, the layout is implemented,
verified, and, as a final step, extracted and resimulated to ensure that the physi-
cal implementation operates as designed.

The circuit entry step is known as schematic capture, where transistors and
customizable logic gates are entered as the implementation of the design. Com-
ponents are manually selected, placed, and connected. The graphical look of the
schematic is purely aesthetic from a flow point of view, but an understandable
schematic is crucial for the design team to develop, communicate, and debug the
circuit implementation of the design.

The layout is captured as polygons or paths. A polygon editor is used to
capture and draw each individual transistor. Very detailed knowledge of the man-
ufacturing process and the relationship between layers is required at this level of
layout. It is also very important that the impact of different layout implementa-
tions on circuit performance be fully understood.

The schematic capture and polygon editing tools form the foundation of the
full-custom design flow. These tools are primarily used in the role of capturing a
useable representation of the idea as stated in our definition of a flow.

Automating this type of flow is difficult because the main issues that the
design team needs to address are not easily solved using existing CAD tools.
Issues such as noise immunity, reliability, and yield are left to the design team to
evaluate once the layout is complete. The circuit validation process typically
includes a large amount of visual inspection of waveform databases from detailed
simulation models.

As such, the bulk of the analysis to determine whether or not the design
exhibits the appropriate characteristics for its intended use is a labor-intensive affair
requiring expertise in transistor operation and the physical characteristics of the
manufacturing process.

In summary, analog circuit design demands the accuracy and control in
implementation that a full-custom design flow provides. This is because of the
design’s requirement for very precise and stringent analog performance charac-
teristics. Schematic capture and polygon editing are the fundamental tools of
this flow.

4.6.2 ASIC Design Flow

In the IC design industry, it is common to hear people say “The heart of our system
is a complex ASIC” or “Our design was implemented in an ASIC style.” Compa-
nies advertise for people with “ASIC design skills.” This really means the
company is looking for people who are familiar with the ASIC design flow. It is
the industry’s definition of an ASIC design flow that will be described here.

In a strict sense, ASIC (application-specific integrated circuit) is a generic
term that describes components that have been designed for a specific application
and not as a multipurpose device.

For example, a telecommunications system could be designed using stan-
dard components such as counters, logic gates, and flip-flops. On the other hand,

Cad Tools as Part of a Flow 83

if an ASIC component was used, the counters and logic gates would be integrated
on one IC and the function of the IC would only be useful in the system for which
it was intended. In some cases these ASICs could be sold as a standard product
to be used in multiple systems. This last example is normally referred to as an
ASSP (application-specific standard product).

Theoretically, any ASIC could be implemented using the full-custom design
flow described in the previous section (or any other flow, for that matter). In the
IC design industry, however, the term ASIC has become far more synonymous
with a certain design flow than a design type, although the term ASIC is used in
both contexts.

What is meant by an ASIC design flow?

“Synthesis” and “Place-and-Route.” These two very common terms in our
industry capture the essence of an ASIC design flow. Their methodologies have
revolutionized the way IC design is done today.

First let’s understand the underlying principles of this flow, shown in
Figure 4.4.

The following are some key points:

• Circuit entry: The design is implemented using a software language that is
commonly known as RTL (register transfer level), but is in fact an HDL
(high-level description language) written at the RTL level.

VHDL or Verilog are examples of HDL languages that are used to
capture design information. These languages support many different con-
structs. The most common way of describing an idea using an HDL is to write
the code at a level of abstraction called RTL. At this level of abstraction, the
code can be automatically converted to logic gates and sequential elements
such as flip-flops and latches. This process is generically known as synthesis.

• Layout entry: The logic gates and sequential elements produced by synthesis
tools are automatically placed and automatically connected using a P&R
(place-and-route) tool.

Note that P&R tools are designed to produce layout that is “correct by
construction”; therefore, layout extraction for simulation is a step in the flow
before layout verification. Layout verification is always required as a final
step to ensure the integrity of the layout database and to check that any addi-
tions or changes made after P&R are verified.

• Library of cells: A prerequisite to this flow is the existence of a “library” of
cells. The library consists of the logic gates and sequential elements that the
synthesis and P&R tools use. In any design flow that follows an ASIC flow
completely, the entire design is implemented using only the library cells and
nothing else.

The ASIC design flow is probably the most common design flow these days,
with the majority of flow and tool development supporting this methodology.

In an industry where the level of technology advances very quickly and
products become out-of-date within a few years, the primary business focus of
successful companies is to produce new products very quickly and productively.
Minimizing the time-to-market of any product is crucial.

84 LAYOUT DESIGN FLOWS

In many ways the ASIC design flow has enabled this revolution in produc-
tivity, especially when compared to the older full-custom design flow.

In this flow, circuit entry is simply “coding” and therefore is very quick and
easy. A large amount of functionality can be captured in a very short time. It is
easy to maintain and reuse, and it is not dependent on a particular manufactur-
ing technology. These are all significant benefits.

The example of code shown in Figure 4.4 is VHDL code of a counter from 0
to 9 (2 minutes to enter at 25 words per minute). Drawing a schematic is much
more time consuming. Imagine changing the counter to decrement from 100 to 0
in a schematic-based design (or in a full-custom layout flow)!

Cad Tools as Part of a Flow 85

Figure 4.4 ASIC design flow.

86 LAYOUT DESIGN FLOWS

This explosion of productivity on the circuit side has been matched for the
layout-entry step by the development of P&R tools. Full-custom layout techniques
are not practical when the circuit design is tens or hundreds of thousands of
instances!

Advances in IC manufacturing processes have been one of the primary
drivers of the development of all of the automation technology that forms the ASIC
flow. Available transistors on a single chip have increased dramatically over time.

The ability to use this increasing number of devices has been addressed by
this flow because the design process has been elevated to the logic-gate level,
where logic functionality is the primary concern. The transistor level and
many of the process-related issues are hidden within the library and modeled
throughout the ASIC flow.

Table 4.3 summarizes key characteristics that are of most concern in an ASIC
design flow.

Not only has this flow increased the productivity of IC designers, but it has
also attracted many people to the world of IC design. The circuit and layout
designers are separated from the complexities of the process design rules because
these rules are hidden in the library. The circuit designer worries only about
implementing logical functions. The layout designer may get by with process
knowledge related to routing layers only.

To recap, an ASIC design flow is a specific design type using HDL coding,
synthesis, and P&R methodologies to implement the design. In this case it is the
use of a HDL for circuit entry that forms the foundation of the ASIC design flow.

We can infer the many tools of an ASIC flow. HDL circuit entry requires the
following:

• Circuit verification methodologies specific to HDL code
• The use of synthesis to implement the HDL design to logic gates
• Circuit verification methodologies for the resulting large logic gate design
• Tools to feed forward circuit constraints such as groupings and timing

constraints
• Tools to convert extracted layout data to relevant circuit verification data

The size and complexity of the resulting design mandates the use of
different layout-related tools from those for a full-custom design flow:

• Floorplanning tools to group and guide placement of cells
• Automatic layout entry methods in the form of P&R
• High-capacity layout verification and extraction tools for large designs

TABLE 4.3 Critical Characteristics of an ASIC Design Flow

Behavior Timing Power Area Interface

Process Maintainability Reliability Porosity Flow compatibility

Complexity Noise immunity Yield Electromigration Latch-up immunity

There are additional tools and methodologies to generate libraries:

• Characterization tools to produce models for synthesis and simulation
• Implementation of cells in layout using a full-custom flow
• Alternatively, migration of cells from an existing library
• As another alternative, use of layout synthesis tools to generate library cells

In summary, an ASIC design flow is one that is most appropriate in imple-
menting a complex and sizable logic design. HDL circuit entry, synthesis, and P&R
tools are ideal for this type of design.

4.6.3 Memory IC Design Flows

Fast-page DRAM, cache, EDO DRAM, SRAM, and SDRAM are terms that should
be familiar to anyone who has recently purchased a personal computer. The
amount and type of memory in any personal computer is well advertised. We now
understand that the more memory our computer has, the better and faster it
will perform.

We are covering memory IC design in a separate section because it is a design
type that is best implemented using a layout-first design flow. In terms of layout
design, it is one of the few design flows where the layout is implemented before
the circuit design!

This can be explained by first discussing the architecture of a memory IC.
Figure 4.5 shows an example floorplan of a DRAM memory. Note that the
majority of the chip area is consumed by the core memory cells and supporting
circuitry.

The important concept to understand is that there are a relatively small
number of leaf cells that are repeated literally millions of times. Any area
savings that can be achieved for each leaf cell benefits the area of the chip many
times over.

The most important example of this is the memory cell itself. Memory man-
ufacturing processes are unique in that they have been specifically designed to
achieve a small memory cell size. In the case of memory cell design, the unit of
measure is more often nanometers rather than microns.

Figure 4.6 shows a design flow that is typically used in memory design.
The following are some key points:

• For memories, the key design characteristics are area, area, and area. Memory
ICs are commodity products, and extra area equates to extra cost.

The goal of a memory design is to pack a fixed number of memory
cells in the smallest die. The design team’s goal, therefore, is to minimize the
area consumed by the periphery and nonmemory-cell circuitry. The ratio of
memory cell area to the total die area is known as the cell efficiency of the
design.

• As mentioned, the layout is done first. Typically, the memory cell is devel-
oped in conjunction with process development so the layout of the memory
cell may be provided.

Cad Tools as Part of a Flow 87

Figure 4.5 Example DRAM floorplan.

• This memory cell forms the basis for an inside-out layout flow. The memory
core circuitry is built starting from the memory cell. The decoder and sense
amplifier cells are “pitch-limited” in that the pitch of the memory cell is a
limiting dimension for these cells.

• The design flow of the memory core pitch-limited circuitry is a very tight
iteration loop between layout and circuit design. Many circuit design trade-
offs are made to achieve a final implementation that is area efficient.

These design trade-offs could be architectural as well. For example, the
number of decoders and sense amplifiers is carefully chosen to ensure that
a reasonable cell efficiency is achieved.

• Once the architecture of a memory design is well defined and validated, the
architecture is often captured within a memory compiler or layout-tiling
program for future use. Memories have a very regular structure and there-
fore are easily programmed into an automatic process.

Cad Tools as Part of a Flow 89

Figure 4.6 Memory IC design flow.

• The control logic of a memory is still generally done in a full-custom style
to minimize the total area of the die. Schematic capture is typically used as
the design capture methodology.

In summary, a memory IC design flow is one where the area is the first
priority and therefore the layout characteristics are the key considerations
during the chip’s development. Thus, the design of memories is one of the
more interesting challenges in layout design.

4.6.4 Microprocessor and SOC Design Flows

These designs have the most complex and intricate design flows and represent the
state of the art in IC design. Microprocessor designs that are produced by com-
panies such as Intel and Motorola combine all of the different flows that we have
discussed so far. SOC (system on a chip) is a generic name for ICs that integrate
a wide variety of complex and diverse functions onto a single die. In both cases
it is the performance and cost benefits of a single chip solution to implement the
required functionality that drives their development.

There is not one single design flow for the chip, but a mix of full-custom,
ASIC, and memory design flows. There are variations of the three flows as well,
depending on the block under development.

The effort and expertise that go into these types of designs is staggering and
typically spans multiple years. Simply examining a floorplan of one of these ICs
makes clear the variety and complexity of these designs. Each major block is
planned and implemented using the flow most appropriate for its type. Once each
block is complete, a separate flow of assembling the blocks is done.

90 LAYOUT DESIGN FLOWS

In this chapter we will start to apply our layout design knowledge to different
types of layout leaf cells or “building blocks” that are common today. These dif-
ferent leaf cells are generally implemented in a full-custom design flow because
they are optimized to form the foundation or library of cells that are used repeat-
edly to build an entire design.

5.1 STANDARD CELL LIBRARIES

A library of logic cells is the set of building blocks for the ASIC design flow dis-
cussed in Chapter 4. The library is typically called a “standard cell” library
because of its common interface implementation and regular structure.

The library provides the functional building blocks used for synthesis and a
layout representation of the cells for place-and-route. It is very important to
note that the process of HDL synthesis limits the choice of logic cells to those
that are found in the library provided. This guarantees that a physical or layout
representation of the cells exists when the design is implemented using place-
and-route tools.

5.1.1 A Brief History of Standard Cells

One way to understand the required layout characteristics of standard cells is to
understand their history and the reasons behind their development. Once the con-
cepts and methodologies behind this design process are understood, it is easier to
fully appreciate the layout requirements for the cells themselves.

Why were libraries developed?

• Independent blocks became too big and complex for a full-custom design,
so there was a need to speed up the circuit and layout design processes.

• There was a shortage of specialized personnel capable of hand-crafting
complex full-custom designed blocks; automation alleviated this problem.

91

CHAPTER FIVE

Advanced Techniques for
Specialized Building-Block
Layout Design

• Advances in the typical manufacturing process included increasing the
number of routing layers from one to two or three metal layers. This added
further complexity to the full-custom layout design process for optimal
results.

• Even in a full-custom design flow, the placement of more than 20 cells is
easier when the building-block cells are implemented with predefined stan-
dards. The standardization of cell interfaces is a concept that is implemented
in a library.

The solution was to simplify the circuit and layout design of large digital cir-
cuits by using predefined and characterized “building blocks” (cells).

Before circuit synthesis tools were available, at first the idea was to develop
predefined simple logic circuits. Examples would be inverters, NANDs, NORs,
and flip-flops, to name a few. These would be designed and analyzed by an expert
and then released to the project for general use. Everybody would be able to use
these cells as building blocks for their circuits.

In order for a particular logic cell to be useful in different situations, the
library was expanded to include each logic cell in a variety of sizes. Initially, the
various sizes were decided haphazardly by individual designers.

A further refinement was to define the different sizes of each logic cell in the
library so that the design can be more easily correct by construction. This is accom-
plished by following fanout guidelines in the case of amplifying a signal to drive
bigger and bigger loads. For example, if the minimum size inverter is specified
to be P2.5/N1.25, then the different inverter sizes in the library would be multi-
ples of this size. A 2¥ inverter or INVx2 would have a size of P5/N2.5, INVx4
P10/5, etc.

Standardizing the sizes ensures that nobody will try to use weird numbers
such as P8/N4 or P6/N3 in the circuit design phase, and maximum sharing of
components is achieved.

When the synthesis flow was developed, the circuit designer actually didn’t
see the layout cells, so the need for standardization became even greater. As we
mentioned previously, the synthesis tools automatically choose the best cell for
the job; therefore, if a larger selection of cells is available, the synthesis tool has a
better chance of optimizing the circuit.

Another factor that influenced the development of library cells was the
impact of the first automatic place-and-route tools. The first automatic routers
that came out started to change the way designers implemented full-custom
connectivity, because the routing tools worked best with cells built in a certain
way. Cell design was (and is) heavily influenced by the restrictions of the auto-
matic tools.

Today the standard cell is the foundation of ASIC design. There are compa-
nies whose sole business is the design and migration of libraries into different
manufacturing processes. Various EDA vendors provide circuit and physical
design tools specifically for libraries as well.

ASIC design notwithstanding, the standard cell design methodology is also
widely used to implement the “random logic” of a full-custom design. Initially, a
circuit is partitioned into several smaller blocks, each of which is equivalent to
some predefined function. Within each logic block, cells are implemented from a

92 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

set of library cells. In general, the library is much smaller than a commercial ASIC
library, but the methodology is the same.

5.1.2 Standard Cell Characteristics

A simple NAND gate is shown in Figure 5.1. A standard cell representation of
the gate is shown. As we have discussed, an ASIC layout design is implemented
at the cell or gate level, and detailed knowledge of the contents of the gate is not
required.

In this section we will discuss the design of the cell itself. The goal is to give
an understanding of the standard cell design so that it is compatible with an ASIC
design flow. There are many issues to consider. First and foremost, however, is
that the library of cells be compatible with the specific limitations or features of
the manufacturing process to be used.

Typically, the design or architecture of the standard cells should be chosen
based on the number of routing layers available in the target manufacturing tech-
nology. In certain special cases the design of the cells will depend on the charac-
teristics of the available metal layers.

The following is a list of characteristics that are common to all standard cell
libraries.

Characteristics related to the circuit design are as follows:

• The functionality and the electrical characteristics of each cell is tested, ana-
lyzed, and specified. In general, a test chip is manufactured and the perfor-
mance of the each cell is analyzed from silicon. In some cases, only a process
characterization step is completed to generate simulation models of the tran-
sistor characteristics, and library characterization tools use these models to
create the simulation views of each cell.

• Multiple drive strengths for each cell type are created. In addition, the dif-
ferent drive strengths are multiples of a base or minimum size.

The following characteristics are related to the basic shape of the cells:

Standard Cell Libraries 93

Figure 5.1 NAND example of standard cell.

• During the layout design of the cells, the cells are built using a predefined
template that will ensure that all the requirements are met. The template
includes the height of the cell, the placement of wells, N transistors, and P
transistors, and guidelines to follow so that the cell can be flipped vertically
or horizontally and can be placed beside all other cells without creating
errors such as DRC violations.

• Cells are rectangular.
• Cells for specific rows or chip areas are all the same height—a library may

contain multiple sets of cells. For example, different cells will be used for
logic, datapath, and I/O areas.

• Every cell length is rounded up to a multiple of a coarse grid. This grid is
determined by either of the following:
A specific design rule (such as the minimum well width)
A desire to make placement easier and faster (using a coarse grid reduces
the number of possible placement coordinates, thus accelerating the
placement process)

• The power supply lines have a predefined width and position for the entire
library—the width of the supply over the cell length is always consistent.

The following characteristics are related to the interface of the cells:

• All the input and output ports have a predefined type, layer, position, size,
and interface points. These characteristics are determined based on the placer
and/or router to be used to implement the design. The ports are targets for
the router and should be optimized with the router in mind for best results.

An example of this would be that routing can be made faster and easier by
using a signal pitch that is defined on a coarse grid. Routing tools will use fewer
computing resources if a coarse grid is used because the arithmetic required of
the tool is simplified.

• The interface of the cells can be designed to share certain connections. Exam-
ples would be source connections of transistors that are connected to power
supplies. Alternatively, common substrate and tub contacts can be shared
between cells.

• A rectangular outline and a set of obstructions for each routing layer are also
characteristics of each cell. Obstructions can be defined separately for each
routing layer, or the entire outline of the cell can be used as an obstruction.
Obstructions can have any shape. They are not restricted to rectangles, but
they have to be recognized by the routing tool.

• All nonshared polygons have to be spaced from the boundary of the cell by
a value equal to one-half of the layer spacing design rule. This ensures that
abutting cells will be correct by construction.

Other things to note about cell libraries:

• There are cells without any transistors, called feed-through or filler cells, that
can be added between cells to allow vertical connectivity when there are no
more routing resources over the cell.

94 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

• In the case of I/O cells, there are specially shaped cells for the corners of the
chip where two rows of cells meet.

A typical standard cell library consists of hundreds of cells. Advanced
libraries consist of more than 1,000 cells. There are cell libraries specially designed
and developed for low power consumption, high speed, very good porosity, etc.

5.1.3 Standard Cell Architectures

As we stated in the previous section, the design and architecture of a standard cell
is dependent on the number of routing layers that are available in the manufac-
turing technology. Let’s investigate why. An example of a standard cell is shown
in Figure 5.2.

Note that only one layer is used to make most internal connections to the
transistors within the cell. This version of a standard cell is compatible with the
early versions of channel routers. These routers could only make connection to
cell pins that were placed on the boundary of the cell.

As you can see in Figure 5.2 the connections to the second layer of metal is
made to the cell to ports only on the top and bottom sides.

The design shown in Figure 5.3 consists of two rows and a routing channel
in between. Note the feed-throughs in the design. They are empty cells that are

Standard Cell Libraries 95

Figure 5.2 Example standard cell showing all layers.

Figure 5.3 Channel routing.

there to accommodate vertical tracks that connect signals located in different
routing channels.

In a process with only two routing layers, feed-throughs are the only way to
add vertical routing tracks. In this case the routing is done in two steps. First,
enough feed-throughs are assigned to implement the required number of vertical
running signals. The completion of the rest of the routing follows feed-through
placement.

When a different design is done that accommodates vias in the middle
of the cell, then ports can be placed there and over-the-cell routing is pos-
sible. Refer to Figure 5.3 for a clear example. In this case vertical routing tracks
are possible over the cells and the use of feed-throughs is reduced in the final
design.

Figure 5.4 compares the two cell architectures and the differences in the ports
and interfaces to the designs.

Note that in Example A, the ports to the design have to be accessible on both
the top and bottom sides of the design. This is to ensure that routing channels are
used most efficiently and it minimizes the use of separate feed-throughs. The over-
head of routing these ports within the cell to two sides of the cell is significant,
adding parasitic loading to the signals and reducing the overall porosity of the
final design. Examples B and C do not suffer from this overhead, and a cell equiv-
alent to Example A may be smaller overall.

Example C in Figure 5.4 shows an advantage of over-the-cell routing
and clever interface design. In this case, the connections to the IN1 and IN2
ports may be extremely short if the cell that is connected to it is placed directly
adjacent to the one shown. In this case, space is not consumed in any routing
channel.

Figure 5.5 compares two routed designs with and without over-the-cell
routing. In both cases there are only two layers of metal available for routing, but
the difference is whether or not over-the-cell routing is possible.

In the top picture, we can observe that the channel used for routing can only
be the empty space between cell boundaries. In the second example this restric-
tion is not as acute. The area of the second design is significantly smaller and for
large designs the difference is amplified. The main reasons for the smaller area in
the case of over-the-cell routing can be summarized as follows:

• The router can route horizontally between adjacent out–in port connections.
This is a major source of area savings, as the routing channels between cells
are reduced by this effect alone.

• The available channel size includes the cell area and therefore is more
efficient.

• Porosity is much greater because of the metal1 horizontal connections
between adjacent cells, because of the reduced cell size due to the elimina-
tion of routing port signals between top and bottom sides, and finally
because of the elimination of feed-throughs.

In a three-metal-layer process, almost all the channels can be removed and
all routing can be completed over the cells.

Standard Cell Libraries 97

Figure 5.4 Comparison of cell interfaces.

5.1.4 More Standard Cell Concepts

We have mentioned the term “porosity” of a design. The porosity of a design can
be used as a metric of quality and/or efficiency of a design. Porosity as it relates
to layout design is defined as the ratio of the total available routing area to the
total cell area. Cell pins are not included as routing area.

For example, in the case where many pure routing channels are used, the
porosity is low. Ideally, we want to increase the porosity of a design by eliminat-
ing any channels and have only the logic cells that are needed to implement the
design.

Standard Cell Libraries 99

Figure 5.5 Comparison of routing styles.

We may need to trade off porosity within a library to ensure that we can
complete the design in a reasonable amount of time and take advantage of any
features of the place-and-route tools. At the same time we need to avoid limita-
tions that these tools might have. It is useful to read the manuals for the place-
and-route tool to be used before designing the library of cells.

Among other things, we have already mentioned that a coarse routing
and cell size grid is useful for reducing the compute resources of the place-
and-route tools. This and other points to note when designing standard cells are
as follows:

• The choice of routing grid is important. There are three types of grid used
today: line to line, line to via, and via to via. Figure 5.6 shows examples of
the three cases and how they may affect standard cell design.

The line-to-line pitch suffers from the fact that a lot of signal jogging is
required whenever a via is used. The cell size is the smallest, but routability
suffers. Also, the execution time for the routing engine to complete the job
will be much longer.

Similarly, in the case of via-to-line pitch, signal jogging will occur
whenever two vias happen to be placed on adjacent lines. Trying to avoid
this case is an overhead that may negate the area benefit of the reduced signal
pitch.

In the case of via-to-via pitch, the porosity of the design is maximized
and the routing is more straightforward.

• The standard cell height and maximum cell length for the library must be
determined based on the tools to be used, the purpose of the library, poros-
ity, and number of routing layers.

For example, in the case where metal1 is the layer used internally to
the cells, there is a rule of thumb that says, “The length of the longest cell

100 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.6 Examples of routing grid types.

has to be no bigger than six times the cell height.” In the case where cells
will be longer, the cell height should be dramatically increased (perhaps
doubled). The reason for this is that the placement tools can work much
more easily with a reasonable height-to-length ratio. A long cell is much
more likely to have internal metal2 jumpers, so the porosity is reduced for
routing.

• Power supply issues for the entire block must be addressed before the place-
and-route takes place. Strapping and connecting the power supplies is
always attacked first when implementing a standard cell design. The fol-
lowing issues should be considered:
Connectivity between standard cells
Tracks routed internally to the standard cells
Electromigration applied to track width and number of vias
Resistance

• Since the place-and-route tools are only concerned with the placement and
connectivity to standard cells it is useful to consider the design of the cell
abstract. The cell abstract is not a physical part of the design, but is used
only by the place-and-route tool. The abstract consists of the following:
Cell boundary
Location and shape of target pins
Routing obstructions

Routing obstructions or “keep outs” are areas within a cell that are unavail-
able for routing in the assigned layer. For example, very little area within most
standard cells is available for metal1 routing because there is a lot of metal1 used
for the local interconnections.

If the router is free to use metal1 in trying to connect cells, it has to know
where it can and cannot place signal tracks. Obstructions within the cells give the
router this information in the form of shapes on the given layer.

Figure 5.7A shows an example of a standard cell and the areas of metal1 use.
One approach to defining the obstruction areas would be to replicate all metal1
shapes.

Even for small blocks (500 cells) there is a strong dependence between the
compute time of a router and the way the obstructions are defined. The routing
software algorithms needs to build a map of the routing porosity for every layer,
so the more complicated the shapes are in the keepout layers, the bigger the files.
With complex polygons the computational requirements become longer and more
complicated and the routing time starts to grow exponentially. So let’s see how
we can help the tool to run faster and more efficiently, using fewer computer
resources. Refer to Figure 5.7A for an example.

In Figure 5.7A you can easily see that the smart keepout is only one polygon
on metal1 and that it has a minimal number of coordinates. Not only is the
obstruction concisely defined, but there is an open space for the router to use in
case there is a need to put down vias for routing.

To automatically obtain a shape like the one on the right we can use a simple
macro that will do the following:

Standard Cell Libraries 101

• Oversize the polygons on each routing layer
• Merge all the polygons
• Undersize the polygons by the same amount

For example, to determine the amount needed to over/undersize the poly-
gons, review the following calculation:

Metal1 Width = 0.5mm

Metal1 Space = 0.4mm

Drawing Grid = 0.05mm

Figure 5.7B shows a graphical implementation of the above steps.
The intent is to obtain one single shape that will cover all the small poly-

gons. This shape will include the places where the distance between two of them
is smaller than the possibility of routing another nonrelated line. Doing so for each
cell in the library, for each routing layer, we can significantly reduce the place-
and-route time.

Oversize Value Metal1 Space +
Metal1 Width

2
Drawing Grid

= 0.4 m +
0.5 m

2
m

= 0.6 m

= -

-m
m

m

m

0 05.

102 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.7A Example of cell obstructions.

Standard Cell Libraries 103

5.1.5 Gate Arrays

This design style is a different approach to standard cell design.
Unlike standard cell design, where all layers are different from one cell to

another, every gate array cell within one particular library has an identical
arrangement of a base set of layers.

Typically, this base set of layers includes only the layers necessary for the
formation of transistors; therefore, the list of base layers would include wells,
active regions, implant layers, gate polysilicon, and nothing more.

Figure 5.7B Graphical implementation of oversize value.

Upon this base set of layers, individual “standard cell” functionality is
obtained by patterning the interconnection of the transistors into different
configurations. Refer to Figure 5.8 for a pictorial explanation of how cells are
defined. Typically, the interconnection layers are the first one or two layers of
metal. These defining layers are collectively known as the “shades” of the cell and
are the only layers that are different from cell to cell.

The term gate array comes from the way in which an entire design is imple-
mented. In a gate array design, an entire wafer can be prefabricated with an array
of identically patterned transistors or groupings of transistors called base cells.
Logical definition of the standard cells and of the connections between them uses
only the shades of the required cells and the free routing layers.

104 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.8 Examples of gate array standard cells.

A wafer of base cells without any standard cell definition is typically referred
to as a “master slice,” as shown in Figure 5.9. Note that a master slice can be pre-
fabricated while the circuit design is in progress or in fact manufactured in
advance.

Table 5.1 outlines the trade-offs of gate array design to a full layer standard
cell design style.

The simplicity of gate array design is a trade-off between the cost of rigid-
ity imposed upon the circuit both by the prefabricated wafers and the advantage
of the speed in the manufacturing process. Only the last few steps in the fabrica-
tion process depend on the application for which the design will be used. Thus,
gate arrays are cheaper and easier to produce than full-custom or standard cell
designs.

The idea of having master slices on the shelf that are ready for quick imple-
mentation can be very useful. Differences in circuit design size or pin count can
be quickly addressed by having a select range of master slice configurations avail-
able for use.

Another scenario where special master slices are valuable might be where a
single design idea has multiple minor variations on a theme. In this case, using
an efficient gate-array master-slice approach may be viable.

Standard Cell Libraries 105

Figure 5.9 Example gate array master slice.

Note that while custom blocks or “hard macros” are not typically used in
most gate array applications, they can still be implemented to create special master
slices. For example, if multiple applications or designs have a common require-
ment such as a similar amount of memory, then a master slice that incorporates
the common requirements can go a long way in saving wafer and design costs.
Figure 5.10 shows how a custom-made block might look in a gate array design.

Note that the reverse is also possible. In a full-custom design it is possible
to embed a block of gate array logic! See the CD-ROM for additional examples.

When else might a gate array design style be useful? Scenarios where a gate
array design style may prove to be useful and valuable include the following:

• The standard cell portion of the design is very risky or complex
• The standard cell portion of the design is behind schedule
• Both of the above are true

Consider the preceding scenarios where a special master slice is being
created at the same time as the initial design is being implemented. The logic or
standard cell portion of the design is on the critical path of the project. If a gate
array design style is used, the manufacture of the base layers can begin before the
complete design is finalized. Typically, the elapsed time to manufacture the base

106 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

TABLE 5.1 Key Issues in Gate Array Design

Benefits Comparison to Full Layer Standard Cell Design

Faster design time • Wafers are prefabricated with base layers

• Iterations and optimization to cell placement and interconnect routing is greatly
reduced because of limited placement sites and lower cell density

• Revisions to existing design starts with prefabricated wafer

• Many issues such as power supply routing and latch-up protection are addressed in
advance, since the base layers and architecture of the chip have been
predetermined. At the very least, the effects of these issues are much more
predictable than the case where all layers are implemented at once.

Performance • Better performance than programmable IC alternatives because there are more
opportunities for layout optimizations

Increased reuse • Master slices can be used for different designs or applications

• Cell design easier to port to different process

Drawbacks Comparison to Full Layer Standard Cell Design

Design flexibility • Fixed availability of total number of gates

• Less opportunity for layout optimization

• Less opportunity for custom blocks such as memories

Cell density • Generic base layer cell design results in overhead of unused transistors

layers of today’s processes might be a full month. During this month the design
team has an opportunity to catch up and finalize the last design issues. The alter-
native in a full layer standard cell environment is that the entire manufacturing
process is delayed for a month while the design is finalized.

Please check the CD-ROM for pictures of a gate array that MOSAID designed
some time ago. In one case the chip had several special custom blocks as part of
the design. In another case the gate array logic was embedded in a full-custom
design. The latter was a design by MOSAID for an Ottawa-based company called
Accelerix.

5.2 SPECIAL LOGIC CELLS

5.2.1 Datapath Library Cells

The easiest way to understand what is datapath functionality is to consider the
operation of an example circuit such as an arithmetic logic unit (ALU). The ALU
is one of the three essential components of a microprocessor, the other two being
data registers and the control circuitry. The ALU performs addition and subtrac-

Special Logic Cells 107

Figure 5.10 Embedded custom block in a gate array design.

tion, logic operations, masking, and shifting (multiplication and division) on mul-
tiple bits (signals) of data. An ALU is implemented in a datapath style.

As the name implies, a multiplier is a circuit whose output state is the arith-
metic product of two input signals. This is another example of a circuit that is
implemented in a datapath style.

What are the characteristics of datapath cells that distinguish them from
standard cells?

• Signal flow: Typically, there are signals or bits of data flowing through the
circuit, as you might imagine through an ALU or multiplier.

• Multiple signals: Several groups or buses of signals are flowing through the
circuit at the same time.

• Requirement for symmetry: As the signals race through the datapath, it is
highly desirable that each signal path be topologically identical to the others.
This ensures that mismatches in timing do not occur and that the pre-
dictability of each signal relative to each other is known.

How do we attack these special requirements in a systematic and efficient
way? The answer is to use datapath library cells and techniques.

Let’s consider an example design as shown in Figure 5.11. This example
shows four 8-bit signals being processes through three different functions (labeled

108 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.11 Datapath block diagram example.

F1, F2, F3) and producing two output buses O1 and O2. The control blocks C1,
C2, and C3 control all 8 bits of the functions simultaneously.

One alternative in implementing this in layout is to floorplan the circuitry
as shown in Figure 5.11. In this case the requirements of symmetrical signal per-
formance between bits would be difficult to achieve.

Let’s apply proper datapath techniques.
The first and most important detail is that the layout cannot start without a

full picture of the functionality of the entire block. The way the signal lines have
to run over the bits, their number and position, and the number of vertical tracks
needed for internal cell connectivity are details that depend 100 percent on the
schematic connectivity and performance requirements. In this case the design
engineer and the layout designer have to work closely; otherwise, the full-custom
block will not meet all design requirements.

The first step in proper datapath design is to consider the circuitry on a bit-
by-bit basis. This is shown in Figure 5.12. Note that this should apply to both the
circuit and layout design processes.

Remembering that the control signals are common to all 8 bits simultane-
ously, we can now start to see how we might achieve symmetry across all 8 bits.

1. Divide the complete functionality into smaller cells. In this case F1, F2, and
F3 should all be separate cells. Each function is implemented as a row in the
floorplan.

2. Define the interface to these cells first without completing the internal layout.
This must include the internal and external routing requirements for the
cells. Consider the number and layer for both the vertical and horizontal
tracks and share routing channels wherever possible.

3. Fill in the internal layout of the cells.
4. Complete the entire datapath for one bit. It is a simple process to step and

repeat the layout for the rest of the bits. The cells should be designed to abut
to themselves in the direction of the multiple bits.

Special Logic Cells 109

Figure 5.12 Single-bit data flow
schematic.

Note that the schematic hierarchy and layout hierarchy should match for
simpler verification and extraction. In our example, the floorplan of the layout will
look similar to the flow shown in Figure 5.12 with the three functions imple-
mented as cells and placed in the order shown.

Shared circuitry across all bits, such as the control circuits, should be con-
sidered in determining the cell breakdown and included in the floorplan.

Figure 5.13 shows an example interface design for one function for one bit
of the datapath. This is considered to be one of the datapath library cells.

We can observe from Figure 5.13 that a datapath cell has many interesting
features:

• The vertical cell interface starts and finishes with VSS power lines to allow
abutment

• There are predefined vertical routing tracks for interconnectivity between
the rows (functions)

• Signals can bend or jog over the cell when passing from one function to
another as long as the signal exits on a predefined routing track

Figure 5.14 shows a complete implementation of a datapath circuit. Look-
ing at the basic cell and the array of 3 functions ¥ 3 bits, we can observe the
following:

• Internal cell routing is shown and is done based on available tracks. Signals
run freely and vias are placed centered to the lines or offset from center.

• As the picture shows, there are many unused lines connecting different rows.
This was done intentionally to allow enough spare tracks for internal con-
nectivity of the cells.

• All the routing is done for 1 bit only, and then the routing cell is arrayed
over the width of the datapath.

• The rule of signal direction is respected here, too: M1 and M3 run only hor-
izontally, M2 and M4 only vertically.

• All the gates generating the control signals are placed at the end of the row
for each function. Routing tracks and efficient use of layout area are achieved
this way.

• The end cells close off the substrate connections and overlap rules (for
example, for N-well guard rings). Logic can be placed at both ends as
required.

110 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.13 Example of datapath
library cell.

When implementing the layout design for the cells, it is useful to understand
the differences between datapath and the standard cell library cells (Table 5.2).

Because of the complexity of this layout, the color CD-ROM version of these
diagrams may be easier to analyze.

A few comments about automatically place-and-routed datapath blocks.
There are two kinds of datapath automation. One is a simple P&R of standard
cells using a normal library and timing-driven limitations. The more advanced
way to generate datapath blocks is using a specially built library with all the cells
obeying the rules explained earlier. There are datapath-specific place-and-route
tools that specialize in “bit” placement and routing and total symmetry of the
signals in the bus.

5.2.2 Clock Generator Cells

Clock generator or perhaps clock buffer cells are generally special cells in a library.
These cells are used specifically to buffer or amplify a very heavily loaded signal—
namely, a system or chip clock signal. The system clock needs to be distributed
all around the chip with as little delay as possible, and thus the implementation

Special Logic Cells 111

Figure 5.14 Three-bit datapath example.

of the clock distribution system is a topic for layout in itself. In this section we
will concentrate on the buffer cells.

What is so special about clock generator cells? The transistor sizes can be
immense: 1,500 to 2,000mm for a single device width is not uncommon. Compare
these values to a minimum size inverter that can be 1.5mm or so in width. To be
implemented effectively, these huge transistors merit special layout techniques.
The main concerns with such devices include the following:

• Optimizing signal and power connections in terms of resistance and
capacitance.

• Healthy substrate connections—remember also that the clock in a chip is
generally one of the highest speed signals and may generate a significant

112 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

TABLE 5.2 Standard and Datapath Cell Comparison

Standard Cells Datapath Cells

Designed to interface horizontally with any Designed to interface horizontally only with
other cell in the library. themselves. The layout takes advantage of the fact

that there are special END cells.

Designed to interface vertically with any Same
other cell in the library.

In general made of one N+ and one P+ Not defined or restricted to anything specific. In
region design. most cases the cell floorplan depends on the

transistor sizes.

Power lines inside the cells are calculated Power lines inside the cells are calculated to sustain
for average power consumption and a defined row length as determined by the bit
power grid—the assumption is that not all width—in this case, all the cells are working in
the cells in a row are working at the synchronization for all the bits in a bus.
same time.

Cell height is fixed. Cell height is variable and independent of other cells

Cell width is variable and depends on the Cell width is fixed by the floorplan, which defines
number of transistors and connectivity. the number of “legal” routing tracks for signals

over the cell.

Transistor sizes are standardized. Transistor sizes are fully customized to take
advantage of the layout design.

Cell are made with maximum porosity in Cells have already a predefined routing over the cell
mind—minimal metal2, metal3 inside cells. so the layout can take advantage of the known free

or occupied tracks.

Each cell has only one standard Cells may be designed to have multiple functions as
function—for example, INV, FLIP FLOP. defined by the over-the-cell routing (similar idea to

gate array cells).

The entire placed and routed area has It is enough to extract only 1 bit to understand the
to be extracted to obtain timing timing for a datapath.
information.

amount of noise and coupling into the substrate. Generally these transistors
are isolated with independent guard rings.

• Techniques to reduce supply resistance include busing wide connections
from power supply pads and a large number of vias.

• Electromigration rules must be strictly followed.

• The timing characteristics of clock signals are critical, so extraction and sim-
ulation of the layout is a must.

• If there are different clocks that need to be synchronized, then the layout
should be symmetrical between them. A common technique is to use one
clock cell that is configurable as it is used in different locations.

Please refer to Chapter 7 for a detailed discussion of the layout techniques for
larger transistors, as well as to the pictures on the CD-ROM for a clock generator
cell example. The picture is simply too complicated to show in black and white.

5.2.3 Bus Interface Unit (BIU) Cells or a Barrel Shifter

In complicated chips, there are many buses of signals that are helping the various
blocks to interface in, within, or with the external world. Nevertheless, many
buses and many signals are taking precious space from the chip area. Various
blocks are working based on different clocks, so the solution was to develop
switches for these buses in such a way that they can be used at different times by
different blocks.

A bus interface unit, or BIU, is one of the solutions to control the traffic of
signals over one bus at different times. Different signals are essentially multi-
plexed onto a common bus at different times. As such, these bus lines can be
heavily loaded with mixing circuitry, and it is highly desirable to minimize the
chip area consumed by purely routing channels.

There are some challenges in meeting these requirements:

• Minimizing the bus capacitance

• Minimizing the area consumed by the bus itself and the muxing circuitry

• Achieving symmetrical and predictable performance for all connections to
the bus

An approach that minimizes signal capacitance and maximizes the use of
the routing area is to plan for and implement this specialized circuitry directly
under the signal routing. Parasitic loads for each of the numerous connections to
the bus are minimized in this approach, and if a common cell is used, then all con-
nections to the bus will be similar.

In terms of layout design, layout implemented directly under a signal bus
is one of the most challenging tasks. Only experienced designers in full-custom
layout are able to achieve quality results. All aspects of layout design must be
considered and juggled when implementing this type of design—for example,
area, size, positioning, capacitance, resistance, symmetry, and layers to be used
for routing.

Special Logic Cells 113

The CD-ROMshows an example of this type of circuitry, as it is too complex
for the final design features to be effectively communicated in black and white.

5.3 PAD CELLS

Every chip has an interface to the external world of the printed circuit board. The
way an integrated circuit does this is through the pins of its package. These pins
are connected inside the chip package to metal conductors that are collectively
called a lead frame. The final connection to the chip is from the lead frame through
gold bond wires to large metal areas that are called pads.

Pad cells are the layout cells that have the large metal areas or bond pads
within them. It is natural and more reliable to make these layout structures sep-
arate cells to ensure consistency in characteristics for all pads. Pad cells usually
incorporate several structures and are designed to provide the following:

• Reliable connection area for wire bonding

• ESD protection structure

• Interface to internal circuitry

• Optionally, the logic directly related to the function of the pad such as input
or output buffers

Relatively speaking, bonding pads are very big, around 85 ¥ 85mm, because
the pad is a target for a mechanical machine that is physically soldering a gold
strand of wire. The pad metal is the top layer of metal and typically has a very
large via connecting the top layer of metal to the underlying layers.

Figure 5.15 shows the pad structure and cross-section to show the combina-
tion of the metals and passivation or overglass layer. Note that the passivation
layer is a negative layer. By necessity, the pad is not covered by the protective pas-
sivation layer (a glass material that protects the die) and thus is an area that is
vulnerable to dirt and other foreign objects. Also note that the two metal layers
are connected through a large via. For a greater variety of via connections, please
refer to subsequent chapters.

We can observe that the no-polygon zone refers to a distance that is mea-
sured all the way around the pad generating invisible arcs. This feature can be
used for passing 45-degree lines in between the pads.

In most ASIC designs, the pads are placed in a ring surrounding the core
logic of the chip so the pad cells are designed using special geographical rules for
layout. This is generally known as a pad frame. As there are three main types of
pad cells—power, input, and output—the pad frame is also known as the I/O
region. Examples are shown in Figures 5.16 and 5.17.

Figure 5.16 shows staggered pad cells. This arrangement accommodates
more pads, since the pads can be placed closer together. In this case, the manu-
facturer requires a different and more specialized bonding machine. The increase
in bonding complexity and cost is offset by the ability to accommodate more pads
and by having a smaller and more efficient die. Since the bond pads have to be a
specific physical size, in some cases the size of the design may be determined by

114 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.15 Bonding pad layout.

Figure 5.16 Pad frame example.

116 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.17 Examples of pad cell design rules.

the number of pads when the ratio of pad cells relative to the amount of logic is
exceedingly high. It is desirable to avoid this situation.

Note that only the metal of the pad is in two rows. The power supply rings
and transistors related to the I/O circuitry are still in one row. This is for consis-
tency in circuit performance and ease of layout design and integration.

Let us now consider specific guidelines for the layout of pad cells. Remem-
ber that the primary requirement of the pad cell is to enable a reliable wire bond
connection to the die.

• Pad size: Big enough to accept a wire bond. This limit is purely a function of
the bonding machine; therefore, it is defined as part of the layout design
rules.

• Pad spacing: Not only does the pad have to be a specific size, but pads need
to be spaced far enough apart to avoid shorting two bonding wires together.
This rule may be specified as pad center to pad center or from the edges of

the passivation opening. Again, the design rules will specify this amount, as
it is derived from the limitations of the bonding machine. This is easily
accomplished by building the pad cells to abut to one another and still obey
this rule. This rule effectively defines the width of the pad cell. A smaller
value may be specified for double bond pads where a short is not fatal
because the underlying pads are connected together.

• Pad to other structure spacing: In order to avoid shorting a wire bond to inter-
nal circuitry, a spacing rule is typically defined in the design rules. This rule
may be a manhattan value or sometimes is specified as a region defined by
a radius from the pad.

• Pad to scribe spacing: In order to avoid damaging the passivation or pad
structure during dicing, the pad needs to be placed away from the edge of
the chip.

• No-pad zones: Some areas may not be easily bondable, such as chip corners.
• 45-degree connection to pad: As the pad cell is exposed to potentially higher

currents from the external world, guidelines to avoid sharp corners and pos-
sibilities for concentration of charge are recommended. A simple example is
to connect to bonding pads using 45-degree polygons.

• Pad cell origin: A trick to more easily extract pad locations for the bonding
machine is to set the origin of the pad cells to the center of the large metal
area defined as the bonding target. Simply by parsing the layout database
for the pad cells and determining the origin of the cell, a list of bond pad
locations can be generated.

Figure 5.17 shows examples of some of these rules. They are defined by the
manufacturing facility, but in general, the numbers are sometimes negotiable.
Design rules usually have a significant amount of tolerance built into the values.
A competitive advantage may be achieved by tweaking these values, therefore
using creative solutions and working with the process group to address them is
usually fruitful.

Because the pad frame or I/O region is the interface to the outside world,
there are special requirements to obey. Electrostatic discharge (ESD) and the issues
surrounding large devices dictate most of the rules for this region.

What is ESD? Electrostatic discharge is the discharge of a large amount of
charge into a chip. This charge can be fatal to a chip because it may physically
damage transistors that are hit with the charge, much like a structure that is hit
by lightning.

The magnitude of ESD can vary widely, but the duration of a pulse is usually
very short. An ESD event can result in junction failure, oxide breakdown,
unwanted charge injection, and fusing or opening of internal wiring.

The most common source of ESD is from the human body, when a person
incorrectly handles an IC. The resulting voltage can be in excess of 20,000V. Elec-
trostatic damage to electronic devices can occur at any point from manufacture to
field service. Damage results from handling devices in uncontrolled, low-
humidity, or poorly grounded surroundings.

ESD protection structures are always built into the conduction paths from a
bonding pad to internal circuitry and are part of the pad cells. These structures

PAD Cells 117

act as lightning rods and are intended to redirect unwanted charge away from
sensitive internal circuitry.

How is this done, or what rules must be followed when implementing pad
structures to maximize our ESD protection? Different techniques are used for
input and output structures; these will be discussed in the following sections.

5.3.1 Output Buffers

The most complicated structure in the I/O region is the output buffer design. Here
we will encounter many rules that address ESD issues.

Output buffers are large drivers that send a signal off-chip. The widths of
these devices are in the range of 400 to 1,000mm. The size will depend on the fre-
quency, power, voltage levels, current drive and functionality, etc., of the buffer
itself. These large transistors must be laid out with great attention to detail,
because the area that they will require is highly sensitive and they can directly
affect chip size.

It is not logistically feasible to show all of the features of output buffer
design, but we will try to explain the most common problems and solutions.

Referring to Figure 5.18, we can explain a few of the output-buffer-specific
rules and guidelines:

(a) Every layer, whether metal, poly, or active, is shaped as 45-degree polygons
until the signal path changes layer through a contact or via. The reason is
that by avoiding corners we can avoid power surges and charge concentra-
tion around 90-degree turns.

(b) The distance between the contacts and the gate on the pad side is much
bigger than in the case of normal transistors. The reason is that in this way
we increase the resistance through active from the contact to gate poly and
reduce the voltage drop across the gate. This is done to increase the ESD pro-
tection characteristics of the transistor. In some cases, an additional implant
layer is used for these regions to increase the resistance of the active layer
for the same reason.

(c) The distance between the contacts and the gates on the power side could be
minimal or as great as in (b), depending on the process requirements.
Remember that power pins are also susceptible to ESD strikes; therefore, it
may make sense to design the same ESD protection structure on the power
side, too.

(d) As we can see from Figure 5.19, the current flows between source and drain
in various symmetrical electric field arcs. In the case of contacts in the middle
of the transistor, the field lines are equal and symmetrical.

When the contacts are placed at the end of the source/drain, the field lines
converge near the edge of the active. In this region the resistance across the gate
will be smaller. In case of an ESD strike, the current path will take the path of least
resistance and will tend to concentrate in these areas near the edge. “Punch-
through” to the substrate from the source and drain is more likely to
occur here.

118 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

To avoid the concentration of the current at the edge of the transistor, we can
increase the resistance of this region by enlarging the gate length. The amount we
increase the gate length should be targeted so that Ra1 + Rg1 + Ra11 = Ra2 + Rg2
+ Ra21, and the current from an ESD strike is evenly distributed along the width
of the transistor.

In reality the phenomenon is much more complicated, but for layout pur-
poses, we hope that this example of equivalent resistance is good enough.

Figure 5.19 shows two options for gate overlap termination, seen in the top
or bottom of the picture. The bottom example shows the case where a poly con-
nection to another layer is desired.

(e) Part of rule (d) includes other process-related rules specific to the edge of
the active layer. Each company that manufactures chips has a few special-
ists in ESD, so we advise you to talk to them about any requirements they
may have before completing your design.

(f) The width of the pad output connection is based on many considerations:
electromigration, resistance of the metal, impedance and inductance of the
package connection, and equal load between the output transistor fingers,
among other things. There is a lot of approximation and “art” in choosing
the right widths for the pad connection. In general, the process group
typically has many “proven or recommended” values for everything in the
I/O area.

PAD Cells 119

Figure 5.18 Output buffer end overlap
rule.

(g) The width of the power connection depends in general on the power con-
sumption of the output transistors and the issues in minimizing the power
supply resistance to these transistors. In our example, all connections are
shown in metal1. In today’s four- to six-metal-layer processes, power to
output buffers typically runs in metal3 or metal4.

A chip with 32 or 64 data buffers switching at the same time will have
large chip power requirements. Note that in general output buffers are sup-
plied with special or isolated power lines that are not connected to any other
transistors and are connected directly to independent power pads. The dif-
ferent power supplies may be interconnected either in the lead frame or
outside the package, but at the chip level, the output buffers are connected
to what is called VDDQ and VSSQ.

120 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.19 Output buffer transistor design.

(h) Gate length is another important thing to remember to address. Because of
the high voltage over this gate in general, the length is greater than normal.
Again, process people can help us here. They test various gate lengths at
various voltages and can recommend the proper gate length based on their
experiments and the performance, power, and ESD requirements of the chip
under design.

One last thing to note in conclusion. When working with special layout cells
such as the output buffer, it is advisable to build a checklist for that region and
have the cell audited in great detail.

5.3.2 Input Buffers

Input buffers accept signals from outside of the chip. In the specific case of an I/O
cell, many of the ESD protection structures and techniques are built into the output
transistors.

Nevertheless, input protection structures are required to protect the fragile
transistors that buffer the external signal for internal use. These devices are
designed and tested by the process people, so if a manufacturer is providing one
to you in a specific process, the device is silicon-proven already.

In many cases the input buffer design may start before the process is well
established so designing an input ESD protection device can be a tricky proposi-
tion. Figure 5.20 shows an example approach.

This solution is simply an adjustable resistor. Note that the resistor is
made of an active polygon with 45-degree corners [recall rule (a) in the output
buffer section]. Again, the active polygons are typically surrounded by a
special ESD implant layer that has the effect of increasing the quality of the
resistor.

The resistor is divided into three equal regions so that the resistance can
easily be adjusted at a later date. The adjustment is used in the prototype stage
only, and a fixed setting is chosen for the production design. During prototype
evaluation, the resistance can be adjusted using a focused ion beam (FIB) machine
that either adds or cuts the metal tracks. This has the added benefit of allowing
damaged parts of the resistor to be bypassed.

There are many considerations for the design of this resistor:

• Choose the width and length of the resistor based on ESD requirements and
performance characteristics.

• We highly recommend using more than one contact to connect a signal path
that has the possibility of carrying high currents.

• The width of the metal line should not be minimum and must meet some
kind of electromigration guideline.

• The dashed line between the metal contacts represents the main area of effec-
tive resistance. It not only demonstrates the area available that is effectively
resistive, but it should be a drawn layer that can be used to create devices
for LVS. LVSing these devices ensures that inadvertent changes to the cell
are not made.

PAD Cells 121

Figure 5.20 Input ESD protection resistor.

5.4 MEMORY DESIGN LEAF CELLS

Memory layout design is a real challenge to a newcomer. The design of memory-
related layout cells requires detailed knowledge of both the manufacturing tech-
nology and the circuit architecture and performance issues.

In most design styles, there are portions of memory such as SRAM, but the
most challenging is the dynamic random access memory, or DRAM. Figure 5.21
shows a floorplan of one implementation of a DRAM core.

First we have to see how a basic memory cell looks in a circuit (Figure 5.22).
This is because the manufacturing process is most complex, as shown in Figure
5.23.

The stacked capacitor DRAM memory cell has special layers that form the
memory cell capacitor. Any DRAM memory cell layout is generally very process
specific, and company confidential as well.

As Figure 5.23 shows, the DRAM memory cell is very high (tall) in terms of
the manufacturing process. Generally the node and plate poly layers are allowed
for use only in the memory cell area. The sense amplifiers therefore use at most
only two poly layers, and the topology of this area is significantly lower.
“Friendly” cells are used to interface the regular patterning of the memory cells

Memory Design Leaf Cells 123

Figure 5.21 DRAM architecture.

to the irregular patterns outside the memory cell matrix. It is an area where the
vertical topology can be gradually decreased for areas outside the array. Shield-
ing can also be provided by connecting layers in the friendly cells to quiet signals
such as power supplies.

As we explained in Chapter 4, “Layout Design Flows,” the design of the
memory has a very strong dependency on the layout. In fact, the layout of the
memory is done first and the schematic design follows. The reason is simple:
because the memory cell is repeated many, many times, it is crucial to minimize
its size. From this base we build the rest of the circuitry around the matrix of
memory cells. This leads us to the topic of pitch-limited layout.

Pitch-limited layout is a type of layout design where the cell under consid-
eration is restricted in one dimension and must interface to a “leader.” The leader
in most cases is a repeated cell like the memory cell of a memory array. All plan-
ning effort should be focused on minimizing the size in the unrestricted dimen-
sion.

Figure 5.24 shows an example of a memory core. In this case the WL (Word-
line) Driver, Wordline Strap, and Sense Amplifier cells are examples of pitch-
limited layout.

In analyzing the memory array shown in Figure 5.24, note that the pitch of
the cells is not the same as in the memory cell. For example, the wordline driver
cell has a pitch of two cells.

The pitch matching of cells is what makes this type of layout so challenging.
Whenever there is a significant mismatch in the circuitry to be implemented
between two cells, inevitably the follower cells are modified in many ways to meet
the leader cell’s requirements.

Generally a leader cell has been highly optimized to implement a special-
ized circuit with minimum design rules. The result is that the dimensions of the
cell are defined by a very specific number of rules.

Given these specific requirements, it is usually very unlikely that the pitch-
limited cells around the leader cell can meet the same pitch. The follower cells will
have different circuit requirements that will not match the critical design rules that
limit the leader cell.

In the case of memory cells, it is not uncommon for the design rules to be
different for the pitch-limited circuitry, since the topology is not as regular as that
of the memory cells. These differences make the layout more challenging.

124 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.22 DRAM cell schematic.

Figure 5.23 Cross-section of a typical stacked capacitor DRAM process.

Subsequent sections will discuss examples of pitch-limited layout cells to
illustrate the preceding concept. In all cases, it is the memory cell pitch that is lim-
iting one dimension of these cells.

5.4.1 Wordline Strap Cells

In terms of the concept of pitch-limited layout, the wordline strap cell differs in
topology from the leader cell by the addition of a contact between the poly and
metal wordlines. The memory cell is built on almost an absolute minimum metal
pitch without a contact, and it is at the strapping points that a contact is added.
Therefore, in the wordline direction there is very little extra space to put contacts.

Why is this cell needed? The wordline strap cell is an interesting cell to
understand because it is a purely layout solution to a circuit design problem, and
there are many ways to implement it.

The wordline driver typically has a gate load of 1,024 memory cells. This
gate load is a large capacitive load, and the resistance of the long line of gate poly
makes the delay of the wordline prohibitive. The resistivity of a metal line is typ-
ically three or four orders of magnitude less than that of gate poly, so strapping
the wordline regularly to reduce the wordline delay makes a lot of sense.

The frequency and placement of these straps should be determined primar-
ily based on the polysilicon resistivity, wordline performance requirements, area,
metal and contact resistance, symmetry between wordlines, and failure analysis
concerns. Figure 5.25 shows different strapping schemes and the pros and cons
of each.

126 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.24 Memory array pitch-limited cells.

Figure 5.25 Wordline strapping schemes.

These schemes assume that the frequency of the strapping has been deter-
mined. The frequency of strapping is mainly determined by wordline perfor-
mance requirements; however, the area impact of one strapping scheme may
result in alternatives being considered.

In terms of the layout of a wordline strap itself, we have to deal with the fact
that across the memory cells, the wordlines run in almost minimum pitch without
a contact, and the task is to put contacts in for every line.

The solution is to stagger the contact cells. By analyzing Figure 5.26, we can
understand how we can gain in the width of a bus connection.

Please check the CD-ROM for a color version of the wordline strap diagrams.

128 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.26 Examples of wordline strap layout.

5.4.2 Wordline Driver

In comparison to the wordline strap, the wordline driver is a much more com-
plicated cell. Instead of fitting a single contact in the pitch of a wordline, we need
to implement an entire driver stage! This might be a CMOS inverter or an alter-
native optimized specifically to minimize the area and performance requirements.

Describing the details of this process is beyond the scope of this book, but
the fundamental approaches to this type of layout have been covered.

As we determined the required stagger in the wordline strap case, we gen-
erally do the same for the driver, except for transistor with interconnect stagger-
ing. Determining the minimum pitch of a transistor in a wordline driver
environment has almost endless variations.

Here are some other things to consider or remember:

• Build the cells similarly to the datapath cell strategy, in that the neighbors
of the cell are itself. Consider the wordline direction as the datapath direc-
tion. Use the direction perpendicular to the wordline for control lines.

• If the manufacturing process is immature or a new circuit is being imple-
mented, most process engineers are willing to negotiate on some design rules
when confronted with pitch-limited layout design. Typically, significant area
penalties can be avoided, and there may be more tolerance in the design
rules because the drivers are regular patterns and are close to the memory
cell array where the processing is very well controlled.

• Be aware that DRAM memories have multiple power supplies such as a
super voltage VPP and a negative substrate voltage VBB, and these wells
and connections must be managed and planned for in addition to imple-
menting the required circuitry.

• The staggered circuitry inherently causes asymmetry in the performance of
the different wordline drivers. The goal should be to minimize these differ-
ences as well as model them in the verification of the final implementation.

As you can now imagine, the unrestricted dimension of a wordline driver
can grow very quickly as we try to stagger a driver cell in the pitch of memory
cells. Figure 5.27 shows a floorplan of a possible solution.

5.5 LASER FUSE CELLS

Considering the complexity of the different types of IC design: microprocessors,
graphic accelerators, ASICs, etc., there are literally millions of simulations that
have to be done before the chip is free of bugs (errors). The problem is that in
many cases the market is pressing the design team to release the design before all
the combinations of simulations are done. Another problem could be that by the
time the chip is designed, the manufacturing process has evolved so that the tran-
sistor characteristics are somehow altered. Designers are constantly trying to take
these issues into account. However, these precautions may not be enough to com-
pensate for poor results in silicon.

Laser Fuse Cells 129

Figure 5.27 Example wordline driver
floorplan.

DRAM memories are especially susceptible to process defects even though
the process is highly optimized for the core layout. The memory cells, wordline
drivers, sense amplifiers, and y-decoders are highly susceptible to failure for this
reason. Memory designers have extensively used the concept of redundant cir-
cuitry to repair faulty circuitry, thus increasing the overall yield of the manufac-
turing process.

Repairing DRAMs once they have been fabricated in a production envi-
ronment is typically done with laser programmable fuses. DRAM designs contain
spare wordline drivers, sense amplifiers, and y-decoders that can be enabled
once failures are detected and identified. A laser physically “blows” fuses that
will disconnect the failing portions of the chip and replace them with the spare
elements.

An alternative use of laser fuses is to provide circuit adjustment options for
manufactured ICs. Similar to bond options or metal options, laser fuses can be
used to configure the operation or performance of a chip.

Fuses are generally implemented in polysilicon or metal and must be
built in such a way that a laser repair machine can accurately blow them out. As
you can imagine, the fuses must be specially designed to isolate the impact on the
rest of the internal circuitry of a laser zapping the chip. These areas need to be
exposed at least temporarily, so there is a danger of contamination during this
time.

As in the design of pad cells, there are physical requirements to be satisfied.
For example, the fuses must be large enough for the laser repair machine to accu-
rately program them. A list of guidelines for fuse layout would include the
following:

• A design where the fuses are equally spaced is more compatible with the
laser repair machine. These machines typically move to a starting point and
move at a consistent speed; therefore, equal spacing of fuses is ideal.

• Similarly, minimizing the number of rows of fuses reduces the overhead of
moving the laser to new starting points. Fuses will be designed in running
rows placed as close as possible to each other, so movement of the laser head
without blowing them should be reduced to a minimum. See Figure 5.28 for
details.

• The number of fuses should be optimized so the repair time for each chip
can be minimized.

• Scrambling equations have to be very clearly documented so the testing
people can program the machine easily without errors.

• Special keys alignment keys for the laser repair machine are required. These
ensure that the laser is exactly aligned from the start and can be done auto-
matically. These keys usually must enclose the area where all fuses are
located.

Please refer to the CD-ROM for color layouts taken from a MOSAID design.
There is one example from a DRAM process and one from an ASIC process. Figure
5.29 shows another example.

Laser Fuse Cells 131

5.6 CHIP FINISHING CELLS

After all the devices related to the logical functionality of the chip are placed and
verified, there is still work to be done in implementing a class of cells to finish the
chip and ensure that the chip is compatible with the manufacturing process.

Examples of chip finishing cells include the following:

132 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.28 Fuse row and rules.

Figure 5.29 Laser fuse layout examples.

• Alignment keys for processing equipment
• Structures for process monitoring, dicing, and packaging
• Identification marks that may be big enough to see with the naked eye: logos,

designer initials, maskright and copyright markings, process identification,
layer identification (Figure 5.30)

In many cases, the manufacturer completes these tasks and the circuit
designer does not have to worry about them. At minimum, the layout designer
should receive all of this information ahead of time, to allocate space for the
required devices; otherwise, there is a danger that there will not be enough free
space on the chip to implement them.

It is important to note that after all the devices are placed and verified indi-
vidually, the final full chip verification should include all of these chip finishing
cells that will be included in mask making. It is easy to cause an electrical problem
by placing an identification mark in the wrong place.

5.6.1 Alignment Keys

There are many alignment keys in layout design, depending on the process and
manufacturing requirements. Figure 5.31 shows three examples of alignment keys.

The laser fuse alignment key is one that has to be instantiated at least three
times. Depending on the manufacturer, the key is made of various layers that can
be seen from the chip level. Metal and via layers are typical choices.

The NIKON keys are used to align the reticle when generating the masks on
the wafer. Every layer is placed in this key; therefore, these cells will never pass
layout verification because they will generate design rule errors and illegal
devices. NIKON keys need to be placed in all four corners of the chip and as close
to the corner as possible.

We have explained here only a few of the various keys related to fuses and
packaging. There are also many keys used by process people during prototyping
and robots during mass production to monitor the status of the manufacturing
process.

Chip Finishing Cells 133

Figure 5.30 Example layer identification mark.

There are process monitors to measure transistor performance, mask align-
ment, and layer resistivity and capacitance, as well as layer widths and spaces.

The placement of the process monitors is generally a function of the mask-
making process in that these monitors must be a part of every mask set. If a mask
set consists of only one chip, then the monitors need to be placed within the die
area. In the case where multiple chips coexist within a single mask set, the mon-
itors can be placed between die.

During manufacturing tests, bad die are identified with a black dot, and
these die will be rejected when the wafer is diced.

5.6.2 Scribe and Seal Ring

Chips are never manufactured one piece at the time. They are manufactured on a
large slice of silicon called a wafer. Once the wafer is manufactured, the wafer is
diced into individual ICs.

Narrow channels between individual ICs are mechanically weakened by
scratching them with a diamond tip. This channel is known as the “scribe”
channel. The wafer is cut along the scribe with a diamond blade, or burnt with
a laser. The wafer is then mechanically stressed and broken apart along the
channels, thereby separating the individual ICs. Figure 5.32 documents this
concept.

134 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.31 Examples of alignment keys.

Chip Finishing Cells 135

Figure 5.32 Scribe lines.

In order to protect the IC, a seal ring is required that is implemented around
the edge of the chip.

For some chips that must have substrate connected to a source other than
the normal VSS, there is another ring around the chip that is in many cases called
the “seal ring.” For example, many DRAMs incorporate the memory cell in iso-
lation from the normal logic. In such cases the NMOS devices are placed in a ret-
rograde well that is connected to a voltage source called VBB that is biased to a
negative voltage. To generate this voltage and others, the memory chips have
built-in charge pumps. If the external logic is connected to VBB and the entire
periphery must have substrate connected to VBB, a VBB seal ring is laid out

around the chip. This “seal ring” is placed outside the pad area but before the
scribe. The reason is that, placed outside the pad area, the seal ring will not impede
any other signals and/or circuits and can be connected directly to the VBB pump.
Figure 5.33 shows a seal ring example. Note the VBB pump position: it should be
as close as possible to the seal ring.

136 ADVANCED TECHNIQUES FOR SPECIALIZED BUILDING-BLOCK LAYOUT DESIGN

Figure 5.33 Seal ring.

In this chapter we will apply our layout design knowledge to different and spe-
cialized types of interconnect design. Interconnect is the wires and connections
between the building blocks or cells of the design.

There is an optimal order for implementing different classes of interconnect
as shown in the list that follows. What is the concept behind this order? The
answer is that we first implement those items that are the most difficult to insert
or modify late in the design process.

Another way of looking at it is that we first implement the items that take
up the most space or affect the largest areas on the die. Both answers are interre-
lated because the items that take the largest area to implement are those that are
the most difficult to change because they are so large.

Once this is understood, the order in which we implement the interconnect
portions of the design seems straightforward:

1. Power supplies: High connectivity and current requirements; connected to
almost every transistor.

2. Clocks: Typically the most important and pervasive dynamic signal on a
chip.

3. Busses: Group of signals that have to be routed together (i.e., data paths).
These signals together consume a lot of routing area and are usually critical
path signals.

4. Special signals: Non-standard-width signals or differential pairs, equal-length
signals, or signals that need shielding. Implement these next to ensure that
there is space to accommodate the special requirements. Special signals are
discussed in Chapter 7.

5. General routing: The remainder of the signals. These signals are what is
generally known as the interconnect signals on the chip discussed in
Section 6.3.

137

CHAPTER SIX

Advanced Techniques for
Building-Block Interconnect
Layout Design

6.1 POWER GRID

Power supply lines such as VDD and VSS are the most pervasive signals on the
chip. Consider that they connect to virtually every gate and block; they each have
many pins on the package; and they carry a lot of current and therefore must be
sized appropriately.

The need to manage power issues very carefully in IC design has grown over
time. More complex chips result in larger power grids. Voltage levels on chips
have been decreasing over time from 5 V to 3.3 V, but the operating frequencies
have increased. The net effect is that the power consumption of ICs today has
increased. There are also many more low-power applications with cell phones,
PDAs, and laptop computers. These applications really benefit from power man-
agement techniques. CAD automation for power management has been develop-
ing as well and this adds another area of expertise to study and master.

The logistics of implementing a power grid requires planning and should be
one of the first things to consider when floorplanning a design. Power lines need
to be planned to surround as well as flow through blocks. Adding power lines
after a design has been implemented is extremely painful because typically a large
and pervasive structure is needed for multiple power lines, and this is difficult to
insert once a design is complete.

Remember that the goal is to provide adequate power supply connections
that will meet electromigration requirements and resistance characteristics for all
circuitry on the chip. Wide, short lines will meet both of these goals; however,
large supply lines will inevitably consume more area. It is this trade-off that we
need to manage.

In conclusion, planning and estimating the requirements for power lines
should be an integral part of the layout design process.

6.1.1 Power Estimation

The first step is to calculate how much power each block will consume and there-
fore estimate the minimum size of the supply lines that will meet the block’s
requirements.

There are many ways to attack this problem, but one essential point is to
do it as early as possible to avoid major rework late in the project schedule.
The problem now becomes a lack of detailed information, because the design-
ers do not know exactly how many gates will be in their block and exactly at
which speeds they will be operating. Please realize that this will be an iterative
process.

One very good approach is to base our estimations on a previous design,
taking from it the architecture, power estimation numbers, and power routing.
Extrapolating the data for the new chip we have to review:

• Differences in process constants. For example, determine if the metals are
inherently more resistive or capacitive, or if they have significantly different
electromigration rules.

• Check process parameters for all vias and contacts.

138 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

• Number of metals available, especially for the power routing. You may be
able to take advantage of more or suffer with less.

• Speed of each block. Different blocks may operate at different clock fre-
quencies and this will affect power.

• Size (in terms of number of gates) of each individual block.
• Possibility of multiple power branches, based on the noise introduced by

high-speed blocks. It may be necessary to isolate noisy blocks by having sep-
arate power supply lines.

• Number and position of power pads to determine overall routability and
resistance paths from the pads to the different blocks.

6.1.2 Power Supply Routing

Assuming we have been able to gather enough information from the estimation
stage, it is time to plan and implement the power supply tracks to a chip floorplan.

There are many approaches to address this problem but we will describe
only two basic approaches:

1. The “root” approach: In this case the power line starts as wide as possible, and
as the power is connected to various blocks, the power supply lines become
thinner, similar to the roots of a tree.
• The width of the supply lines is based on the electromigration factor and

is tapered in proportion to the quantity of current being consumed along
each branch of the root.

• This approach is used when the resistance of the supply lines is not an
issue for any block along the chain.

• Historically, most power routers routed power using this approach.
2. The “resistance” approach: In this case the power network may look much as

it does in the root approach, but the tapering is based on a calculated resis-
tance from the supplying pad to the specific block in the chain. The amount
of resistance that is tolerable is determined by an acceptable voltage drop
through the power supply line as calculated by Ohm’s law.
• The width of the supply lines is based on the resistivity of the metal used

for routing the supply.
• Number of vias is very carefully calculated to help reduce the total resis-

tance or to ensure that via resistance is not a limiting factor.
• The choice of metal should be based on lower resistivity values
• Routed metal should be implemented such that changing layers are

M1 » M2 » M1 instead of M1 » M2 » M3 » M2 » M1.
• In some specialized and fast chips, there are metal layers dedicated to

power supply level only in order to reduce power supply resistance and
ensure a consistent power supply level to all parts of the die.

Figure 6.1 shows the differences between these two basic styles. Most chips
will use a combination of these two methodologies.

Power Grid 139

6.1.3 Strapping and Tapering

When we talk about power lines and chip layout techniques, we need to apply
the concept of strapping. The idea was presented in Chapter 5 when we discussed
the wordline strap cell.

The idea of a “power grid” consists of supplies routed and strapped together
to form a mesh of signals. Section 6.1.2 outlined the approach of routing a power
supply signal, and this section deals with the design of completing the power grid
with the appropriate amount of straps and tapers. As in power routing, the
amount of strapping can be determined based on electromigration or resistance,
but also depends on the overall style and complexity of the design.

For example, in a standard cell block design there are specific tools that
analyze power consumption and power supply resistance within a row of cells
and automatically strap the power between rows to generate a solid power grid.

Certain gate array architectures have a built-in power grid with vertical
strapping of power at predefined intervals.

Table 6.1 shows two examples of equivalent power grids under different con-
ditions. Various factors can be used to determine these numbers; examples of

140 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.1 Power routing styles.

those that should be used are power consumption, clock rate, average fanout, duty
cycle, electromigration, and resistance.

To more fully understand Table 6.1, note the following:

• There is a direct relationship between the maximum strap spacing and the
M1 width inside the cells. The relationship is defined by the resistance of the
power supply line and its connection to the power supply grid. A connec-
tion to the power grid is assumed to be robust in this case.

• These numbers show an example for a 0.25mm process and demonstrate the
relationships between the different supply line widths.

Figure 6.2 graphically shows the difference in the two cases outlined in
Table 6.1.

As we can see from Figure 6.2, if greater routing porosity over the cells is
required, this can be achieved by paying the penalty of cell height in order to
increase the required M1 power supply lines.

6.2 CLOCK SIGNALS

Typically in every design most blocks are synchronized to operate from one
central global clock signal. The global clock signal usually is second only to the
power supply signals in terms of its need to be routed all over the chip.

For this reason, it is important and efficient to plan for the clock signal after
the power supply routing and before routing the rest. Once again, inserting a clock
signal into a completed design is difficult and should be avoided.

Fundamentally, the goal of implementing a clock signal is to distribute a
single signal around a large area with minimum delay. The clock signal has a large
capacitive load; therefore, in order to minimize the delay, many different
approaches are used.

The global clock is typically generated either directly from the pad or from
an internal clock generator cell. Considerations for the layout design of the clock
generator cell include the following:

Clock Signals 141

TABLE 6.1 Example Power Grid Table

Strap Height in Rows Case 1 Case 2

M1 Width Inside — 2mm 4mm
Cells

Maximum Strap — 120mm 240mm
Spacing

Vertical M2 Strap 4 6.0mm 12.0mm
Width

• Placement: Ideally placed near the external clock pad as well as power supply
pads. The clock generator itself is a large consumer of power; therefore, it is
a source of power-supply noise. This noise should be isolated from the rest
of the chip by connecting the generator to independent or power pads that
are nearby.

• Buffer stage design: As discussed in Chapter 5, the clock buffer cells can be
extremely large (thousands of microns in transistor width). Each stage in the
buffer chain should be designed to minimize the area and power consump-
tion. The transistors are laid out using special methodologies for reduced
power connection resistance, minimum input capacitance on the gates and
most importantly minimum output capacitance.

6.2.1 Single Clock Signal

One option in implementing a global clock signal is to run a single interconnect
line that originates from the clock generator.

In this case techniques similar to the ones presented in Section 6.1.2 should
be used. A routing approach such as the “root” or “resistance” approach is valid.

Capacitance effects are more important in this case because the clock signal
is a dynamic signal. The choice of routing layer should be made to reduce both
the resistance and capacitance of the line.

Shielding of the clock line is useful to isolate other signals from the clock
signal and to reduce the coupling capacitance of the clock signal.

142 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.2 Equivalent power strapping examples.

6.2.2 Clock Tree

Another very common type of clock implementation scheme is called a clock tree.
It is most common in an ASIC style of design, as the automation of generating a
clock tree fits easily into the ASIC design flow.

A clock tree is a network of buffers inserted into the clock signal path in such
a way that the overall delay from the generator to all destinations is minimized.
Instead of one electrical signal path being optimized, the path is broken up and
strategically buffered to minimize the delay. The resulting network resembles a
tree in that the central clock signal branches throughout the chip using these
buffers and ends up with the clock signal reaching all of the leaf cells.

Typically, the steps in implementing a clock tree are as follows:

1. An initial placement of the logic cells is completed. This ensures that the
timing performance of the core logic is met.

2. The clock tree is inserted, taking into account the location of the logic cells.
The buffer cells are placed or inserted in strategic places to minimize the
clock delay and routing.

3. The routing is completed for all signals and optimized to meet all timing
goals.

Automatic tools in an ASIC flow are available; however, the same procedure
should be used in any design.

In principle, to design a clock tree a designer should consider the following:

• First define/understand the scope or extent of the clock tree. This would
include items such as the total load, routing area, distance the clock has to
travel, available routing layers, and routing restrictions.

• Define the constraints that the clock tree must satisfy, including minimum
and maximum insertion delay and maximum skew.

• Define the way the clock tree topology will be generated, including number
of levels or buffer stages in the tree and the type of buffers/inverters and
fanout limits at each level. The topology can be defined manually by the
designer, or automatically by a clock tree generator tool.

Figure 6.3 shows two examples of clock trees.

6.3 INTERCONNECT ROUTING

After we have solved power routing and clock tree issues, we can attack the
general routing requirements. Special signal requirements will be discussed in
Chapter 7. Let’s review the proper order for routing signals:

1. Power supplies
2. Clock signals
3. Buses
4. Special signals—to be discussed in Chapter 7
5. General routing—the topic of this section

Interconnect Routing 143

144 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.3 Clock tree examples.

6.3.1 Routing Plan

The goal of a routing plan is to determine the overall complexity of the routing
to be implemented, identify areas on the die specifically for routing only (these
areas are known as routing channels), and address potential bottlenecks or prob-
lems in achieving a completely routed design. In addition, the impact of the
routing on the final chip area can be estimated. For example, dedicated routing
channels can be estimated and included in a chip floorplan.

Here is a list of steps to achieve a viable routing plan.

1. Signal Estimate. Without a final schematic or netlist, it is impossible to iden-
tify exactly the number of signals that will be required to connect all of the blocks.
No matter how good the plan is, it is still a forecast of the future and will be wrong.
Please understand, however, that any plan, no matter how sketchy, is infinitely
better than no plan at all.

Without a finished circuit design, we can still estimate the total number of
signals. This total is a good guideline for planning purposes, and if we group
or relate the signals to different blocks, we can start to get a feel for areas of
congestion.

A signal estimate can be based on the following:

• Asking experienced layout designers who have previously planned similar
style of chips to give an estimate based on their experience. Their knowl-
edge is invaluable in areas of congestion, blocks that have a low or high
signal count by their nature, or areas that were significant problems in
the past.

• A size estimate and preliminary pin list of each of the major blocks in the
design.

• Signal source and destination—from where to where they have to be routed.
A simple schematic diagram using blocks drawn only for the purpose of esti-
mation (not 100 percent correct or complete) done by the architect of the chip
can be very helpful. This diagram would show a preliminary location for all
of the major blocks and reflect the size estimate and aspect ratio for each of
them. Figure 6.4 shows an example floorplan.

• List of major busses and special signals.
• Pad list and their positions around the die.

Using all of this information, we can estimate: the location of major chan-
nels and the size of the routing channels in terms of the number of signals per
channel.

If routing is allowed over the blocks, then we need to take this into consid-
eration when defining the size and location of the channels. In this case it is useful
to do a hierarchical signal plan and consider the routability of each of the blocks.

2. Establish Routing Direction. The routing direction for each of the layers
needs to be decided on a channel-by-channel basis. The floorplan is a good way
to visualize the optimal choice of routing direction.

Interconnect Routing 145

Different scenarios for layers used in each channel should also be
considered.

These issues will be explored further in the next section.

3. Contingency Plan. Finally, features and overhead to handle major changes to
the design should be built into the plan. For example, spare lines and extra space
should be built into the plan. The amount of overhead to deal with major changes
could be determined base on the following factors:

• The novelty of the design. Newer designs will have greater uncertainty in
the estimates of block sizes, signal count, and pad positions.

• The stability of the process. The routing layer design rules may change and
become larger or smaller, and this would significantly affect the routing plan.

• A guideline of 10 percent is a good rule of thumb for designs of average com-
plexity and novelty.

4. Monitor and Update. As the circuit design matures and more details on the
blocks and the overall chip are available, the routing plan should be updated.

It is the process of addressing all of the foregoing concerns that results in a
practical routing plan. Issues in regard to die size, congestion, and routability will

146 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.4 Example of chip floorplan showing signal blocks and channels.

be exposed and dealt with at an early stage. Once the circuit design is finalized,
the routing plan will make the final implementation of the design significantly
more straightforward and less error prone.

6.3.2 Channel Ordering and Routing Direction

Now that we have established routing channels in the routing plan, we can start
to examine each of the individual channels in more detail. Each channel has been
identified as containing a certain number of signals.

What are our concerns? Essentially, the goal of planning the channels is to
prioritize and order the signals in the bus to optimize the following criteria:

• Circuit performance requirements: Critical path signals, signal resistance, and
capacitance

• Channel area: Channels can be optimized to avoid jogging and unnecessary
layer changes, especially as signals switch from one channel to another

In fact, if channel area is optimized, in most cases the circuit performance is
optimized at the same time.

A simple procedure for manually implementing and optimizing a channel
is as follows:

1. Add an unnamed path for each signal in the channel.
2. If there are critical signals that are known to be important, label them first

and determine their place in the channel.
3. Label and place signals that traverse the full length of the channel.
4. Label and place signals that start or end in the channel.
5. If it is known that a signal simply goes around a row of logic to an adja-

cent channel, then consider adding feed-throughs to accomplish this. This
is discussed in more detail later in Section 6.3.3.

6. Use the remaining space to label and place local signals. Local signals start
and end in the same channel.

7. Note that the placement of cells may increase the availability of local inter-
connect lines as shown in Figure 6.5. Refer to Figure 6.6 for an example of
placement performance reflected in channel size.

8. Leave spare placeholders for lines in the channel to anticipate new and
unknown requirements.

9. Reorder the signals if necessary to optimize or minimize the number of vias
or layer changes as the signals round a corner from one channel to the next.
Figure 6.7 shows an ideal channel order that minimizes the overhead of
signals changing channels. Not all the automatic routers have this feature!

10. Make a plot of the completed design to identify more changes that will opti-
mize the design.

As we have mentioned, the routing layers within a channel should be deter-
mined separately for each channel. It is not necessary to define the routing layer

Interconnect Routing 147

direction for the entire chip and to enforce a set direction religiously. As we will
see, channel area can be optimized by a judicious choice of routing layer for each
channel, depending on the routing requirements of the signals.

Standard routing directions for each layer should be maintained for power
supplies, special signals, and wide buses. These classes of signals are global and
thus benefit from standardized layer assignments.

148 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.5 Local routing line sharing.

Figure 6.6 Changing cell placement to optimize routing channel.

Key factors that determine the optimal routing layer within a channel are as
follows:

• Intelligent ordering of signals for those that turn a corner as demonstrated
in Figure 6.7.

• The pin layer for the cells will determine the layer that connects the signals
in the channel to the cells. Note that the reverse is also important to consider,
in that if a specific channel routing layer results in a smaller or more efficient
layout, then the cells should be designed to take advantage of this fact.

• In general, signals to be routed parallel to a row of cells use the same layer
that is routed in the same direction within the cells.

• Local signals that simply cross a channel offer a variety of choices of routing
layer. Figure 6.8 illustrates three examples of this situation. We can observe
that the signals in Block B are in the same order but at different locations
compared to the ones in Block C. This is a typical case of only one layer in
all directions. Such an approach here will provide the best size and symme-
try for the bus in question.

Note the following from Figure 6.8:

• A single-layer route is only possible if the ordering of signals crossing the
channel is maintained.

• Channels 2 and 3 do not suffer from the need for vias, as shown in
channel 1.

Interconnect Routing 149

Figure 6.7 Example of channel ordering.

• Routing is blocked in both routing directions in channel 1. Vertical routing
is free and clear in both channels 2 and 3.

• Channel 3 is implemented using only one layer, but in fact the channel is the
same size as channel 1 as shown by the ghost routings. This implementation
of the 45-degree signals does not result in area savings. Also, 45-degree
layout is more time-consuming to generate.

• Channel 2 is the best layout of the three: the layout is symmetrical, there are
no vertical routing blockages, and the channel is smaller than the others.

6.3.3 Using Feed-throughs

As the name implies, a feed-through is a routing track that simply passes through
a structure without making any electrical connection within that structure. This
concept was introduced in Chapter 5 as a method of passing a signal through a
row of standard cells.

Let us now consider using feed-throughs in the case where we have blocks
and channels. The floorplan is crucial and is an invaluable representation of the
design to allow us to analyze and optimize signal routing. This optimization can
occur even before we have completed the internal layout of blocks, and it is at this
time that the routing analysis is most valuable. Routing requirements can be antic-
ipated and built into the block design. The advantages of floorplanning cannot be
underestimated!

Consider the scenario shown in Figure 6.9, where there are a few signals
from block A to block B that are being routed around block C. There are many

150 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.8 Cross-channel routing examples.

ways to resolve this problem, so let’s assume that blocks A and B are complete
and cannot be changed. Block C is still under development and can be altered.

The right side of Figure 6.9 shows the effect of adding feed-throughs to
block C.

• Block C is longer in this example to accommodate the extra signals. This
implies that there were not enough routing resources in this direction and
on the desired layer to accommodate these signals.

• The signals from A to B are now much shorter.
• The distance between block A and block B is less because the channels to

block C have been significantly reduced.
• Block C becomes higher because we added signal on the height dimension—

or it may happen that there were enough routing resources to cope with
additional signals.

• The ports in blocks A, B, and C must be aligned.
• The verification of block C will need to include the results for the additional

signals. Labeling of these signals is a good idea to ensure that these will be
treated as feed-throughs and will not inadvertently be used in another
manner.

In an environment where many changes and additions are anticipated, there
are layout design approaches that will be friendlier to feed-through after the

Interconnect Routing 151

Figure 6.9 Feed-through example.

layout is complete. These techniques can also be used if lower level blocks are
being implemented without floorplan information.

Anticipate additional routing or incorporate spare routing resources into the
block design. Note the following:

• This approach may affect the block porosity and introduce overhead to the
cell area. At this point it is not known if the routing space will be used!

• Identify the unused routing resources appropriately so that they will not be
forgotten.

• Identify areas that are unavailable for routing to avoid mistakes.
• Ensure that the block performance is not affected by the added para-

sitic capacitance of the extra polygons. Similarly, if the routing resources
are not used, the block performance should be verified as functioning
properly.

• The simplest solution to most of these issues is to include the routing
resource as part of the cell and manage the overhead of verifying the block
with the extra lines. The characteristics of the block are most predictable in
this case.

Another solution is to design the block in sections that can be readily
split apart to accommodate extra signals. Figure 6.10 shows how this might be
accomplished.

152 ADVANCED TECHNIQUES FOR BUILDING-BLOCK INTERCONNECT LAYOUT DESIGN

Figure 6.10 Block splitting for feed-throughs.

Note that by using this approach, we can add circuitry as well as routing
resources.

Remember that the last two approaches are rarely required if floorplanning
is used! Also, these techniques are valid for layout of small and large cells as well
as blocks.

Interconnect Routing 153

In this chapter we will discuss issues that have a direct impact on the electrical
performance of the circuit design that is to be implemented in layout. We will
cover the following:

• Resistance and resistors
• Capacitance and capacitors
• Symmetry and balancing
• More advanced layout techniques

7.1 RESISTANCE

The convention in IC design for resistance calculation is to characterize each con-
ductor layer in terms of resistance per “square.” One “square” is defined as the
condition when the length of the conductor equals the width. The formula for
calculating the resistance of a conductor is

where r is the resistivity of the layer measured in W/�, l is the length, and w is
the width of the conductor.

From this formula it should be apparent that there are two ways to mini-
mize the resistance of a polygon (r is a characteristic of the manufacturing process
and is not within the layout designer’s control):

1. Reduce the length of the polygon
2. Increase the width of the polygon

A review of the calculation of equivalent resistance for resistors connected
in series and in parallel is important to understand when good design practices
reduce resistance for various layout design styles.

R l w= ¥r

154

CHAPTER SEVEN

Layout Design Techniques to
Address Electrical Characteristics

Figure 7.1 shows different examples of resistors connected in different ways
and a calculation of the total resistance between the two nodes, A and B. It
is important to note that resistors in series are accumulative and resistors in
parallel reduce the effective resistance.

7.1.1 Minimizing Resistance in Transistor Design

We have already discussed resistance in terms of routing in Chapter 6. Now, let’s
consider the resistive effects in transistor-level layout design.

Remember that a transistor in CMOS is made of source (active), gate (poly-
silicon), and drain (active) regions, but to make it work we need signals connected
to all three terminals. Thus, contacts to the source and drain are important to
consider.

Figure 7.2 shows a fairly complex resistance model of the transistor with dif-
ferent resistors representing the many different current paths across the width of
the transistor. Every current arc that is shown in the polygon layout is represented
in the resistance model. The legend gives approximate numbers for each type of
resistance and demonstrates the relative values of each of the resistors in the
circuit. These numbers would be representative of a 0.25-mm process.

It is interesting to note that the active resistance is dominant and is 1,000¥
more resistive than metal1 and more than 10¥ more resistive than a metal1 contact.
These numbers give us a good starting point for minimizing the overall resistance
from the two metal lines: try to minimize the active resistance!

Figure 7.3 shows the effect of different contacting schemes for a transistor
design to illustrate this concept.

Table 7.1 compares three cases shown in Figure 7.3.

Resistance 155

Figure 7.1 Examples of equivalent resistance.

All of these examples consider the contact resistance in the analysis. Remem-
ber that the contacts are three-dimensional columns of metal or poly, and they add
to the resistance of paths. The number of contacts in any connection is important
to consider, because for each contact the resistance is reduced by introducing
another parallel current path from the conductor. This is especially important for
high current carrying signals such as clocks and power supplies.

The choice of layout style or number of contacts for transistor should be
made with the application and the priority of the characteristics in mind.

For example, analog, high-speed, RF, and DRAM circuits are only a few
applications that rate performance and reliability highly, so fully contacted tran-
sistors are the norm. If routability is a key issue, then using the transistor layout
shown in case 2 may be appropriate. In certain places, the higher resistance exhib-
ited in case 2 may not have an adverse effect; therefore, the benefit of routability
makes this option attractive.

We would like to remind you that the calculated values should be used rel-
ative to each other, and they serve to help us evaluate the differences between
these types of connections.

The transistor shown in Figure 7.4 is an extreme example that demonstrates
a solution to a layout design problem where performance is sacrificed for routabil-
ity. There are cases where this layout is appropriate. Certain processes will have
significantly different characteristics in terms of the resistivity of the layers. For
example, there are processes where the active layer is metallized and has a much
lower (1/10) resisitivity than our example. In this case the performance of the tran-
sistor may be acceptable and we can take advantage of the routing channels to
optimize the cell layout. These processes are more costly, but we should always
be on the lookout to take advantage of special characteristics for layout design.

156 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.2 Basic transistor resistance model.

Resistance 157

Figure 7.3 Examples of transistor contacting schemes.

TABLE 7.1 Comparison of Equivalent Transistor Resistance

Case Total Equivalent Resistance Comment

Case 1 56.1W Basic layout

Case 2 105.1W Higher resistance due to active layer routing to contacts
Metal1 routing channel between contacts
Trade-off between routing and performance

Case 3 24.7W Lowest resistance configuration
No routing in Metal1 possible
Highest reliability as there are multiple contacts

Case 4 450W Highest resistance configuration
Four routing channels in Metal1 possible
Smallest horizontal area

7.1.2 Designing Resistors

Controlling resistance is an important concept for a layout designer to understand.
In some cases an intentional resistor may be needed.

Resistors are required for the following:

• Voltage dividers
• Delay elements
• Dynamic logic loads
• SRAM cells
• ESD input protection structures
• Many analog circuit applications

In all of these cases we want a resistor and an accurate one as well.
The first step in implementing any resistor is to choose the appropriate layer.

An appropriate choice of layer is possible by considering the following factors:

• Resistivity of the different layers
• Variation in resistivity under different process and environmental conditions

(temperature)
• Variation in layer width under different process conditions
• Resulting area of resistor given chosen layer

In most cases gate poly is chosen as the resistor material, as its resistance is
relatively high, the resistivity and width are tightly controlled, and the resulting
area is not prohibitive. Some processes have a special highly resistive layer that
is ideal for this application.

Resistance is calculated using squares, so to implement a specific resistance
value a constant width is selected and the length of the polygon can be calculated
by rearranging the formula

R l w= ¥r

158 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.4 Transistor layout case 4.

Wider polygons result in a longer path for a specific resistance, so the width
should be chosen that produces a resistor of reasonable size. Minimum design rule
polygons are usually avoided because the variation in width is most acute under
this condition. It is also a good idea to standardize on a resistor polygon width
for an entire chip so that all resistors will vary equally over the die. Remember to
consider the effect of contact resistance!

Figure 7.5 shows examples of typical poly resistors. They are made of poly
gate, connected to signals through contacts, and defined by a special resistor layer.
This layer is used only for documentation and LVS purposes. It identifies the
region where a resistor is recognized to establish the device for layout verification.
CAD tools require that the contact layer does not overlay this resistor
identification layer.

Note that resistors are prime candidates for metal options, as they are typi-
cally used in analog circuits that frequently require fine-tuning.

We can see from Figure 7.6 that these are more area efficient solutions, as
they sometimes have to fit in the areas of transistors without using too much
space. The disadvantage of such resistors is that the resistance is not easily calcu-
lated because of the corners in the poly layer. As a best approximation, we can
use the centerline of the poly divided by the width to calculate the total resistance
of the line.

In analog or RF layout designs, we may have to shield the resistor fingers
from itself to avoid coupling. Figure 7.7 shows an example of such a resistor.

In some very sensitive circuits when there are two resistors connected to
signals that are switching on opposite clock edges, we can balance the coupling
effects between the two resistors to ensure that they both operate in a similar
manner. These are referred to as balanced interlaced resistors. An example is
shown in Figure 7.8.

7.2 CAPACITANCE

The definition and sources of capacitance are important concepts for a layout
designer to understand. In some special cases the circuit schematic requires
capacitance, but in general the emphasis in optimizing a layout design is to min-
imize the parasitic capacitance inherent to the different layout structures.

Capacitance 159

Figure 7.5 Typical resistors.

Figure 7.6 Efficient resistor styles.

Capacitance affects several different characteristics of a design. When two
equivalent designs are compared, the design with the higher capacitance will have
a resulting increase in all of the following:

• Signal delay
• Power consumption
• Coupling effects to and from neighboring structures

A review of the definition of capacitance will give us an unders-
tanding which good design practices reduce capacitance for various layout
design styles.

The general formula for the calculation of the capacitance of a conductor is

where A is the surface area of the specific conductor, d is the physical distance
between the conductor and the reference node, and e is a constant representing
the characteristics of the insulating layer between the conductor and the reference
node. Figure 7.9 shows the theoretical definition of a capacitor.

C A d= e¥

Capacitance 161

Figure 7.7 Shielded resistor.

From this formula it should be apparent that there are two ways to mini-
mize the capacitance of a signal (e is a characteristic of the manufacturing process
and is not within the layout designer’s control):

1. Reduce the area of the capacitor—this means reducing the overlapping
regions of the two “plates” or polygons

2. Increase the distance between the plates of the capacitor

162 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.8 Balanced interlaced resistor.

Figure 7.9 Capacitor definition.

The effect of a capacitance C on a signal is to limit the rate of change in
voltage (dV/dt) on the line by requiring more charge or current I according to the
formula

It is from this relationship that we derive the delay formula tdelay = RC.

7.2.1 Designing Capacitors

As we mentioned, there are certain cases where a capacitor is an integral part of
the circuit design. Examples include the following:

• DRAM memory cell
• Power supply decoupling capacitors
• Power supply generator reservoir capacitors
• Delay chains
• Specialized analog circuits such as switched capacitor applications

How can capacitors be predictably designed?
As described in Chapter 5, a DRAM memory cell capacitor is simply

the overlap of two layers that has been optimized to be very close together. In
this case the d distance term has been minimized to increase the capacitance
value.

Within a standard CMOS process, the choice of layers to implement an effec-
tive capacitor is really limited to one case. By design, a transistor is manufactured
to have a very small distance d between the gate poly and active layers. The source
and drain nodes connect to one terminal of the capacitor and the gate node is
the other.

Figure 7.10 illustrates two implementations of an NMOS transistor-based
capacitor. One is in the substrate and the other has been drawn within an N-well.
The N-well transistor results in a higher effective capacitance because of the lower
threshold upon which the transistor starts to operate.

Power supply decoupling capacitors may be the most common use of inten-
tional capacitors, so a few comments about them are warranted. These capacitors
are connected between two power supply nodes (such as VDD and VSS) to
“decouple” the two nodes and provide dynamic charge to what can be very noisy
signals. This decoupling serves to stabilize the power supply voltage and increases
the reliability of the chip operation.

In order to provide a measurable amount of charge, these capacitors need to
be pervasive on the chip, and the effective size of the total capacitance can be in
the nF or nanoFarad range. Some planning is required to achieve an effective
implementation; however, power supply lines are generally readily available in
many places, so it is not too difficult to find space once the regular circuitry has
been implemented. It is also recommended to isolate these large transistors with
guard rings to avoid noise coupling to unwanted circuitry.

dV dt I C=

Capacitance 163

7.2.2 Minimizing Parasitic Transistor Capacitance

There are many parasitic capacitances inherent in a transistor, as shown in
Figure 7.11.

Figure 7.12 shows a few examples of transistors designs that significantly
reduce the capacitance of the drain CDB. Comments for the figure are given in
Table 7.2.

In general, if minimum design rules are used, then the transistor capacitance
can be optimized using the techniques shown in Figure 7.12.

7.2.3 Interconnect Capacitance

Parasitic interconnect capacitance is impossible to avoid, and in most cases it is
an effect that must be dealt with by compensating for the load by proper circuit
design.

It is mainly for the modeling and calculation of the interconnect capacitance
for every node in a design that extraction tools are used. This section will present
the concepts behind the sources of capacitance that the extraction tools try to
model and calculate.

Consider that a chip is manufactured from many layers placed on top of one
another. The bodies near a particular polygon are numerous, and each pair of near
bodies creates a parasitic capacitor. These days it is recognized that 70 to 80 percent
of the total capacitance of any particular node is due to the parasitic capacitance
of the interconnect routing. The shift toward dealing with interconnect loading
rather than transistor loading has come about as a result of increased die sizes,
increased number of interconnect layers, and smaller line pitches.

164 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.10 Transistor capacitors.

Once an understanding of the source of interconnect capacitance is reached,
then it is a matter of addressing this issue using advanced techniques. Figure 7.13
gives a three-dimensional view of various scenarios to illustrate the different
sources of interconnect capacitance.

One presentation on the CD-ROM shows an example of extraction that is
trying to bring the real data back to the circuit design.

The capacitance of any signal is fundamentally composed of three types of
elements, as shown in the Single Line Capacitance Model portion of Figure 7.13:

Capacitance 165

Figure 7.11 Transistor capacitance model.

Figure 7.12 Minimum capacitance transistors.

166 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

TABLE 7.2 Comments for Figure 7.12

Example Comments

Simple • Standard layout

Two-finger • CDB at least halved when compared to standard layout

• Maximize use of even-fingered transistors

L-shape • Small drain, good for devices around the size of a single
contact

C-shape • Small drain and ability to easily connect both ends of
the gate

• Can be used in datapath or bus interface applications

• Absolute minimum drain capacitance good for datapath
applications

O-shape • Basis for “chocolate” or “waffle” transistors; refer to
CD-ROM for full example

• For very large transistors, electromigration rules will
limit its use

Flower • Extension of L-shape for four output nodes

1. Parallel-plate capacitance: This is the simple capacitance model that was
described in the beginning of Section 7.2.

2. Fringe capacitance: This capacitance is caused by the electric field induced as
current flows down the line.

The modeling and calculation of this capacitance is well beyond the scope
of this book but it is important to know that the fringe capacitance can be a very
high proportion (~50 percent) of the total interconnect capacitance!

Suffice it to say that the fringe capacitance is dependent on the distance d of
the signal from the body in question.

It is only recently that extraction tools have been developed to address this
issue, as they historically have been limited to parallel plate capacitance type
of models.

3. Coupling capacitance: Coupling capacitance is defined as a capacitance from
one signal node to another.

A simplistic model to visualize the coupling capacitance would be to use the
parallel-plate and fringe capacitance calculation between the signals in question.

The Coupling Capacitances portion of Figure 7.13 tries to illustrate this point.
Near-body capacitance can be to other signals or to a variety of structures such as
power supply nodes and the substrate, as shown in the figure.

Accurate modeling of coupling capacitance is limited to very specific
applications simply because the tools and methodologies behind simulating and

extracting the size of networks that would take into account all near-body capac-
itance are not practical.

It is simplistic to assume that the capacitance of a node is always relative to
ground. Considering coupling capacitance is crucial in the scenario where the two
signals on either side of the capacitor are changing voltage in the opposite direc-
tion at the same time. This scenario is shown in Figure 7.14.

In this case the effect of the coupling capacitance to the delay of the signal
is double that of the case where the reference node is a static signal. The driver of
the line is trying to drive the signal one way and is fighting the parasitic capaci-
tance of the line. As the reference node voltage of the capacitor is changing in the
opposite direction, it couples into the line and the effect is to delay the signal
even more.

Conversely, if two signals are being driven in the same direction, then they
help each other.

Now that we understand the sources of parasitic capacitance, what are some
techniques to reduce the different capacitive loads on a given signal?

Capacitance 167

Figure 7.13 Interconnect routing capacitance examples.

• Reduce the area of the parallel plates.
What does this mean in a layout sense? Either shortening the length of

the signal or minimizing the width, or both.
It is important to note that in the case where a signal is simply reduced

in width by 50 percent, the capacitance is reduced only by 25 percent because
the parallel plate portion of the line is 50 percent of the total and, without
changing the length, the fringe term remains constant.

In contrast, shortening the length of a given signal by 50 percent will
result in 50 percent capacitance savings because both the parallel plate and
fringe terms are affected equally.

• Reduce the distance d or dielectric distance between the parallel plates.
Again, what does this mean in a layout sense? Whenever possible,

route critical signal lines in empty channels and minimize the amount of area
that the signal is routed over or under other layers.

As an example, assuming an empty routing channel was used, using
the topmost routing layer would have the least capacitance relative to the
substrate terminal when compared to other layers.

An implementation using the top routing layer and appearing as close
to the Single Line Capacitance model shown in Figure 7.13 is the ideal to
shoot for.

• Increase the spacing between signals on the same layer to address the cou-
pling capacitance between them. We call this signal spreading, and it is
exceptionally useful in areas where the routing congestion is low. Please
review the Sagantec presentation on the CD-ROM.

• In the case of differential signals, implement a “twisting” scheme that
reduces the coupling effects of the adjacent lines by ensuring that any cou-
pling affects both signals of the pair equally. Figure 7.15 demonstrates this
concept for signal XX and introduces the concept of shielding.

168 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.14 Coupling capacitance effect.

• Shield critical signals with a signal that remains at a static level. This
technique eliminates the possibility of the worse-case coupling scenario
illustrated in Figure 7.14.

The concept of shielding signals was imported from the printed circuit board
(PCB), where some signals that are supposed to provide the circuits with a refer-
ence voltage are isolated from interference to a greater extent than other signals.
One example of shielding is shown in Figure 7.15, but there are more elaborate
techniques. A signal can be shielded on both sides, as shown in Figure 7.16. In this
case we are isolating the signal from influences on the same layer.

Figures 7.17 and 7.18 show examples of shielding of greater sophistication
in that the signal in question is completely surrounded, including in directions
above and below the conductor. The capability of shielding is dependent on the
available routing, as shown by the two figures.

7.3 SYMMETRY

Predictability in the behavior or performance of a design can be thought of in
many ways. For example, in measuring the timing characteristics of a circuit, it is
desired to meet an absolute performance target. Often it is desired that two layout
designs be implemented identically so that the performance characteristics of the
two circuits relative to each other match.

Following are examples when symmetry is routinely used:

Symmetry 169

Figure 7.15 Differential pair twisting to reduce signal coupling.

• Differential amplifiers require operational matching between halves of the
cell layout

• Datapath and memory array circuits require identical layout for each row
and column

• In layout designs where parallel structures are used to build up a cell,
such as a multiple-finger NAND gate, tweaking any series connectivity in
the different parallel paths will remove asymmetries between the series
elements

170 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.16 Simple shielding example.

Figure 7.17 Shielding options in two-metal process.

• Differential pair routing requires matching characteristics between signals
• Designing signal and clock paths to meet flip-flop setup and hold times is

an exercise in matching signal paths to the clock path

The best way to ensure that two circuits behave identically is to use the
same layout cell in both cases. Signal symmetry is achieved by designing two
signals to have the same length, width, load, and coupling environment.
These concepts are discussed in more detail. Note that in extreme cases all
the techniques described in this section can be combined for very sensitive
applications.

7.3.1 Symmetrical Layout

In many analog, RF, or sensitive digital designs, two halves of a particular design
are electrically equivalent, and it is desired that each half perform identically. A
differential amplifier is an example where the circuit’s function is to distinguish
signal differences between two input signals.

A very simple technique to achieve almost perfectly symmetrical layout is
to use one cell twice. The minor differences between the two cells should be
implemented on top of the cell. Figure 7.19 illustrates this approach.

Advantages and disadvantages of this approach are as follows:

• Symmetry is guaranteed and easy to implement
• The benefits of cell-based layout come into play. Changes to both halves are

done in one cell.

Symmetry 171

Figure 7.18 Shielding options in three-metal process.

• The cell planning is a little more complicated because the symmetry point
has to be understood and the layout implemented with this in mind.

• There may be some area or routing overhead because of the symmetry, but
polygons along the line of symmetry are usually shared.

A practical tip: Use the “Edit in Place” mode built into almost all layout
editors to develop the base cell. Edit in place one of the two base cells from the
top level cell so that changes made will appear in the other half instantly.

7.3.2 Balanced Layout

We define a balanced layout as a design that has symmetrical performance as a
result of intelligent connectivity within its structure as well as a symmetrical
layout.

Often, implementing balanced circuitry has the following effects:

• Reduced power in a world where designers are dealing with the large power
consumption of today’s chips and are trying to avoid needing fans to cool
chips down to the optimum working temperature.

• Timing symmetry. This is especially important in analog and RF designs,
where the timing of each switching device is critical.

• Definition of more detailed connectivity models to accurately capture the
balanced nature of the design.

Analog design technique is the father of balanced layout, where a very old
method called “balanced devices” is applied to IC design. The example shown in
Figure 7.20 illustrates the concept for a two-input NAND gate, and the result is
that the delays between both inputs to the output are the same.

172 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.19 Symmetrical layout example.

The schematic shown on the right side of Figure 7.20 shows exactly how the
schematic is defined for Example 3. Many LVS layout verification tools have algo-
rithms to recognize NAND gates within the layout. The layout NAND shown in
Example 3 is not often recognized as a NAND and creates discrepancies when
compared to a regular schematic NAND. The reason is that the order of the series
connections within the NAND is reversed. Functionally, they are equivalent and
in fact balanced. In this case the schematic must be altered to reflect the correct
connectivity in order for the LVS to pass.

Balancing circuits is not always as straightforward. Balancing series devices
is more difficult when dealing with more than two transistors connected in
series. Figure 7.21 shows an example of three series gates to illustrate this concept
further.

In order to balance the series connections, each input is connected to a tran-
sistor in each of the three positions: close to out, center, and close to power. This
is only possible if there are three parallel series chains; therefore, introducing
balancing to a layout may incur significant overhead.

Symmetry 173

Figure 7.20 Balanced two-input NAND.

7.3.3 Physical Compensation

Physical compensation is the term we use to describe the concept of layout sym-
metry applied to signals. Signal symmetry is achieved by designing two signals
to have the same length, width, load, and coupling environment.

Designing signal and clock paths to meet flip-flop setup and hold times is
an exercise in matching signal paths to the clock path. In some cases where the
timing margins are extremely small, physical compensation techniques are used.

Synchronous DRAMs (SDRAM) are an application where input setup and
hold times are required to be very well defined. Circuit performance needs to be
guaranteed under all voltage, temperature, and process conditions. Physical
compensation is appropriate in this case.

As we have mentioned, signal symmetry can be achieved by mirroring many
structural features of the signals among the group to be compensated. This should
include numbers of vias; matching of routing layer(s) and the length of the sec-
tions in each layer; and shielding each signal equally.

A short list of steps to implement physical compensation among a group of
signals might be as follows:

1. Route signals as you would any other signal, and reserve space for length
compensation and shielding lines. Route all lines using a single width of line.

2. Determine the longest line among the group to be compensated and increase
the length of all other signals to match. Serpentining signal lines is appro-
priate as long as adequate shielding is maintained.

3. If different routing layers are used, match the length of interconnect on each
layer for each signal. It is not necessary to place the different layer routing
in the same place along the line, but it is important to use the same number
of vias within each signal.

Match the relative transistor loading or fanout for each line. This means
that the ratio of the size of the transistor load relative to the driver should
be the same for every line. Additional transistor loads should be added to
the appropriate signal to match the fanout ratio.

4. Table 7.3 illustrates the concept of compensation load calculations.
5. Run layout extraction tools to verify the results and adjust the layout if

necessary.

174 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.21 Balanced NMOS series transistors.

Figure 7.22 shows a simple routed group of signals before compensation is
applied. Note the arrows. The small arrows indicate areas of overhead space allo-
cated for the physical compensation that will be applied later. The long arrow at
right shows the size of the bus.

Figure 7.23 shows the same layout after compensation. Note that the final
height of the bus is greater than before, indicating that the plan was too
aggressive (the small arrow indicates the difference).

7.4 SPECIAL ELECTRICAL REQUIREMENTS

7.4.1 45-Degree Layout

We have already explained that polygons or paths drawn with 45-degree angles
use more database space to store the polygon information. For this reason layout
designers should try to avoid drawing polygons at an angle other than 90 degrees.
However, there are many occasions where 45-degree layout can result in a smaller
or more reliable design.

Special Electrical Requirements 175

TABLE 7.3 Example Compensation Load Calculation

Signal Driver Size Load Fanout Ratio Compensation Load

A 100/50 500/250 5 —

B 20/10 40/200 2 60/30

Figure 7.22 Simple bus routing.

The electrical characteristics of 45-degree polygons also make them very
useful in certain areas. When large currents are being drawn through the con-
ductor, 90-degree corners are stressed. Using 45-degree polygons alleviates this
problem.

There are a few places where 45-degree layout is highly recommended or
obligatory:

• Very wide power lines that are routed around corners. A guideline for very
wide is more than 30 to 40mm. In this case the stressing of the metal by high
currents is reduced.

• Wide lines or signal buses turning in opposite corners. See Figure 7.24 for
details. Significant area savings can be achieved.

• For signals routed close to the corners of the chip to avoid stress induced as
the chip is diced.

• I/O cells to reduce power surge in the corners and possible spikes in case
of ESD as discussed in a previous chapter.

• To save space when designing very repetitive structures or pitch-limited
layout.

176 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.23 Physical compensation example.

Special Electrical Requirements 177

• Optimizing transistor layout. Most of the reasons for 45-degree layout are
easy to understand, but how we can gain in the design of a transistor is not
such a simple concept, so further explanation is warranted.

Bent transistors have already been shown in Section 7.2.2 in the context of
minimizing drain capacitance. These transistors are not optimal, because the 90-
degree corner regions of the transistor are ineffective as transistors in that they
generally do not pass a lot of current and can be considered to be a dead part of
the gate. The corners of a bent transistor should ideally be discounted as useful
transistor width.

In fact, layout extraction tools are not accurate in this area, as they use a
simple algorithm that employs the center line of the gate as a measurement of gate
width. The effective width of a bent gate should be reduced in size by the number
of corners times the gate length.

Figure 7.25 shows the difference between 45-degree transistors and 90-
degree transistors. A gate width increase is achieved.

The 45-degree gates are used extensively where any small gains in cell size
make an impact on chip size. For example, bent gates are used in the pitch-limited
cells that are repeated many times in a chip. Figure 7.26 shows the example of
a wordline driver transistor that is very similar to many I/O cells in a PLA or
compact register file. Using 45-degree polygons results in minimum size design
in both X and Y directions, but changes to such transistors are not fast or easy.

7.4.2 Electromigration

Electromigration is defined as the molecular displacement of atoms caused by the
flow of electrons over extended periods of time. What this really means is that
metal lines will eventually break and create an open circuit by this effect.

Poorly designed parts will fail in the field after a period of flawless
operation because of a high degree of susceptibility to electromigration. With
decreasing scales of integrated circuits, concern has grown over the susceptibility
of metal lines, operating with high current densities and elevated temperature, to
degradation due to electromigration.

Figure 7.24 Optimal routing of wide signals.

Electromigration is most prevalent in aluminum and aluminum-alloy inter-
connect layers. This is one reason why new metals are being introduced into the
manufacturing process that will have no electromigration limitations (i.e., tung-
sten, copper, etc.) and very low resistance.

Electromigration failures are avoided simply by increasing the width of
current-carrying metal lines so that an open circuit is avoided. As electromigra-
tion is dependent on the amount of current flowing within a conductor, a set of
guidelines is used to guide layout designers to address this issue effectively
without incurring significant area overhead.

There are three basic scenarios to be considered for the application of elec-
tromigration guidelines: (a) DC current, (b) AC current where the electrons
nominally flow in one direction only, and (c) true AC current (electron flow is bidi-
rectional).

In the ideal scenario, the engineer designing a circuit evaluates electromi-
gration susceptibility for every signal. The schematic is annotated for the layout
designer indicating the signals that require special attention. However, this
method is not very practical, as it is work intensive and is prone to oversights
and omissions. In an attempt to simplify compliance with electromigration guide-
lines, most companies prefer to generate a simple table for the layout designers’
reference.

Before we start using such a table, it is important to understand what is a
unidirectional and a bidirectional current as it pertains to a circuit design. This
knowledge is necessary to let us implement the layout appropriately based on
reading a schematic.

Figure 7.27 shows a inverter schematic and a corresponding layout that are
annotated with the flow of current. The areas of unidirectional and bidirectional
currents are also indicated.

Please take the time to understand the direction of the current flow in the
PMOS and NMOS transistors. As we can see, the assumption is that the output
connection will be made to the hashed polygon or to the bolded rectangle on the

178 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.25 Simple examples of bent gates.

Figure 7.26 Bent transistors to minimize area.

right side of the output polygon. Areas that are especially susceptible to electro-
migration would be very larger drivers such as output buffers and clock
generators or buffers.

A typical electromigration guideline table may look like the one shown in
Table 7.4.

Note the following:

• The driver size is an effective inverter size and so can be used for other gates
if an equivalent inverter size is calculated.

• Electromigration rules apply to power supply nodes as well! This is usually
not a problem, since power supplies are wide and the connections are robust.

7.4.3 Multiple Power Supplies

Chip designers are trying today to reduce power consumption of their chips,
mostly because they want to put them in portable devices. As the gate size goes
down, the power supply voltage is also reduced. Today there are many standard
power supply voltages, but for 0.25-mm processes the power supply voltage is in
the range of 3.3 to 2.5V.

The power supply voltage level on the board or on the pins of the package
is not necessarily the voltage that the chip will work on internally. As an example,

180 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.27 Electromigration currents.

Special Electrical Requirements 181

TABLE 7.4 Example Electromigration Table

Bidirectional AC Tracks Unidirectional AC Tracks

Driver Size Iavg (Bi) (i.e., signal bus lines) (i.e., between PMOS and NMOS)

P (mm)/N (mm) (mA) M1 M2 Contacts Vias M1 M2 Contacts Vias

80/40 1.4 1.0mm 1.2mm 1 1 1.0mm 1.2mm 2 1

120/60 2.2 1.0mm 1.2mm 1 1 1.4mm 1.2mm 3 2

200/100 3.5 1.0mm 1.2mm 1 1 2.3mm 1.8mm 4 2

300/150 5.5 1.0mm 1.2mm 2 1 3.4mm 2.7mm 6 3

500/250 9 1.2mm 1.2mm 2 1 5.6mm 4.5mm 9 5

1,000/500 18.1 2.3mm 1.8mm 4 2 11.3mm 9mm 19 9

• If size is between the specified values, always approximate up

• 1.0mm minimum Metal1 width

• 1.2mm minimum Metal2 width

• Number of contacts and vias based on process current passage

I/O drivers use 3.3 V, but the internal core of the chip may run at 2.5 V to conserve
power. In this case the chip may have two different voltages supplied from the
PCB, or it may have an internal power supply circuitry that will regulate the
external 3.3V and provide 2.5V to the chip core.

An extreme example of multiple power supplies is the design of DRAMs. A
typical DRAM design requires an regulated internal VDD, two separate midpoint
voltages, a super voltage known as VPP, I/O supplies VDDQ/VSSQ, and a neg-
ative substrate voltage known as VBB.

How do we effectively deal with such a large number of power supplies for
issues such as routing and layout verification? Here are some suggestions and
methodologies:

• Plan for each power supply in the floorplan and routing plan separately and
in order of importance and complexity. For example, some supplies may be
localized, such as the supply for an embedded memory, and therefore are
lower in priority.

• Don’t forget to plan for different substrate and well regions. For example, a
negative VBB and VSS cannot connect directly to the same P+ substrate, so
for a VBB substrate we have to plan for the added overhead of extra sub-
strate connections.

• Power supply generators are tricky to floorplan, as they ideally should be
close to the circuitry to which they supply power. This increases their effec-
tiveness by reducing the required power supply grid to achieve reasonable
parasitic resistances.

• Define all the powers appropriately in the command files for layout
verification; otherwise, connectivity checks will not work. This includes
definition of devices and substrate areas.

• Isolate large consumers of power with separate supply lines. I/O buffers are
a good example, as most of the noise and surges will be isolated.

• Place reservoir capacitors for internal power supply generators close to the
generators. These capacitors act essentially as batteries during high current
consumption periods. Locating the reservoir capacitors away from the gen-
erator reduces the charging ability of the generator to the capacitors.

• Use clamping diodes to protect internal supplies from large power supply
variations. Should the external power connection to the chip be oppositely
applied, the VDD to VSS clamp diodes serve to limit the reverse voltage. As
well, power supply diodes often form part of the overall chip ESD protec-
tion path.

An added feature of clamping diodes is the case where they are forward-
biased when the difference between supplies exceeds one diode drop. In this way,
current is “sourced” from both supplies when one becomes heavily loaded. Note,
however, that this is not true for voltage dips on VDDQ, which should remain iso-
lated from VDD during heavy loading.

Figure 7.28 illustrates a diode arrangement between separated core and pad
supply pairs.

The layout of power supply diodes must take into consideration the large
forward currents that exist during clamp conditions.

182 LAYOUT DESIGN TECHNIQUES TO ADDRESS ELECTRICAL CHARACTERISTICS

Figure 7.28 Power supply clamping
diodes.

There are layout techniques that must be used to address limitations or effects
to the circuitry as a result of the manufacturing process. Examples of these are
described in this chapter.

8.1 WIDE METAL SLITS

Power supply lines in a chip are designed to be very wide so that electromigra-
tion and resistance effects are minimized. Are there maximum limits to the width
of metal lines? In general the answer is no. However, there is one problem with
very wide metal lines that occurs when the temperature of the chip rises high
enough to cause the metal to expand significantly.

Figure 8.1 shows the effect of heat on the metal as it expands. As the metal
heats up, the sideways inertia of a large piece of metal prevents sideways expan-
sion. As a result the expansion of the metal is in the center. This causes the center
areas of the metal to expand upwards. This effect is not as significant for smaller
signals, as the upward expansion of the metal occurs with a smaller force because
of the smaller size and lower sideways inertia.

183

CHAPTER EIGHT

Layout Considerations due to
Process Constraints

Figure 8.1 Metal expansion due to heat.

If the metal expands repeatedly with enough force, the metal will eventu-
ally crack the isolation and passivation layer that protect the wafer. Impurities and
particles will work their way onto the chip, react with the different materials, and
cause the chip to fail or work unreliably.

To address this problem, layout designers are required to put slits or holes
in the metal at regular intervals. This technique has the effect of reducing a very
wide metal to one that has many smaller areas that happen to be connected
together.

Figure 8.2 shows an example of a metal line with metal slits cut out of it. The
design rules for slits are very process dependent because they depend on the metal
granularity, temperatures of expansion, type of material, etc.

Note the following:

• Slits have 45-degree corners to alleviate stress induced by high current
densities within the metal.

• A general guideline for the maximum size of line that does not require a slit
is 35mm.

• Divide extra very wide metals into increments that are lower than the
maximum allowed width. (For example, if the maximum metal width
without slits is 50mm and we are inserting slits into a 100-mm line, then it is
advisable to use two slits in the line instead of one.)

• It is easiest to insert slits into a wide metal line by building a structurally
correct unit cell and instantiating it as required.

• Slits should always be implemented in the direction of current flow. This is
especially important for T junctions or other configurations.

• Slits generally can be implemented over a range of lengths. Try to use an
average size so the slits can be easily adapted for special area such as corners
and junctions.

• Discount the effective metal width of the line by the width of the slit or sim-
ilarly add to the desired width of the line the width of a slit to account for

184 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.2 Metal slit example and design rules.

the lost area. For example, if a metal line is desired to be 100mm wide, two
slits are to be inserted, and the slit width is 5mm, then the total width of the
line will consume 110mm of space.

• Analyze the current flow before you make slits in corners, T-junctions, and
power pads.

• If the DRC cannot check all of the cases presented here, a visual inspection
is necessary.

Design rules for the definition of slits are usually well described, but in many
cases the conditions under which they are to be used are not. Specific areas where
slits should be used are for power lines near the corners of the chip and the case
of a pad connection in a T shape to a wide metal bus.

Figure 8.3 shows a corner power track and the way the design rules are to
be respected in this case.

As we can see in Figure 8.3, it is important to have a small bridge of metal
during the 45-degree turn to increase metal physical resistance against chip corner
breakage during cut and package assembly. Figure 8.4 shows a proper connection
from a power pad to an internal bus with correct metal slits. The current flow is
shown as a guide for understanding the implementation of the slits.

Wide Metal Slits 185

Figure 8.3 Corner routing power.

8.2 LARGE METAL VIA IMPLEMENTATIONS

As we have mentioned in Chapter 7, vias connecting layers together should be
considered in the electromigration and resistance calculation. There are also
process-related issues that should be considered.

The vias are structures that lie directly in the current path between the two
layers. Thus, the layout design of interlayer connections using vias should be well
understood. It is most important in large metal lines because in general it is these
lines that carry large currents.

From a process point of view, vias are holes defined in the isolation layer
between two layers: the top layer metal is required to fill the hole and connect to
the lower layer. The manufacturing of this hole and the subsequent filling of this
hole by the upper-layer metal does not result in connections that are the same size
as drawn.

Figure 8.5 illustrates this effect. The design rules and electrical characteris-
tics of the vias take these effects into account to ensure that a reliable via is formed.
On the CD-ROM, there are more pictures of vias taken from a wafer.

186 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.4 Pad connection with slits.

Step Coverage Rules 187

There are techniques in layout design that may increase the reliability of via
arrays. Common examples of these are shown in Figure 8.6, and their usefulness
depends on the process.

The ability of a line to carry current is defined by the layers width and thick-
ness. This is analogous to the size of a pipe carrying water. The number of vias
connecting one layer to another must be determined by a variety of conditions,
starting with electromigration, resistance of the via, current flows, process
specifications, and planarization.

Via array configurations that are optimized for circuit performance are
shown in Figure 8.7.

8.3 STEP COVERAGE RULES

For each type of design, ASIC or DRAM, for example, the processes are very dif-
ferent, as we have already explained. Based on the purpose of the chip, market
prices, design requirements, etc., companies are developing special processes. The
variety of design rules for each of these processes continues to evolve.

Layout designers are not involved in processing, but they have to take mea-
sures to prevent possible problems during the chemical and physical processing
of the wafer. One problem that can be addressed with proper layout design
techniques is the step coverage effect.

Figure 8.5 Cross-sectional view of via cuts.

188 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.6 Via array configurations for process reliability.

Figure 8.7 Via array configurations for circuit performance.

Multiple Rule Sets 189

A “step” in this context refers to the rising or falling slope of a layer as it
passes between chip areas where a different number of layers exist underneath.
For clarification, see a DRAM memory cell area versus the neighbors and the
concept of friendly cells (Figure 5.23).

A process using a technique called planarization alleviates this problem, as
the surface of the wafer is leveled with isolation material between layers. In this
way, the steps are removed.

Why is this “step” a problem? If we analyze Figure 8.8, we can see that when
metal1 is routed along a poly line, the angle defined by the height of the poly gen-
erates an irregularity in the metal cross-sectional shape. The layer is no longer the
desired rectangle, but an odd shape that does not have the same characteristics as
a straight line of metal running over a flat surface. In an extreme case, the metal
line may physically break!

For example, if a via is placed on top of the irregular metal, the connection
is likely to fail or be very unreliable. Figure 8.8 also shows the same situation for
a planarized wafer, and the result is much better.

A design rule and layout requirement related to planarization is a rule
defining specific density goals of a given layer over a specific area. For example,
a rule might state that within areas of 100 ¥ 100mm2 regions, metal polygons must
cover at least 75 percent of the area. The idea here is to implement enough poly-
gons to ensure proper planarization for the layers above.

In order to meet this requirement, the layout may need to contain dummy
or extra polygons to ensure that the process achieves layer consistency over
the entire region. In some cases, designers can set up the layout verification
tool to automatically find the density problems and fill the area with the
dummy layer. These layers may electrically float, but in general they are con-
nected to power supplies and add to their decoupling capacitance at the same
time.

8.4 MULTIPLE RULE SETS

People working with ASIC processes generally have an easier time doing layout,
as they have the benefits of having a relatively simple set of design rules. The total
number of rules is less than the set of rules used by designers in DRAM or embed-
ded memory processes.

Why do memory processes have significantly different rules from anything
else? Because the memory cell fills 50 to 70 percent of the entire chip area, the
memory cell itself is an extremely customized design with its own set of rules and
specialized layers as well. As a reliability measure, memories have redundant
circuits included on the die so failures in the array can be replaced.

Defining a final set of design rules is a very complex process in which circuit
designers, layout experts, and process people have to trade off many factors: price,
size, complexity, tolerances, design easiness, reliability of the process over the area
of the chip and wafer, etc.

In terms of design rules, a DRAM memory has three different rule sets: one
for the memory cells and their friendly cells, one for the pitch-related logic inter-
facing to the memory cells, and one for the periphery layout outside of the

memory array. The rules for the periphery layout may be similar to those for an
ASIC process within the same process generation.

Table 8.1 shows an example of the definition of three rule sets for a DRAM
process.

The layout of designs with multiple rule_sets must be done in such a way
that the different set of rules can be verified using the DRC verification tool. The
fundamental problem is identifying in the layout database areas that are to be
checked with specific sets of design rules.

190 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.8 Step coverage problem.

Three example methodologies are given below:

1. Each region defined by one particular set of rules is implemented using a
separate set of layers. Masks are created from a database of merged layers
once the layout verification is complete. This methodology requires the
layout designers to switch layers in different regions, but once this is done,
the regions are easily manipulated.

2. Each region is defined by a special layer called a blocking layer. General
layout is done using the same layer in all regions, and once they are com-
plete, the desired blocking layer is drawn. Within the layout verification tool,
intermediate layers are generated to separate the polygons for each set of
design rules as demonstrated in Table 8.2.

3. Regions are identified by a cell naming convention. The layout verification
tools are set up to recognize and identify different regions by the name of a
cell. In this case, the general layout is done with one set of layers, and once
this is complete, the cell is named appropriately. This approach is simple;
however, it relies on the fact that the layout can always be divided into
discrete cells that do not overlap.

8.5 ANTENNA RULES

A side effect of the manufacturing process that leads to damaged parts is known
as the antenna effect. Under certain conditions, plasma etchers or ion implanters
induce charge onto various structures that connect to a gate of a transistor. The
induced charge threatens to overstress and irreparably damage the thin gate
oxides of the transistor, causing unreliable operation.

Charge is readily induced during the manufacturing process if a structure is
built in such a way that it acts like an antenna. An example of an antenna struc-
ture is shown in Figure 8.9, where the ratio between poly over field (thick oxide)

Antenna Rules 191

TABLE 8.1 Example of DRAM Design Rule Set

Design Rules for a DRAM Process Cell Pitch Periphery

Active minimum width 0.5 0.5 0.6

Active to active distance 0.4 0.4 0.5

Minimum poly width 0.25 0.3 0.35

Minimum poly distance 0.3 0.35 0.4

Minimum metal width 0.4 0.4 0.5

Minimum metal distance 0.3 0.35 0.4

and poly over gate (thin oxide) is large enough. There are others specific to each
process, and some include metal.

As the gate size gets smaller and more metals are added to a chip, and as
process engineers reduce the thickness of the oxides, the antenna effect can have
a greater impact on the yield of a wafer.

Approach 1 shows a technique to eliminate the antenna shown in the
example by breaking up the long poly that acts like an antenna.

Approach 2 shows a diode placed near the transistor in danger to eliminate
the effect of the metal antenna. As soon as enough charge is induced onto the
metal by the antenna effect, the diode diverts the charge to the substrate.

In many advanced processes, the antenna rule checking is required for struc-
tures made of any number of routing layers, i.e., metal1, metal2, etc. Some of the
automated routers know how to limit the routing in one metal for long distances
in such a way that they can avoid the antenna problem.

Explicit and separate diodes attached to certain nodes may not be necessary
if an inherent diode is attached to the line somewhere along the path. For example,
a source or drain area of another transistor may be sufficient to act as a diode to
divert unwanted charge.

8.6 SPECIAL DESIGN RULES

In previous chapters we learned the basics about process order flow and design
rules related to process and circuit requirements. However, there are a few inter-
esting exceptions to “general” design rules.

We cannot explain in detail all the “weird” rules related to specific types of
processes. Our intent is to increase the reader’s awareness of some process-related
issues that are not always described from the beginning in the design rule sets. In
general, it makes sense to talk to the process people to understand the technical
reason behind any special design rules and try to work with them to determine
practical solutions.

192 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

TABLE 8.2 DRC Layer Generation Using Blocking Layer Strategy

Blocking Layers Merging Strategy

Active layer + MEM blocking layer = Active memory

Active layer + PITCH blocking layer = Active pitch

Active layer + PERY blocking layer = Active pery

Poly layer + MEM blocking layer = Poly memory

Poly layer + PITCH blocking layer = Poly pitch

Poly layer + PERY blocking layer = Poly pery

Special Design Rules 193

8.6.1 Minimum Area Rule

A rule that becomes more prevalent as geometry get smaller is the “minimum
area” layer rule. Although design rules such as transistor gate length are
shrinking, not all of the many layers in the manufacturing process shrink
equally.

One example of this is the definition of active areas, especially for small poly-
gons. This limitation is typically specified as a minimum width and area rule.
Small active rectangles can occur quite frequently for substrate connections that
are made with a single contact between metal1 and active. In this case, if only the
minimum width rule is followed for the length and width of the polygon, an active
polygon may result that is smaller than what can be produced.

Adding length to a polygon is an easy solution to conform to the “minimum
area” rule. See Figure 8.10 for example layouts illustrating this rule.

8.6.2 End Overlap Rule

We learned about a generic contact overlap rule in Chapter 3, but in some
processes this rule is enhanced by a rule known as the “end overlap” rule.

Figure 8.9 Antenna rules example and solution.

This rule applies when a contact is located at the very end of a line. The
problem that this rule addresses is shown in Figure 8.11 by the dashed lines
denoted as “Shape on Silicon.” Contacts that are placed at the very end of a line
are in danger of not being filled as the metal is rounded in real silicon. This danger
is increased if any amount of misalignment occurs during processing.

8.6.3 Double Contacts

Consider once again DRAM processes where the limits of the manufacturing
process are consistently tested in order to achieve a small memory cell. In this
case the overall reliability of many standard structures is in question for many
design rules.

Outside of the memory array, where the topology of the layout is not regular,
more stringent design rules are enforced. One of these is the requirement for
double contact and vias for every connection. This rule applies to transistor layout
and general routing and signal connections.

The double contact and/or double via not only improves the resistance of
the connection; more importantly, it provides added reliability by having redun-
dant contacts for every connection.

194 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.11 End overlap rule example.

Figure 8.10 Minimum area layer example.

A problem with this requirement is that placing double contacts using auto-
matic tools is a challenge for place-and-route tools. These tools prefer square
via/contact cuts (cells). Connections are easily made in both X and Y directions,
and the tool does not have to orient the contact or via cell during placement.

Figure 8.12 shows two equivalent layout designs, one with single cut cells
and the other with two. As we can see from the example, such layout styles
increase chip size and the amount of work required to design a memory chip. For
the present, DRAM layout designers can get very little help from the automation.

8.7 LATCH-UP

Conceptually, latch-up refers to the state of an IC when it is made inoperable by a
parasitic shorting of VDD to VSS. Depending on the severity of the latch-up con-
dition, the IC may be irreversibly damaged, or it may recover only after a
complete power shutdown.

Let us try to understand, in a brief way, how latch-up comes about. Figure
8.13 shows the equivalent circuit model of the parasitic devices we refer to within
a simple CMOS inverter. Transmission gates are a another risky source of
latch-up, especially if the source or drain of the transmission gate is connected to
VDD or VSS.

Redrawing the schematic of Figure 8.13 into a more readable format, we end
up with the drawing shown in Figure 8.14. Very simply, latch-up occurs if either
of the two bipolar transistors is turned on. If this happens, there is a positive feed-
back loop in that when one transistor turns on, the resulting current flow encour-
ages the other transistor to turn on as well. Positive feedback occurs once again
as the second transistor’s current flow strengthens the first transistor’s drive and
the vicious cycle feeds upon itself. Under normal conditions, latch-up is not likely
to occur, so how do these transistors become activated? First, let’s very briefly
discuss how bipolar transistors work.

Similar to MOS transistors, bipolar transistors are activated when there is a
voltage difference between the base (labeled B) and the emitter (labeled E). NPN
bipolar transistors require a positive VBE, whereas PNP transistors require a neg-

Latch-Up 195

Figure 8.12 Single and double contact design styles.

ative VBE. We should recognize similar functionality of transistors to that of the
voltage requirements in activating NMOS and PMOS transistors.

What triggers latch-up if under normal conditions these parasitic bipolar
transistors are off? The most common trigger for latch-up is undesired or extreme
currents injected into the Chip through the power supplies VDD or VSS. These
nodes are connected directly to the outside world and thus are constantly exposed
to uncertain voltage and current levels.

Let’s go back to analyzing the schematic shown in Figure 8.14. As an
example, let us imagine an abnormal current being injected into VDD from the
outside world. This current results in a voltage drop across RWELL by Ohm’s
law—and voilè, we get our negative VBE for the PNP transistor, and it turns on.
The current produced by the PNP transistor causes another voltage drop across
RSUB, therefore turning on the NPN. The NPN transistor current sustains the
voltage drop across RWELL, keeping the PNP transistor on even if the external
VDD current has disappeared. The PNP current in turn sustains the operation of
the NPN, and this vicious circle is latch-up.

196 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.13 Inverter cross-section with latch-up circuit model.

Figure 8.14 Redrawn latch-up circuit
model.

In summary, here are the very simple requirements for latch-up to occur that
we have discussed:

• A large enough VBE generated (at least temporarily) to activate either bipolar
transistor. This requires the combination of an abnormal current injected into
the chip and parasitic resistance values large enough to generate this voltage
difference by Ohm’s law.

• Parasitic bipolar transistors of sufficient current drive strength to sustain the
required VBE to keep the bipolar transistors on.

Latch-up is a phenomenon that is well understood, as it has a long history
in CMOS IC design. Many guidelines and design rules have been developed that
inherently reduce the risk of latch-up and minimize the likelihood of meeting the
requirements just listed.

A straightforward strategy to reduce the likelihood of latch-up would be to
reduce the parasitic resistances across the base-emitter nodes and therefore increase
the current requirement to trigger latch-up. If this is done properly, the trigger
current for latch-up may be large enough that it is physically impossible.

In general, these techniques also weaken the strength of the bipolar transis-
tors by breaking up the chip area into fragmented areas and therefore reduce the
effective size of the various bipolar transistors.

Layout methodologies that reduce susceptibility to latch-up include the
following:

• Avoid routing power supply lines (especially to substrate or tub contacts) in
resistive materials such as diffusion or polysilicon. Keep the power nodes
in metal!

• Place substrate and tub contacts between transistors of different types. In
addition minimize the distance between substrate contacts and transistors
within a well and vice versa. For example, if PMOS transistors are within an
N-WELL then place the P-type substrate contacts as close as is allowed to
the PMOS transistors. Apply the same logic to the N-type tub contact spacing
to NMOS transistors.

• Maximize the number of substrate and tub contacts.
• Minimize the spacing between substrate and tub contacts.
• Ensure an even coverage of substrate and tub contacts over the entire area.
• Use continuous strips or bands of substrate and tub contacts. This technique

is formally known as guard banding, especially when the bands completely
surround transistor areas.

• Group transistors of the same type together to avoid the overhead of having
to protect against latch-up in many different areas.

• Place internal circuitry away from external pad areas.
• Be extra careful in considering latch-up conditions in areas where the

substrate or well is not the same potential as the source nodes of the
transistors.

In all cases, it is always best to develop formal numerical design rules that
can be checked by the layout verification tools. Many of the methodologies just

Latch-Up 197

listed are not easily converted to numerical checks, but we recommend at least
the following: A design rule specifying a maximum distance between substrate or
tub contacts.

In general this distance is about 40 to 50mm, but as the gate length of tran-
sistors shrinks, this guideline should be reduced. This rule ensures an even cov-

198 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.15 Tub connecting the N-well to VDD voltage.

Figure 8.16 Example of tub area coverage inside N-well.

Latch-Up 199

erage of a given area with bulk connections, and there will be consistent voltage
all over the area.

There are two basic ways of checking this distance: from active to active or
from contact to contact. Figure 8.15 shows both ways of measuring these distances.
Both styles are correct depending on the number used to check the distance
between them.

The second rule is area coverage of each contact based on substrate or N-
well resistance. Each of these actives has substrate coverage to prevent latch-up
of about half the minimum distance between them. So if the minimum distance
is 50mm, then the coverage is 25mm.

Note from Figure 8.16 that while the layout conforms to the rule just given,
the distance between the four contacts leaves a small island of transistor area that
is not protected. The shaded area from each contact (gray) with the dark lines is
the coverage radius of the four tub contacts. The noncovered area is the middle
white region.

For a layout to be completely verified, both of these rules need to be satisfied.
Big transistors or very high-speed circuits that are switching fast and con-

tinuously can inject a lot of noise into the substrate by their size. Examples are
clock generators or output buffers. It is advisable to use full guard rings for all
tubs and substrate connection around the transistors.

In layout, these guard rings are divided in two basic kinds, hard and soft
ties. The hard tie is a fully contacted ring of active that has continuous metal1 over
it. Soft ties have a continuous ring of active, but the metal layer may be broken to
accommodate signals passing into the guard ring.

Figure 8.17 illustrates the differences between hard and soft ties.

200 LAYOUT CONSIDERATIONS DUE TO PROCESS CONSTRAINTS

Figure 8.17 Examples of hard and soft ties.

There are many layout techniques that can be used to anticipate change to the
circuit design. Last-minute changes are common to all projects, as there is never
enough time to fully verify a design. With this mentality of anticipating change,
techniques that minimize the impact on the overall chip layout are described in
this chapter.

9.1 LAYOUT OF CIRCUITS DESIGNED FOR CHANGE

Although changes to circuit designs are impossible to forecast, there are many
cases where we can predict that some circuits will require tweaking. In this case
structures to adjust the functionality or timing of a circuit are included in the
schematic from the start. There are preferred layout techniques that are used to
implement these circuit designs.

9.1.1 Metal Option Programmability

Metal option programmability is a methodology that is similar to the idea behind
gate array design, but applied in very specific applications. The idea is to have a
design that has a common set of base circuitry and layout and is “programmed”
by different configurations of metal masks.

In the context of the layout of circuits designed for change, metal option
programmability is the application of this concept to individual circuits. Gate
arrays have the concept of a master slice where the entire die is programmable.
Metal options refer to a specific design such as a delay circuit, control logic,
or memory configuration that can be modified or customized in a much
smaller way.

The applications of metal options are virtually endless and perhaps limited
only by the designer’s imagination. However, examples where metal options are
used and are very valuable include the following:

201

CHAPTER NINE

Layout Design Techniques in
an Uncertain Environment

202 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

• Reconfiguration of the functionality of a design. In this case, different metal
options would produce different end products from a design with a common
set of base layers. The following are examples of features that can be
reconfigured:
Operational features such as low power modes and test modes
I/O interface standard: TTL, LVTTL, SSTL
I/O data width: ¥1, ¥4, ¥8, ¥16, ¥9, ¥18
Power supply voltage: 1.8V, 2.5V, 3.3V, 5V

• Analog circuit fine-tuning such as resistor values or devices sizes. The
example of an ESD circuit adjustment was discussed in Chapter 6.

• Evaluating new or unproven circuitry against an established design. For
example, two circuit designs may be implemented on a chip and a metal
option might be used to switch between them to compare one with the other.
This is most useful for tricky analog circuits such as PLLs, input buffers, and
oscillators.

• Circuit adjustment by switching in or out devices, cells, or logic gates.

Let’s examine in detail an example that is very common. Delay chains are
one of the cases where metal options are beneficial, since they are used to solve
many different and sensitive circuit design issues.

Figure 9.1 shows different versions of one schematic delay chain that is
configurable between 0 and 3 delay stages.

The schematics show CLOSED or OPEN switches that correspond to short
and open circuits. The dashed line denotes the delay path in each case.

How are these options implemented and used in the design flow?

1. A circuit designer provides a drawn schematic with the options correctly
drawn.

2. Two additional layers are defined, corresponding to the OPEN and CLOSED
switches. These layers must be associated with a mask layer in which the
options will be implemented.

For example, it is typical to implement options in top-layer metal for a
two-layer metal process; thus, the options would be associated with metal2.

Using separate layers and devices allows the layout verification tools to
verify connectivity and ensure that the options follow established guidelines.
These guidelines should reflect requirements for DRC and product test where
these option areas can be used once again.

The drawing and DRC checking of the options must be implemented care-
fully. CLOSED layers can at any time change to OPEN, so the layout design and
checking should accommodate this flexibility.

Polygons drawn in these layers are considered devices similar to resistors
and must be connected as shown in the schematic. An example layout is shown
in Figure 9.2.

A design with metal options is a case where the layout can begin before the
final configuration of options has been finalized. Once the layout has been com-
pleted, it is an extremely simple matter to change options from one to another, since
the area and topology of the cell is not affected by a change in option layer.

Layout of Circuits Designed for Change 203

1. When generating the final GDSII for tape-out or mask-making, the CLOSED
layer is merged with the associated mask layer (in this case metal2) and the
OPEN layer is discarded.

2. During prototype testing, the product test engineer can revise a silicon
version of the circuit. One option is to use a focused ion beam (FIB) machine
to alter the circuit once more. CLOSED option points can be opened or OPEN

Figure 9.1 Example of a configurable delay chain.

204 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

option points can be closed using this machine. Another option is to use a
laser to cut CLOSED options.

The guidelines for option layers mentioned earlier need to include
limitations imposed by the method that is intended to be used on silicon
prototypes.

3. Once the final configuration of the options has been established using
silicon-proven results, the schematic and layout database need to be updated
to reflect the final settings.

Remember that FIB modifications to a particular die apply only to the FIBed
chips. Therefore, if changes to the masks are required, this must be done by
updating the layout database and regenerating the required masks.

Production masks are produced from this updated database.

9.1.2 Via Programmability

In the context of the layout of circuits designed for change, via programmability
applies to circuitry that is truly designed to be programmed, such as read-only
memories (ROMs) or specialized decoders that are configured independently
from the base design.

In this case, the configuration of a circuit is driven by a “coding” scheme that
is produced in general from a software development group. Implementing the
coding scheme is done by the placement of vias on top of a programmable circuit.

There are two aspects to implementing a layout design for via
programmability:

Figure 9.2 Delay chain layout.

Layout of Circuits Designed for Change 205

1. An unconfigured layout design that can accommodate all possible placements of vias.
“Legal” sites should be designed into the leaf cells and assembled design.
Legal sites for via placement are defined as locations where the resulting
design would be design-rule correct under all conditions.

2. A methodology for placing or programming the vias onto the base layout design.
This is usually a macro that uses a polygon editor as the layout engine, or a
customized CAD package that can read and produce a layout database in a
standard format.

Via programmability using software is a common technique used in ROM
design today, and it has the following advantages:

• Software designers for “on the chip” can optimize their code until late in the
project schedule.

• If planned and implemented properly, the design is correct by construction
and should always be DRC and LVS error free.

• Once the via programming technology is developed, it can be reused for sub-
sequent evolutions in the underlying base layout. Only the “legal sites” of a
new architecture need to be specified.

• An effective base layout design and programming scheme can include
techniques to minimize the connectivity of devices by excluding vias in
the programmed design. Reductions in power consumption and increase in
speed result.

Figure 9.3 illustrates an example of via programmability for a small decoder
used within MOSAID.

9.1.3 Test and Probe Pads

Test and probe pads are aids that are implemented into a design to enable product
engineers to check the internal operation of a physical chip.

Test pads refer to pads of metal that are compatible for bonding; probe pads
are much smaller and are intended for very specialized measurement devices.

Test pads are also defined to be only available on a wafer and are not intended
to be bonded for the final product. These pads are uncovered by the passivation for
the prototyping or evaluation phase and are covered by a glass isolation layer before
it is packaged. In terms of ESD, they are less protected than regular pads because
after testing they will not be connected to the pins of the package.

An example where test pads are used extensively is within DRAM designs
that have internally generated power supplies for internal circuitry. The test pads
are normal-size pads connected to internal supply powers such as VPP, VBB, VCP,
and VBLP. During the prototyping phase, the test pads are used to determine if
the internal power supply circuitry is functional. They are also used in produc-
tion test to evaluate reliability and process characteristics of the memory over the
life of the product.

Probe pads, on the other hand, are used exclusively for the preproduction
debugging and evaluation stage. Product engineers use probe pads to check the

206 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

functionality and timing of internal nodes of chips that have not been qualified
for production.

Probe pads can be placed anywhere on the die, since they are used when
the die is completely unprotected (Figure 9.4). The size of the probe pads is
dependent on the equipment that is used.

Historically, probe pads were not explicitly implemented, because a single
via was big enough for the probes that were available. As layer geometries have
shrunk, a single via has become too small for physical probing. Generally, a probe
pad that is in the range of 1mm2 is sufficient.

Figure 9.3 Decoder architectures.

Figure 9.4 Probe pad examples.

Planning for Unknown Changes 207

Probe pads should be implemented in layout as directed by the circuit
designer. However, it is likely that almost all routed nodes should be probeable.
Certainly, critical signals such as clock signals and datapath signals are prime
candidates for probe pads.

It is important to document the probe pads coordinates carefully so that they
can be easily found!

9.2 PLANNING FOR UNKNOWN CHANGES

During various phases of design, layout designers are challenged with design rule
changes, circuit changes, bugs in the software tools, etc. The best medication is
prevention, but we don’t always know what to expect. In a DRAM chip, if any of
the major memory layers gets a minor design rule change, it may not be efficient
to use the planned architecture, so the entire core layout and design should
change. Such process changes have much less impact on the layout of ASIC
designs, because their processes are much simpler and because most of the layout
is done using place-and-route tools.

Planning for unknown changes might seem strange at first, but we can
always estimate the amount of change of a particular design based on the novelty
of the design and the experience of the circuit designers. In general, when plan-
ning at the chip level, most numbers are “wet finger” values. Even using the most
advanced tools for floorplanning, there is no way to envision the final architec-
ture, the final number of gates, or the total number of signals, for that matter. The
best solution is to plan the chip with change in mind, and to forecast the type and
amount of change based on personal experience.

As an example, if a design is estimated to have 50 percent of the circuitry
that is completely new, we can start to plan on 50 to 60 percent of contingency in
our work. With this in mind, spare logic, area, signals, etc., can be reserved to cope
with design development and changes. Using this approach will give the final
design a much better chance to end up a success.

Conversely, if contingency planning is not done, the size and schedule of
the initial design will grow and grow to the point where the project will be at risk.
We can tell you a secret: “everything is possible in layout” where only the imagi-
nation is the limit, but more and more, “time to market” is the real limitation.
Preparing a plan that can accommodate changes at any stage with minimum sched-
ule changes and almost no change in chip size is the dream of all project leaders
today. Plan for change when starting any part of the design, because people make
mistakes, and the dream can become reality.

Last-minute changes are handled using a formal procedure called an
Engineering Change Order (ECO), described in the next section. Before we
receive and have to act on one of these, there are many methodologies we can
implement that will help us handle these emergencies. This section outlines a few
of them.

9.2.1 Contact and Via Instances

The concept of a hierarchical design was described in detail in Chapter 3. There
are many benefits of using hierarchy, and in the context of planning for change,

208 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

the use of hierarchy is key to minimizing database management issues when
reacting to large-scale changes.

This section is devoted to discussing the merits of contact and via cells
specifically because there are many benefits to them. Place-and-route tools use
them for connections, but the concept was developed before the advent of
these tools.

The idea was to develop a library of cells for various types of contacts. This
practice is effective when there are three to five types of contacts, but in the case
of DRAM memories in particular, this concept really improves layout efficiency.
DRAM memories have many poly layers, but also have multiple design rule sets,
so there is a great range of contact and via cells. It is not uncommon to have a
library of two to three dozen cells.

Historically, contact cells contained a single polygon: the contact layer alone.
The idea that we are proposing (within MOSAID it is standard procedure) is to
create the contact cells including all three related layers. For example, a contact
between active and metal1 will be a cell that contains contact layer, active, and
metal1 overlapping the contact. The layout conforms to the design rules
completely so that the contact “cell” is DRC clean.

Some advantages of this approach include the following:

• Advanced rules such as the “metal end overlap” rule can be implemented
globally without too much effort.

• The cells are DRC clean, so other designers will create layout that is correct
by construction. The idea is that the contact cells are by definition correct, as
with standard cell libraries for an ASIC designer.

• Defining naming conventions for each chip with multiple design rule sets
will help layout designers to use the appropriate cell. Also, they do not have
to memorize the different contact design rules—only those for the region
they are working in.

• Cell names are portable from project to project. Memorizing numerical
design rules is not.

• Contact cells are easy to connect to, since touching or overlapping the
boundary of the cell is sufficient.

• The biggest advantage is when the time to tape-out is critical. In “bleed-
ing edge technologies” such as memory designs, when people start the
layout of a chip, the process is not yet fully defined. Many times in my
experience, this solution saved the tape-out. In many cases we had to
change the contact size, the overlap layers rules, or just the contact layer.
Under normal conditions, all these changes will require some CAD soft-
ware “processing,” but such actions have to be checked and debugged
before they are applied to a full chip. Using contact cells, it takes about 5
minutes to complete a global process change, with guaranteed success in our
experience.

Because we found this feature very efficient, we decided to use it everywhere.
We are trying to convince all the vendors offering transistor-level automation to

Planning for Unknown Changes 209

embrace the contact cell as a feature in their tools. In Figure 9.5 we can observe some
examples of contact cells, including all their overlapping layers.

9.2.2 Minimum Design Rules?

Another approach to accommodating change and preventing major impacts on
the layout design is to avoid using minimum design rules or minimum area design
methods all of the time. This is especially valuable if it is known that the design
under development is new or has a high probability of change.

Consider the scenario of an analog design, where the designer may not know
from the start the internal routing scheme of the block. In this case the final sizes
within his or her design will vary based on the final results obtained from layout
extraction.

How can a layout designer prevent moving contacts, devices, and cells to
accommodate anticipated changes? In this section, we outline a solution.

We learned in previous chapters that one of the important steps in layout
design is to try to use source/drain sharing actives as much as possible to reduce
the size of the area. In case of “expected” changes, the layout should be built in
such a way that it could accommodate limited size changes. Figure 9.6 illustrates
a technique that accomplishes this.

One side of the empty channel is power connected, while the other is an
output. This is the output of a transistor that is likely to change.

The technique that is used here is to space the active regions by the amount
that accommodates a finger of gate poly. The spacing may not be minimum, but
allows significant flexibility in changing the transistor size.

Figure 9.5 Contact examples.

210 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

Figure 9.6 Drivers size adjustments.

9.2.3 Spare Logic and Spare Lines

Even if the most advanced tools and experts are used, a chip will always have
some dead space central enough to make the idea of spare logic gates and
spare lines worthwhile. Unless the chip has a flat netlist and the design team
is using an automated place-and-route tool, any design will end up with holes of
unused area.

After expending the effort needed to implement last-minute changes and
after feeling the pain of bug fixes and mask revisions to revise only a small portion
of a design, many designers have accepted the idea of placing unused or spare
gates and signals on the chip before tape-out.

A simple technique is to devise a block of logic that comprises a common
group of logical functions and place the cell in any free area in the chip design.
The quantity and types of gates that are used may vary from chip to chip based
on a forecast of what may fail. The design of the block is heavily metal oriented
so that connections and reconfiguration of the transistors are easily done using a
minimum number of layers. The gates are disabled initially in such a way that
they do not affect the normal operation of the chip.

Combined with spare lines that connect various regions of the chip and
passing by the groups of spare logic, fixes to minor bugs become much easier.
Additional lines are not a great impact on chip size when compared to missing a
market window.

Figure 9.7 illustrates this concept of inserting spare logic into empty areas
that have good access to spare lines. Spare lines are routed in every channel, and

Engineering Change Orders 211

in general up to 5 percent of the number of signals in the channel should be spare
not including routing requirements for the chip finishing stage. During the pro-
totyping stage, it is a good practice to have at least two spare lines per channel.
The spare lines respect channel metal directions and are fully connected from one
end of the chip to another. Using numerous local spare structures, global changes
can be implemented without any chip size or schedule impact.

9.3 ENGINEERING CHANGE ORDERS

Engineering Change Orders or ECOs are part of being a layout designer. As a
design nears completion, verifying and integrating changes becomes a significant
problem. Using a controlled methodology, such as an ECO flow, to implement
change ensures that the bug is reviewed from a broad level of architecture and all
the possible implications of the change in one block are reviewed against all the
other blocks’ interface points of view.

Figure 9.7 Spare logic and spare lines.

212 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

Engineering Change Orders are a formal methodology used toward the end
of design projects so that changes are carefully implemented without delaying the
project further. Using all of the methodologies that were presented, most changes
would have minimal impact on layout design.

In terms of a procedure for implementing an ECO, there are as many ways
of defining it as there are design flows and project management styles.

Conceptually, or from a management standpoint, an ECO procedure might
look like the following:

1. The design is frozen on a given date with the understanding that full chip
simulation and verification is ongoing.

2. At this point the layout may be in the last stages of finishing major blocks
and the routing of the top level is 90 percent complete.

3. Any change from this point on is considered an ECO. The ECO is reviewed
from a technical point of view to ensure that it is valid, and a ranking of
its importance is determined. The impact on the project schedule is also
estimated.

4. The project leader or manager reviews the ECO and decides whether it is to
be implemented. ECOs are often rejected if the error is minor or can be cor-
rected in a future version of the chip. Another criterion for evaluating an
ECO is its relevance to the market or customer or the impact of delaying the
chip’s entry into the marketplace.

5. If the ECO is to be implemented and shortcuts are necessary for it to be done
on time, then special precautions may be taken to ensure that the ECO is
done correctly. Examples might be having a second person inspect the imple-
mentation, or a staged release of the design.

In the case of an ASIC flow where place-and-route tools are used to gener-
ate the layout of the chip, the layout tools have an ECO flow built into the tools.

The ECO procedure outlined below is conceptually straightforward, but not
always so in reality:

1. The new netlist is reviewed and an approach to address the change is
generated.

2. The place-and-route tools are deleting cells that no longer exist in the netlist
and try to place the new ones. In some cases, if the design was very crowded
and there is not too much free space, the new cells may be placed far away
from the previously deleted ones, redoing the cell placement. The problem
is that in many cases the initial placement was optimized for power, elec-
tromigration, RC, etc., and the ECO may change the picture.

3. The router is ripping up the local routing and is trying to reroute the new
connectivity. Most of the popular routers today can do it in 99 percent of the
cases. If the router gives up, human eye and manual edits can finish the last
1 percent of the job.

4. After the place-and-route is done, an extraction of the layout is required to
check if the changes achieved the timing goals and there is not too much
change to the related circuitry. If not, additional iterations of the ECO flow
are needed.

Guidelines for Proper Layout 213

9.4 GUIDELINES FOR PROPER LAYOUT

We described in previous chapters most of the basic layout concepts and method-
ologies, and now it is the time to summarize them in a consolidated list. The list
is built based on the basic flow of top-down planning and bottom-up execution
in design.

9.4.1 Chip Floorplan

• Learn the architecture of the chip from the designer, who has a vision of the
possible blocks, power requirements, groups of signals, and new areas that
were never designed in the company before.

• It may be possible to extrapolate from previous projects the size of some
blocks and the number of signals related to them. We need this information
to assess contingency for the chip and for each individual block.

If new types of blocks are to be developed, new flow and new tools may
have to be brought in. If so, the project may need additional CAD support to
introduce the new technologies. Place-and-route, compactors, new verification
tools, libraries from another vendor, and IP blocks are only a few example of new
technologies that may have to be included in the plan.

• Assess and compare process rules related to other known processes. The list
includes the following:
Vertical connectivity diagram—especially in case of multiple poly types
Resistance and capacitance of gate, metal conductors, vias, and contacts
Electromigration values for each conductor layer

• Evaluate the routing layers and determine the routing grid for each layer.
Determine whether it makes sense to unify the routing grids to a single value
for each direction for simplicity.

Figure 9.8 Basic calculation scheme for floorplanning.

214 LAYOUT DESIGN TECHNIQUES IN AN UNCERTAIN ENVIRONMENT

• Calculate block size based on finger size (Figure 9.8) and add contingency
based on the novelty of the design and the experience of the designer.

• Check package and define pad locations, especially for power and busses of
addresses and/or data.

• Define power style and grid—power line widths based on electromigration
or RC, and where the chip needs special power lines connections in order to
achieve the allowed IR drop and resistance. In some advanced processes,
power lines have their own routing layers.

• Evaluate the total number of signals; build channels including contingency
and plan for spare lines and spare logic.

• Find repeated structures and try to reuse any possible piece to increase
efficiency and reduce change impacts.

• Plan layout hierarchy and design to match each other as much as possible
(same level and names). Even though the verification tools are fast today,
debugging time is based on the user’s ability to understand the errors and
fix them in a timely manner.

• Update the floorplan regularly by replacing the empty boxes with finished
blocks and rerouting the interblock connectivity. This way, when all the
blocks are done, the chip is complete.

9.4.2 Blocks

Block-level layout guidelines are as follows:

• Import from the chip level, the block size and port positions and try to stick
to them.

• Define feed-through signals so the overall chip congestion inside interblock
channels will be reduced.

• Define power needs and grid inside each block.
• Define critical path design and group the related cells to minimize routing.
• Plan for changes by having spare logic and lines.
• Try to improve efficiency by using automated tools. When the number of

components is 100 or more, even a good layout designer will find it hard to
respect all the design constraints for this many instances and still be fast.
Even if the tool is providing 80 percent of the job, it is much faster and
less prone to error if the designer uses assisted routing rather than hand
connectivity.

9.4.3 Cells

For cell-level design, we offer the following overall guidelines:

• Define cell architecture—i.e., standard, full custom, datapath, etc.—and
boundary rules based on the block plan.

• Define power style and widths.

Guidelines for Proper Layout 215

• Define special requirements—i.e., symmetry, neighbors, critical path.
• Define transistor style based on speed, power consumption, and routing

requirements (porosity).
• Verify the cell DRC together with neighbors. This eliminates all possibility

of finding errors at a higher level of hierarchy.

10.1 INTRODUCTION

Every year at the biggest conference for IC CAD known as the Design Automa-
tion Conference, VLSI designers from around the world are bombarded with
names of new products and methodologies that can improve the efficiency of
design.

Before the conference, magazine and e-mail advertising is frenzied, and
during the conference, presentations and demonstrations are given all day long.
In all of them the marketing and salespeople presenting the tools always
feature new options and benefits such as extra capacity and quality, a variety
of menu options, and the very “important” price/performance ratio in compari-
son to manual methods or tools from the competition. None of these presenta-
tions discuss the philosophy of the tool, what the designer of the tool had in
mind, what new concepts the tool is addressing, or what kind of flow the tool is
supporting.

We learn about buttons, ease of use features, values to enter into forms, but
not the real reason why we should use the tool. In many cases, new tools that have
good potential are not successful because they were not introduced with the right
approach.

The vendors who market their tools to the right users are always more suc-
cessful than others who don’t, even if those others have a better tool. During the
past 15 years many companies tried to build tools to totally eliminate the work of
a layout designer by offering a “push-button” solution. However, most of them
have disappeared.

As an example, while working at Motorola we received a demo of a new
tool for layout design. The application engineer who came to present the tool
started the demo with the following statement: “This is a tool that will provide
an engineer with everything he needs to avoid using the services of a layout
designer!” I don’t think that I have to explain how successful the demo was and
how a wrong marketing motto helped a very capable tool to fail.

216

CHAPTER TEN

Computer-Aided Design (CAD)
Tools for Layout

Introduction 217

Their timing was good, the tool was very capable at the time, and with some
good customers and an installed base, it could have become the market leader.
They were the first to see the advantage of integration between layout and circuit
simulation databases. In this case the developers addressed the needs of one group
of users by creating a disservice to the other. For obvious reasons, we will not give
you the name of that tool in this book.

In this chapter we try to cover for each family of tools the concepts that
we understand they are addressing and the methodologies required to use
the tools. For a comprehensive list of vendors and tools, check out the Integrated
System Design Magazine Web site, where there is always an updated vendor
list.

A description of the basic types of tools used for layout today in CMOS VLSI
designs is outlined next. Subsequent sections will expand on features and ideal
usage of specific tools based on the flow and the context where they are or can be
used.

The various classes of tools have been grouped into three areas, as shown in
Figure 10.1.

Planning tools include the following:

• Floorplanners: A floorplanner is used to coordinate placement and routing
engines to create a layout floorplan. Floorplanners are discussed exten-
sively because they pose new concepts and challenges for layout design.
When used properly, floorplanners can reduce time to market by provid-

Figure 10.1 Layout tools grouped by functionality.

218 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

ing a methodology for top-down design and layout that is correct by
construction.

• Placers: A placer optimizes the placement of cells or devices using physical
and logical constraints. Placers are generally designed to work with specific
routers; therefore, it is very important to use a placer and router from the
same vendor. This is because the two tools work together to meet the con-
straints and take advantage of features and information that are known to
both tools.

To understand more about this topic, we will expand on the features
and constraints of placers in the sections related to specific levels of design.
Once understood, it should be clearer why it is better for a placer and router
to work together. As a simple example, a channel router needs channels to
route with, so the placer must provide these channels. If not, the world’s best
placer may be useless.

In terms of types, there are three basic levels of placers, each having
different features and requirements:
Inside cells—transistor and cell placement
Inside blocks—cells, blocks, or mixed cell and block placement
Chip level—block-level placement within a floorplanning tool

• Routers: Routers were the first automation tools that were widely used. A
router enhances the speed of layout interconnect. At first routers were
capable of chip-level routing; they have evolved to handle cell-level routing
today. A router is a must when the complexity of connections is beyond the
capabilities and efficiency of a manual approach.
Layout generation tools include the following:

• Layout editor: A polygon pusher or layout editor is used to generate polygons
and paths using a graphical user interface. Some of them are very sophisti-
cated and may include place-and-route functionality.

• Symbolic editor: A symbolic layout editor has the same user interface as a
polygon pusher. However, the layout is generated symbolically from a coded
or mathematical algorithm that is programmed into the tool. The advantage
of this approach is that the process design rules are used as parameters to
the code; therefore, it is easy to generate layout for different processes.

• Device generators: Device generators are used to generate layout devices such
as transistors, via arrays, or logic gates. They typically have an extensive
graphical user interface and a highly developed macro language. In some
cases the device generator is an enhancement to a layout editor or an inde-
pendent tool. Without a placer or a router, device generators have very
limited value for enhancing productivity.

• Compactors: A compactor automatically optimizes existing layout and is gen-
erally used as an enhancement to an advanced layout editor or symbolic
layout tool. The compactor shrinks or enlarges the width and space between
polygons with a goal of minimizing the layout to the limits of the process
design rules.

• Silicon compilers: Silicon compilers are used to generate layout automatically
by generating transistors, leaf cells and structures using the leaf cells based

Planning Tools 219

on a standard architecture. In general, silicon compilers do not have a graph-
ical user interface, as they are used to process a large number of structures.
They are developed mostly by and for people with a lot of software
experience.

Finally, the layout support tools include the following:

• Layout verification tools: Layout verification tools perform a suite of tests on
completed layout. Design Rules Checkers (DRC), Layout versus Schematics
(LVS), Electrical Rules Checkers (ERC), Layout Parasitic Extraction (LPE),
and optical proximity tools are discussed.

• Plotters: Plotters are generally not a software tool, but in order to produce
meaningful and readable hard copy of layout, software specifically designed
to process layout is normally used.

• Converters: Layout converters are often called migration tools. Similar in
concept to compactors, a converter is used to retarget or compact a previous
design into a process with different design rules.

Finally, a discussion of data formats for layout databases will be presented.

10.2 PLANNING TOOLS

There needs to be a planning phase for all layout design tasks, but in general a
floorplan starts from the chip level down to the block level. The idea behind this
methodology is to build everything bottom-up while using the top-level floorplan
to define the block interfaces and to coordinate updates to these interfaces as por-
tions of the design are completed or verified.

10.2.1 Chip Floorplanning Tools

Floorplanning is the process of identifying structures that should be placed
together and allocating space for them so as to meet the conflicting goals of avail-
able space (cost of the chip), required performance, and the desire to have every
block connect seamlessly to everything else.

In most chips, the smallest design is also the highest performance design.
Therefore, area and speed are characteristics that go hand-in-hand. A block or chip
that is small in area has shorter interconnect lines, less routing, faster end-to-end
signal paths, and even faster and more consistent place-and-route times.

Floorplanning is methodology that should result in a smaller design because
the design is planned efficiently by combining the expertise of the layout designer in
partitioning the circuitry and the optimization algorithms in the floorplanning tool.

Figure 10.2 shows the different components of a floorplan at the start of the
design process.

To understand the role of a floorplan and how a tool can help the designer
to obtain fast and correct results, it is important to understand the concepts and
issues that a floorplanning tool is trying to address. A floorplanning tool does the
following:

220 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

• Understands the different partitions or blocks of a design
• Understands the critical characteristics of each of the blocks: size, aspect

ratio, and pins
• Dynamically displays the connectivity between blocks and connections to

the pads
• Allocates space for routing based on number of routing layers
• Places top-level ports based on constraints
• Places each block and optimizes the pin locations for each block based on

the overall connectivity requirements and the feasibility of routing the
signals between blocks

• Allows the user to make incremental modifications to the plan or to replan
altogether

Figure 10.3 highlights the important information on a block that is required
before it can be instantiated in the chip-level floorplan.

Figure 10.4 outlines a procedure for using a floorplanner effectively. Here are
some important hints to remember when using a floorplanning tool:

• Initially, all pads at the top level are assigned to be connected to a single
layer. This constraint affects the router in its ability to optimize the connec-
tions to the pads. In some cases the pads can be assigned to two layers, which
gives the router more freedom. In the case of many available layers (up to
10!), the assignment of pads to routing layers is best left to the layout
designer and assigned manually. There may be dedicated layers for some
ports that need to be assigned, such as power supplies and clocks.

Figure 10.2 Components of a simple chip floorplan.

Planning Tools 221

• Block pins may have to be manually assigned to the correct layer as in the
previous case.

• Inserting spare logic and signals is tricky. Typically, the netlist of a design
does not contain spare elements, so these elements need to be inserted man-
ually as well. The person using the tool should learn how to “massage” the
netlist by introducing “fictional” lines and pins, enlarging blocks for spare
logic, and adding dummy blocks that will be used for spare logic. Proper
placement of the spare elements is also necessary to ensure that the spare
lines are close to the spare logic so they can be used easily.

• Blocks that are subject to change should be placed strategically where there
might be extra space for the block to grow in size.

10.2.2 Block Floorplanning Tools

At the block level, the procedure for floorplanning is fundamentally the same as
the chip floorplanning procedure, with minor exceptions. Instead of working with
blocks, the floorplanner works with groups of cells that are defined based on the
functionality and connectivity of the design. In this case the design is more mature,
in that the design is better defined with cells and connections and there are fewer
empty blocks with unknown contents.

Figure 10.3 Block information needed for floorplan.

222 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

In comparison to chip floorplanning, block-level floorplanning has the fol-
lowing similarities and differences:

• At the block level there may be thousands of cells; at the chip level the
number is usually less than 20

• Port handling is similar, although there may be many more ports
• The pins in a block can number in the hundreds of thousands, and the con-

nectivity is much more complex than at the chip level
• If the process has more than three layers of metal, the floorplan may not have

channels at all—the plan will look like a sea of cells
• In the case where there are imported or hard cores, the floorplanner will

optimize their placement among the rest of the logic.

Figure 10.4 Floorplanning procedure.

Figure 10.5 Floorplanner output file formats.

224 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

Floorplanners need to export information based on the design needs or the
overall design flow being used for the design. Figure 10.5 illustrates the data
formats that a floorplanner provides. The different formats depend on the target
application.

10.3 LAYOUT GENERATION TOOLS

Layout generation tools are the main bulk of the layout design tools on the market
today. Different tools are used depending on the level of abstraction, and this
ranges from cell- or transistor-based layout to chip assembly. Each of these will
be covered in this section.

10.3.1 Cell-Level Layout Generation Tools

Cell-level layout generation tools manipulate polygons to form transistors and
connections between them.

Polygon Pusher. The most popular tool for cell-level layout generation is still
the “polygon pusher” or basic “layout editor.” Theoretically, a polygon pusher can
be used to design a complete chip of any kind from transistor level and up.
However, it is not practical for block or chip assembly.

Polygon pushers are used to generate low-level cells, ranging from 10 to 100
transistors, and for drawing all the layers required in a VLSI process. These tools
are very mature, and generally minimum maintenance is required. However,
some companies have invested a lot of time to “enhance” the basic tool with
macros to generate layout that is done repeatedly.

Polygon pushers provide an environment for very high-quality full-custom
layout, but they are completely manually operated and thus are slow. Enhance-
ments to the environment are constantly being developed in an attempt to add
automation to speed up certain stages of the design process: N-well generation,
contact cells, transistor generators, ports macros, etc.

Almost all the big IC CAD vendors offer a layout editor, so it is important
to evaluate them in terms of the availability of add-ons for automation. With only
a few exceptions, most of them are running on UNIX machines, but they are begin-
ning to migrate toward PCs as well.

Applications for layout editors include the following:

• Full-custom VLSI layout, where size is the most important factor. Pitch
limited layout in DRAM, SRAM, PLA, pad output buffers, and input pro-
tection devices are only a few examples where the pure polygon pusher is
still needed as it is.

• Analog design and special process cells or keys.

Features of layout editors include the following:

• They enable the user to do layout design of any kind.
• They are easy to set up for any process and most of the time work out of

the box.

Layout Generation Tools 225

• Minimal training is required to get started. Advanced layout designers
designing analog circuits, for example, need to understand layout concepts
more than features of the tool.

• Over time, most companies have customized and have built entire method-
ologies around their layout editors. This is the main reason why stand-alone
automated tools have not been able to displace them so far.

• Layout generation is very process dependent, so it made sense in the past to
do everything in a 100 percent full-custom manner. ASIC flows and place-
and-route changed the way people thought in terms of layout design.

• There are many internal tools inside big companies for this specific task that
require a CAD group to develop and maintain the design environment. In
many cases political interests are against progress and efficiency. Startup
companies do not have to deal with such problems, so they are easily accept-
ing new tools.

• These tools are slow compared to automated tools, and that is why they are
rarely used alone. More and more they are mixed with complex device
generators, transistor place-and-route, symbolic editors, compactors, and
routers. All the vendors who have a large customer base are working hard
to improve them by adding some type of automation.

Device Generators. Device generators with routers can be used to implement
almost all levels of layout complexity. Most of them are very specific to low-level
or transistor-level layout design in different applications.

The tool is used to generate low-level cells, and/or complete standard cell
libraries, very fast and efficiently. In this case each cell is limited to ~10 to 100 tran-
sistors per cell and all the layers required in a VLSI process are drawn.

Setting up and maintaining this type of tool requires extensive knowledge.
Device generators provide the best mix of layout automation and full-custom
design possible for cell generation.

Advanced device generators available today are schematic or netlist driven
so the result is correct by construction. Knowledgeable drivers (layout designers)
can work wonders using this “enhanced layout editor.”

Applications for device generators include the following:

• Standard cell libraries, where standardization of the pin assignment, cell
height, neighboring requirements, etc., is an important factor in layout
design

• Cells for datapath, where the tool and design requirements have to be guar-
anteed and tailored to specific designs

• Applications where quality and analog requirements are as important as
layout design speed

Features of device generators include the following:

• Layout generation is fast, but the tools are expensive for a small company.
As we write, the prices of these type of tools are dropping because of com-
petition. This is supposed to be the next generation of the basic layout editor.

226 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

• The tools have to be set up by an experienced user, but then can be used by
any new trainee. For special layout requirements, experts in layout design
and macros may be required, but these cases are typically only 10 percent of
the effort in cell design.

• They are fast compared to full-custom polygon pushers, which is why they
have gained market share in the past 5 years; however, they are slower than
silicon compilers.

• These tools provide a good environment for process migration and/or
process changes during the design process—processes evolve during the 1
to 2 years of a project’s design time.

In principle, the market for silicon compilers is moving toward regular struc-
tures and block-level layout, while device generators are aiming to replace the old
polygon pusher.

Cell Placers. Cell placers are used for optimizing the placement of individual
devices and layers. In many cases a device generator is combined with a cell placer
and a cell router to provide a complete layout environment. Ideally, cell placers
need to understand cell architecture for good results.

Following are some features of cell placers:

• The numbers of devices and pins that these tools handle are small (hun-
dreds), but the placement optimization is very detailed. Many constraints
are considered.

• Ports can be placed on all sides. The placement may be fixed or may “float,”
in that it can be changed if a better layout can be achieved.

• Regions for PMOS and NMOS transistor placement are controlled—for
example, transistors can be placed in rows of variable heights and may
include multiple rows of different heights.

• Transistor fingering is automatic, based on specified architectural
constraints.

• Substrate and well connections can be controlled.
• Layout that is already complete can be imported. This is useful in the case

where a rough layout is done by hand and given to an automated tool to
finish the job.

• The interface to the cell router is seamless.

At this level, placers really enhance the layout designer’s speed and pro-
ductivity. There are very few noticeable disadvantages of using placers in cell-
level layout. Using a placer is a big step forward in increasing the amount of
cell-level layout automation. The only barrier to their use is that they have to be
easy to set up and use, and because they are used by designers who are very com-
fortable with polygon editors, these tools need a very good graphical user inter-
face. Historically, all text-based tools have failed here.

Cell Routers. Routers for cell-level layout are typically very simple. However,
some vendors have carved a niche by promoting the features of cell-level layout

Layout Generation Tools 227

to the requirements of chip-level assembly. There are a few good cell routers on
the market, and it is important to have a device generator, a placer, and a router
in the same environment. If driven by a netlist, cell routers can accelerate cell gen-
eration. The most powerful routers allow the user to define constraints such as
the following:

• Equal length of signals—a full bus of signals will have exactly the same
lengths for all bits

• Special line widths for predefined signals or applying special requirements
interactively

• Power routing constraints
• The number of contacts for each connection and/or the minimum contacts

for a source/drain
• Differential pair routing

Compactors. A compactor can be used at almost all levels of layout complexity.
Most of them are best used at a transistor or cell level. The tool is used to compact
transistor layout and their connections inside a cell design.

One approach to using this type of tool is for the layout designer to do a
loose job and run the compactor to optimize the layout. This is a very fast and
efficient methodology to generate DRC clean layout cells.

For cell-level layout, the setup and maintenance of a compactor requires a
very knowledgeable designer. The advanced compactors that are available today,
together with schematic or netlist-driven layout generators, can provide the best
of all worlds because the result is correct by construction and should pass both
DRC and LVS checks. In the case where the compactor works on symbolic layout
data, the results are extremely fast, and they can add advanced structures such as
jogs within a wire if required.

Compactors are used at any level of design—from transistor-level layout to
top-level routing, compactors should be part of any layout environment!

Features of compactors include the following:

• They are capable of generating very quickly most kinds of layout, as well as
correcting DRC errors before the errors are made.

• Any novice can use the tool if experts have properly validated the setup of
the tool.

• Compactors are sometimes used for a limited process migration and/or
process changes during the design process. When processes evolve during
the 1 to 2 years of a project’s design time, a compactor can fix minor design
rule changes.

• For the moment, compactors are running in flat mode or within only one
level of hierarchy. There may come a day when a “push-button” tool will be
able to compact a full chip to fix a design rule change.

Silicon Compilers. Silicon compilers can also be used to design cells of various
levels of layout complexity. Similar to compactors, most compilers work best at
the transistor or cell level of layout design. The tool is used to generate low-level

228 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

cells, and/or standard cells that are limited to ~10 to 40 transistors per cell, very
quickly and efficiently while drawing all the layers required in a VLSI process.

Silicon compilers require extensive and expert maintenance to be effective
in a changing environment. They provide the fastest cell generation possible. A
standard cell library can be generated in ~1 day while customizing the cells for a
specific placer and/or routing tool.

Applications for silicon compilers include the following:

• Standard cell libraries, where standardization of the pin assignment, cell
height, abutment, etc., is an important factor in layout design

• Cells for datapath, where the tool and design requirements have to be guar-
anteed and tailored to specific designs

• Any time speed is the most important factor in a layout generation

Following are some features of silicon compilers:

• Layout generation is fast, but the tools are expensive for a small company.
For example, silicon compilers for standard cell libraries are so expensive
that only companies selling libraries as their main product can justify their
purchase.

• Only highly trained people in software, i.e., software engineers and/or
designers with broad background in software, can use the tools. They may
know how to run the tool, but not necessarily how the layout is supposed
to look and be used. We hope this book will help them to understand more
about generating layout for the entire design process.

• There are many internal tools inside big companies for this specific task that
require a CAD group to set up, develop, and maintain the design environ-
ment. Standard formats are used to interface the output of silicon compilers
with the other tools in the flow. The problem with using standard formats is
that specific information that is required for the compiler may be lost and
the advantage of using the tools defeated.

• They are so fast compared to full-custom polygon pushers that they have
gained a lot of market-share in the past 5 years. Silicon compilers can be used
not only for layout generation, but for process porting as well.

• Some compilers are targeted to specific applications: RAMs, ROMs, PLAs,
I/O cells, standard cells, datapath designs, etc. These compilers do not
require as much training because they have been designed for novice users.

Consider silicon compilers to be a suite of tools that contain device genera-
tors, placers, and routers under the hood. They do not offer the capability of inter-
active editing that is available by using the combination of the three individual
tools.

10.3.2 Block-Level Layout Generation Tools

In general, block-level layout does not deal with transistors but with small cells
and macros that are built with one of the tools described in Section 10.3.1. At the

Layout Generation Tools 229

block level of layout design there are three types of tools. For regular structures,
tilers are described, and for nonregular placement and connectivity, placers and
routing tools are described.

Tilers. A tiler is used to automate the generation of very organized and repeti-
tive structures such as memories, datapath circuitry, and pad frames. The GUI is
generally quite primitive, and they are available as a stand-alone tool or integrated
in various design tools environments.

A tiler is a simple placer that understands a predefined or preprogrammed
architecture and places leaf cells in the arrangement that is defined. A tiler simply
executes a set of layout instructions (tiling program) and does not optimize or
reconfigure a design based on a netlist or constraints. The layout generation part
of a memory compiler is the most common form of a tiler.

Advanced tilers support decision constructs (i.e., if–then–else) and para-
meters in its tiling language. This feature enables a tiler to be configurable based
on a set of parameters, and this is the basis for flexible memory compilers. For
example, if the choice of cell is dependent on a specific parameter, then this can
be built into the tiling program. The strength of a buffer can be chosen and tiled
appropriately this way.

Following are some applications for tilers:

• RAMS, ROMS, PLA, I/Os, DATAPATH, etc.
• New migration tools are using tilers to break apart a particular design hier-

archy and provide this information to the migration tool so that the leaf cell
abutment constraints can be automatically generated.

Features of tilers include the following:

• The power of a tiler can be used as a very fast area estimation tool. A rep-
resentative set of cells can be tiled quickly to obtain an estimate of area for
a chip or a block. If routing is added and extracted, an estimate of intercon-
nect delays is possible and is especially valuable in an ASIC design flow.

• Any novice can use the tool if experts have properly validated the setup of
the tool.

• Tilers are generally not expensive.

Block Placer. At the block level, placement issues are quite a bit different from
those at the cell level. The block placer is one of the main tools used in an ASIC
design flow. They are commonly known as the placement part of a place-and-
route tool and are critical to the future of layout design as chips grow in size and
complexity.

The size of the netlist is the first difference and in this case may be hundreds
of thousands of cells and signals with many thousands of ports entering the block.
This size of design is impossible to do manually in a reasonable amount of time.
In practical terms, manual methods are limited to blocks with ~500 cells.

The block placer is a sophisticated tool to be able to handle large designs.
This tool uses complex algorithms to optimize and reoptimize the placement of

230 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

cells to achieve a placement that will meet timing, area, and routability constraints.
This is not a simple task, as the tool needs to manage these trade-offs effectively.

One way to understand the role of a placer is to understand the inputs to
the tool:

• A netlist of the circuit design that contains a list of cells to be placed and the
logical connectivity between the objects to be placed.

• A description of each cell in the design. The description includes character-
istics such as size, pins, pin locations, power consumption, and timing
characteristics.

• Total available area and placement of ports to the block. In the case of cell-
based placement the placer needs row information such as size, direction,
channel restrictions if any, and location of black boxes or hard macros.

• In the case of a gate array, the location of the legal sites where cells are
allowed to be placed.

• If advanced features such as power grid evaluation, IR drop per row, or elec-
tromigration rules are to be used, the constraints of each cell and for the
entire design.

The output of a block placer is a preliminary version of a design where all
cells have been placed in a specific location and the design is ready for routing to
be completed.

Placement based on timing constraints is available and is a new and much
more stringent methodology to use. In this case the placer has to evaluate place-
ment based on the timing constraints received from the design file.

Block placers typically have a useful graphic user interface and are gener-
ally easy to set up. Block-level placers are essential to increase the productivity in
layout design.

As discussed in detail in the next section, routing approaches have been
either channel- or area-based. Channels are routing areas between cells, while
area-based routers use all available area to route a design.

The placer that is used in a particular design must work closely with the
router and must understand the limitations of the router. For example, a placer
optimized for channels should not feed a completed design to a maze router.

Channel-based placers work on the basis that an infinite amount of area is
available for routing and that routing channels can be expanded or compacted to
accommodate and optimize the size of the channels. Cells are placed in rows, and
the row that is chosen for a specific cell is determined based on the best place for
routability and other constraints such as timing or power. The placement algo-
rithm can vary the number of rows and the length of the rows to achieve a design
that will meet all of the routing constraints.

Maze-based placers simply place all cells in rows within a fixed area without
regard to dedicated routing channels; they assume the routing is completely over
the cells. The placement algorithm considers issues such as routability, congestion,
and timing, among many other things.

Block Routers. As the name implies, a router automatically completes the
connectivity of a placed design. Connections are implemented between cells and

Layout Generation Tools 231

the interface to the block or chip. Routers in general can be used at all levels of
layout design for all methodologies.

Features of block routers include the following:

• Routers automate the task of connecting millions of signals while optimiz-
ing for things such as area, timing, and power. This capability cannot be
replaced by manual techniques.

• Effectively using both routers and placers requires a significant amount of
experience to take full advantage of the many features built into the routers
available today. Routers are not effective right “out of the box” and most
companies have dedicated experts for this task.

• Some designers are reluctant to give up control of the routing to an auto-
matic tool. However, confidence in extraction methodologies is usually
sufficient to alleviate concerns and the speed of routing is hard to beat.
Routing techniques are useful for nontraditional applications such as analog,
RF, and memories, and it may be market forces that promote the use of
routers in these areas.

A brief history of routers is presented next. It is useful to understand the evo-
lution of the tools because it can give us a lot of insight into the concepts behind
routing tools today.

Historically, routers were initially developed as a tool to assist or automate
existing block layout methodologies for processes that were available at the time.
Only one or two layers of metal were available; thus, routers had to work within
the same constraints as the layout designer.

Routing channels were used extensively. The first routers had algorithms
specifically targeting channel routing and are now known as channel routers. These
routers essentially optimized the routing in one direction, that being the height of
the channel.

As more routing layers became available, different algorithms were devel-
oped to take advantage of the extra layers. With three or four available layers,
channels became unnecessary because routing could be implemented directly
over the cells and the cells could be placed adjacent to each other without wasted
space in between. In this case, maze routers became dominant because the “maze”
algorithms built into the routers optimized the routing based on a mesh or two-
dimensional maze of routing resources.

Finally, more recently, shape-based routers have appeared to address the
chip-assembly or transistor-level designs. Shape-based routers are much more
powerful in terms of implementing customized routing, but they are very
limited in capacity when compared to maze and channel routers. Channel
and maze routers are able to handle large databases because they essenti-
ally work on a point-to-point basis and use a well-defined and coarse grid.
Shape-based routers implement polygons, and therefore need to manipulate
much more information. A description of shaped-based routers follows in
Section 10.3.3.

In terms of block routing, channel and maze routers are most relevant to our
discussion.

232 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

In Chapter 5 we described how the architecture of the standard cells defined
how the routing was done, and we gave a specific example of layout using channel
routing. How does a channel router work in this environment?

At the beginning, with only one or two routing layers, the first routers con-
nected signals only between the boundaries of the cells. Routing was optimized
within the channels to reduce the number of signals within any particular channel.
When three routing layers became available, channel routers were enhanced to be
able to route over the cells and take advantage of the fact that the ports of the cells
were in the middle of the row.

Channel routers optimize the size of different channels as an initial analysis
step and require a specific algorithm to do a good job. This analysis ensures that
the routing can always be completed, but the problem with this assumption is that
the block may end up being too large for the space allocated to it.

Channel routers then automate the layout of channels by understanding the
routing architecture and its limitations. The tools offer additional features such as
the following:

• Automatic addition of jogs in wires to reduce the total size of the block.
• Automatic reduction of the number of vias by optimizing any jumpers

to preferred routing layers. This is a very useful feature when the routing
is between two blocks with only busses between them and no other
passing signals. This feature also helps reduce chip size and signal
resistance.

• Adding via topologies based on a specified formula and not limited to a
simple fill algorithm.

• For symbolic channel routers, easy manual switching of a signal from one
channel to another and to run compaction to fix DRC errors.

• Timing-driven placement and power analysis (offered by most today).
• For some routers, built-in routines that interactively adjust power connec-

tions, tapering, routing widths and positions, etc. For small geometries,
delay and power calculation is necessary.

• For other routers, timing analysis built into the tool that can be done before
or after routing so the designer can adjust certain routing parameters before
completing the final route. In general, the timing is based on pin-to-pin
delays.

• Current calculations built into some tools that provide many sets of data
such as absolute current in a wire, the current density in the wire, and supply
voltage for every node and cell.

• In most routers, ECO capabilities. However, remember that a complicated
change many increase the size of the block/chip!

Channel routers have some disadvantages as well. The biggest disadvantage
of channel routers is the uncertainty of block or chip size, which is not fixed until
all the routing is done. The second is that they impose restrictions on the design
of the standard cell library. For instance, cell pins may be required to be aligned
in a single row or to be positioned on the border of the cell.

Layout Generation Tools 233

As mentioned previously, channel routers became less effective when chips
began to be manufactured using four layers of metals. At this time maze routers
achieved maturity, and extraction in an ASIC flow became standard procedure.
Using a maze router, a design can be cell limited and routing channels are not
required. This feature made chip size estimation easier and the size of a block or
design could be determined earlier in the overall process.

Maze routers do not work with channels, but attempt to complete the routing
using an area-based approach where connectivity is optimized based on horizon-
tal and vertical routing resources. The available area must be predetermined and
constrained for the router so that signal lines stay within a fixed area.

Different algorithms are used within maze routers. Generally, a global routing
algorithm is used to subdivide the total area, a detailed router to complete signal
routing, and a clock tree routing algorithm and a power routing algorithm for
power supplies. All of the algorithms are linked together to complete a final design.

Unlike a channel router, where a route will complete every time, there is no
guarantee that the maze router will be able to route all nets. Routing congestion
and/or impossible timing constraints are the likely culprits that prevent the com-
pletion of a routing job. The best way to address these issues is to modify the
placement of the cells. In some cases, for the last 10 or 100 nets, human interven-
tion may be able to finish the job.

Routability problems are best solved by changing the placement of the cells,
and this is why a strong link between the router and placer is needed. In this case
the placer can place objects that are router friendly, and this is only possible if the
placer understands the algorithms of the router. This is why it is highly recom-
mended that the placer and router come from the same company.

ECO functionality is available within maze routers to implement minor
changes in the design. Existing nets can be locally removed and then reconnected
based on the new design.

In terms of worldwide use, most ASIC houses are using maze routers not
only for standard cells and gate arrays, but also for FPGA designs.

After the blocks are routed and simulated with extracted parasitics, it is
usually time to insert any clock trees. The placement is generally the starting point
for clock tree insertion, as the distribution of loads is known. In this case the
routing tool has another algorithm to find the cells that are connected to a specific
clock and is placing and routing only the buffers and clock signals to minimize
clock skew. (See Figure 10.6.)

A measure of quality for place-and-route is what is known as utilization. The
utilization of a design is defined by the ratio of the area consumed by cells to the
total available area. Channel-based designs will have a lower utilization number
because of the overhead of channels. Gate array designs limit cell density by
having limited cell placement sites and in this case utilization factors will be in
the range of 50 to 70 percent. Maze routers will have the highest utilization factor
because of the flexible cell placement and over-the-cell routing. Nevertheless, the
cells are placed in rows, and not every row will be 100 percent full, so the uti-
lization will not be 100 percent.

Remember that placers that work with maze routers use a fixed die size and
do not include a compaction step. Therefore, there is no way to improve efficiency
of a design after all the routing is done.

234 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

Combining the approach used in channel routers of routing analysis, place-
ment then compaction with the efficient routing algorithms of maze routers pro-
vides the best of both approaches.

The concept is that a channel-based placement is done that fully evaluates
the design for optimal routability, and after placement the “channels” or rows are
compacted to determine the final block size. It is this final block size that the maze
router uses to complete the routing. Since a channel-based placer has the freedom
to define the number and length of rows, the routability of the final design will
be much higher than the output of a maze-based placer. This is because a maze-
based placer is given the available area and cannot change the aspect ratio of the
block to improve routability.

Figure 10.6 Example of ASIC place-and-route flow.

Layout Generation Tools 235

With this optimized design size, the maze router will more easily complete
the routing and the overall effect should be an improved utilization factor. The
big players (vendors) in the place-and-route tools market are trying to implement
a similar approach in different ways.

10.3.3 Chip Assembly Tools

Chip assembly, as the name implies, is the process of combining the different
blocks of a chip with the pad cells and integrating them all into a completed
design. Consider the following scenario:

• The layout leader designed a chip floorplan using a tool for placement of
blocks.

• The blocks had their pins identified compatible for routing.

• A router was used to connect the blocks.

• The plan was updated during the course of a project by doing the
following:

As each block was finished, its empty box was replaced with the final
block layout

The routing was updated to reflect the new position of pins and widths of
the signals

An analysis of this process should conclude that the chip assembly was com-
pleted near the beginning of the project in the form of the “initial” floorplan! With
the help of automated tools that are available today, this flow is not a dream, but
completely possible.

In general, for top-level assembly or routing between blocks that number no
more than 50 and pins and signals that number no more than 5,000, shape-based
routers are the best tools for the job.

Shape-based routers are very rich in features, but have the disadvantage of
limited capacity. Channel and maze routers simply connect pins and respect
obstruction layers using simple paths on a coarse grid. Shape-based routers have
many features that include connecting a signal of different widths using polygons.
Therefore, shape-based routers need to process a lot more information, and this
is what limits their capacity.

Shape-based routers produce layout that is full-custom. Historically, these
routers were based on approaches taken from printed circuit board layout tools
where very controlled and detailed layout is required.

Most routers are automatic, but more and more users are asking for inter-
active features for routing. Some shape-based routers are already providing fea-
tures that have never been available before:

• One bit of one signal of a bus can be routed manually, and then the shape
of this bit can be copied relatively easily to all the bits of the bus.

• Busses can be routed together as a group with options to run them at 45-
degree angles or around corners to minimize bus skew or routing area.

236 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

• Routing of signals can be constrained by grouping them in classes such as
busses, special groups, or clocks.

• User-defined routing rules for each layer as well as net-based routing con-
straints address analog signal crosstalk, minimum capacitance, and resis-
tance effects.

These routers were the first to offer automatic shielding to reference signals
and diode application against antenna rules, thus demonstrating their PCB
heritage.

10.4 SUPPORT TOOLS

In terms of layout entry, we have covered the basic types of tools involved. The
design process is not only layout entry. The layout needs to be verified against
various quality standards, and manufacturing design rules and layout can be
migrated from other sources to save time and effort. Tools that perform all of these
operations will be covered in this section, as well as a discussion of standard data-
base formats used for layout today.

10.4.1 Layout Verification Tools

Figure 10.7 documents the layout design procedure as discussed in Chapter 3. The
highlighted steps correspond to a verification tool that is discussed in this section.
It is important to remember that layout verification must be done on the entire
chip and on the file that is to be sent to manufacturing.

DRC/LVS/ERC. The verification of a full chip database file has been an issue for
the verification tools over the course of time as designs have grown from 1,000 to
10,000,000 transistors. As the designs have grown, designers and tool providers
have evolved the methodologies capable of verifying these designs.

From a user’s point of view, the requirements for verification tools are dif-
ferent from those for layout entry or design tools. Ease of debugging or correct-
ing problems, tool capacity, and run times are the key issues for these tools. The
verification process in general is a feedback mechanism for the designer to vali-
date the design as well as identify problems or shortcomings. Historically, the
layout verification tools had limitations in addressing the key issues as summa-
rized in Table 10.1.

In all cases the accuracy of the checks depends on the values and algorithms
that are coded into them. These values and algorithms are captured in files
referred to as setup files, command files, or rule decks.

“Work” structures refer to the methodology of breaking a full chip layout
into smaller structures for verification that together try to ensure that all poten-
tial problems are found. This methodology is very time consuming and poten-
tially error prone, but was necessary because the capacity and speed of the
verification tools could not handle an entire chip at once.

The user interface of these tools has evolved significantly over time and they
are approaching the ideal conditions just listed. For example, DRC error bars are

Figure 10.7 Layout verification tools.

238 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

standard and they show the location of polygons or edges that violate a particu-
lar rule. Cross-probing between layout and schematics is also standard for LVS
debugging. Features of today’s debuggers include browsing based on error type,
layer, layer groupings, jumping to the critical errors first, etc.

Many polygon pushers have an “online” version of the verification tools so
that small jobs can be executed almost interactively and the time required to
export the database to a separate tool is eliminated. The capacity and run-time
issues have been virtually eliminated for small blocks.

Final verification of the file sent to manufacturing must be done with a stand-
alone tool that can read the tape-out file. Historically, this was not possible because
the capacity and run times of the verification tools were not sufficient to check the
entire design.

Recently, “hierarchical” layout verification has been introduced specifically
to address the capacity and run-time issues. In the past the limits of the verification
tools were determined by the amount of data that the tool had to load and process,
and this was a function of the size of the design in terms of polygons.

The hierarchy of the design was ignored and any hierarchy that existed in
the design was essentially removed for the verification process. A “flat” database
was created. This approach ensured that polygons that existed on top of cells were
checked alongside polygons that were drawn inside the cells. The tools were
required to store and manage the entire database this way.

Hierarchical layout verification is a different approach that takes advantage
of the hierarchy built into the design. Cells that are repeated are checked only once
and then discarded for the remainder of the design. The tool requires careful man-
agement of the effects of over-the-cell routing.

Note that layout designers can take advantage of the features of the hierar-
chical verification tools by building efficient hierarchy into their designs.
Specifically, limiting over-the-cell routing and matching the layout hierarchy to
the schematic hierarchy are good methodologies to accelerate the layout veri-
fication process.

The key issues within a hierarchical layout verification environment are reex-
amined as shown in Table 10.2. It may appear that layout verification issues have
been completely solved!

TABLE 10.1 Verification Tool Issues

Key Issue Ideal Methodology Historical Methodology

User Graphical debugging environment with Very first tools generated text file output,
interface visual links to circuit design and but interactive debugging within polygon

suggestions for correction pusher is now standard

Capacity Unlimited Practical limit ~1M transistors, so ”work”
structures were used

Run time <1 hour so that repeated iterations are Days or weeks depending on type of
possible verification

Support Tools 239

One place where LVS debuggers can improve is the location and debugging
of power-to-power shorts. This type of error is very pervasive and produces a lot
of output if left uncontrolled.

Extraction. Extraction is the hottest product today in the Deep Sub-Micron era.
Layout extraction is another way of verifying that the layout performs as expected.
If DRC checks the rules for mask making, and LVS checks that the connectivity
and sizes of all devices are correct, the extraction of the layout is checking that the
performance of the layout in simulation meets the required goals.

Layout extraction produces data that feeds back the result of layout to the
circuit design process. The format of the data can be simply a netlist of devices,
resistors, and capacitors, or the extraction tool can simplify the network of para-
sitic components by calculating an equivalent delay or lumped RC model.

Extraction is nice to have for normal digital circuits but is a must for analog,
RF, and microwave designs where each small capacitance can change circuit
behavior.

Extraction methodologies and tools evolved much more quickly in parallel
with the development of ASIC flows, since the level of automation in circuit design
was increased, thus separating the designer from manually designing all aspects
of the design. The extraction process gives the required feedback to the circuit
design to evaluate the layout implementation of the circuit. In the case of the ASIC
flow, extraction of the real layout from place-and-route is crucial to the size and
timing of the design. The reasons are obvious:

• ASIC designers are not analog experts, as they concentrate on developing
functionality

• The number of nets in a design is impossible for a human to digest
• In general, ASIC designers do not even see the layout

Back annotation is the term that describes the step of feeding layout infor-
mation back to the circuit design. Final simulations should be run with the
extracted values from layout. For a final extraction to be successful, there are a
few minimum requirements:

TABLE 10.2 Hierarchical Verification Tool Issues

Key Issue Flat or Historical Methodology Hierarchical Methodology

User Every error is reported independent of Errors that occur in a repeated cell are
interface repetition reported only once

Capacity Practical limit ~1M transistors, so No limit, especially if repetition and
“work” structures were used hierarchy are used. “Work” structures are

not necessary. Verification of tape-out
file possible

Run time Days or weeks depending on type of Hours in all cases
verification

240 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

• The layout is DRC and LVS clean without errors or warnings
• The extraction environment is set up with accurate process information and

tested on a small circuit as a sanity check
• Critical signals are extracted with a higher degree of accuracy

The circuit design team should understand the accuracy of the extraction so
that they can account for the limitations of the tool when modeling and design-
ing their circuitry. Extraction tools trade off accuracy for run time as shown in
Table 10.3. The main difference in accuracy is how the extraction tool calculates
the effects of near-body effects. In the example, 1D near-body effects (i.e., coupling
to other lines) are not considered at all. 3D field solvers not only take into account
all near bodies, but also solve complex sets of equations to calculate parasitic
values.

Ideally, the extraction flow is very fast and perfectly automated so that seeing
the layout becomes unnecessary. In this case the setup of the flow is very
important.

Note that visual audits should still be done for many specialized applica-
tions. People’s eyes and expertise are still useful to analyze the effects of different
layout architectures. The only proven methodology today is plotting the
cells/blocks and asking experts to audit the layout.

Plotting and Plotters. There are not too many kinds of plotting software avail-
able in the market. In general, layout designers are using two kinds of plotting
software. One is simple printing software that is using the drivers of the specific
printer to print the layout. The more expensive but extensive version is software
that is written for “plotting” VLSI. Let’s see what are the advantages of such
software:

• The user can plot parts or “windows” from the big cell
• The user can choose only specific layers to be plotted
• The user can define fill patterns different from the ones shown on the

screen—in general, designers are using a black background for screen work
and white for plotting, so what looks good on black may not on white, espe-
cially when there are 3 to 10 layers of metal on top of each other

• The user can define a scale for plotting such as 1,000¥, 5,000¥, 10,000¥ so the
picture will be greatly enlarged to analyze analog problems

TABLE 10.3 Extraction Tool Accuracy Levels

Level Description Run Time

1D L and W of lines only are used in calculation Minutes per design

2D Limited near-body effects are considered Hours per design

Quasi-3D Table lookup of parasitics based on predefined patterns Days per design

3D 3D field solvers are used to calculate parasitics 1 day per net

Support Tools 241

• The user can choose a variety of options for plotting cell arrays—for
example, doughnut shapes or corners only

Why do we need plotting at all? One reason is that there may not be coding
for all of the rules for DRC verification. The second is that in some cases some
rules are very rare and the DRC rule check may not be deterministic. The third
important reason is that architectural improvements may only be understood from
a visual inspection of a large-scale plot.

In terms of plotters, there are two kinds available today for VLSI applica-
tions: electrostatic or inkjet. Electrostatic plotters require a climate-controlled room
with a high level of humidity. This is one reason why inkjet plotters are becom-
ing popular, as they work at room temperature. However each of these plotters
has advantages and disadvantages:

• Electrostatic plotters can deliver perfect plots up to 10 meters in length.
• Inkjet plotters have a limit to the length of plot.
• Electrostatic plotters are more expensive to buy, but in terms of price per

square meter of plotting area, the cost is the same in the long run because
the ink and the paper are more expensive in the case of the inkjet.

• The widths of the plots that can be obtained are comparable because all of
them have 36-, 44-, or 54-inch paper width capability.

• Electrostatic toner is delivered in gallon sizes compared to ink that comes in
1.36-liters bottles.

• Both types can be connected to the network and organized in a queue for
plot prioritizing.

In conclusion, if you do not need a color plotter to perform audits, you may
not need a plotter at all. Black-and-white plotters are used mostly for mask/reticle
check, where they are even 64 inches wide, but there are only two layers to check
against each other. When you have to deal with four layers of poly and two or
three metals, as in a DRAM process, color is obligatory.

10.4.2 Migration Tools

Migration tools are most useful in three scenarios:

1. Second sourcing for added capacity or reliable supply
2. Design reuse
3. Manufacturing process evolution

Lately, silicon intellectual property has become “in” in the VLSI industry,
and layout converters have really started to get global attention. There are two
ways to deal with process migration. One is to design layout inside tools that can
perform process retargeting; the other is to use GDSII converters after everything
is silicon proven.

A converter can be used to change almost all levels of layout complexity.
The tool was used in the past to migrate low-level cells, and/or full standard cell

242 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

libraries, very fast and efficiently. Each cell was limited to ~10 to 40 transistors per
cell, and all the layers required in a VLSI process were converted. For such tools,
extensive and very knowledgeable setup and maintenance is required.

Converters provide the best solution to migrate full chips from one process
to another. The converters available today are not schematic or netlist driven;
however, some transistor resizing is possible using tables or scaling factors. In
general, the cell topology, pin positions and assignments, electromigration, and
RC delay requirements are maintained.

These tools are used for purposes such as the following:

• Standard cell library migration, where standardization of the pin assign-
ment, cell height, neighboring requirements, etc., is an important factor in
layout design.

• Cells for datapath, where tool and design requirements have to be guaran-
teed and tailored to specific designs.

• Full chip conversion. Converters are starting to work hierarchically, so the
size of the source data is no longer a problem.

• In the case where the chip is in advanced stages of layout but a process
design rule that affects chip size is changed. Running a converter in hierar-
chical mode will solve the problem in a matter of hours with almost 100
percent DRC correct results.

Advantage and disadvantages include the following:

• They give the user the capability to migrate specific kinds of layout quickly,
but they are expensive for a company that works in a single defined and
proven process. Startup fabless companies will likely invest in migration
tools, and this will fund further tool development.

• The user may require a minimum amount of training in the macro language,
but advanced layout and design knowledge is key. It is important to under-
stand the key characteristics of the source layout to ensure that the target
layout quality is maintained.

• This type of tool may take some time to set up and to interface with other
tools involved in the design flow.

• They are fast compared to any other full hand-crafted capability in migrat-
ing layout, and that is why they have gained so much market share in the
past 5 years.

• The drawback is that these tools cannot add layers—i.e., migration of a two-
layer metal chip to a three-layer metal chip.

• They fully respect the original topology; however, they cannot take advan-
tage (alone) of new and perhaps better architectures that may arise in the
destination process. In the case of libraries, the easiest solution is to change
the source with minimum effort and then to run the conversion. In case of
full chips, the vendors of this kind of software developed various levels of
migration, such as only the cells, cells and routing, and only routing.

• We should chose the tools based on capabilities, but also on the user inter-
face and setup simplicity. If the migration is efficient but takes time to set up
and to debug the constraints, then the total effort is what counts.

Support Tools 243

• Interestingly enough, some silicon compiler vendors who totally ignored the
migration market started to work in providing GDSII input and output to
and from their tools to grab a piece of this “hot” new pie.

10.4.3 Data Formats

Any designer who wants to use point tools instead of integrated tools within one
framework has to learn how to deal with the data transfer issues. Every layout
tool starts from a different idea and they all have a different purpose, so internally
they each may have a database format that is efficient for their needs.

For example, a problem starts when a layout designer wants to transfer data
of a standard cell library to a different place-and-route tool. At the beginning of
the IC design industry, there was only one company providing layout design tools
for the entire market. This market was very small compared with today, and the
format was defined by them based on the limitations of the hardware and soft-
ware of the time. Everybody who wanted to enter the VLSI layout market had to
comply with this format; otherwise, no one would buy their tool.

The format was and still is GDSII and was developed by Calma on Data
General machines. So today if you want to export data from the Mentor platform
to the Cadence platform, the only guaranteed way is GDSII. There are other
widely used standard data formats such as CIF, LEF, and DEF, but they became
popular for the same reason: Cadence developed these formats and had the great-
est market share for IC layout. The GDSII format is still the dominant format, so
a discussion of this format is warranted.

GDSII is a binary format that, from the user point of view, has the following
qualities:

• In each stream file there is a limitation of 64 layers, which have a subdivi-
sion of 64 DATATYPEs per layer. So in total the limitation of the stream is
64 ¥ 64 = 4,096 different layers to define polygons for manufacturing.

• Each polygon or path cannot have more than 199 vertices, so if the layout
has polygon bigger than this number, the output subroutine will break it into
pieces of 199 only. This limitation comes from the Calma software, which
could handle only 199 coordinates per polygon!

• There is no logical or electrical information attached to a polygon. There are
no pins, ports, nets, or signal recognition, and this is a big drawback for
place-and-route. There are no pins; however, there is a simplified form of
recognizing ports. When writing a GDSII file the ports become TEXT with a
TEXTTYPE that is attached to a small polygon on the layer specified in the
export command file. When importing this GDSII into another tool, the user
usually writes macros that will select the text and regenerate the ports. The
problem is that there is no solution for net information to be preserved.

• Device generator results, vias and contacts, or automated layouts that are
“not polygon level” or soft devices are flattened to polygons. This is a big
problem when the transistor size is changing and the data is coming out of
a tool that uses these features. Again, this is because historically, Calma
didn’t have device generation capabilities.

244 COMPUTER-AIDED DESIGN (CAD) TOOLS FOR LAYOUT

• GDSII recognizes full hierarchy of objects, but always takes the first refer-
ence cell found in the design, regardless of the full path. GDSII uses unique
names for each cell but does not recognize the full path name, which is again
historical. Unique names in UNIX mean that something in the full path name
is different. In Calma times the cell names were attached to a library that had
a unique place to be written on the disk.

Another format that is mostly used for place-and-route is LEF, which con-
tains layout information required for a library and routing setups and, together
with a DEF file, fully characterizes nets, pins, ports, and signals.

In the past 10 years, the tools for IC design have advanced tremendously and are
trying to address all the new trends in processes, design flow, and methodologies.
There are still a few areas in which the design and process requirements are not
addressed using state-of-the-art CAD tools.

To make up for these discrepancies, there is still need for a visual review or
technical audit. Over time, the list of items to audit has shrunk because the CAD
tools have become more sophisticated. Because of the complexity of the audit task,
only experienced designers are able to do this job effectively.

The secret to performing an effective audit is to use a specific and detailed
checklist and to have as an auditor a person who understands the extent of the
problem and can propose solutions. In general, the auditor should be a person
who has not participated directly in the project so that any bias to design styles
and methodologies is avoided.

In this addendum, we will try to help new or experienced designers by pro-
viding a checklist related to each level of complexity in the layout of a chip. Using
a plot of the layout in question along with all relevant documentation of the
layout, the auditor evaluates the quality of the layout and uses the checklist as a
guide.

A general checklist that applies to all layout is provided in Table A.1.

A.1 CELLS

The audit checklist for cell layout includes items related to transistor layout issues
and the design of the cell for use in a block-level design.

Table A.2 shows a generic checklist for a transistor-level layout design.

245

APPENDIX A

Audit Checklists

246 AUDIT CHECKLISTS

A.2 BLOCKS

The block layout checklist addresses more global problems related to the block
type and connectivity between cells. Different blocks will have different require-
ments to check for. For example, full-custom blocks, blocks of standard gates or
cells, datapath, register file, or multiplier blocks will have specific checks related

TABLE A.1 General Layout Checklist

Question Answer

1. Is the cell DRC correct? ❑ Yes ❑ No ❑ N/A

2. Are there any DRC rules that should be checked by eye? ❑ Yes ❑ No ❑ N/A

3. Is the cell LVS correct? ❑ Yes ❑ No ❑ N/A

4. Are there any LVS rules that should be checked by eye? ❑ Yes ❑ No ❑ N/A

5. Is the cell ERC correct? ❑ Yes ❑ No ❑ N/A

6. Are there any ERC rules that should be checked by eye? ❑ Yes ❑ No ❑ N/A

7. Are there any special requirements for the layout? ❑ Yes ❑ No ❑ N/A

8. Is the critical path of the schematic respected? ❑ Yes ❑ No ❑ N/A

9. Were layout guidelines followed where possible? ❑ Yes ❑ No ❑ N/A

10. Were electromigration rules satisfied? ❑ Yes ❑ No ❑ N/A

TABLE A.2 Cell Layout Checklist

Question Answer

1. Is the cell designed to minimum dimensions? ❑ Yes ❑ No ❑ N/A

2. Does the cell follow a standard template? ❑ Yes ❑ No ❑ N/A

3. Are the power lines notched anywhere in the cell? ❑ Yes ❑ No ❑ N/A

4. Are all poly lines as short as possible? ❑ Yes ❑ No ❑ N/A

5. Do transistor source/drain areas have enough contacts? ❑ Yes ❑ No ❑ N/A

6. Is the transistor fingering optimal? ❑ Yes ❑ No ❑ N/A

7. Are there sufficient substrate and tub contacts? ❑ Yes ❑ No ❑ N/A

8. Are there any soft-connected nodes? ❑ Yes ❑ No ❑ N/A

9. Are all the ports properly assigned by project standards? ❑ Yes ❑ No ❑ N/A

10. Is the cells interface designed to ensure proper connectivity? ❑ Yes ❑ No ❑ N/A

11. Is the origin in the lower left corner? ❑ Yes ❑ No ❑ N/A

Blocks 247

TABLE A.3 Block Layout Checklist

Question Answer

1. Does the block follow the floorplan? ❑ Yes ❑ No ❑ N/A

2. Was the power grid defined from the result of a simulation for power ❑ Yes ❑ No ❑ N/A
consumption, electromigration, and RC requirements?

3. Is the power supply strapping adequate and implemented with ❑ Yes ❑ No ❑ N/A
enough vias?

4. Are the power lines notched anywhere in the block? ❑ Yes ❑ No ❑ N/A

5. Is the length of all critical path signals optimized? ❑ Yes ❑ No ❑ N/A

6. Have all special signal requirements been satisfied? ❑ Yes ❑ No ❑ N/A

7. Are all the ports properly assigned by project standards? ❑ Yes ❑ No ❑ N/A

8. Is the block interface designed to ensure proper connectivity? ❑ Yes ❑ No ❑ N/A

9. Are there adequate spare lines and logic? ❑ Yes ❑ No ❑ N/A

10. Are there probe pads for specified signals? ❑ Yes ❑ No ❑ N/A

11. Is the origin in the lower left corner? ❑ Yes ❑ No ❑ N/A

TABLE A.4 Chip Layout Checklist

Question Answer

1. Does the chip meet all packaging requirements? ❑ Yes ❑ No ❑ N/A

2. Are the power supply connections to the pads adequate? ❑ Yes ❑ No ❑ N/A

3. Is the power supply strapping adequate and implemented with ❑ Yes ❑ No ❑ N/A
enough vias?

4. Are the power lines notched anywhere in the top-level routing? ❑ Yes ❑ No ❑ N/A

5. Is the length of all critical path signals optimized? ❑ Yes ❑ No ❑ N/A

6. Have all special signal requirements been satisfied? ❑ Yes ❑ No ❑ N/A

7. Are there adequate spare lines and logic? ❑ Yes ❑ No ❑ N/A

8. Are there probe pads for specified signals? ❑ Yes ❑ No ❑ N/A

9. Is there any sensitive circuitry placed close to the edge of the die? ❑ Yes ❑ No ❑ N/A

10. Are the rules for the chip corner areas satisfied? ❑ Yes ❑ No ❑ N/A

11. Is the interface of the chip to the scribe line properly defined? ❑ Yes ❑ No ❑ N/A

12. Have all ESD and pad latch-up requirements been satisfied? ❑ Yes ❑ No ❑ N/A

13. Have all the necessary chip finishing cells been included? ❑ Yes ❑ No ❑ N/A

14. Is the origin in the center of the die? ❑ Yes ❑ No ❑ N/A

248 AUDIT CHECKLISTS

to the function of the block. The block layout checklist shown in Table A.3
outlines questions for general issues that are important in most cases.

A.3 CHIPS

For a layout audit at the chip level, the level of complexity of the audit is even
greater. In this case there is a great variety of issues to verify that depend on the
type of design. For example, the list may be shorter for an ASIC and very long for
a full-custom analog chip. The various processes and methodologies are so dif-
ferent that it will be impossible to cover all of them. The chip layout checklist
shown in Table A.4 outlines questions for general issues that are important in most
cases.

APPENDIX B

Database Management

Throughout the course of a project, there are teams of people working together
and in parallel on many different aspects of the design. Many different kinds of
data are created, revised, shared, and deleted very dynamically and quickly. The
data can be layout data, but also includes schematics, setup files, documentation,
and many other kinds. How is all of this data managed? Formal database
management techniques are the answer.

Database management is a process supported by an infrastructure that
fundamentally provides the following features and benefits:

• Version control: Each file that is managed should have a version associated
with it.

• Version history: Histories of all database objects are tracked.
• Data sharing: Data must be shared, and this should be done in a systematic

way. Changes to shared cells must not affect work in progress that uses
the cells.

• Database integrity: Protection against inadvertent deletion or database cor-
ruption. Examples of database corruption would be missing cells referenced
in a hierarchical design or two cells of the same name in two different places
on the computer system.

It is the last point that is the main reason for a formal database management
process. As blocks are finished and the tape-out date nears, database integrity is
crucial.

Almost every company has a different way of dealing with this problem.
However, the issues and concepts are the same as those just listed. A basic
approach to database management is presented, as well as, for ease of under-
standing, the scenario of layout database management.

In a practical sense, in IC design there are a few basic concepts that make
the system work. The function of the database management is to ensure the
following:

249

250 DATABASE MANAGEMENT

• In general, there is a one-to-one correspondence between a circuit and layout
design.

• Shared or lower level cells are frozen before being used by other team
members.

• Only one person is allowed to change a cell at any given time.
• During the time a cell is being changed, other team members can use an

older version.
• New versions of objects are announced and communicated as required.

Proper database management relies on a computer system that recognizes
groups of users so that authentication of the person accessing data is possible. The
access rights of the data that exists on the system should be specified for three
groups of users, depending on the type and application of the data:

• World access: Everyone—necessary for global data such as CAD software
• Group access: Team members—limits and identifies data specific to one

project
• Owner access: An individual person who last modified or manipulated the

data

The access rights for manipulation of the data should also be identified:

• Write access: Changes can be made to the data
• Read access: The data can be used or referenced but not changed

An example scenario is shown in Figure B.1 for the creation of a cell.
In this scenario Fred is a member of the layout team for the DSP32 project.

Fred’s job is to create a cell call AGBC. The key things to note are these:

• Fred checks to make sure the cell name is not already taken in the database.
This is important because perhaps the cell layout has inadvertently been
assigned to someone else or was already done. Fred can avoid some work
in this case.

• The cell is not “checked in” until it is fully verified. Only at this point is read
access given to the group. “Check in” is a term for releasing a cell for use by
others, similar to returning a book to a library.

• Fred cannot modify the cell without “checking it out” from the database.
Again, “check out” is the term for taking control of the cell from the
database.

In this way cells are created systematically and the histories of cells can easily
be maintained. Also, in the check-in phase automatic checks to the database can
be built into the system.

The next scenario is more interesting, because now changes to cell AGBC are
required (Figure B.2).

In this scenario Dan, Julia, and Brenda are also members of the layout team
for the DSP32 project. Fred’s job now is to change the cell called AGBC. The key
things to note are these:

Database Management 251

Figure B.1 Example steps of cell
creation.

252 DATABASE MANAGEMENT

Figure B.2 Example steps of cell
modification.

Database Management 253

• Dan, Julia, and Brenda are notified that changes are forthcoming.
• Dan, Julia, and Brenda reference the old version of AGBC until the changes

are complete.
• Dan, Julia, and Brenda are notified when the new version of AGBC is avail-

able and when appropriate can update their work.

The process of check-in and check-out to and from a central database will
help all the designers in the project to keep working on their own assignments
without being slowed down by various changes that are performed by others.

The systematic management of database changes is where these techniques
are essential.

APPENDIX C

Scheduling

Scheduling the layout of a cell, block, or chip is in general a matter of experience.
A few hints about scheduling layout tasks for your own work, as well as an idea
of average industry speeds, will be presented in this section.

Forecasting a project schedule is a complex task that depends on many
factors: tools, flows, hardware, design team experience, training, resources, holi-
days, sick leave, process changes, etc. In our experience the best way to acceler-
ate any schedule is not faster computers or better software (they help), but
increased expertise of the design team. There is no substitute for expertise for
maximum productivity.

Let’s think about scheduling the elapsed time for the layout of a cell. In all
cases of scheduling it is important to think about the speed of an average designer
and not the best performer, because the schedule has to reflect the reality of a
varied design team.

For a cell-level scheduling, we need the following information:

• Number of transistors
• Number of signals
• Cell type—does it have a template to work from, or is it brand new?
• Special requirements

Now we can try to put numbers behind the requirements (Table C.1).
Note that the type of cell and the special requirements really affect the rela-

tive time it takes to complete the cell. Verification time is something that is not
included in the tables because it is assumed to be the same for all scenarios.

In the case of blocks, there are different considerations:

• Number of components—cells, small blocks, random gates
• Number of busses, signals, and power grid requirements
• Special requirements—symmetry, crosstalk, minimum RC, timing

254

Scheduling 255

TABLE C.1 Example Cell Level Schedule in Hours

TIME
Cell Name Transistors Signals Type Special Req. Hand craft Automated*

INV1 2 2 STD None 4 0.25

INV ¥ 20 2 2 STD Min. capacitance 8 0.25

DFF 16 6 STD Min. size 16 1

INV1 2 2 None None 1 0.25

INV ¥ 20 2 2 None None 2 0.25

DFF 16 6 None None 8 0.5

INV1 2 2 Datapath Min. size 4 to 8 0.5

INV ¥ 20 2 2 Datapath Min. size 4 to 8 1

DFF 16 6 Datapath Min. size 8 to 24 1

*Add to the project schedule the tool and architecture setup time that does not exist in the handcrafted schedule
for cells.
TIME = Direct hours not including overhead (meetings, breaks, lunch)
STD = Standard cell for a library
Datapath = Register files, multiplier where there are many N/P/P/N regions
None = Normal random logic
NOTE: This timing does not include verification time.

TABLE C.2 Example Block-Level Schedule in Hours

TIME
Block Name # Cells # Signals Type Special Req. Hand craft Automated*

Controller 200 150 STD None 40 2

Synchronizer 400 300 STD None 80 4

Register file 10 ¥ 32 8 ¥ 32 + 30 STD None 80 4

Controller 200 150 STD Timing 60 4

Synchronizer 400 300 STD Timing 100 8

Register file 10 ¥ 32 8 ¥ 32 + 30 STD Timing 90 8

Controller 200 150 STD Timing + size 70 5

Synchronizer 400 300 STD Timing + size 120 9

Register file 10 ¥ 32 8 ¥ 32 + 30 STD Timing + size 90 9

*Add to the project schedule the tool and architecture setup time that does not exist in the handcrafted schedule
for cells.
TIME = Direct hours not including overhead (meetings, breaks, lunch)
STD = Using standard generated gates (standard cells type)
Timing = Placement and routing answer to timing requirements
SIZE = Minimum size possible
None = Normal random logic
NOTE: This timing does not include verification time.

256 SCHEDULING

• Size limitation
• Routing layers available—for example, only three out of five may be a

limitation

Table C.2 is a block-level schedule example.
Let’s try now to define the factors that affect scheduling for a full chip:

• Experience level of team: Does the team have enough experienced people?
• Change: Evaluate the risk of certain key parameters changing over the

project. For example, pad positions and even design rules are subject to
change over the course of a long project.

• Reuse: Can we leverage experience and layout designs that were done
before?

• Design complexity: Number of critical blocks, signals and/or busses.
• External factors: Is the team colocated or is it a joint design project with

outsiders?
• Third-party blocks: How easy will it be to import a block from an intellectual

property (IP) provider?
• Methodologies: Are there any new flows and/or tools that have to be

introduced?
• CAD support: Does the project team get CAD support? What is the priority

of the project?
• Team size: A large team may not be as productive as a small one because of

communication and management overhead.
• Work day: Is overtime assumed or planned for?
• Sick leave, bereavement, vacation time, seasonal restrictions.

Project scheduling is an art and a science, and the preceding list is intended
to give you a feel for the complexity of the task.

Alignment keys, 133–34
ALUs (arithmetic logic units),

107–8
Analog IC design flow, 81–83
Antenna rules, 191–92
Architecture, standard cell, 95–99
Arrays, gate, 103–7
ASICs (application-specific

integrated circuits), 73–76,
78, 83

cell libraries, 56
design flow, 83–87, 143

place-and-route, 84
synthesis, 84

designs, 23
model, 70
processes, 33, 41, 189

ASMs (application-specific
memories), 76–77

ASSPs (application-specific
standard products), 73–77,
84

Audit checklists, 245–48
blocks, 246–48
cells, 245–46
chips, 248

Audits, 67
Automation, examples of, 2

Balanced layout, 172–74
Barrel shifters, 113–14
Bipolar transistors, 195–96
BIU (bus interface unit) cells,

113–14
Block

floorplanning tools, 221–24
layouts, 61
level layout generation tools,

228–35
placers, 229–30

routers, 230–31
Blocks, 214, 246–48

building, 91
custom, 106
intellectual property (IP), 71, 78

Buffers
input, 121–22
output, 118–21

Building-blocks
interconnect layout design,

137–53
layout design, 91–136

Bulk connections, 7, 32–33

CAD (computer-aided design),
26, 28, 69, 83, 159, 205

programs, 57
software, 25, 67
tools as part of flows, 79–90
tools for layout, 216–44

Calculation, delay, 20–21
Capacitance, 20, 159–69

designing capacitors, 163–64
interconnect, 164–69
minimizing parasitic transistor,

164
Capacitors, designing, 163–64
Cell layouts, 60–61
Cell-level layout generation

tools, 224–28
Cell libraries

ASIC (application-specific
integrated circuit), 56

standard, 91–107
Cell placers, 226
Cell routers, 226–27
Cells, 214–15, 245–46

bus interface unit (BIU), 113–14
chip finishing, 132–36
clock generator, 111–13

datapath, 108
datapath library, 107–11
history of standard, 91–93
laser fuse, 129–32
leaf, 48–49
memory design leaf, 123–29
pad, 114–22
special logic, 107–14
standard, 108
wordline strap, 126–28

Changes
layout of circuits designed for,

201–7
metal option

programmability, 201–4
probe pads, 205–7
test pads, 205–7
via programmability, 204–5

planning for unknown, 207–11
contact instances, 207–9
minimum design rules,

209–10
spare lines, 210–11
spare logic, 210–11
via instances, 207–9

Channel
ordering, 147–50
routers, 232

Channel routers, 233–34
Channels, routing, 99
Checklists

audit, 245–48
blocks, 246–48
cells, 245–46
chips, 248

Chips; See also ICs (integrated
circuits), 248

assembly tools, 235–36
finishing cells, 132–36

alignment keys, 133–34

INDEX

257

258 INDEX

Chips continued
scribe and seal ring, 134–36

floorplan, 213–14
floorplanning tools, 219–21
layouts of, 61–63
reduced-instruction-set

computer (RISC), 71
very large scale integration

(VLSI), 71
Circuits

datapath, 110
layout of, 201–7

Clock generator cells, 111–13
Clock signals, 141–43

clock tree, 143
single, 142

Clock tree, 143
CMOS (complementary metal

oxide semiconductors), 7
CMOS VLSI manufacturing

processes, 22–23
Coding scheme, 204
Compactors, 227
Compensation, physical, 174–75
Compilers, silicon, 227–28
Conductors, 23
Connections

bulk, 7, 32–33
substrate, 198
tub, 198

Connectivity and layers, 23–28
Constraints, layout

considerations due to
process, 183–200

Contact instances, 207–9
Contacts, 24–25

and conductors, 33–34
double, 194

Contingency plan, 146
Critical dimension, 36
Current

amount of, 8
positive, 8

Current law, Kirchoff’s, 19

Data formats, 243–44
Database management, 249–53
Datapath

cells, 108
circuits, 110
library cells, 107–11
techniques, 109

Delay calculation, 20–21
Design

building-block interconnect
layout, 137–53

flows
analog IC, 81–83
ASICs (application-specific

integrated circuits), 83–87,
143

full-custom, 82
microprocessor, 90
SOC (system on chip), 90

layout, 22–67
minimizing resistance in

transistor, 155–58
porosity of, 99
reuse, 78
simplicity of gate array, 105
specialized building-block,

layout, 91–136
style

full custom, 60
semi-custom, 61

Design Automation Conference,
216

Design rules
general, 192
minimum, 209–10
process, 35–40

width rules, 36–37
special, 192–94

double contacts, 194
end overlap rule, 193–94
minimum area rule, 193

Designing
capacitors, 163–64
resistors, 158–59

Designs
examples of hierarchical, 49–50
hierarchical, 46–50
implementing, 59–63
layout of hierarchical, 58

Device generators, 225–26
DFT (design for testability), 79
Diagrams

stick, 46
vertical connection, 41

Dimensions, critical, 36
DRAMs (dynamic random access

memories), 23, 33, 77, 87,
123, 131, 135, 194

Drawn layers, 25
DRC (design rules check), 57,

63–65, 67, 219
Drivers

WL (wordline), 124
wordline, 129

DSPs (digital signal processing),
73

ECOs (Engineering Change
Orders), 207, 211–12

EDA vendors, 92
Editor, layout, 224–25
Effective methodology defined, 68
Electrical characteristics, layout

design techniques for,
154–82

capacitance, 159–69
resistance, 154–59
special electrical requirements,

175–82
symmetry, 169–75

Electrical laws, 18–21
capacitance, 20
delay calculation, 20–21

Kirchoff’s current law, 19
Ohm’s law, 18–19
resistance, 19

Electrical requirements, special,
175–82

electromigration, 177–80
45 degree layout, 175–77
multiple power supplies,

180–82
Electromigration, 177–80
Electronics industry, history of,

1–2
End overlap rule, 193–94
Engineering workstation, 1
Environments, layout design

techniques in uncertain,
201–15

ERC (Electrical Rules Checkers),
65, 219

ESD (electrostatic discharge), 63,
114, 117–19, 121, 205

Extraction, 239–40

Feed-throughs, 150–53
FIB (focused ion beam), 121,

203–4
Floorplanning tools

block, 221–24
chip, 219–21

Floorplans
chip, 213–14
layout, 43–46

Flows, 68–71
analog IC design, 81–83
ASIC (application-specific

integrated circuit) design,
143

CAD (computer-aided design)
tools as part of, 79–90

full-custom design, 82
ICs (integrated circuits) design,

4–6
layout design, 68–90
memory IC design, 87–90
microprocessor design, 71–73,

90
SOC (system on chip) design,

90
Formats, data, 243–44
45 degree layout, 175–77
Frames, pad, 114
Full-custom design flow, 82
Full-custom design style defined,

60

Gate arrays, 103–7
Gates; See also Logic gates, 10

complex, 13–16
logic, 10–16

inverters, 10–11
two-input NAND gates,

11–13
two-input NOR gate, 13

NAND, 173

Index 259

transmission, 16–17
GDSII, 67, 243–44
Generation tools

block-level layout, 228–35
cell-level layout, 224–28
layout, 224–36

Generators, device, 225–26
GPS (Global Positioning

Systems), 73
Grids

power, 138–41
routing, 100

Hard macros, 106
Hardware platforms, 2
HDL (high-level description

language), 70, 74, 80, 84,
86–87

HDRAMs (high-density random
access memories), 77

Hierarchical designs, 46–50
examples of, 49–50
layout of, 58

Hierarchy
layout, 110
schematic, 110

Holes, through, 33

ICs (integrated circuits), 1–2
design flows, 4–6

analog, 81–83
memory, 87–90

Implant layers, 25
Implement bottom up, 42
Input buffers, 121–22
Instances

contact, 207–9
via, 207–9

Interconnect capacitance, 164–69
Interconnect layout design,

building-block, 137–53
Interconnect routing, 143–53

channel ordering, 147–50
plan, 145–47

contingency plan, 146
establish routing direction,

145–46
monitor and update, 146–47
signal estimate, 145

routing direction, 147–50
using feed-throughs, 150–53

Inverter layouts, 34–35
Inverters, 10–11
IP (intellectual property) blocks,

71, 78
Isolation layers, 24

Keys, alignment, 133–34
Kirchoff’s current law, 19

Laser fuse cells, 129–32
Latch-up, 194–200

defined, 194
hard and soft ties, 199–200

layout methodologies, 197
phenomenon well understood,

197
substrate connections, 198
tub connections, 198

Laws
electrical, 18–21
Kirchoff’s current, 19
Ohm’s, 18–19

Layer pitch, 37
Layers

base set of, 103–4
and connectivity, 23–28

paths, 26–28
polygons, 25–26

drawn, 25
implant, 25
isolation, 24
mask, 25
types of, 23–24

Layout
editor, 224–25
floorplan, 43–46
hierarchy, 110

Layout considerations due to
process constraints,
183–200

antenna rules, 191–92
large metal via

implementations, 186–87
latch-up, 194–200
multiple rule sets, 189–91
special design rules, 192–94
step coverage rules, 187–89
wide metal slits, 183–86

Layout design, 22–67
building-block interconnect,

137–53
CMOS VLSI manufacturing

processes, 22–23
defined, 2–4
ever changing, 2
final steps, 65–67

audits, 67
tape-out procedures, 67
verifications, 67

flows, 68–90
general guidelines, 50–59
implementing designs, 59–63
layers and connectivity, 23–28
preparing to start, 43–50

developing layout floorplan,
43–46

hierarchical designs, 46–50
stick diagrams, 46

procedure to follow, 42–43
process design rules, 35–40
specialized building-block,

91–136
techniques

for electrical characteristics,
154–82

in uncertain environments,
201–15

transistor layouts, 28–35
verification, 63–65
vertical connection diagram,

41
Layout generation tools, 224–36

block-level, 228–35
block placers, 229–30
block routers, 230–31
tilers, 229

cell-level, 224–28
cell placers, 226
cell routers, 226–27
compactors, 227
device generators, 225–26
polygon pusher, 224–25
silicon compilers, 227–28

Layout verification tools, 236–41
DRC/LVS/ERC, 236–39
extraction, 239–40
plotting and plotters, 240–41

Layout versus schematic (LVS),
52, 57, 65, 67, 159, 219

Layouts
balanced, 172–74
block, 61
CAD (computer-aided design)

tools for, 216–44
cell, 60–61
of chips, 61–63
of circuits designed for change,

201–7
metal option

programmability, 201–4
probe pads, 205–7
test pads, 205–7
via programmability, 204–5

45 degree, 175–77
guidelines for proper, 213–15

blocks, 214
cells, 214–15
chip floorplan, 213–14

of hierarchical designs, 58
inverter, 34–35
of power lines, 51
of signals, 51–52
symmetrical, 171–72
of transistors, 9, 28–35, 52–57

Leaf cells, 48–49
memory design, 123–29

Libraries
ASIC (application-specific

integrated circuit) cell, 56
standard cell, 91–107

Library cells, datapath, 107–11
Line-to-line pitch, 100
Lines

layout of power, 51
spare, 210–11

Logic
cells, 107–14
functions, 10
gates, 10–16
random, 92
spare, 210–11

260 INDEX

LPE (Layout Parasitic
Extraction), 219

LVS (layout versus schematic),
52, 57, 65, 67, 159, 219

Macros, hard, 106
Management, database, 249–53
Marketplace, P&R, 76
Mask layers, 25
Maze routers, 233
Memories, 77–78

DRAMs (dynamic random
access memories), 23, 33,
77, 87, 123, 131, 135, 194

HDRAMs (high-density
random access memories),
77

PROMs (programmable read
only memories), 77

ROMs (read-only memories), 77
SDRAM (synchronous

DRAMs), 174
SRAMs (static random access

memories), 77
Memory design leaf cells, 123–29
Memory IC design flows, 87–90
Metal

option programmability, 201–4
slits, 183–86
via implementations, 186–87

Methodology
defined, 68
effective, 68

Metrics, quality, 58–59
Microprocessor design flows,

71–73, 90
Migration tools, 241–43
Minimum area rule, 193
MOS (metal oxide

semiconductor) transistor,
7–9, 195–96

MPUs (microprocessor units), 71

NAND gates, 173
two-input, 11–13

NMOS transistors, 7–8, 11–12, 16
NOR gates, two-input, 13

Ohm’s law, 18–19
Output buffers, 118–21
Overlap rules, 39–40

P-well (P type well), 33
Pads

cells, 114–22
frame, 114
probe, 205–7
test, 205–7

Parasitic transistor capacitance,
minimizing, 164

Paths, 25–26,
PCBs (printed circuit boards),

1–2, 169
Physical compensation, 174–75

Pitch
layer, 37
line-to-line, 100
via-to-line, 100
via-to-via, 100

Place-and-route, 84
Place-and-route tools; See also

P&R (place-and-route)
tools, 101

Placers
block, 229–30
cell, 226

Planning
tools, 217–24
for unknown changes, 207–11

Plans
routing, 145–47
top down, 42

Platforms
hardware, 2
UNIX, 1

Plotting and plotters, 240–41
PMOS transistors, 7–8, 11–12, 16
Polygon pusher, 224–25
Polygons, 25–26, 101–2
Porosity of design, 99
Power estimation, 138–39
Power grids, 138–41

power estimation, 138–39
power supply routing, 139–40
strapping and tapering, 140–41

Power lines, layout of, 51
Power supplies, 101

multiple, 180–82
routing, 139–40

P&R (place-and-route), 111
marketplace, 76
tools, 74, 84

Probe pads, 205–7
Procedures

to follow, 42–43
tape-out, 67

Process constraints, layout
considerations due to,
183–200

antenna rules, 191–92
large metal via

implementations, 186–87
latch-up, 194–200
multiple rule sets, 189–91
special design rules, 192–94
step coverage rules, 187–89
wide metal slits, 183–86

Process design rules, 35–40
overlap rules, 39–40
space rules, 37–38
width rules, 36–37

Programmability
metal option, 201–4
via, 204–5

PROMs (programmable read
only memories), 77

R-well (retrograde well), 33

Random logic, 92
Resistance, 19, 154–59

minimizing in transistor
design, 155–58

Resistors, designing, 158–59
Rings, scribe and seal, 134–36
RISC (reduced-instruction-set

computer) chips, 71
ROMs (read-only memories), 77,

204–5
Routers

block, 230–31
cell, 226–27
channel, 232–34
maze, 233

Routing
channels, 99
direction, 147–50
grid, 100
interconnect, 143–53
plan, 145–47
power supply, 139–40

RTL (register transfer level), 70,
74, 80, 84

Rule sets, multiple, 189–91
Rules

antenna, 191–92
end overlap, 193–94
general design, 192
minimum area, 193
minimum design, 209–10
overlap, 39–40
process design, 35–40
space, 37–38
special design, 192–94
step coverage, 187–89
weird, 192
width, 36–37

Scheduling, 254–56
Schematics

capture defined, 83
connectivity of, 17
fundamentals, 7–21
hierarchy, 110
layout versus, 65

Scribe and seal ring, 134–36
SDF (Standard Delay Format), 75
SDRAM (synchronous DRAMs),

174
Seal ring, 134–36
Semi-custom design style

defined, 61
SGRAMs (synchronous graphic

RAMs), 76
Shades defined, 104
Shape on Silicon, 194
Shifters, barrel, 113–14
Signals

clock, 141–43
layout of, 51–52
single clock, 142

Silicon
compilers, 227–28

Index 261

Shape on, 194
Slits, wide metal, 183–86
SOCs (system on chips), 71,

78–79
design flows, 90

Software
CAD (computer-aided design),

25, 67
development, 2

Space rules, 37–38
Spare

lines, 210–11
logic, 210–11

Square defined, 154
SRAMs (static random access

memories), 77, 123
Stacked via processes, 33
Standard cells

architectures, 95–99
characteristics, 93–95
concepts of, 99–103
history of, 91–93
libraries, 91–107

Step coverage rules, 187–89
Stick diagrams, 46
Strap, wordline, 129
Strapping and tapering, 140–41
Subcomponents, 46–48
Substrate connections, 198
Support tools, 236–44
Symmetry, 169–75

balanced layout, 172–74
physical compensation, 174–75
symmetrical layout, 171–72

Synthesis, 84

Tape-out procedures, 67
Tapering and strapping, 140–41
Test pads, 205–7
Through holes, 33
Ties, hard and soft, 199–200
Tilers, 229
Tools

block floorplanning, 221–24
block-level layout generation,

228–35

block placers, 229–30
block routers, 230–31
tilers, 229

cell-level layout generation,
224–28

cell placers, 226
cell routers, 226–27
device generators, 225–26
polygon pusher, 224–25
silicon compilers, 227–28

chip assembly, 235–36
chip floorplanning, 219–21
layout generation, 224–36
layout verification, 236–41

DRC/LVS/ERC, 236–39
extraction, 239–40
plotting and plotters, 240–41

migration, 241–43
planning, 217–24
P&R (place-and-route), 74, 84,

101
support, 236–44

Tools as part of flows, CAD
(computer-aided design),
79–90

Tools for layout, CAD
(computer-aided design),
216–44

Transistor capacitance,
minimizing parasitic, 164

Transistor design, minimizing
resistance in, 155–58

Transistors
bipolar, 195–96
layout of, 9, 52–57
layouts of, 28–35

bulk connections, 32–33
conductors and contacts,

33–34
inverter layouts, 34–35

length and width of, 30–31
metal oxide semiconductor

(MOS), 7–9, 195–96
NMOS, 7–8, 11–12, 16
PMOS, 7–8, 11–12, 16
slow or weak, 31

Transmission gates, 16–17
Tree, clock, 143
Tub connections, 198

Uncertain environments, layout
design techniques in,
201–15

UNIX, 1, 244
Unknown changes, planning for,

207–11
contact instances, 207–9
minimum design rules, 209–10
spare lines, 210–11
spare logic, 210–11
via instances, 207–9

Vendors, EDA, 92
Verifications, 63–65, 67
Verilog, 2, 74, 80, 84
Vertical connection diagram, 41
VHDL, 2, 74, 80, 84–85
Via implementations, large

metal, 186–87
Via instances, 207–9
Via processes, stacked, 33
Via programmability, 204–5
Via-to-line pitch, 100
Via-to-via pitch, 100
Vias, 24–25, 33
VLSI (very large scale

integration), 22–23
chips, 71
manufacturing processes,

22–23
VRAMS (video RAMs), 76
VSIA (Virtual Socket Initiative

Alliance), 79

Wafer defined, 134
Width rules, 36–37
WL (wordline) Driver, 124
Wordline

driver, 124, 129
strap, 129
strap cells, 126–28

Workstations, engineering, 1

About the CD-ROM…

Color Art Examples

On the CD, you will find color versions of many of the figures from the book. These

more complex color examples have been included here to help you better understand the

concepts demonstrated by the printed black and white versions.

Some of the complex chips included on the CD are the property of MOSAID

Technologies, Inc., who agreed to let us include them in order to help the reader better

understand and evaluate different types of layout design combined in a real environment.

Check out the Flows and Cell Library presentations. You can view them within your

web browser, in their native PowerPoint format, or as Acrobat pdf files.

Presentations

During the development of the text we found that there are some very “hot” issues today,

such as extraction of layout resistance and capacitance, migration tools and principles,

deep submicron and very deep submicron design, etc. We decided to talk with marketing

managers from Mentor Graphics, Cadence, Sagantec, and others and asked them to

include some of their presentations addressing these new concepts, methodologies, and

tools.

The Cadence Design Systems presentation talks about ASIC flow and demonstrates how

physical information can be used earlier in the design process in order to provide

designers with “real world” data for simulations.

The Mentor Graphics presentation emphasizes the extraction importance in 0.25

microns and below gate-size processes.

The Sagantec presentation talks about the concept of migrating layout from one process

to another, compaction within a layout polygon editor environment, and a new concept

called “enlargement” or reverse compaction for wires.

There are many other tools and presentations available on various Electrical Design

Automation (EDA) vendors’ sites, but these are the only ones that answered our request

in time for the publishing deadline. We are confident that for a future revision of our

book, more EDA vendors will provide interesting topic presentations without too much

“tool sales pitch.”

Software

The most incredible contribution to this book comes courtesy of Tanner Research, Inc.,

who put Dan’s library inside their Tanner Tools L-Edit demo, which is included on our

CD-ROM. This tool offers you a tremendous opportunity to practice as you learn about

each topic.

Most the files on the CD have been prepared as web-ready (htm or gif), Adobe Acrobat

(pdf), and PowerPoint slideshows (pps). We’ve included these files in multiple formats to

offer you greater viewing access than a single format would allow.

Accessing the CD Contents

To surf the contents of the CD, you will need to have a web browser installed on your

computer. If you already have a web browser installed, launch the application and open

the file “D:\Readme.htm” (where “D” is the designation of your CD drive).

If need be, you can install Microsoft Internet Explorer 5.0 directly from the CD by

running “D:\Software\IE5\IE5Setup.exe”. Follow the directions on screen to complete

the installation. After successfully installing the web browser, launch the application and

open the file “D:\Readme.htm” (where “D” is the designation of your CD drive).

All of the contents have been hyperlinked within Readme.htm. To access any file

directly, simply point and click to the file you’d like to view or the software you wish to

install.

Technical Support

Beyond providing replacements for defective discs, Butterworth-Heinemann does not

provide technical support for the software included on this CD-ROM.

Send any requests for replacement of a defective disc to Newnes Press,

Customer Service Dept., 225 Wildwood Avenue, Woburn, MA 01801-2041 or email

techsupport@bhusa.com. Be sure to reference item number CD-71947-PC.

File Directory …

Directory\File Location File Description

Readme.txt Basic CD information

Readme.htm Main CD interface. Open this file within your web browser to

link to the main CD contents

\Art\Art.pdf All color figures contained within one Adobe Acrobat file.

\Art\Figure_2-7.gif Color version of printed book figure.

\Art\Figure_2-10.gif Color version of printed book figure.

\Art\Figure_2-12.gif Color version of printed book figure.

\Art\Figure_3-2.gif Color version of printed book figure.

\Art\Figure_3-3.gif Color version of printed book figure.

\Art\Figure_3-4.gif Color version of printed book figure.

\Art\Figure_3-5.gif Color version of printed book figure.

\Art\Figure_3-6.gif Color version of printed book figure.

\Art\Figure_3-8.gif Color version of printed book figure.

\Art\Figure_3-9.gif Color version of printed book figure.

\Art\Figure_3-10.gif Color version of printed book figure.

\Art\Figure_3-11.gif Color version of printed book figure.

\Art\Figure_3-12.gif Color version of printed book figure.

\Art\Figure_3-15.gif Color version of printed book figure.

\Art\Figure_3-16.gif Color version of printed book figure.

\Art\Figure_3-17.gif Color version of printed book figure.

\Art\Figure_3-18.gif Color version of printed book figure.

\Art\Figure_3-19.gif Color version of printed book figure.

\Art\Figure_5-2.gif Color version of printed book figure.

\Art\Figure_5-2A.gif Color version of printed book figure.

\Art\Figure_5-6.gif Color version of printed book figure.

\Art\Figure_5-12.gif Color version of printed book figure.

\Art\Figure_5-13.gif Color version of printed book figure.

\Art\Figure_5-14.gif Color version of printed book figure.

\Art\Figure_5-15.gif Color version of printed book figure.

\Art\Figure_5-26.gif Color version of printed book figure.

\Art\Figure_5-28.gif Color version of printed book figure.

\Art\Figure_5-29.gif Color version of printed book figure.

\Art\Figure_7-3.gif Color version of printed book figure.

Directory\File Location File Description

\Art\Figure_7-8.gif Color version of printed book figure.

\Art\Figure_7-20.gif Color version of printed book figure.

\Art\Figure_7-22.gif Color version of printed book figure.

\Art\Figure_7-26.gif Color version of printed book figure.

\Art\Figure_7-27.gif Color version of printed book figure.

\Art\Figure_8-6.gif Color version of printed book figure.

\Art\Figure_8-7.gif Color version of printed book figure.

\Art\Figure_8-13.gif Color version of printed book figure.

\Art\Figure_8-16.gif Color version of printed book figure.

\Presentations\Cadence\Cadence.htm Cadence presentation saved as a web-ready htm.

\Presentations\Cadence\Cadence.pps Cadence presentation saved as an independent PowerPoint file.

\Presentations\Cadence\Cadence.exe Cadence presentation packed with a PowerPoint viewer.

\Presentations\Cell Libraries\Cell Libraries.htm MOSAID Cell library presentation saved as a web-ready htm.

\Presentations\Cell Libraries\Cell Libraries.pps MOSAID Cell library presentation saved as an independent
PowerPoint file.

\Presentations\Cell Libraries\Cell Libraries.exe MOSAID Cell library presentation packed with a PowerPoint

viewer.

\Presentations\Cell Libraries\Cell Libraries.pdf MOSAID Cell library presentations saved as an Adobe Acrobat
pdf.

\Presentations\Flows\Flows.htm MOSAID Flows presentation saved as a web-ready htm.

\Presentations\Flows\Flows.pps MOSAID Flows presentation saved as an independent

PowerPoint file.

\Presentations\Flows\Flows.exe MOSAID Flows presentation packed with a PowerPoint

viewer.

\Presentations\Flows\Flows.pdf MOSAID Flows presentations saved as an Adobe Acrobat pdf.

\Presentations\Mentor Graphics\Mentor
Graphics.htm

Mentor Graphics presentation saved as a web-ready htm.

\Presentations\Mentor Graphics\Mentor

Graphics.pps

Mentor Graphics presentation saved as an independent

PowerPoint file.

\Presentations\Mentor Graphics\Mentor
Graphics.exe

Mentor Graphics presentation packed with a PowerPoint
viewer.

\Presentations\Sagantec\Sagantec.htm Sagantec presentation saved as a web-ready htm.

\Presentations\Sagantec\Sagantec.pps Sagantec presentation saved as an independent PowerPoint file.

\Presentations\Sagantec\Sagantec.exe Sagantec presentation packed with a PowerPoint viewer.

\Software\Acrobat Reader 4.0 +
search\CD\Reader\ArcrRd32.exe

Adobe Acrobat Reader.

\Software\Acrobat Reader 4.0 +

search\CD\Install\rs40eng.exe

Adobe Acrobat Reader installation program.

\Software\IE5\ie5setup.exe Microsoft Internet Explorer 5.0.

\Software\Tanner Tools\Setup.exe Tanner Technologies Tool demo.

	Contents
	Preface
	Acknowledgments
	1 Introduction
	1.1 History of the profession
	1.2 What is layout design?
	1.3 IC design flow

	2 Schematic fundamentals
	2.1 The MOS transistor: the basic circuit structure
	2.2 Logic gates
	2.3 Transmission gates
	2.4 Understanding the schematic connectivity
	2.5 Review of fundamental electrical laws

	3 Layout design
	3.1 Introduction to CMOS VLSI manufacturing processes
	3.2 Layers and connectivity
	3.3 Introduction to transistor layout
	3.4 Process design rules
	3.5 Vertical connection diagram
	3.6 A general procedure to follow
	3.7 Preparing to start
	3.8 General guidelines
	3.9 Implementing the design
	3.10 Verification
	3.11 Final steps

	4 Layout design flows
	4.1 What is a flow?
	4.2 Microprocessor design flow
	4.3 ASSPs
	4.4 Memories
	4.5 System on a chip, or SOC
	4.6 CAD tools as part of a flow

	5 Advanced techniques for specialized building-block layout design
	5.1 Standard cell libraries
	5.2 Special logic cells
	5.3 Pad cells
	5.4 Memory design leaf cells
	5.5 Laser fuse cells
	5.6 Chip finishing cells

	6 Advanced techniques for building-block interconnect layout design
	6.1 Power grid
	6.2 Clock signals
	6.3 Interconnect routing

	7 Layout design techniques to address electrical characteristics
	7.1 Resistance
	7.2 Capacitance
	7.3 Symmetry
	7.4 Special electrical requirements

	8 Layout considerations due to process constraints
	8.1 Wide metal slits
	8.2 Large metal via implementations
	8.3 Step coverage rules
	8.4 Multiple rule sets
	8.5 Antenna rules
	8.6 Special design rules
	8.7 Latch-up

	9 Layout design techniques in an uncertain environment
	9.1 Layout of circuits design for change
	9.2 Planning for unknown changes
	9.3 Engineering change orders
	9.4 Guidelines for proper layout

	10 Computer-aided design (CAD) tools for layout
	10.1 Introduction
	10.2 Planning tools
	10.3 Layout generation tools
	10.4 Support tools

	Appendix A Audit checklists
	A1 Cells
	A2 Blocks
	A3 Chips

	Appendix B Database management
	Appendix C Scheduling
	Index

