
CMSC 424 – Database design
Lecture 11

Normalization

Mihai Pop

The Normal Forms
• 1NF: every attribute has an atomic value (not a set value)

• 2NF: we will not be concerned in this course

• 3NF: if for each FD X→Y either
– it is trivial or
– X is a superkey
– Y-X is a proper subset of a candidate key

• BCNF: if for each FD X→Y either
– it is trivial or
– X is a superkey

• 4NF,…: we are not concerned in this course.

BCNF3NF2NF1NF 4NF,..

Goals
• Lossless decomposition

• Dependency preservation

• Recap: FD closure, attribute closure

FDs, Normal forms, etc..., why?
• Start with a schema
• Decompose relations until in a normal form
• Functional dependencies (constraints we'd like preserved)

drive the decomposition
• The resulting schema is “better”

• Note that functional dependencies can either be:
– explicit: we want to enforce these constraints irrespective

of data in the relations – can be encoded in SQL
– implicit: the data happen to satisfy them (see netflix

example)

Normalization only concerned with explicit FDs
Privacy/anonymization – need to worry about implicit
FDs

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional
dependencies if for all functional dependencies in F+ of the form

where α ⊆ R and β ⊆ R, at least one of the following holds:

Example schema not in BCNF:

bor_loan = (customer_id, loan_number, amount)

because loan_number → amount holds on bor_loan but loan_number is
not a superkey



 is trivial (i.e.⊆)
 is a superkey for R, i.e. +=R

Decomposing a Schema into BCNF
● Suppose we have a schema R and a non-trivial dependency

 causes a violation of BCNF.
We decompose R into:

• In our example,
– α = loan_number
– β = amount

and bor_loan is replaced by
● = (loan_number, amount)
● = (customer_id, loan_number)



∪
R−−

∪
R−−

Testing for BCNF
● To check if a non-trivial dependency α →β causes a violation of

BCNF
● compute α+ (the attribute closure of α), and
● verify that it includes all attributes of R, that is, it is a superkey of R.

● Simplified test: To check if a relation schema R with a given set of
functional dependencies F is in BCNF, it suffices to check only the
dependencies in the given set F for violation of BCNF, rather than
checking all dependencies in F+.
● We can show that if none of the dependencies in F causes a violation

of BCNF, then none of the dependencies in F+ will cause a violation
of BCNF either.

Testing for BCNF...cont
● However, using only F is incorrect when testing a relation in a

decomposition of R
● E.g. Consider R (A, B, C, D), with F = { A →B, B →C}

● Decompose R into R1(A,B) and R2(A,C,D)
● Neither of the dependencies in F contain only attributes from

(A,C,D) so we might be mislead into thinking R2 satisfies BCNF.
● In fact, dependency A → C in F+ shows R2 is not in BCNF.

● Simplified test: Avoids computing F+
● For every subset α of Ri compute α+ under F
● Then either α+ includes no attributes of Ri-α or includes all attributes

of Ri
●

 In R2(A,C,D) above A+=ABC, A+-(A)=(BC) includes an attribute
of Ri but not all (violation)

● Then α  (α+ - α)∩ Ri is the violator ABC ∩ (ACD)=C is an FD
(actually in F+) which violates BCNF

BCNF Decomposition Algorithm
result := {R};
done := false;
compute F+;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional
dependency that holds on Ri
such that α → Ri is not in F+,
and α ∩ β = ∅;

 result := (result – Ri) ∪ (Ri – β) ∪ (α, β);
 end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition
• R = (branch-name, branch-city, assets,

customer-name, loan-number, amount)

• F = (branch-name → assets branch-city
loan-number → amount branch-name)

Key = {loan-number, customer-name}

• Decomposition
– R1 = (branch-name, branch-city, assets)
– R2 = (branch-name, customer-name,

 loan_number, amount)
– R3 = (branch-name, loan-number, amount)
– R4 = (customer-name, loan-number)

• Final decomposition
R1, R3, R4

R=(Bn,Bc,As,Cn,Ln,Am)

F={Bn→As Bc,

 Ln→Am Bn,

 Ln Cn→Bn Bc As Am}  key

1) Bn→As Bc in R
Bn+={Bn As Bc}  not SK

Decompose
R1 = (Bn,Bc,As)

 R2 = (Bn,Cn,Ln,Am)

2) Ln→Am Bn in R2
 Ln+={Ln Am Bn As Bc}  not SK

decompose
R3=(Ln Am Bn)

 R4=(Ln Cn)

BCNF and Dependency Preservation
● Constraints, including functional dependencies, are costly to

check in practice unless they pertain to only one relation

● If it is sufficient to test only those dependencies on each
individual relation of a decomposition in order to ensure
that all functional dependencies hold, then that
decomposition is dependency preserving.

● Because it is not always possible to achieve both BCNF and
dependency preservation, we consider a weaker normal
form, known as third normal form.

Third Normal Form
• A relation schema R is in third normal form (3NF) if for all:

α → β in F+
at least one of the following holds:
– α → β is trivial (i.e., β ∈ α)
– α is a superkey for R
– Each attribute A in β – α is contained in a candidate key

for R.
 (NOTE: each attribute may be in a different candidate

key)
• If a relation is in BCNF it is in 3NF (since in BCNF one of the

first two conditions above must hold).
• Third condition is a minimal relaxation of BCNF to ensure

dependency preservation (will see why later).

3NF (Cont.)
• Example

– R = (J, K, L)
F = {JK → L, L → K}

– Two candidate keys: JK and JL

– R is in 3NF
JK → L JK is a superkey
L → K K is contained in a candidate key

Redundancy in 3NF

J

j1

j2

j3

null

L

l1

l1

l1

l2

K

k1

k1

k1

k2

• Example of problems due to redundancy in 3NF
– R = (J, K, L)

F = {JK → L, L → K}

A schema in 3NF but not in BCNF has the following problems:
● redundancy of information
● need to use null values (e.g. to represent relationship l

2
k

2
,

when there is no corresponding j value)

Testing for 3NF
• Optimization: Need to check only FDs in F, need not check

all FDs in F+.

• Use attribute closure to check, for each dependency α → β, if
α is a superkey.

• If α is not a superkey, we have to verify if each attribute in β
is contained in a candidate key of R
– this test is more expensive, since it involve finding ALL

candidate keys
– testing for 3NF has been shown to be NP-hard

Canonical Cover
• Sets of functional dependencies may have redundant

dependencies that can be inferred from the others
– For example: A → C is redundant in: {A → B, B → C}
– Parts of a functional dependency may be redundant

• E.g.: on RHS: {A → B, B → C, A → CD} can be
simplified to
 {A → B, B → C, A → D}

• E.g.: on LHS: {A → B, B → C, AC → D} can be
simplified to
 {A → B, B → C, A → D}

• Intuitively, a canonical cover of F is a “minimal” set of
functional dependencies equivalent to F, having no
redundant dependencies or redundant parts of
dependencies

Extraneous Attributes
• Consider a set F of functional dependencies and the functional

dependency α → β in F.
– Attribute A is extraneous in α if A ∈ α

 and F logically implies (F – {α → β}) ∪ {(α – A) → β}.
– Attribute A is extraneous in β if A ∈ β

 and the set of functional dependencies
 (F – {α → β}) ∪ {α →(β – A)} logically implies F.

• Note: implication in the opposite direction is trivial in each of the
cases above, since a “stronger” functional dependency always
implies a weaker one

• Example: Given F = {A → C, AB → C }
– B is extraneous in AB → C because {A → C, AB → C} logically

implies A → C (I.e. the result of dropping B from AB → C).
• Example: Given F = {A → C, AB → CD}

– C is extraneous in AB → CD since AB → C can be inferred
even after deleting C

3NF Decomposition/“construction” Algorithm
Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains α β

then begin
i := i + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key
for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
return (R1, R2, ..., Ri)

Comparison of BCNF and 3NF
• It is always possible to decompose a relation into relations in 3NF and

– the decomposition is lossless
– the dependencies are preserved

• It is always possible to decompose a relation into relations in BCNF
and
– the decomposition is lossless
– it may not be possible to preserve dependencies.

More Examples
• SUPPLY(sno,pno,jno,scity,jcity,qty)

– sno,pno,jno is the candidate key,
– sno → scity, jno= → jcity

• ED(eno,ename,byr,sal,dno,dname,floor,mgr)
– eno → dno → mgr

• TEACH(student,teacher,subject)
– student,subject → teacher
– teacher → subject

1NF

1NF

3NF

Normalization Using FDs
Check whether a particular relation R is in “good” form: BCNF or 3NF

If not, decompose R into a set of relations {R1, R2, ..., Rn} such that

• No redundancy: The relations Ri preferably should be in either Boyce-Codd
Normal Form or Third Normal Form.

• Lossless-join decomposition: Otherwise you have information loss.

• Dependency preservation: Let Fi be the set of dependencies F+ that include
only attributes in Ri.
– Preferably the decomposition should be dependency preserving,
 that is, (F1 ∪ F2 ∪ … ∪ Fn)+ = F+

– Otherwise, checking during updates for violation of functional
dependencies may require expensive joins operations

• The theory is based on functional dependencies

BCNF and Over-normalization
• 3NF relation has redudancy anomalies: TEACH(student,teacher,subject)

– insertion: cannot insert a teacher until we had a student taking his subject
– deletion: if I delete the last student of a teacher, then I loose the subject

he teaches

• What is really the problem? schema overload. We are trying to capture two
meanings:
1. subject X is (or can be) taught by teacher Y
2. student Z takes subject W from teacher V

• it makes no sense to say we loose the subject he teaches when he does not
have a student! Who does he teach to?

• normalizing it to BCNF cannot preserve dependencies. Therefore, it is better
to stay with the 3NF TEACH and another relation SUBJECT_TAUGHT:

 TEACH(student,teacher,subject)

SUBJECT-TAUGHT(teacher,subject)

3NF

BCNF

Summary...practical issues
• Normalization

– Create a good schema – low redundancy, no loss of
information

• Functional dependencies
– Specify constraints that must be encoded in our schema
– Note: SQL does not allow us to specify FDs other than key

constraints (PRIMARY KEY, UNIQUE)
• Typical design process:

– Decompose to BCNF
– Use materialized views to preserve any additional FDs

