CMSC 424 – Database design Lecture 11 Normalization

Mihai Pop

The Normal Forms

- 1NF: every attribute has an atomic value (not a set value)
- 2NF: we will not be concerned in this course
- 3NF: if for each FD $X \rightarrow Y$ either
 - it is trivial or
 - X is a superkey
 - Y-X is a proper subset of a candidate key
- BCNF: if for each FD $X \rightarrow Y$ either
 - it is trivial or
 - X is a superkey

• 4NF,...: we are not concerned in this course.

Goals

• Lossless decomposition

• Dependency preservation

• Recap: FD closure, attribute closure

FDs, Normal forms, etc..., why?

- Start with a schema
- Decompose relations until in a normal form
- Functional dependencies (constraints we'd like preserved) drive the decomposition
- The resulting schema is "better"
- Note that functional dependencies can either be:
 - explicit: we want to enforce these constraints irrespective of data in the relations – can be encoded in SQL
 - implicit: the data happen to satisfy them (see netflix example)

Normalization only concerned with explicit FDs Privacy/anonymization – need to worry about implicit FDs

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^+ of the form

 $\alpha \rightarrow \beta$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

 $\alpha \rightarrow \beta$ is trivial (i.e. $\beta \subseteq \alpha$)

 α is a superkey for R, i.e. $\alpha + = R$

Example schema *not* in BCNF:

bor_loan = (customer_id, loan_number, amount)

because *loan_number* → *amount* holds on *bor_loan* but *loan_number* is not a superkey

Decomposing a Schema into BCNF

• Suppose we have a schema *R* and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF.

We decompose *R* into:

 $\begin{array}{c} \alpha \cup \beta \\ R - (\beta - \alpha) \end{array}$

• In our example,

- $\alpha = loan_number$
- $-\beta = amount$

and *bor_loan* is replaced by

- $\alpha \cup \beta$ = (loan_number, amount)
- $R (\beta \alpha) = ($ customer_id, loan_number)

Testing for BCNF

- To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
 - compute α^+ (the attribute closure of α), and
 - verify that it includes all attributes of *R*, that is, it is a superkey of *R*.
- Simplified test: To check if a relation schema *R* with a given set of functional dependencies F is in BCNF, it suffices to check only the dependencies in the given set *F* for violation of BCNF, rather than checking all dependencies in *F*⁺.
 - We can show that if none of the dependencies in *F* causes a violation of BCNF, then none of the dependencies in *F*⁺ will cause a violation of BCNF either.

Testing for BCNF...cont

- However, using only F is incorrect when testing a relation in a decomposition of R
 - E.g. Consider R (A, B, C, D), with $F = \{A \rightarrow B, B \rightarrow C\}$
 - Decompose *R* into $R_1(A,B)$ and $R_2(A,C,D)$
 - Neither of the dependencies in *F* contain only attributes from (*A*,*C*,*D*) so we might be mislead into thinking *R*₂ satisfies BCNF.
 - In fact, dependency $A \rightarrow C$ in F^+ shows R_2 is not in BCNF.
- Simplified test: Avoids computing F+
 - For every subset α of R_i compute α + under F
 - Then either $\alpha +$ includes no attributes of $R_i\text{-}\alpha$ or includes all attributes of R_i
 - In *R*₂(*A*,*C*,*D*) above A+=ABC, A+-(A)=(BC) includes an attribute of R_i but not all (violation)
 - Then $\alpha \rightarrow (\alpha + -\alpha) \cap R_i$ is the violator $A \rightarrow BC \cap (ACD)=C$ is an FD (actually in F+) which violates BCNF

BCNF Decomposition Algorithm

```
result := \{R\};
done := false;
compute F<sup>+</sup>;
while (not done) do
 if (there is a schema R, in result that is not in BCNF)
    then begin
          let \alpha \rightarrow \beta be a nontrivial functional
            dependency that holds on R_i
            such that \alpha \rightarrow R_i is not in F^+,
            and \alpha \cap \beta = \emptyset;
            result := (result - R_i) \cup (R_i - \beta) \cup (\alpha, \beta);
          end
    else done := true;
```

Note: each *R_i* is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- *R* = (branch-name, branch-city, assets, customer-name, loan-number, amount)
- $F = (branch-name \rightarrow assets branch-city loan-number \rightarrow amount branch-name)$

Key = {*loan-number, customer-name*}

- Decomposition
 - R_1 = (branch-name, branch-city, assets)
 - $R_2 = (branch-name, customer-name, loan_number, amount)$
 - $-R_3 = (branch-name, loan-number, amount)$
 - $R_4 = (customer-name, loan-number)$
- Final decomposition R_1, R_3, R_4

R=(Bn,Bc,As,Cn,Ln,Am)	
F={Bn→As Bc,	
Ln→Am Bn,	
Ln Cn→Bn Bc As Am}	← key
1) Bn→As Bc in R Bn+={Bn As Bc}	← not SK
Decompose R1 = (Bn,Bc,As) R2 = (Bn,Cn,Ln,Am)	
2) Ln→Am Bn in <i>R</i> 2 Ln+={Ln Am Bn As Bc} decompose	← not SK
R3=(Ln Am Bh) R4=(Ln Cn)	

BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that *all* functional dependencies hold, then that decomposition is *dependency preserving*.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as *third normal form*.

Third Normal Form

- A relation schema *R* is in third normal form (3NF) if for all: $\alpha \rightarrow \beta$ in *F*+ at least one of the following holds:
 - $-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
 - $-\alpha$ is a superkey for *R*
 - Each attribute *A* in β α is contained in a candidate key for *R*.

(NOTE: each attribute may be in a different candidate key)

- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).

3NF (Cont.)

- Example
 - $\begin{array}{l} \ R = (J, \, K, \, L) \\ F = \{JK \rightarrow L, \, L \rightarrow K\} \end{array}$
 - Two candidate keys: *JK* and *JL*
 - R is in 3NF
 - $\begin{array}{ll} JK \to L & JK \text{ is a superkey} \\ L \to K & K \text{ is contained in a candidate key} \end{array}$

Redundancy in 3NF

• Example of problems due to redundancy in 3NF – R = (J, K, L) $F = \{JK \rightarrow L, L \rightarrow K\}$

A schema in 3NF but not in BCNF has the following problems:

- redundancy of information
- need to use null values (e.g. to represent relationship $l_2 k_{2'}$

when there is no corresponding j value)

Testing for 3NF

- Optimization: Need to check only FDs in *F*, need not check all FDs in F⁺.
- Use attribute closure to check, for each dependency $\alpha \rightarrow \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of *R*
 - this test is more expensive, since it involve finding ALL candidate keys
 - testing for 3NF has been shown to be NP-hard

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
 - For example: $A \to C$ is redundant in: $\{A \to B, B \to C\}$
 - Parts of a functional dependency may be redundant
 - E.g.: on RHS: $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$ can be simplified to

 $\{A \to B, B \to C, A \to D\}$

• E.g.: on LHS: $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$ can be simplified to

$$\{A \to B, B \to C, A \to D\}$$

• Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set *F* of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in *F*.
 - Attribute A is extraneous in α if $A \in \alpha$ and *F* logically implies $(F - \{\alpha \rightarrow \beta\}) \cup \{(\alpha - A) \rightarrow \beta\}$.
 - Attribute *A* is **extraneous** in β if $A \in \beta$ and the set of functional dependencies $(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$ logically implies *F*.
- *Note:* implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F = \{A \rightarrow C, AB \rightarrow C\}$
 - *B* is extraneous in $AB \rightarrow C$ because $\{A \rightarrow C, AB \rightarrow C\}$ logically implies $A \rightarrow C$ (I.e. the result of dropping *B* from $AB \rightarrow C$).
- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - *C* is extraneous in $AB \rightarrow CD$ since $AB \rightarrow C$ can be inferred even after deleting *C*

3NF Decomposition/"construction" Algorithm

Let F_c be a canonical cover for F;

i := 0;

for each functional dependency $\alpha \rightarrow \beta$ in F_c **do if** none of the schemas R_i , $1 \le j \le i$ contains $\alpha \beta$

then begin

$$i := i + 1;$$

$$R_i := \alpha \beta$$

end

if none of the schemas $R_{j'}$ $1 \le j \le i$ contains a candidate key for R

then begin

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and

 the decomposition is lossless
 - the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
 - the decomposition is lossless
 - it may not be possible to preserve dependencies.

More Examples

- SUPPLY(<u>sno,pno,jno</u>,scity,jcity,qty)
 - sno,pno,jno is the candidate key,
 - sno \rightarrow scity, jno= \rightarrow jcity
- ED(<u>eno</u>,ename,byr,sal,dno,dname,floor,mgr)
 eno → dno → mgr
- TEACH(<u>student</u>,teacher,<u>subject</u>)
 - student, subject \rightarrow teacher
 - teacher \rightarrow subject

1NF

1NF

3NF

Normalization Using FDs

Check whether a particular relation *R* is in "good" form: BCNF or 3NF

If not, decompose R into a set of relations $\{R_1, R_2, ..., R_n\}$ such that

- No redundancy: The relations *R*_i preferably should be in either Boyce-Codd Normal Form or Third Normal Form.
- Lossless-join decomposition: Otherwise you have information loss.
- Dependency preservation: Let *F_i* be the set of dependencies *F*⁺ that include only attributes in *R_i*.
 - Preferably the decomposition should be dependency preserving, that is, $(F_1 \cup F_2 \cup \ldots \cup F_n)^+ = F^+$
 - Otherwise, checking during updates for violation of functional dependencies may require expensive joins operations
- The theory is based on functional dependencies

BCNF and Over-normalization

- 3NF relation has redudancy anomalies: TEACH(<u>student</u>,teacher,<u>subject</u>)
 - insertion: cannot insert a teacher until we had a student taking his subject
 - deletion: if I delete the last student of a teacher, then I loose the subject he teaches
- What is really the problem? schema *overload*. We are trying to capture two meanings:
 - 1. subject X is (or can be) taught by teacher Y
 - 2. student Z takes subject W from teacher V
- it makes no sense to say we loose the subject he teaches when he does not have a student! Who does he teach to?
- normalizing it to BCNF cannot preserve dependencies. Therefore, it is better to stay with the 3NF TEACH and another relation SUBJECT_TAUGHT:

TEACH(<u>student</u>,teacher,<u>subject</u>) **3NF**

SUBJECT-TAUGHT(<u>teacher</u>,subject) **BCNF**

Summary...practical issues

- Normalization
 - Create a good schema low redundancy, no loss of information
- Functional dependencies
 - Specify constraints that must be encoded in our schema
 - Note: SQL does not allow us to specify FDs other than key constraints (PRIMARY KEY, UNIQUE)
- Typical design process:
 - Decompose to BCNF
 - Use materialized views to preserve any additional FDs