CMSC 474, Introduction to Game Theory

Dominant Strategies & Price of Anarchy

Mohammad T. Hajiaghayi University of Maryland

Dominant Strategies

• Let s_i and s_i' be two strategies for agent i

Intuitively, s_i dominates s_i' if agent i does better with s_i than with s_i' for every strategy profile s_{-i} of the remaining agents

• Mathematically, there are three gradations of dominance:

> s_i strictly dominates s_i' if for every \mathbf{s}_{-i} ,

 $u_i(s_i, \mathbf{s}_{-i}) > u_i(s_i', \mathbf{s}_{-i})$

> s_i weakly dominates s_i' if for every \mathbf{s}_{-i} ,

 $u_i(s_i, \mathbf{s}_{-i}) \ge u_i(s_i', \mathbf{s}_{-i})$

and for at least one \mathbf{s}_{-i} ,

 $u_i(s_i, \mathbf{s}_{-i}) > u_i(s_i', \mathbf{s}_{-i})$

> s_i very weakly dominates s_i' if for every \mathbf{s}_{-i} ,

 $u_i(s_i, \mathbf{s}_{-i}) \ge u_i(s_i', \mathbf{s}_{-i})$

Dominant Strategy Equilibria

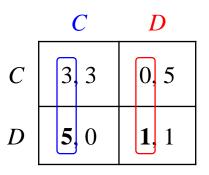
- A strategy is **strictly** (resp., **weakly**, **very weakly**) **dominant** for an agent if it strictly (weakly, very weakly) dominates any other strategy for that agent
- A strategy profile (s_1, \ldots, s_n) in which every s_i is dominant for agent *i* (strictly, weakly, or very weakly) is a Nash equilibrium
 - Why?
 - Such a strategy profile forms an equilibrium in strictly (weakly, very weakly) dominant strategies

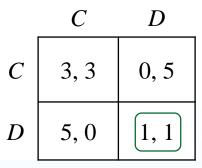
Examples

• Example: the Prisoner's Dilemma

http://www.youtube.com/watch?v=ED9gaAb2BEw

- For agent 1, *D* is strictly dominant
 - ➢ If agent 2 uses C, then
 - Agent 1's payoff is higher with *D* than with *C*
 - ▶ If agent 2 uses *D*, *then*
 - Agent 1's payoff is higher with *D* than with *C*
- Similarly, *D* is strictly dominant for agent 2
- So (*D*,*D*) is a Nash equilibrium in strictly dominant strategies
- How do strictly dominant strategies relate to strict Nash equilibria?





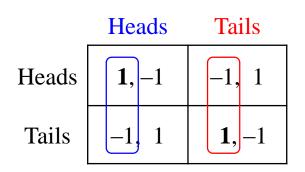
Example: Matching Pennies

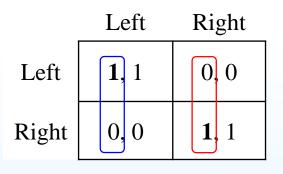
• Matching Pennies

- ➤ If agent 2 uses Heads, then
 - For agent 1, Heads is better than Tails
- ➢ If agent 2 uses Tails, then
 - For agent 1, Tails is better than Heads
- Agent 1 doesn't have a dominant strategy
 - => no Nash equilibrium in dominant strategies

• Which Side of the Road

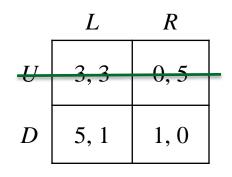
- Same kind of argument as above
- > No Nash equilibrium in dominant strategies

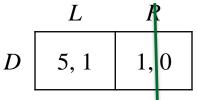




Elimination of Strictly Dominated Strategies

- A strategy s_i is **strictly** (**weakly**, **very weakly**) **dominated** for an agent *i* if some other strategy s_i' strictly (weakly, very weakly) dominates s_i
- A strictly dominated strategy can't be a best response to any move, so we can eliminate it (remove it from the payoff matrix)
 - > This gives a **reduced** game
 - Other strategies may now be strictly dominated, even if they weren't dominated before
- **IESDS** (Iterated Elimination of Strictly Dominated Strategies):
 - Do elimination repeatedly until no more eliminations are possible
 - When no more eliminations are possible, we have the maximal reduction of the original game





D

L

5, 1

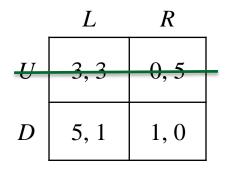
IESDS

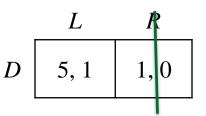
- If you eliminate a strictly dominated strategy, the reduced game has the same Nash equilibria as the original one
- Thus

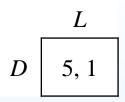
{Nash equilibria of the original game}

= {Nash equilibria of the maximally reduced game}

- Use this technique to simplify finding Nash equilibria
 - Look for Nash equilibria on the maximally reduced game
- In the example, we ended up with a single cell
 - The single cell *must* be a unique Nash equilibrium in all three of the games



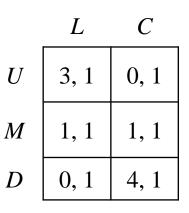


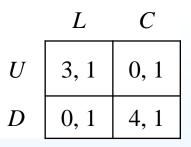


IESDS

- Even if *s_i* isn't strictly dominated by a pure strategy, it may be strictly dominated by a mixed strategy
- **Example**: the three games shown at right
 - \succ 1st game:
 - R is strictly dominated by L (and by C)
 - Eliminate it, get 2nd game
 - \succ 2nd game:
 - Neither U nor D dominates M
 - But $\{(\frac{1}{2}, U), (\frac{1}{2}, D)\}$ strictly dominates M
 - > This wasn't true before we removed *R*
 - Eliminate it, get 3rd game
 - > 3rd game is maximally reduced

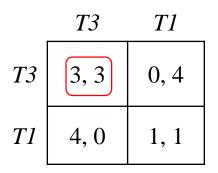
	L	С	R
U	3, 1	0, 1	0, 0
М	1, 1	1, 1	5, 0
D	0, 1	4, 1	0, 0

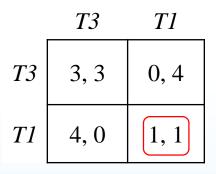




The Price of Anarchy (PoA)

- In the Chocolate Game, recall that
 - (T3,T3) is the action profile that provides the best outcome for everyone
 - If we assume each payer acts to maximize his/her utility without regard to the other, we get (T1,T1)
 - By choosing (T3,T3), each player could have gotten 3 times as much
- Let's generalize "best outcome for everyone"





- *Social welfare function*: a function *w*(**s**) that measures the players' welfare, given a strategy profile **s**, e.g.,
 - > Utilitarian function: w(s) = average expected utility
 - > Egalitarian function: w(s) = minimum expected utility
- *Social optimum*: benevolent dictator chooses s^* that optimizes w

> $\mathbf{s}^* = \arg \max_{\mathbf{s}} w(\mathbf{s})$

- *Anarchy*: no dictator; every player selfishly tries to optimize his/her own expected utility, disregarding the welfare of the other players
 - Get a strategy profile s (e.g., a Nash equilibrium)
 - > In general, $w(\mathbf{s}) \le w(\mathbf{s}^*)$

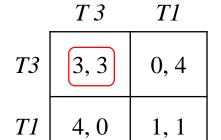
Price of Anarchy (PoA) = $\max_{s \text{ is Nash equilibrium}} w(s^*) / w(s)$

- PoA is the most popular measure of inefficiency of equilibria.
- We are generally interested in PoA which is closer to 1, i.e., all equilibria are good approximations of an optimal solution.

- Example: the Chocolate Game
 - Utilitarian welfare function:
 w(s) = average expected utility

• Anarchy:
$$s = (T1,T1)$$

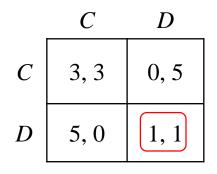
> $w(s) = 1$



	ТЗ	<i>T1</i>
Т3	3, 3	0, 4
<i>T1</i>	4, 0	1, 1

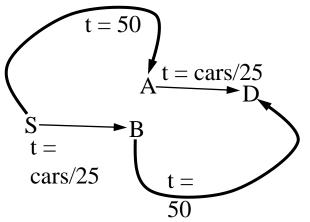
- Price of anarchy
 - $= w(s^*) / w(s) = 3/1 = 3$
- What would the answer be if we used the egalitarian welfare function?

- Sometimes instead of *maximizing* a welfare function *w*, we want to *minimize* a cost function *c* (e.g. in Prisoner's Dilemma)
 - > Utilitarian function: $c(\mathbf{s}) = avg$. expected cost
 - > Egalitarian function: $c(\mathbf{s}) = \max$. expected cost
- Need to adjust the definitions
 - > Social optimum: $s^* = \arg \min_s c(s)$
 - Anarchy: every player selfishly tries to minimize his/her own cost, disregarding the costs of the other players
 - Get a strategy profile **s** (e.g., a Nash equilibrium)
 - In general, $c(\mathbf{s}) \ge c(\mathbf{s}^*)$
 - > Price of Anarchy (PoA) = $\max_{s \text{ is Nash equilibrium}} c(s) / c(s^*)$
 - i.e., the reciprocal of what we had before
 - E.g. in Prisoner's dilemma PoA= 3



Braess's Paradox in Road Networks

- Suppose 1,000 drivers wish to travel from *S* (start) to *D* (destination)
 - > Two possible paths:
 - $S \rightarrow A \rightarrow D$ and $S \rightarrow B \rightarrow D$
 - > The road from S to A is long: t = 50 minutes
 - But it's also very wide: *t* = 50 no matter how many cars
 - Same for road from *B* to *D*
 - Road from A to D is shorter but is narrow
 - Time = (number of cars)/25
- Nash equilibrium:
 - > 500 cars go through A, 500 cars through B
 - > Everyone's time is 50 + 500/25 = 70 minutes
 - If a single driver changes to the other route then there are 501 cars on that route, so his/her time goes up

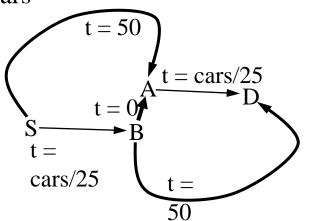


Braess's Paradox (cont'd)

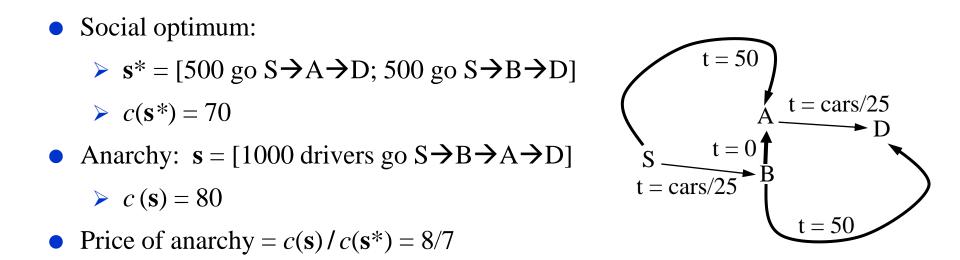
• Add a *very* short and wide road from B to A:

> 0 minutes to traverse, no matter how many cars

- Nash equilibrium:
 - > All 1000 cars go $S \rightarrow B \rightarrow A \rightarrow D$
 - > Time for S \rightarrow B is 1000/25 = 40 minutes
 - Total time is 80 minutes
- To see that this is an equilibrium:
 - > If driver goes $S \rightarrow A \rightarrow D$, his/her cost is 50 + 40 = 90 minutes
 - > If driver goes $S \rightarrow B \rightarrow D$, his/her cost is 40 + 50 = 90 minutes
 - > Both are dominated by $S \rightarrow B \rightarrow A \rightarrow D$
- To see that it's the *only* Nash equilibrium:
 - ► For every traffic pattern, $S \rightarrow B \rightarrow A \rightarrow D$ dominates $S \rightarrow A \rightarrow D$ and $S \rightarrow B \rightarrow D$
 - Choose any traffic pattern, and compute the times a driver would get on all three routes



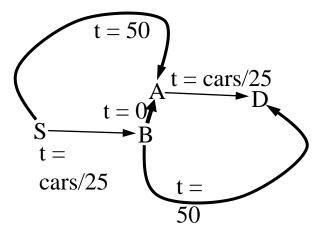
- Example: Braess's Paradox
 - > Utilitarian cost function: $c(\mathbf{s}) = average expected cost$



- What would the answer be if we used the egalitarian cost function?
- Note that when we talk about Price of Anarchy for Nash equilibria in general, we consider the **worst case** Nash equilibrium

Discussion

- In the example, adding the extra road increased the travel time from 70 minutes to 80 minutes
 - This suggests that carelessly adding road capacity can actually be hurtful
- But are the assumptions realistic?
- For $A \rightarrow B$, t = 0 regardless of how many cars



- ➤ Road length = 0? Then S→A and S→B must go to the same location, so how can their travel times be so different?
- For $S \rightarrow A$, t = 50 regardless of how many cars
 - ➢ is it a 1000-lane road?
- For 1000 cars, does " $t = \frac{cars}{25}$ " really mean 40 minutes per car?
 - > The cars can't all start at the same time
 - > If they go one at a time, could have 40 minutes total but 1/25 minute/car
- So can this really happen in practice?

Braess's Paradox in Practice

- 1969, Stuttgart, Germany when a new road to city the center was opened, traffic got worse; and it didn't improve until the road was closed
- 1990, Earth day, New York closing 42nd street improved traffic flow
- 1999, Seoul, South Korea closing a tunnel improved traffic flow
- 2003, Seoul, South Korea traffic flow was improved by closing a 6-lane motorway and replacing it with a 5-mile-long park
- 2010, New York closing parts of Broadway has improved traffic flow
- Braess's paradox can also occur in other kinds of networks such as queuing networks or communication networks;
 - In principle, it can occur in Internet traffic though I don't have enough evidence to know how much of a problem it is
- Sources
 - http://www.umassmag.com/transportationandenergy.htm
 - http://www.cs.caltech.edu/~adamw/courses/241/lectures/brayes-j.pdf
 - http://www.guardian.co.uk/environment/2006/nov/01/society.travelsenvironmentalimpact
 - http://www.scientificamerican.com/article.cfm?id=removing-roads-and-traffic-lights
 - http://www.lionhrtpub.com/orms/orms-6-00/nagurney.html