Carnegie Mellon University Silicon Valley

sv.cmu.edu

Mobile Computing: Challenges and Opportunities for Autonomy and Feedback

Ole J. Mengshoel Carnegie Mellon University Moffett Field, CA 94035

ole.mengshoel@sv.cmu.edu

Bob Iannucci Carnegie Mellon University Moffett Field, CA 94035

bob@sv.cmu.edu

Abe Ishihara Carnegie Mellon University Moffett Field, CA 94035

abe.ishihara@sv.cmu.edu

CMU in Silicon Valley

- Established 2002
- Significant growth in the past 10 years

Education Research

Innovation
& Entrepreneurship

Background

- Mobile computing as a disruptive force
- First wave of mobile computing:
 - Voice was king
- Second wave of mobile computing:
 - Computer is king
 - Platform thinking similar to desktop and laptop
 - Challenges the inherited mobile systems infrastructure
- Challenge: Develop the next-generation mobile computing infrastructure

Challenges

Challenge	Description
Robustness	Wireless characteristics are inherently variable
Responsiveness	Growing demand implies growing load
Power	Physics imposes hard limits
App Development	Distributed computing introduces complexity

Disclaimers:

- These four challenges are not independent
- Other challenges exist
- Some challenges are well-known, and now re-emerging

Impact of Platform Thinking: Robustness Challenge

- Robustness challenge: In wireless networks, the physical medium is generally
 - dynamic,
 - variable in reliability, and
 - devices can and do move.

Impact of Platform Thinking: Responsiveness Challenge

- Responsiveness challenge: With the growth in mobile consumption of streaming media
 - desire to balance competing needs of different traffic flows against fixed resources
 - revived interest in mechanisms to externally control an otherwise static network (e.g., SDN) and policies that enforce rational resource allocation
 - real-time resource allocation is a necessity, but current operator practice treats it as a static problem

Impact of Platform Thinking: Power Challenge

- Power challenge: The competitive nature of mobile app marketplaces taxes the power usage of mobile phones
 - rapid evolution of on-phone computing performance and app capabilities
 - mobile phone must operate at or below the so-called "three watt limit," else it gets too hot to handle
 - minimize the time a mobile device is tethered for charging

Impact of Platform Thinking: App Development Challenge

- App development challenge: mobile apps often consist of developer's code + some cloud service
 - IP packets traveling mobile-to-cloud or mobile-to-mobile transit extensive wireless edge and core networks to reach their destinations: Latency is often a problem
 - few developers know how to statically divide an app for power optimization
 - depending on partitioning, power-cost of computing and communication will change, possibly drastically
 - inherently unknown nature of app's input-dependent behavior makes static partitioning unrealistic

What's Next?

- Apps expose desired network resource allocation (bandwidth, maximum latency):
 - Network conducts auctions to set prices and priorities
 - Feedback loop is closed when the apps receive results of the auction and modify their requests accordingly
 - Network operator maximizes revenue
- Apps and networks jointly do power management:
 - App instances are running on millions of devices, they provide meta-data for state of wireless connections
 - Learn network-dependent power behavior: Correlate power usage with signal strength across many apps
 - Video streaming app: weak signal triggers use of a codec that minimizes retransmissions, minimizing wasted power

Power Challenge

- Power management: the most pressing issue in mobile app creation and mobility computing?
- Power usage can be:
 - measured across different, concurrent app instances
 - these measurements can then be correlated with network measurements and models
- Machine learning and system identification can be then be done used for feedback control:
 - setpoint would be power consumption
 - the control actions would be to dynamically migrate parts of an app between the device and the cloud
- Compared to previous research [Chen 2012, Thiagarajan 2012], we propose to automatically partition a broader class of apps

Responsiveness Challenge

Feedback Control Signals

Software-Defined, Open Mobile Networks Test Bed

Conclusions & Next Steps

- Second wave of mobile computing:
 - Platform thinking similar to desktop and laptop
- Challenge: Develop the next-generation mobile computing infrastructure
 - Robustness
 - Responsiveness
 - Power
 - App Development
- Mobile Computing Testbed at CMU Silicon Valley
 - We're looking for collaborators