
10/6/2015

1

C Language II

CMSC 313

Sections 01, 02

C Input/Output

Adapted from Richard Chang, CMSC 313 Spring 2013

stdin, stdout, stderr

C opens three input/output devices automatically:

stdin

The "standard input" device, usually your keyboard

stdout

The "standard output" device, usually your monitor

stderr

The "standard error" device, usually your monitor

Some C library I/O functions automatically use these devices

Adapted from Richard Chang, CMSC 313 Spring 2013

10/6/2015

2

Formatted Console Output

Adapted from Richard Chang, CMSC 313 Spring 2013

• printf() outputs formatted text to stdout

printf(format, arg1, arg2, …);

• Example:

int n = 3 ;

printf (“Value = %d\n”, n) ;

• format is a string containing

• conversion specifications

• literals to be printed

printf() Conversions

Adapted from Richard Chang, CMSC 313 Spring 2013

Conversions specifications begin with % and end with a
conversion character.

Between the % and the conversion character MAY be, in

order A minus sign specifying left-justification

The minimum field width

A period separating the field width and

precision The precision that specifies

Maximum characters for a string

Number of digits after the decimal for a floating

point Minimum number of digits for an integer

An h for "short" or an l (letter ell) for long

man printf for more documentation.

Common printf() Conversions

Adapted from Richard Chang, CMSC 313 Spring 2013

Spec Conversion performed

%d print integer as a decimal number (base 10)

%u print integer as unsigned number

%s print string

%f print double as a floating point number

%x print integer in hexadecimal (base 16)

%c print integer as ASCII character

%p print pointer in hexadecimal

(implementation dependent)

10/6/2015

3

printf() Examples

int anInt = 5678;

double aDouble = 4.123;

#define NAME "Bob"

/* what is the output from each printf() */

printf("%d is a large number\n", anInt);

printf("%8d is a large number\n", anInt);

printf("%-8d is a large number\n", anInt);

printf("%10.2f is a double\n", aDouble);

printf("The sum of %d and %8.4f is %12.2f\n",

anInt, aDouble, anInt + aDouble);

printf ("Hello %s\n", NAME);

Adapted from Richard Chang, CMSC 313 Spring 2013

Formatted Output Example

Adapted from Richard Chang, CMSC 313 Spring 2013

Use field widths to align output in columns

int i;

for (i = 1 ; i < 5; i++)

printf("%2d %10.6f %20.15f\n", i, sqrt(i), sqrt(i));

12 1234567890 12345678901234567890

1 1.000000 1.000000000000000

2 1.414214 1.414213562373095

3 1.732051 1.732050807568877

4 2.000000 2.000000000000000

Keyboard Input

Adapted from Richard Chang, CMSC 313 Spring 2013

• scanf reads user input from stdin.

• Syntax for scanf() is similar to printf() scanf(

format, arg1, arg2, ...)

• The format string similar structure to printf().

• The arguments must be addresses of the variables.

10/6/2015

4

scanf() Format String

• The scanf() format string usually contains

conversion specifications that tell scanf() how to

interpret the next "input field". An input field is a

string of non-whitespace characters.

• The format string usually contains:

– Blanks or tabs which are ignored

– Ordinary characters which are expected to match the next

(non- whitespace) character input by the user

– Conversion specifications usually consisting

• % character indicating the beginning of the conversion

• An optional h, l (ell) or L

• A conversion character which indicates how the input field

is to be interpreted.

Adapted from Richard Chang, CMSC 313 Spring 2013

Common scanf() Conversions

Adapted from Richard Chang, CMSC 313 Spring 2013

Spec Conversion performed

%d a decimal (integer) number

%u An unsigned decimal (integer) number

%x a hexadecimal number

%f a floating point number with optional sign,

decimal point, and exponent

%s a string delimited by white space, NOT an

entire line

%c a single character (possibly a whitespace char)

scanf() Examples

int age;

double gpa;

char initial;

printf("input your middle initial: ");

scanf("%c", &initial); // Note &

printf("Input your age: ");

scanf("%d", &age);

printf("input your gpa: ");

scanf("%lf", &gpa);

Adapted from Richard Chang, CMSC 313 Spring 2013

10/6/2015

5

Unix I/O redirection

Adapted from Richard Chang, CMSC 313 Spring 2013

• Redirect input (read from infile instead of keyboard):

a.out < infile

• Redirect output (write to outfile instead of screen):

a.out > outfile

• Redirect both:
a.out < infile > outfile

• Redirect stdout and stderr to outfile

a.out >& outfile

• Redirect stdout to outfile and stderr to errfile

(a.out > outfile) >& errfile

Text File I/O

Adapted from Richard Chang, CMSC 313 Spring 2013

• Use fprintf() and fscanf() functions instead of

printf() and scanf().

• Must open file before reading/writing: fopen()

• Must close file after all done: fclose()

• Use file handle to specify file.

• File handle returned by fopen():

FILE *myFile ;

myFile = fopen (“bob.txt”, “r”) ;

if (myFile == NULL) {

/* handle the error */

}

fopen()

Adapted from Richard Chang, CMSC 313 Spring 2013

fopen() requires two parameters

1. The name of the text file to be opened

2. The text file open "mode"

“r” open the file for reading only

“w” create the file for writing; delete existing file

“a” append; open or create the file for writing at the end

“r+” open the file for reading and writing

“w+” create the file for reading & writing; deletes existing file

“a+” open or create the file for reading or writing at the end

10/6/2015

6

fscanf.c

Adapted from Richard Chang, CMSC 313 Spring 2013

#include <stdio.h>

#include <stdlib.h> /* for “exit” */

int main ()

{

double x ;

FILE *ifp ;

/* try to open the file for reading, check if successful */

/* if it wasn't opened exit gracefully */

ifp = fopen("test_data.dat", "r") ;

if (ifp == NULL) {

printf ("Error opening test_data.dat\n");

exit (-1);

}

fscanf(ifp, "%lf", &x) ; /* read one double from the file */

fclose(ifp); /* close the file when finished */

/* check to see what you read */

printf("x = %.2f\n", x) ;

return 0;

}

Detecting end-of-file with fscanf

Adapted from Richard Chang, CMSC 313 Spring 2013

• When reading an unknown number of data elements from a
file using fscanf(), we need a way to determine when

the file has no more data to read, i.e, we have reached the

"end of file".

• Fortunately, the return value from fscanf() holds the

key. fscanf() returns an integer which is the number

of data elements read from the file. If end-of-file is
detected the integer return value is the special value EOF

EOF Example Code

Adapted from Richard Chang, CMSC 313 Spring 2013

/* code snippet that reads an undetermined number of
integer student ages from a file and prints them out
as an example of detecting EOF (scanfEOF.c)

*/

FILE *inFile;

int age;

inFile = fopen(“myfile”, “r”);

if (inFile == NULL) {

printf ("Error opening myFile\n");

exit (-1);

}

while (fscanf(inFile, “%d”, &age) != EOF)

printf(“%d\n”, age);

fclose(inFile);

10/6/2015

7

fprintf.c

Adapted from Richard Chang, CMSC 313 Spring 2013

/* fprintf.c */

#include <stdio.h>

#include <stdlib.h> /* exit */

int main ()

{

double pi = 3.14159 ;

FILE *ofp ;

/* try to open the file for writing, check if successful */

/* if it wasn't exit gracefully */

ofp = fopen("test.out", “w") ;

if (ofp == NULL) {

printf ("Error opening test.out\n");

exit (-1);

}

/* write to the file using printf formats */

fprintf(ofp, “Hello World\n”);

fprintf(ofp, “PI is defined as %6.5lf\n”, pi);

fclose(ofp); /* close the file when finished reading */

return 0;

}

Characters & Strings

Adapted from Richard Chang, CMSC 313 Spring 2013

char Type

Adapted from Richard Chang, CMSC 313 Spring 2013

• C supports the char data type for storing a single

character.

• char uses one byte of memory

• char constants are enclosed in single quotes

char myGrade = ‘A’;

char yourGrade = ‘?’;

10/6/2015

8

Special Characters

Adapted from Richard Chang, CMSC 313 Spring 2013

Use \ for escape sequences.

For example

\n is the newline character

\t is the tab character

\" is the double quote (necessary since double quotes
are used to enclose strings

\' is the single quote (necessary since single quotes are
used to enclose chars

\\ is the backslash (necessary since \ now has special

meaning

\a is beep which is unprintable

Special Char Example Code

• What is the output from these statements?

printf("\t\tMove over\n\nWorld, here I come\n");

Move over

World, here I come

printf("I\' ve written \"Hello World\"\n\t many times\n\a");

I' ve written "Hello World“

many times

<BEEP>

Adapted from Richard Chang, CMSC 313 Spring 2013

Character Library Functions

Adapted from Richard Chang, CMSC 313 Spring 2013

int isdigit (int c);

Determine if c is a decimal digit (' 0' - ' 9')

int isxdigit(int c);

Determines if c is a hexadecimal digit (' 0' - ' 9' , ' a' - f' , or ' A' - ' F')

int isalpha (int c);

Determines if c is an alphabetic character (' a' - ' z' or ' A- ' Z')

int isspace (int c);

Determines if c is a whitespace character (space, tab, etc)

int isprint (int c);

Determines if c is a printable character

int tolower (int c);

int toupper (int c);

Returns c changed to lower- or upper-case respectively, if possible

10/6/2015

9

Character Library Functions

Adapted from Richard Chang, CMSC 313 Spring 2013

Include header file use character library functions:

#include <ctype.h>

Technically functions take an int parameter, not char.

Return type is also int . 0 = False, not 0 = True.

man ctype.h for more functions and complete documentation.

Character Input/Output

Adapted from Richard Chang, CMSC 313 Spring 2013

• Use %c in printf()and fprintf()to output a single

character.

char yourGrade = ‘A’;

printf(“Your grade is %c\n”, yourGrade);

• Input char(s) using %c with scanf() or fscanf()

char grade, scores[3];

– %c inputs the next character, which may be whitespace

scanf(“%c”, &grade);

– %nc inputs the next n characters, which may include whitespace

scanf(“%3c”, scores); // note – no & needed

Strings in C

Adapted from Richard Chang, CMSC 313 Spring 2013

• String = null terminated array of char.

• null = '\0'

• String constants in double quotes are null terminated.

• Strings do not "know" their own length.

• Initialization:

char name4[20] = {‘B’, ‘o’, ‘b’, ‘b’, ‘y’, ‘\0’};

char name5[6] = “Bobby”; // this is NOT assignment

char name6[] = “Bobby”;

10/6/2015

10

String Output

Adapted from Richard Chang, CMSC 313 Spring 2013

char name[] = “Bobby Smith”;

printf(“My name is %s\n”, name);

char book1[] = “Flatland”;

char book2[] = “Brave New World”;

// Minimum field width, and right- and left-justify

printf (“My favorite books are %12s and %12s\n”, book1, book2);

printf (“My favorite books are %-12s and %-12s\n”, book1, book2);

Dangerous String Input

Adapted from Richard Chang, CMSC 313 Spring 2013

• Why is the following dangerous?

char name[22];

printf(“ Enter your name: “);

scanf(“%s”, name);

• Long names will overwrite memory.

Safer String Input

Adapted from Richard Chang, CMSC 313 Spring 2013

char name[22];

printf(“ Enter your name: “);

scanf(“%21s”, name); // Will stop after 21 (note: not 22) chars

// (need last byte for ‘\0’

10/6/2015

11

C String Library

Adapted from Richard Chang, CMSC 313 Spring 2013

• C provides a library of string functions.

• To use the string functions, include <string.h>.

• Some of the more common functions are listed

here on the next slides.

• To see all the string functions, type
man string.h at the unix prompt.

C String Library (2)

Adapted from Richard Chang, CMSC 313 Spring 2013

• Must #include <string.h>

• These functions look for the ‘\0’ character to determine the end

and size of the string

– strlen(const char string[])

• Returns length of string, not counting ‘\0’

– strcpy(char s1[], const char s2[])

• Copies s2 on top of s1. Must have enough space in s1!!!

• The order of the parameters mimics the assignment operator

– strcmp (const char s1[] , const char s2[])

• Returns < 0, 0, > 0 if s1 < s2, s1 == s2 or s1 > s2 lexigraphically

– strcat(char s1[] , const char s2[])

• Appends (concatenates) s2 to s1. Must have enough space in s1!!!

C String Library (3)

Adapted from Richard Chang, CMSC 313 Spring 2013

• Some safer versions from the C string library have

an additional size parameter.

– strncpy(char s1[], const char s2[], int n)

• Copies at most n characters of s2 on top of s1.

• Does not null terminate s1 if length of s2 >= n !!!

• The order of the parameters mimics the assignment operator

– strncmp (const char s1[] , const char s2[], int n)

• Compares up to n characters of s1 with s2

• Returns < 0, 0, > 0 if s1 < s2, s1 == s2 or s1 > s2 lexigraphically

– strncat(char s1[], const char s2[] , int n)

• Appends at most n characters of s2 to s1

10/6/2015

12

String Code

Adapted from Richard Chang, CMSC 313 Spring 2013

char first[10] = “bobby”;

char last[15] = “smith”;

char name[30];

char you[] = “bobo”;

strcpy(name, first);

strcat(name, last);

printf(“%d, %s\n”, strlen(name), name);

strncpy(name, last, 2);

printf(“%d, %s\n”, strlen(name), name);

int result = strcmp(you, first);

result = strncmp(you, first, 3);

strcat(first, last);

Simple Encryption

Adapted from Richard Chang, CMSC 313 Spring 2013

char c, msg[] = "this is a secret message";

int i = 0;

char code[26] = /* Initialize our encryption code */

{'t','f','h','x','q','j','e','m','u','p','i','d','c',

'k','v','b','a','o','l','r','z','w','g','n','s','y'} ;

printf ("Original phrase: %s\n", msg);

/* Encrypt */

while(msg[i] != '\0‘){

if(isalpha(msg[i])) {

c = tolower(msg[i]) ;

msg[i] = code[c - ‘a’] ;

}

++i;

}

printf("Encrypted: %s\n", msg) ;

Arrays of Strings

Adapted from Richard Chang, CMSC 313 Spring 2013

• An initialized array of string constants

char months[][4] = {

“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,

“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”

};

int m;

for (m = 0; m < 12; m++)

printf(“%s\n”, months[m]);

• Alternative: use typedef

typedef char Acronym[4];

Acronym months[] = {

“Jan”, “Feb”, “Mar”, “Apr”, “May”, “Jun”,

“Jul”, “Aug”, “Sep”, “Oct”, “Nov”, “Dec”

};

10/6/2015

13

sprintf()

Adapted from Richard Chang, CMSC 313 Spring 2013

• sprintf() works just like printf() or fprintf(), but puts its
“output” into the specified character array.

• The character array must be big enough.

char message[100];

int myAge = 4;

sprintf(message, “I am %d years old\n”, age);

printf(“%s\n”, message);

Structs

Adapted from Richard Chang, CMSC 313 Spring 2013

C++ vs C

Adapted from Richard Chang, CMSC 313 Spring 2013

• Suppose you were assigned a write an application

about points and straight lines in a coordinate plane.

• In C++, you’d correctly design a Point class and a

Line class using composition.

• What about in C?

10/6/2015

14

No Classes in C

Adapted from Richard Chang, CMSC 313 Spring 2013

• Because C is not an OOP language, there is no

way to combine data and code into a single

entity.

• C does allow us to combine related data into a
structure using the keyword struct.

• All data in a struct variable can be accessed by

any code.

• Think of a struct as an OOP class in which all

data members are public, and which has no

methods.

No Classes in C

• Because C is not an OOP language, there is no way to

combine data and code into a single entity.

• Related data and functions form an "Abstract Data Type."

Accessibility is enforced by a programmer's good judgment

and not by the compiler.

• C does allow us to combine related data into a structure
using the keyword struct.

• All data in a struct variable can be accessed by any

code.

• Think of a struct as an OOP class in which all data

members are public, and which has no methods.

Adapted from Richard Chang, CMSC 313 Spring 2013

struct Definition

Adapted from Richard Chang, CMSC 313 Spring 2013

• The general form of a structure definition is

struct tag

{

member1_declaration;

member2_declaration;

member3_declaration;

. . .

memberN_declaration;

};

where struct is the keyword, tag names this kind of struct,
and member_declarations are variable declarations
which define the members.

Note the semi-colon

10/6/2015

15

C struct Example

Adapted from Richard Chang, CMSC 313 Spring 2013

• Defining a struct to represent a point in a coordinate plane

struct point

{

int x; /* x-coordinate */

int y; /* y-coordinate */

};

• Given the declarations

struct point p1;

struct point p2;

we can access the members of these struct variables:

* the x-coordinate of p1 is

* the y-coordinate of p1 is

* the x-coordinate of p2 is

* the y-coordinate of p2 is

point is the struct tag

Using struct Members

Adapted from Richard Chang, CMSC 313 Spring 2013

int main ()

{

struct point leftEendPt, rightEndPt, newEndPt;

printf(“Left end point cooridinates “);

scanf(“%d %d”, &leftEendPt.x, &leftEndPt.y);

printf(“Right end point’s x-coordinate: “);

scanf(“%d %d”, &rightEendPt.x, &rightEndPt.y);

// add the endpoints

newEndPt.x = leftEndPt.x + rightEndPt.x;

newEndPt.y = leftEndPt.y + rightEndPt.y;

// print new end point

printf(“New endpoint (%2d, %2d)\n”, newEndPt.x,
newEndPt.y);

return 0;

}

Initializing a struct

Adapted from Richard Chang, CMSC 313 Spring 2013

struct point middle = { 6, -3 };

is equivalent to:

struct point middle;

middle.x = 6;

middle.y = -3;

10/6/2015

16

struct Variants

Adapted from Richard Chang, CMSC 313 Spring 2013

struct point {

int x, y;

} endpoint, upperLeft;

defines the structure named point

AND

declares the variables endpoint and upperLeft to be

of this type.

struct + typedef

Adapted from Richard Chang, CMSC 313 Spring 2013

typedef struct point {

int x, y;

} POINT;

defines the structure named point and defines POINT as a
typedef (type alias) for the struct.

POINT upperRight;

is now equivalent to:

struct point endpoint;

struct Assignment

Adapted from Richard Chang, CMSC 313 Spring 2013

struct point p1;

struct point p2;

p1.x = 42;

p1.y = 59;

p2 = p1; /* structure assignment copies members */

The values of p2’s members are the same as p1’s members.

E.g. p1.x = p2.x = 42 and p1.y = p2.y = 59

10/6/2015

17

struct within a struct

Adapted from Richard Chang, CMSC 313 Spring 2013

typedef struct line

{

POINT leftEndPoint;

POINT rightEndPoint;

} LINE;

LINE line1, line2;

line1.leftEndPoint.x = 3;

line1.leftEndPoint.y = 4;

Arrays of struct

Adapted from Richard Chang, CMSC 313 Spring 2013

LINE lines[5]; // or struct line lines[5]

printf(“%d\n”, lines[2].leftEndPoint.x);

Arrays within a struct

Adapted from Richard Chang, CMSC 313 Spring 2013

• Structs may contain arrays as well as primitive types

struct month

{

int nrDays;

char name[3 + 1];

};

struct month january = { 31, “JAN”};

10/6/2015

18

A Bit More Complex

Adapted from Richard Chang, CMSC 313 Spring 2013

struct month allMonths[12] = {

{31, “JAN”}, {28, “FEB”}, {31, “MAR”},

{30, “APR”}, {31, “MAY”}, {30, “JUN”},

{31, “JUL”}, {31, “AUG”}, {30, “SEP”},

{31, “OCT”}, {30, “NOV”}, {31, “DEC”}

};

// write the code to print the data for September

printf(“%s has %d days\n”,

allMonths[8].name, allMonths[8].nrDays);

// what is the value of allMonths[3].name[1]?

Size of a struct

Adapted from Richard Chang, CMSC 313 Spring 2013

• As with primitive types, we can use sizeof() to

determine the number of bytes in a struct

int pointSize = sizeof(POINT);

int lineSize = sizeof (struct line);

As we’ll see later, the answers may surprise you!

