Supervised Classitication

CMSC 723 / LING 723 / INST 725

MARINE CARPUAT

marine@cs.umd.edu Some slides by Graham Neubig,
Jacob Eisenstein

mailto:marine@cs.umd.edu

Last time

* Text classification problems
— and their evaluation

e Linear classifiers Machine Learning,

— Features & Weights Probability
— Bag of words

— Naive Bayes

Linguistics

Today

3 linear classifiers

— Naive Bayes

— Perceptron

— (Logistic Regression)

Bag of words vs. rich feature sets
Generative vs. discriminative models
Bias-variance tradeoff

Naive Bayes Recap

— Define p(x, y) via a generative model
— Prediction: § = arg max, p(x;, y)
— Learning:

0 :argmaxp(ac,y;e)

(@, y; 6 Hp i, yi:0) = | [p(@ilyi)p(vi)
Zz‘:n:y Lig

G =
- Zi:Y};:y Z] Lij
count(Y = y)
My = N

This gives the maximum likelihood estimator (MLE; same as relative
frequency estimator)

The Naivety of Naive Bayes

— Zlogp(iﬁi,j | yi) + log p(v:)
\ -7 J

Conditional
independence
assumption

Naive Bayes: Example

Cat Documents

Training

- just plain boring

- entirely predictable and lacks energy
- no surprises and very few laughs
very powerful

the most fun film of the summer

Test

o+ +

predictable with no originality

Smoothing

* Goal: assign some probability mass to events
that were not seen during training

* One method: "add alpha” smoothing
— Often, alpha = 1

O+ D iyi—y T o + count(y, 7)

P = B v .
Z}le (Oz T Z@:n:y a:i’j/) Va+ ijzl count(y, 7)

Multinomial Naive Bayes:
_earning in Practice

* From training corpus, extract Vocabulary

* Calculate P(y;) terms
— Foreachy;inYdo

docs; < all docs with class =y;
| docs; |
| total # documents |

P(y;) <

* Calculate P(w, | y;) terms
* Text; < single doc containing all docs;
* Foreach word w, in Vocabulary
n, < # of occurrences of w, in Text;

n +a

P(w,|Y;) <«
(klyJ) n_|_a|VOC8_bU|ary|

Bias Variance trade-off

Variance of a classifier

— How much its decisions are affected by small changes
In training sets

— Lower variance = smaller changes

Bias of a classifier

— How accurate it is at modeling different training sets
— Lower bias = more accurate

High variance classifiers tend to overfit
High bias classifiers tend to underfit

Bias Variance trade-off

* Impact of smoothing
— Lowers variance
— Increases bias (toward uniform probabilities)

Naive Bayes

A linear classifier whose weights can be
interpreted as parameters of a probabilistic model

* Pros

— parameters are easy to estimate from data:
“count and normalize” (and smooth)

e Cons

— requires making a conditional independence
assumption

— which does not hold in practice

Today

3 linear classifiers
— Naive Bayes

— Perceptron

— Logistic Regression

Bag of words vs. rich feature sets
Generative vs. discriminative models

Bias-variance tradeoff
— Smoothing, regularization

Beyond Bag of Words for
classification tasks

Given an introductory sentence in Wikipedia
predict whether the article is about a person

Given Predict

Gonso was a Sanron sect priest (754-827) |
In the late Nara and early Heian periods. ~ * Yes!

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru —» NO!
City, Kyoto Prefecture.

Designing features

Contains “(<#>-<#>)" -
probably person!

\ »
Gonso was a Sanron sect priest (754 — 827)
In the late Nara and early Heian periods .

Contains “priest” -
probably person!

Contains Shichikuzan Chigogataki Fudomyoo is
‘site” — a historical site located at Magura , Maizuru

probably not person' city Kyoto Prefecture .
- Contains

~ “Kyoto Prefecture” -

probably not person!

Predicting requires
combining information

 Given features and weights

W =2 W =1

contains “priest” contains “(<#>-<#>)”

W = -3 W =-1

contains “site” contains “Kyoto Prefecture”

 Predicting for a new example:
— If (sum of weights > 0), “yes”; otherwise “no”

>
Kuya (903-972) was a priest >) _
born in Kyoto Prefecture. 2 +’1 +1=2

Formalizing binary classitication
with linear models

y = sign(w-o(x))

I

sign (I.ZIWI-'CPI-(X))

e X: the input
. @(x): vector of feature functions {¢ (x), @,(X), ..., @ ,(X)}

. w: the weight vector {w_, w , ..., w}

« y: the prediction, +1 if “yes”, -1 if “n0”
e (sign(v)is +1if v>=0, -1 otherwise)

Example feature functions:
Unigram features

* Number of times a particular word appears
— I.e. bag of words

X = A site , located in Maizuru , Kyoto

(punigram “A”(X) - 1 (punigram “site”(X) - l (punigram (X) — 2
(punigram “Iocated"(x) =1 (punigram “in”(x) =1
¢ ®x)=1 0 x)=1

unigram “Maizuru’ unigram “Kyoto’

¢ x)=0 ¢ (X)=0 The rest

are all 0

unigram “the” unigram “temple’

An online learning algorithm

create map w
for | iterations
for each labeled pair x, y in the data

Phi = CREATE_FEATURES(X)
Y' = PREDICT_ONE(W, phi)
ify'l=y

UPDATE_WEIGHTS(W, phi, y)

Perceptron weight update

wéEw+ ycp(x)

 Ify = 1, increase the weights for features in ®(X)

 Ify = -1, decrease the weights for features in @(X)

Example: initial update

* |nitialize w=0
X = Asite, located in Maizuru , Kyoto y=-1

w-@(x)=0 y'=sign(w-@(x))=1

’V
y #Yy

\J
wéEwT Yy (x)
\/
Wunigram “Maizuru” -1 Wunigram A =-1
W | =-2 i
unigram *,” Wunigram “site” 1
N Y -~ 1
unigram -in unigram “located”
W =-1

unigram “Kyoto”

Fxample: second update

X = Shoken , monk born in Kyoto y=1
-2 -1 -1
Aa
—_— r— 1 . —_—
w-g(x)=—4 y'=sign(w-@(x))=-1
\J
I
Yy FYy
Y
wéEwT YO (x)
\/
Woinigram “Maizuru =1 Woinigram A" =1 Woinigram "shoken®
WUﬂigfam“.” =1 Wunigram“t =-1 Wunig am “monk L
Wunigram“ iii :O W | d =-1 W born” =1
W “ — O unigram te unigram “born
unigram “Kyot

Perceptron

e A linear model for classification

* An algorithm to learn feature weights given
labeled data
— online algorithm
— error-driven

— Does it converge?
« See "A Course In Machine Learning” Ch.3

http://www.ciml.info/dl/v0_8/ciml-v0_8-ch03.pdf

Multiclass perceptron

y = argmax ' f(x, y)
y

Algorithm 1 Perceptron learning algorithm

1: procedure PERCEPTRON(®1.n, Y1.N)

2: repeat

3 Select an instance ¢

4 §j + argmax, 0, f(x;,y)

5 if y # y; then

6: 01 < 0, + flxi, y:) — fxi,)
7: else

8 do nothing

9

until tired

Bias Variance trade off

 How do we decide when to stop?
— Accuracy on held out data
— Early stopping

» Averaged perceptron
— Improves generalization

Averaged perceptron

Algorithm 2 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRON(Z 1., ¥1.N)
2: repeat
Select an instance ¢
i < argmax, 0, f(x;,v)
if y # y; then
01 < 0+ fxi,yi) — fxi, 9)
m <— m + 9t+1
else
do nothing

10: Entil tired
11: 6 %m

Learning as optimization:
| 0SS Tunctions

* Naive Bayes chooses weights to maximize the

joint likelihood of the training data (or log
likelihood)

log p(, y; 6 Zlogp xi,yi; 0
gNB(Qa L;, yz) - = 10g P(a% Yi; 9)

N
é —arg mgin Zl ENB(BJ £y, y’L)

Perceptron Loss function

(07 ; = argmax BTf T;,
gperceptron(‘g;a?iayi) = 3 Y 5 Y (?J)

1, otherwise

\

e “0-1" loss

* Treats all errors equally
 Does not care about confidence of
classification decision

Today

3 linear classifiers

— Naive Bayes

— Perceptron

— (Logistic Regression)

Bag of words vs. rich feature sets
Generative vs. discriminative models
Bias-variance tradeoff

Perceptron & Probabilities

« What if we want a probability p(y|x)?

* The perceptron gives us a predictiony

In other words:

p(y[X)

P(y=1|x)=1if w-@(x)=0
P(y=1|x)=0 if w-¢(x)<0

-10 -5 0

The logistic function

ew-ka)
P(y=1|x)= W (x)
1+e™™®
Percleptron Logistic Function
% 0.5 . %
o o
0 0
-10 -5 0 5 10 -10 -5 0 o) 10
w*phi(x) w*phi(x)

“Softer” function than in perceptron
Can account for uncertainty
Differentiable

Logistic regression: how to train?

* Train based on conditional likelihood

* Find parameters w that maximize conditional
likelihood of all answers y; given examples x;

w =argmax Hi P(yix;;w)

Stochastic gradient ascent
(or descent)

* Online training algorithm for logistic regression
— and other probabilistic models

create map w
for [iterations
for each labeled pair x, y in the data
w +=a * dP(y|x)/dw

 Update weights for every training example

« Move in direction given by gradient
* Size of update step scaled by learning rate

Gradient of the logistic function

FEVIFTI S
dw Y= dw l_l_eW'CP(X) % 0.
o) % O;
- QX vox2 ©-0 5 0 5 10
(1+€) w*phi(x)
d d e *™)
WP(Y——HX) = ﬂ(l—“ew.cp(x))
o o)

Example: initial update

o Set a=1, initialize w=0

X =Asite, located in Maizuru , Kyoto y=-1
0

d e
. — —P =—1] = —
w-g(x)=0 Lp(y=-ilx) = ol
= —0.25¢(x)
\/
wéew+—0.25¢ (x)
\j
Wunigram “Maizuru” =-0.25 Unigram “A” =-0.25
Wunigram =-0.5 : vite” = -0.25
W inigram in =-0.25 unfgram "Sle . =-0.25 14
W — _025 unigram “located

unigram “Kyoto”

Fxample: second update

X = Shoken , monk born in Kyoto y=1
-0.5 -0.25 -0.25
e
w(x)=—1 ——P(y=1lx) = @ (x)
x)=-1 Tl -
= 0.196¢(x)
\/
wéw+0.196 @ x)
\J
Wunigram “Maizuru” =-0.25 unigram “A” =-0.25 Wunigram vShoken" =0.196
Wunigram o =-0.304 : - =-0.25 w _ § o= 0.196
! _ unigram “site unigram “monk
Wunigram “in” =-0.054 . . , - -0.25 w R = 0.196
unigram “located unigram “born
w =-0.054

unigram “Kyoto”

How to set the learning rate?

 Various strategies

 decay over time
1

a =
C+t

Number of
Parameter samples

» Use held-out test set, increase learning rate
when likelihood increases

Some models are
netter then others...

« Consider these 2 examples

-1 he saw a bird in the park
+1 he saw a robbery in the park

 Which of the 2 models below is better?

Classifier 1 Classifier 2
he +3 bird -1
saw -5 robbery +1
+0.
Elird ?15 Classifier 2 will probably
robbery +1 generalize better!

It does not include irrelevant

in +5 : :
the -3 information

park -2 => Smaller model is better

Reqgularization

« A penalty on adding extra
weights
» L2 regularization: ||w]|,

— big penalty on large
weights
— small penalty on small
weights
* L1 reqularization: |[wll,
— Uniform increase when 2 -1
large or small

— Will cause many weights to
become zero

[l O R ¢ R L SN &)

— L2
—L1

L1 regularization in online learning

update_weights(w, phi, y, c)

% for name, value in w:

* if abs(value) <c: < If abs. value <c,

) ¢ wlname] = 0 set weight to zero

* else: : : If value > 0,

e w[name] -= sign(value) * c, decrease by c
for name, value in phi: If value < 0.

w[hame] += value * y increase by c

Today

3 linear classifiers

— Naive Bayes

— Perceptron

— (Logistic Regression)

Bag of words vs. rich feature sets
Generative vs. discriminative models
Bias-variance tradeoff

