CMSC 474, Introduction to Game Theory

Dominant Strategies \& Price of Anarchy

Mohammad T. Hajiaghayi
University of Maryland

Dominant Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies for agent i
$>$ Intuitively, s_{i} dominates $s_{i}{ }^{\prime}$ if agent i does better with s_{i} than with $s_{i}{ }^{\prime}$ for every strategy profile \mathbf{s}_{-i} of the remaining agents
- Mathematically, there are three gradations of dominance:
$>s_{i}$ strictly dominates s_{i}^{\prime} if for every \mathbf{s}_{-i},

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)
$$

$>s_{i}$ weakly dominates s_{i}^{\prime} if for every \mathbf{s}_{-i},

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)
$$

and for at least one \mathbf{s}_{-i},

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}\right)>u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)
$$

$>s_{i}$ very weakly dominates s_{i}^{\prime} if for every \mathbf{s}_{-i},

$$
u_{i}\left(s_{i}, \mathbf{s}_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, \mathbf{s}_{-i}\right)
$$

Dominant Strategy Equilibria

- A strategy is strictly (resp., weakly, very weakly) dominant for an agent if it strictly (weakly, very weakly) dominates any other strategy for that agent
- A strategy profile $\left(s_{1}, \ldots, s_{n}\right)$ in which every s_{i} is dominant for agent i (strictly, weakly, or very weakly) is a Nash equilibrium
- Why?
$>$ Such a strategy profile forms an equilibrium in strictly (weakly, very weakly) dominant strategies

Examples

- Example: the Prisoner's Dilemma
$>$ http://www.youtube.com/watch?v=ED9gaAb2BEw
- For agent $1, D$ is strictly dominant
$>$ If agent 2 uses C, then
- Agent 1's payoff is higher with D than with C
$>$ If agent 2 uses D, then

- Agent 1's payoff is higher with D than with C
- Similarly, D is strictly dominant for agent 2
- So (D, D) is a Nash equilibrium in strictly dominant strategies

- How do strictly dominant strategies relate to strict Nash equilibria?

Example: Matching Pennies

- Matching Pennies
> If agent 2 uses Heads, then
- For agent 1, Heads is better than Tails
> If agent 2 uses Tails, then
- For agent 1, Tails is better than Heads
> Agent 1 doesn't have a dominant strategy

=> no Nash equilibrium in dominant strategies
- Which Side of the Road
> Same kind of argument as above
> No Nash equilibrium in dominant strategies

Elimination of Strictly Dominated Strategies

- A strategy s_{i} is strictly (weakly, very weakly) dominated for an agent i if some other strategy s_{i}^{\prime} strictly (weakly, very weakly) dominates s_{i}
- A strictly dominated strategy can't be a best response to any move, so we can eliminate it (remove it from the payoff matrix)
$>$ This gives a reduced game

$>$ Other strategies may now be strictly dominated, even if they weren't dominated before

- IESDS (Iterated Elimination of Strictly Dominated Strategies):
> Do elimination repeatedly until no more eliminations are possible
> When no more eliminations are possible, we have the maximal reduction of the original game

IESDS

- If you eliminate a strictly dominated strategy, the reduced game has the same Nash equilibria as the original one
- Thus
\{Nash equilibria of the original game \}
$=\{$ Nash equilibria of the maximally reduced game $\}$

- Use this technique to simplify finding Nash equilibria
> Look for Nash equilibria on the maximally reduced game

- In the example, we ended up with a single cell
> The single cell must be a unique Nash equilibrium in all three of the games

IESDS

- Even if s_{i} isn't strictly dominated by a pure strategy, it may be strictly dominated by a mixed strategy

	L	C	R
	3,1	0,1	0,0
	3		
M	1,1	1,1	5,0
D	0,1	4,1	0,0

- Example: the three games shown at right
$>1^{\text {st }}$ game:
- R is strictly dominated by L (and by C)
- Eliminate it, get $2^{\text {nd }}$ game
$>2^{\text {nd }}$ game:
- Neither U nor D dominates M
- But $\{(1 / 2, U),(1 / 2, D)\}$ strictly dominates M
, This wasn't true before we removed R
- Eliminate it, get $3^{\text {rd }}$ game
$>3^{\text {rd }}$ game is maximally reduced

	L	C
	C	
M	3,1	0,1
M	1,1	1,1
D	0,1	4,1

The Price of Anarchy (PoA)

- In the Chocolate Game, recall that
$>(\mathrm{T} 3, \mathrm{~T} 3)$ is the action profile that provides the best outcome for everyone

> If we assume each payer acts to maximize his/her utility without regard to the other, we get ($\mathrm{T} 1, \mathrm{~T} 1$)
> By choosing (T3,T3), each player could have gotten 3 times as much

- Let's generalize "best outcome for everyone"

The Price of Anarchy

- Social welfare function: a function $w(\mathbf{s})$ that measures the players' welfare, given a strategy profile s, e.g.,
> Utilitarian function: $w(\mathbf{s})=$ average expected utility
$>$ Egalitarian function: $w(\mathbf{s})=$ minimum expected utility
- Social optimum: benevolent dictator chooses \mathbf{s}^{*} that optimizes w
$>\mathbf{s}^{*}=\arg \max _{\mathrm{s}} w(\mathbf{s})$
- Anarchy: no dictator; every player selfishly tries to optimize his/her own expected utility, disregarding the welfare of the other players
> Get a strategy profile \mathbf{s} (e.g., a Nash equilibrium)
$>$ In general, $w(\mathbf{s}) \leq w\left(\mathbf{s}^{*}\right)$

Price of Anarchy (PoA) $=\max _{\text {sis }}$ Nash equilibrium $w\left(\mathbf{s}^{*}\right) / w(\mathbf{s})$

- PoA is the most popular measure of inefficiency of equilibria.
- We are generally interested in PoA which is closer to 1 , i.e., all equilibria are good approximations of an optimal solution.

The Price of Anarchy

- Example: the Chocolate Game
> Utilitarian welfare function: $w(\mathbf{s})=$ average expected utility
- Social optimum: $\mathbf{s}^{*}=(\mathrm{T} 3, \mathrm{~T} 3)$

$$
>w\left(\mathbf{s}^{*}\right)=3
$$

- Anarchy: $\mathbf{s}=(\mathrm{T} 1, \mathrm{~T} 1)$
$>w(\mathbf{s})=1$

- Price of anarchy

$$
=w\left(\mathbf{s}^{*}\right) / w(\mathbf{s})=3 / 1=3
$$

- What would the answer be if we used the egalitarian welfare function?

The Price of Anarchy

- Sometimes instead of maximizing a welfare function w, we want to minimize a cost function c (e.g. in Prisoner's Dilemma)
$>$ Utilitarian function: $c(\mathbf{s})=$ avg. expected cost
$>$ Egalitarian function: $c(\mathbf{s})=$ max. expected cost
- Need to adjust the definitions

C	C	
	3,3	D
C	3,5	
	5,0	1,1

$>$ Social optimum: $\mathbf{s}^{*}=\arg \min _{\mathbf{s}} c(\mathbf{s})$
> Anarchy: every player selfishly tries to minimize his/her own cost, disregarding the costs of the other players

- Get a strategy profile \mathbf{s} (e.g., a Nash equilibrium)
- In general, $c(\mathbf{s}) \geq c\left(\mathbf{s}^{*}\right)$
$>$ Price of Anarchy $($ PoA $)=\max _{\text {sis Nash equilibrium }} c(\mathbf{s}) / c\left(\mathbf{s}^{*}\right)$
- i.e., the reciprocal of what we had before
- E.g. in Prisoner's dilemma PoA= 3

Braess's Paradox in Road Networks

- Suppose 1,000 drivers wish to travel from S (start) to D (destination)
> Two possible paths:
- $S \rightarrow A \rightarrow D$ and $S \rightarrow B \rightarrow D$
$>$ The road from S to A is long: $t=50$ minutes
- But it's also very wide: $t=50$ no matter how many cars
$>$ Same for road from B to D
$>\operatorname{Road}$ from A to D is shorter but is narrow

- Time $=($ number of cars $) / 25$
- Nash equilibrium:
> 500 cars go through A, 500 cars through B
> Everyone's time is $50+500 / 25=70$ minutes
> If a single driver changes to the other route then there are 501 cars on that route, so his/her time goes up

Braess's Paradox (cont'd)

- Add a very short and wide road from B to A:
>0 minutes to traverse, no matter how many cars
- Nash equilibrium:
> All 1000 cars go $\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{D}$
> Time for $\mathrm{S} \rightarrow \mathrm{B}$ is $1000 / 25=40$ minutes
> Total time is 80 minutes
- To see that this is an equilibrium:

$>$ If driver goes $S \rightarrow A \rightarrow D$, his/her cost is $50+40=90$ minutes
$>$ If driver goes $S \rightarrow B \rightarrow D$, his/her cost is $40+50=90$ minutes
> Both are dominated by $\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{D}$
- To see that it's the only Nash equilibrium:
$>$ For every traffic pattern, $\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{D}$ dominates $S \rightarrow A \rightarrow D$ and $S \rightarrow B \rightarrow D$
$>$ Choose any traffic pattern, and compute the times a driver would get on all three routes

The Price of Anarchy

- Example: Braess's Paradox
$>$ Utilitarian cost function: $c(\mathbf{s})=$ average expected cost
- Social optimum:

$$
\begin{aligned}
& >\mathbf{s}^{*}=[500 \text { go } \mathrm{S} \rightarrow \mathrm{~A} \rightarrow \mathrm{D} ; 500 \text { go } \mathrm{S} \rightarrow \mathrm{~B} \rightarrow \mathrm{D}] \\
& >c\left(\mathbf{s}^{*}\right)=70
\end{aligned}
$$

- Anarchy: $\mathbf{s}=[1000$ drivers go $\mathrm{S} \rightarrow \mathrm{B} \rightarrow \mathrm{A} \rightarrow \mathrm{D}]$

$$
>c(\mathbf{s})=80
$$

- Price of anarchy $=c(\mathbf{s}) / c\left(\mathbf{s}^{*}\right)=8 / 7$

- What would the answer be if we used the egalitarian cost function?
- Note that when we talk about Price of Anarchy for Nash equilibria in general, we consider the worst case Nash equilibrium

Discussion

- In the example, adding the extra road increased the travel time from 70 minutes to 80 minutes
> This suggests that carelessly adding road capacity can actually be hurtful
- But are the assumptions realistic?

- For $\mathrm{A} \rightarrow \mathrm{B}, t=0$ regardless of how many cars
$>$ Road length $=0$? Then $\mathrm{S} \rightarrow \mathrm{A}$ and $\mathrm{S} \rightarrow \mathrm{B}$ must go to the same location, so how can their travel times be so different?
- For $\mathrm{S} \rightarrow \mathrm{A}, t=50$ regardless of how many cars
$>$ is it a 1000 -lane road?
- For 1000 cars, does " $t=$ cars $/ 25$ " really mean 40 minutes per car?
> The cars can't all start at the same time
> If they go one at a time, could have 40 minutes total but $1 / 25$ minute/car
- So can this really happen in practice?

Braess's Paradox in Practice

- 1969, Stuttgart, Germany - when a new road to city the center was opened, traffic got worse; and it didn't improve until the road was closed
- 1990, Earth day, New York - closing 42nd street improved traffic flow
- 1999, Seoul, South Korea - closing a tunnel improved traffic flow
- 2003, Seoul, South Korea - traffic flow was improved by closing a 6-lane motorway and replacing it with a 5 -mile-long park
- 2010, New York - closing parts of Broadway has improved traffic flow
- Braess's paradox can also occur in other kinds of networks such as queuing networks or communication networks;
$>$ In principle, it can occur in Internet traffic though I don't have enough evidence to know how much of a problem it is
- Sources
> http://www.umassmag.com/transportationandenergy.htm
> http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
> http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact
> http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
> http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html

