CMSC 424 - Database design Lecture 11
Normalization

Mihai Pop

The Normal Forms

- 1NF: every attribute has an atomic value (not a set value)
- $2 N F$: we will not be concerned in this course
- 3NF: if for each FD X \rightarrow Y either
- it is trivial or
- X is a superkey
- $\mathrm{Y}-\mathrm{X}$ is a proper subset of a candidate key
- BCNF: if for each FD $X \rightarrow Y$ either
- it is trivial or
- X is a superkey
- $4 \mathrm{NF}, \ldots$. we are not concerned in this course.

Goals

- Lossless decomposition
- Dependency preservation
- Recap: FD closure, attribute closure

FDs, Normal forms, etc..., why?

- Start with a schema
- Decompose relations until in a normal form
- Functional dependencies (constraints we'd like preserved) drive the decomposition
- The resulting schema is "better"
- Note that functional dependencies can either be:
- explicit: we want to enforce these constraints irrespective of data in the relations - can be encoded in SQL
- implicit: the data happen to satisfy them (see netflix example)

Normalization only concerned with explicit FDs Privacy/anonymization - need to worry about implicit FDs

Boyce-Codd Normal Form

A relation schema R is in BCNF with respect to a set F of functional dependencies if for all functional dependencies in F^{+}of the form

$$
\alpha \rightarrow \beta
$$

where $\alpha \subseteq R$ and $\beta \subseteq R$, at least one of the following holds:

$$
\begin{aligned}
& \alpha \rightarrow \beta \text { is trivial (i.e. } \beta \subseteq \alpha \text {) } \\
& \alpha \text { is a superkey for } \mathrm{R}, \text { i.e. } \alpha+=R
\end{aligned}
$$

Example schema not in BCNF:
bor_loan = (customer_id, loan_number, amount)
because loan_number \rightarrow amount holds on bor_loan but loan_number is not a superkey

Decomposing a Schema into BCNF

- Suppose we have a schema R and a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF.

We decompose R into:

$$
\begin{gathered}
\alpha \cup \beta \\
R-(\beta-\alpha)
\end{gathered}
$$

- In our example,
- $\alpha=$ loan_number
- $\beta=$ amount
and bor_loan is replaced by
- $\alpha \cup \beta=($ loan_number, amount $)$
- $R-(\beta-\alpha)=($ customer_id, loan_number $)$

Testing for BCNF

- To check if a non-trivial dependency $\alpha \rightarrow \beta$ causes a violation of BCNF
- compute α^{+}(the attribute closure of α), and
- verify that it includes all attributes of R, that is, it is a superkey of R.
- Simplified test: To check if a relation schema R with a given set of functional dependencies F is in BCNF, it suffices to check only the dependencies in the given set F for violation of BCNF, rather than checking all dependencies in F^{+}.
- We can show that if none of the dependencies in F causes a violation of BCNF, then none of the dependencies in F^{+}will cause a violation of BCNF either.

Testing for BCNF...cont

- However, using only F is incorrect when testing a relation in a decomposition of R
- E.g. Consider $R(A, B, C, D)$, with $F=\{A \rightarrow B, B \rightarrow C\}$
- Decompose R into $R_{1}(A, B)$ and $R_{2}(A, C, D)$
- Neither of the dependencies in F contain only attributes from (A, C, D) so we might be mislead into thinking R_{2} satisfies BCNF.
- In fact, dependency $A \rightarrow C$ in F^{+}shows R_{2} is not in BCNF.
- Simplified test: Avoids computing F+
- For every subset α of R_{i} compute $\alpha+$ under F
- Then either $\alpha+$ includes no attributes of $\mathrm{R}_{\mathrm{i}}-\alpha$ or includes all attributes of R_{i}
- In $R_{2}(A, C, D)$ above $\mathrm{A}+=\mathrm{ABC}, \mathrm{A}+-(\mathrm{A})=(\mathrm{BC})$ includes an attribute of R_{i} but not all (violation)
- Then $\alpha \rightarrow(\alpha+-\alpha) \cap R_{i}$ is the violator $A \rightarrow B C \cap(A C D)=C$ is an $F D$ (actually in $\mathrm{F}+$) which violates BCNF

BCNF Decomposition Algorithm

```
result := {R};
done := false;
compute F}\mp@subsup{}{}{+}\mathrm{ ;
while (not done) do
    if (there is a schema R in result that is not in BCNF)
        then begin
            let \alpha}->\beta\mathrm{ be a nontrivial functional
                dependency that holds on }\mp@subsup{R}{i}{
                such that \alpha}->\mp@subsup{R}{i}{}\mathrm{ is not in F',
                and \alpha\cap\beta=\varnothing;
                result := (result - Ri})\cup(\mp@subsup{R}{i}{}-\beta)\cup(\alpha,\beta)
            end
    else done := true;
```

Note: each R_{i} is in BCNF, and decomposition is lossless-join.

Example of BCNF Decomposition

- $R=$ (branch-name, branch-city, assets, customer-name, loan-number, amount)
- $F=$ (branch-name \rightarrow assets branch-city loan-number \rightarrow amount branch-name)

Key $=\{$ loan-number, customer-name $\}$

- Decomposition
- $R_{1}=$ (branch-name, branch-city, assets)
- $R_{2}=$ (branch-name, customer-name, loan_number, amount)
- $R_{3}=$ (branch-name, loan-number, amount)
- $R_{4}=$ (customer-name, loan-number)
- Final decomposition

$$
R_{1}, R_{3}, R_{4}
$$

```
R=(Bn,Bc,As,Cn,Ln,Am)
F={Bn->As Bc,
    Ln->Am Bn,
    Ln Cn->Bn Bc As Am} < key
1) Bn}->\textrm{As}Bc\mathrm{ in R
    Bn+={Bn As Bc} < not SK
Decompose
    R1 = (Bn,Bc,As)
    R2 = (Bn,Cn,Ln,Am)
2) Ln}->\textrm{Am Bn}\mathrm{ in R2
    Ln+={Ln Am Bn As Bc} < not SK
decompose
    R3=(Ln Am Bn)
    R4=(Ln Cn)
```


BCNF and Dependency Preservation

- Constraints, including functional dependencies, are costly to check in practice unless they pertain to only one relation
- If it is sufficient to test only those dependencies on each individual relation of a decomposition in order to ensure that all functional dependencies hold, then that decomposition is dependency preserving.
- Because it is not always possible to achieve both BCNF and dependency preservation, we consider a weaker normal form, known as third normal form.

Third Normal Form

- A relation schema R is in third normal form (3NF) if for all:

$$
\alpha \rightarrow \beta \text { in } F+
$$

at least one of the following holds:
$-\alpha \rightarrow \beta$ is trivial (i.e., $\beta \in \alpha$)
$-\alpha$ is a superkey for R

- Each attribute A in $\beta-\alpha$ is contained in a candidate key for R.
(NOTE: each attribute may be in a different candidate key)
- If a relation is in BCNF it is in 3NF (since in BCNF one of the first two conditions above must hold).
- Third condition is a minimal relaxation of BCNF to ensure dependency preservation (will see why later).

3NF (Cont.)

- Example
- $R=(J, K, L)$
$F=\{J K \rightarrow L, L \rightarrow K\}$
- Two candidate keys: JK and JL
- R is in 3NF

$\underset{L \rightarrow K}{J K \rightarrow L} \quad$| K is contained in a candidate key |
| :--- |

Redundancy in 3NF

- Example of problems due to redundancy in 3NF
- $R=(J, K, L)$
$F=\{J K \rightarrow L, L \rightarrow K\}$

A schema in 3NF but not in BCNF has the following problems:

- redundancy of information
- need to use null values (e.g. to represent relationship $\mathrm{l}_{2} \mathrm{k}_{2^{\prime}}$
when there is no corresponding j value)

Testing for 3NF

- Optimization: Need to check only FDs in F, need not check all FDs in F^{+}.
- Use attribute closure to check, for each dependency $\alpha \rightarrow \beta$, if α is a superkey.
- If α is not a superkey, we have to verify if each attribute in β is contained in a candidate key of R
- this test is more expensive, since it involve finding ALL candidate keys
- testing for 3NF has been shown to be NP-hard

Canonical Cover

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
- For example: $A \rightarrow C$ is redundant in: $\{A \rightarrow B, B \rightarrow C\}$
- Parts of a functional dependency may be redundant
- E.g.: on RHS: $\{A \rightarrow B, \quad B \rightarrow C, \quad A \rightarrow C D\}$ can be simplified to

$$
\{A \rightarrow B, \quad B \rightarrow C, \quad A \rightarrow D\}
$$

- E.g.: on LHS: $\quad\{\mathrm{A} \rightarrow B, \quad B \rightarrow C, \quad A C \rightarrow D\}$ can be simplified to

$$
\{\mathrm{A} \rightarrow B, \quad B \rightarrow C, \quad A \rightarrow D\}
$$

- Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies

Extraneous Attributes

- Consider a set F of functional dependencies and the functional dependency $\alpha \rightarrow \beta$ in F.
- Attribute A is extraneous in α if $A \in \alpha$ and F logically implies $(F-\{\alpha \rightarrow \beta\}) \cup\{(\alpha-A) \rightarrow \beta\}$.
- Attribute A is extraneous in β if $A \in \beta$ and the set of functional dependencies $(F-\{\alpha \rightarrow \beta\}) \cup\{\alpha \rightarrow(\beta-A)\}$ logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- Example: Given $F=\{A \rightarrow C, A B \rightarrow C\}$
$-B$ is extraneous in $A B \rightarrow C$ because $\{A \rightarrow C, A B \rightarrow C\}$ logically implies $A \rightarrow C$ (I.e. the result of dropping B from $A B \rightarrow C$).
- Example: Given $F=\{A \rightarrow C, A B \rightarrow C D\}$
- C is extraneous in $A B \rightarrow C D$ since $A B \rightarrow C$ can be inferred even after deleting C

3NF Decomposition/"construction" Algorithm

Let F_{c} be a canonical cover for F;
$i:=0$;
for each functional dependency $\alpha \rightarrow \beta$ in F_{c} do if none of the schemas $R_{j}, 1 \leq j \leq i$ contains $\alpha \beta$ then begin

$$
\begin{aligned}
& i:=i+1 \\
& R_{i}:=\alpha \beta
\end{aligned}
$$

end
if none of the schemas $R_{j \prime} 1 \leq j \leq i$ contains a candidate key for R
then begin
$i:=i+1$;
$R_{i}:=$ any candidate key for R;
end
return $\left(R_{1}, R_{2}, \ldots, R_{i}\right)$

Comparison of BCNF and 3NF

- It is always possible to decompose a relation into relations in 3NF and - the decomposition is lossless
- the dependencies are preserved
- It is always possible to decompose a relation into relations in BCNF and
- the decomposition is lossless
- it may not be possible to preserve dependencies.

More Examples

- SUPPLY(sno,pno,jno,scity,jcity,qty)
- sno,pno,jno is the candidate key,
- sno \rightarrow scity, jno $=\rightarrow$ jcity
- ED(eno,ename,byr,sal,dno,dname,floor,mgr)
- eno \rightarrow dno \rightarrow mgr
- TEACH(student,teacher, subject)
- student,subject \rightarrow teacher
- teacher \rightarrow subject

1NF
1NF

Normalization Using FDs

Check whether a particular relation R is in "good" form: BCNF or 3NF
If not, decompose R into a set of relations $\left\{R_{1}, R_{2}, \ldots, R_{n}\right\}$ such that

- No redundancy: The relations R_{i} preferably should be in either Boyce-Codd Normal Form or Third Normal Form.
- Lossless-join decomposition: Otherwise you have information loss.
- Dependency preservation: Let F_{i} be the set of dependencies F^{+}that include only attributes in R_{i}.
- Preferably the decomposition should be dependency preserving,
that is, $\quad\left(F_{1} \cup F_{2} \cup \ldots \cup F_{\mathrm{n}}\right)^{+}=F^{+}$
- Otherwise, checking during updates for violation of functional dependencies may require expensive joins operations
- The theory is based on functional dependencies

BCNF and Over-normalization

- 3NF relation has redudancy anomalies: TEACH(student,teacher,subject)
- insertion: cannot insert a teacher until we had a student taking his subject
- deletion: if I delete the last student of a teacher, then I loose the subject he teaches
- What is really the problem? schema overload. We are trying to capture two meanings:

1. subject X is (or can be) taught by teacher Y
2. student Z takes subject W from teacher V

- it makes no sense to say we loose the subject he teaches when he does not have a student! Who does he teach to?
- normalizing it to BCNF cannot preserve dependencies. Therefore, it is better to stay with the 3NF TEACH and another relation SUBJECT_TAUGHT:

$$
\begin{array}{lc}
\text { TEACH(student,teacher,subject) } & \text { 3NF } \\
\text { SUBJECT-TAUGHT(teacher,subject) } & \text { BCNF }
\end{array}
$$

Summary...practical issues

- Normalization
- Create a good schema - low redundancy, no loss of information
- Functional dependencies
- Specify constraints that must be encoded in our schema
- Note: SQL does not allow us to specify FDs other than key constraints (PRIMARY KEY, UNIQUE)
- Typical design process:
- Decompose to BCNF
- Use materialized views to preserve any additional FDs

