
Human
Computer
Interaction
Laboratory

CMSC434
Introduction to Human-Computer Interaction

Week 10 | Lecture 16 | Mar 29, 2016

Engineering Interfaces II

Jon Froehlich

@jonfroehlich

COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Assignments

TA04 Mid-Fi Prototypes: Due March 31th

Midterm: Thursday, April 7th

– Will cover the readings, content from homework assignments, and
lectures

IA08 Android Doodle Prototype: Due April 5 & 8

– Come to class with initial prototype on April 5th. You must upload a
screenshot + code to Canvas on April 5th

– Submit final version April 8th.
– Same deliverables as before except you must also submit your 1-3

images of your favorite artwork made with your app. You should include
the raw image + impressionist image for each submission. Matt and I
will go through these, find our favorite top ~10 and post them for you
to vote on as a class.

Use the Calendar feature in Canvas to see all upcoming assignments and deadlines

Video Demo on Assignment Website

Evolution of User Interfaces

Command Line (Unix shell, DOS prompt)

Interaction driven by system

User prompted for input when needed

Text-based input and output

Event-Driven Interfaces (GUIs)

Interaction driven by user

UI constantly waiting for input events

Pointing & text input, graphical output

Based on: Jeff Heer, UW HCID 520, 02-UIToolkits.pdf

Procedural vs. Event-Driven Programming

Procedural

Code is executed in sequential order

Event-Driven

Code is executed based upon events

Statement 1

Statement 2

Statement 3

…

Statement N

Method 1

Method 2

Method 3

…

Method 4

Procedural Programming Example

Control flow. Execution starts at

main() and executes sequentially,

branching with if, for, and while

statements and method calls.

User input. When we need user

input, we call read() on the console

stream and wait (blocks) until the

user types something, then return

#include <stdio.h>

int main()

{

char str[100];

printf(“How old are you?");

gets(str);

printf("\nYou entered: ");

puts(str);

...

Procedural Programming Example

Control flow. Execution starts at

main() and executes sequentially,

branching with if, for, and while

statements and method calls.

User input. When we need user

input, we call read() on the console

stream and wait (blocks) until the

user types something, then return

#include <stdio.h>

int main()

{

char str[100];

printf(“How old are you?");

gets(str);

printf("\nYou entered: ");

puts(str);

...

Execution literally blocks until the user types in a string & hits ‘\n’

Procedural Programming Example

Control flow. Execution starts at

main() and executes sequentially,

branching with if, for, and while

statements and method calls.

User input. When we need user

input, we call read() on the console

stream and wait (blocks) until the

user types something, then return

#include <stdio.h>

int main()

{

char str[100];

printf(“How old are you?");

gets(str);

printf("\nYou entered: ");

puts(str);

...

How do we respond to input from > 1 source (e.g., keyboard & mouse?)

What if user wants to interact in a more dynamic order?

Execution literally blocks until the user types in a string & hits ‘\n’

Unlike MS-DOS-based applications, Windows-based

applications are event-driven. They do not make explicit

function calls to obtain input (such as C run-time library

calls). Instead, Windows-based applications wait for the

system to pass input to them.

Windows and Messages
Official Windows Developer Documentation

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

Event-Driven Programming

Control flow. Program waits for user
input events. OS routes user input
events to program, which are
processed in an event queue.

Message loop. Continuously waits for
events to process in a message queue.

User input. When a user moves the
mouse over the program window or
presses a key on the keyboard when
this window is in focus, the OS sends
the event to this program, where it is
processed by the message loop.

int WinMain()

{

... initialization code ...

... setup and show GUI ...

// Enter event Loop

while(true){

Event e = GetEvent();

DispatchEvent(e);

}

}

Event-Driven Programming

Control flow. Program waits for user
input events. OS routes user input
events to program, which are
processed in an event queue.

Message loop. Continuously waits for
events to process in a message queue.

User input. When a user moves the
mouse over the program window or
presses a key on the keyboard when
this window is in focus, the OS sends
the event to this program, where it is
processed by the message loop.

int WinMain()

{

... initialization code ...

... setup and show GUI ...

// Enter event Loop

while(true){

Event e = GetEvent();

DispatchEvent(e);

}

}

This message loop—the core part of any UI program—is often hidden from the
typical UI developer. It’s setup by the UI toolkit/framework that you use.

Windows Event Messaging Example
On the next slide, I’ll play a video of the Spy++ tool for sniffing Windows event messages

Microsoft Spy++ Tool
https://msdn.microsoft.com/en-us/library/dd460756.aspx

https://msdn.microsoft.com/en-us/library/dd460756.aspx

How do user input events (e.g., keypresses, mouse

clicks) get from the hardware, into the operating

system, and eventually processed by an application?

How do user input events (e.g., keypresses, mouse

clicks) get from the hardware, into the operating

system, and eventually processed by an application?

A: Let’s take a look! This example is specifically from

MS Windows, but it’s similar across all modern

operating systems.

Event Processing Diagram

User Input

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Event Processing Diagram

User Input

Operating System

OS Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

Event Processing Diagram

User Input

Operating System

OS Event Queue

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

Whenever the user moves the mouse, clicks the mouse button, or types on the
keyboard, the device driver for the respective device converts the input into

messages and places them into the system message queue

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

Whenever the user moves the mouse, clicks the mouse button, or types on the
keyboard, the device driver for the respective device converts the input into

messages and places them into the system message queue

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data] Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSELEAVE, 0x023, [data]

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

WM_MOUSEMOVE, 0x044, [data]

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

WM_MOUSEMOVE, 0x044, [data]

The OS removes the messages, one at a time, from the OS message queue,
examines them to determine the destination window, and then posts them to the

message queue of the UI thread for the destination window.

Event Processing Queue

OS always posts messages to the end of a
program’s message queue (i.e., FIFO).

The program message queue processes the
event messages in FIFO

However, some events receive special handling.
For example, on Windows, WM_PAINT
messages are only processed when the queue
contains no other messages. In addition, for
efficiency, multiple WM_PAINT messages in the
queue are consolidated into one.Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

WM_MOUSEMOVE, 0x044, [data]

OK, but then how are these program
event queue’s processed?

Event Processing Diagram

User Input

Computer Screen

Operating System

OS Event Queue

Window Application 1, Handle=0x023

Window Application 2, Handle=0x044

Program Event Queue

WM_MOUSEMOVE, 0x023, [data]

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

WM_MOUSEMOVE, 0x023, [data]

WM_MOUSELEAVE, 0x023, [data]

Source: Windows Message Queue, https://msdn.microsoft.com/en-us/library/windows/desktop/ms644927(v=vs.85).aspx

_‾ X

_‾ X

Program Event Queue

WM_MOUSEMOVE, 0x044, [data]

OK, but then how are these program event
queue’s processed?

A: The application message loop, which
dispatches the event to the appropriate

sub-window in the application (e.g., a
button, textfield, etc.)

To understand this part, we need to return to the

hierarchical nature of UI windows—Window Trees.

Android calls this Component Tree

Window Tree vs. UI Object Hierarchy

The Window Tree describes the

relationship between UI

components laid out in a window

The UI Object Hierarchy describes

the class hierarchy that UI

frameworks use.

Remember, the Window Tree is completely different from the UI object hierarchy

Window Tree Example

Window Tree Example

Base Window

Actual Window Tree for MS Windows Run Dialog
The actual Window Tree of the Run Dialog as observed from MS Spy++

Make Window Tree
Take out your sketchbooks, and make a Window Tree of the following

Window Tree Example

Base
Panel

Window Tree Example

Base
Panel

Drawing
Panel

Editing
Panel

Window Tree Example

Base
Panel

Drawing
Panel

Scroll
Panel

Editing
Panel

Window Tree Example

Base
Panel

Drawing
Panel

Scroll
Panel

Editing
Panel

Window Tree Example

Base
Panel

Drawing
Panel

Scroll
Panel

Editing
Panel

Window Tree Example

Base
Panel

Drawing
Panel

Scroll
Panel

Editing
Panel

User clicks on the “Star” button,
what happens?

Two Event Routing Approaches

Application processes the event queue in the UI thread

message loop, but how does it know which window to

send the event to?

1. Sub-window handles. In the Windows OS, every single

component drawn to the screen is a “window” and has

its own window handle (address), so the application uses

that for message routing (as we just saw!).

2. Hit testing. The application uses “hit testing” to check for

the top-most window component (z-axis) (which is also

the bottom most component in window tree) and routes

the message there. Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Two Event Routing Approaches

Application processes the event queue in the UI thread

message loop, but how does it know which window to

send the event to?

1. Sub-window handles. In the Windows OS, every single

component drawn to the screen is a “window” and has

its own window handle (address), so the application uses

that for message routing (as we just saw!).

2. Hit testing. The application uses “hit testing” to check for

the top-most window component (z-axis) (which is also

the bottom most component in window tree) and routes

the message there. Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Regardless of method, are input events processed
bottom-up or top-down in Window Tree?

Two Event Routing Approaches

Application processes the event queue in the UI thread

message loop, but how does it know which window to

send the event to?

1. Sub-window handles. In the Windows OS, every single

component drawn to the screen is a “window” and has

its own window handle (address), so the application uses

that for message routing (as we just saw!).

2. Hit testing. The application uses “hit testing” to check for

the top-most window component (z-axis) (which is also

the bottom most component in window tree) and routes

the message there. Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

A: Events are always processed bottom-up

Events percolate
upwards in the
Window Tree

Event Processing Diagram

Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Drawing
Panel

Scroll
Panel

WM_LBUTTONDOWN event is first sent to “Star” button. The
button component processes the event and so the event does not

percolate upwards. It “dies” with the Star button.

Events percolate
upwards in the
Window Tree

Event Processing Diagram

Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Drawing
Panel

Scroll
Panel

If, however, the “Star” button did not process the event. It would
percolate upward in the Window Tree until it’s processed.

Events percolate
upwards in the
Window Tree

Event Processing Diagram

Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Drawing
Panel

Scroll
Panel

Input event travels up to Scroll Panel container. If not
processed here, again moves upward.

Events percolate
upwards in the
Window Tree

Event Processing Diagram

Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Drawing
Panel

Scroll
Panel

Input event travels up to the next container, which we called the
“Drawing Panel.” If not processed here, again moves upward.

Events percolate
upwards in the
Window Tree

Event Processing Diagram

Window Application 2, Handle=0x044

Program Event Queue

WM_LBUTTONDOWN, 0x023, [data]

WM_LBUTTONUP, 0x023, [data]

Window Application 1, Handle=0x023

_‾ X

_‾ X

Program Event Queue

Drawing
Panel

Scroll
Panel

Input event travels up to the next container, which we called the “Base Panel.” If not
processed here, again moves upward.

The root in all Window Trees is the application Window. So, the event would
eventually percolate up to the top application Window. If not processed at that point,

event just dies. Applications do not need to respond to events!

WPF Example

<Border Height="50" Width="300"

BorderBrush="Gray" BorderThickness="1">

<StackPanel Background="LightGray" Orientation="Horizontal"

Button.Click="CommonClickHandler">

<Button Name="YesButton" Width="Auto" >Yes</Button>

<Button Name="NoButton" Width="Auto" >No</Button>

<Button Name="CancelButton" Width="Auto" >Cancel</Button>

</StackPanel>

</Border>

XAML Code

Windows UI

Source: Routed Events, https://msdn.microsoft.com/en-us/library/ms742806(v=vs.100).aspx

WPF Example

<Border Height="50" Width="300"

BorderBrush="Gray" BorderThickness="1">

<StackPanel Background="LightGray" Orientation="Horizontal"

Button.Click="CommonClickHandler">

<Button Name="YesButton" Width="Auto" >Yes</Button>

<Button Name="NoButton" Width="Auto" >No</Button>

<Button Name="CancelButton" Width="Auto" >Cancel</Button>

</StackPanel>

</Border>

XAML Code

Windows UI

Source: Routed Events, https://msdn.microsoft.com/en-us/library/ms742806(v=vs.100).aspx

Application
Main Window

Window Tree (WPF calls this an Element Tree)

Border

Stack
Panel

From the docs: In this simple element tree, the source of a Click event is
one of the Button elements. When a Button is clicked, it is the first element
with the opportunity to handle the event. If no handler attached to
the Button acts on the event, then the event will bubble upwards to
the Button parent in the element tree, which is the StackPanel. Again, if
the StackPanel does not handle the event, it bubbles up to Border, and
then beyond to the root of the element tree (the main Window).

https://msdn.microsoft.com/en-us/library/system.windows.controls.primitives.buttonbase.click(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.button(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.button(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.button(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.button(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.stackpanel(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.stackpanel(v=vs.100).aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.border(v=vs.100).aspx

Event Processing: Making Sense of Invalidate()

Why don’t you call onDraw() directly to paint a window?

Instead, we call Invalidate(), which places a WM_PAINT

message into the application’s message queue.

It’s because of the event-driven nature of UI. We treat a

paint event like any other user-oriented event, so we can

keep processing user input dynamically.

Mouse Events

When the user moves the mouse, the OS moves a bitmap

on the screen called the mouse cursor

The mouse cursor contains a single-pixel point called

the hot spot, a point that the OS tracks and recognizes

as the cursor position

When a mouse event occurs, the window that contains

the hot spot (typically) receives the mouse message

resulting from the event

Source: About Mouse Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms645601(v=vs.85).aspx

Example Mouse Messages (Windows)

Source: About Mouse Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms645601(v=vs.85).aspx

Move Messages Description

WM_MOUSEMOVE The user moves the cursor within the client area

WM_MOUSEHOVER The cursor hovers over the client area for a certain time

WM_MOUSELEAVE The cursor leaves the client area

Button Messages Description

WM_LBUTTONDBLCLK The left mouse button was double-clicked.

WM_LBUTTONDOWN The left mouse button was pressed.

WM_LBUTTONUP The left mouse button was released.

WM_MBUTTONDBLCLK The middle mouse button was double-clicked.

WM_MBUTTONDOWN The middle mouse button was pressed.

WM_MBUTTONUP The middle mouse button was released.

WM_RBUTTONDBLCLK The right mouse button was double-clicked.

WM_RBUTTONDOWN The right mouse button was pressed.

WM_RBUTTONUP The right mouse button was released.

WM_XBUTTONDBLCLK An X mouse button was double-clicked.

WM_XBUTTONDOWN An X mouse button was pressed.

WM_XBUTTONUP An X mouse button was released.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms645616(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645613(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645615(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645606(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645607(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645608(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645609(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645610(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645611(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646241(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646242(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646243(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646244(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646245(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms646246(v=vs.85).aspx

Mouse Message Data (Windows)

[X,Y] coordinate of the cursor hot spot

Flags such as MK_SHIFT (The SHIFT key is down) and

MK_CONTROL (The CTRL key is down)

Information about which button is down (legacy Windows

supported up to 5-button mice; unsure about Win10)

Source: About Mouse Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms645601(v=vs.85).aspx

Keyboard Input (Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Windows provides device-independent keyboard support

for applications by installing a keyboard device driver for

the current keyboard

The keyboard device driver receives scan codes from the

keyboard, which are sent to the keyboard layout

processor (for language dependence), which are then

translated into event messages, and posted to the in-

focus window in the application.

Keyboard Input (MS Windows)
This is exactly like the Event Processing Diagram from before, just a different illustration

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

Assigned to each key on a keyboard is a unique value called a scan code, a device-dependent
identifier for each key on the keyboard. A keyboard generates two scan codes when the

user types a key—one when the user presses the key, another when the user releases the key

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

Assigned to each key on a keyboard is a unique value called a scan code, a device-dependent
identifier for each key on the keyboard. A keyboard generates two scan codes when the

user types a key—one when the user presses the key, another when the user releases the key.

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

The keyboard device driver analyzes the scan code and translates it to a virtual keycode,
which is a device-independent value defined by the OS that identifies the key. The driver

then creates a message that includes the scan code, the virtual keycode, and other data and
places the message into the OS message queue.

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

The keyboard device driver analyzes the scan code and translates it to a virtual keycode,
which is a device-independent value defined by the OS that identifies the key. The driver

then creates an event message that includes the scan code, the virtual keycode, and other
data and places the message into the OS message queue.

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

The OS removes the message from the system message queue and posts it to the message
queue of the appropriate application. The OS determines which application should receive

keyboard events based on ‘keyboard focus.’ Only one window in the OS can have the
keyboard focus at a time.

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Method

Keyboard

Scan
Code Message Message

The OS removes the message from the system message queue and posts it to the message
queue of the appropriate application. The OS determines which application should receive

keyboard events based on ‘keyboard focus.’ Only one window in the OS can have the
keyboard focus at a time.

Keyboard Input (MS Windows)

Source: About Keyboard Input, https://msdn.microsoft.com/en-us/library/windows/desktop/ms646267(v=vs.85).aspx

Keyboard
Device
Driver

OS Message
Queue

Application
Message
Queue

Application
Message

Loop

Window
Processing
Function

Keyboard

Scan
Code Message Message

Eventually, the thread’s message loop removes the message and passes it to the appropriate
window for processing.

In-Class Work on TA04 Mid-Fi

I want to come around and check-up on teams

Can also ask questions about Android II assignment

UI Containers and Components

UI Containers

Contain one or more UI components

UI Components

Each UI component is a class with a paint method, list of

event listeners, and

Dark Palette

Light Palette

Light Palette

Light Palette

