# CN1047 INTRODUCTION TO COMPUTER NETWORKING

CHAPTER 3
OSI MODEL – PHYSICAL LAYER

## Physical Layer

- Concern with transmission of raw bits over a communication channel.
- It deals with specifications of network connectors, type of transmission media and voltage level used for 0 bit and 1 bit.

# Types of Media

#### Communications media has 2 classes:

- Conducting media
- 2) Radiating media

# Types of Media

#### 1) Conducting media

- Referred as bounded media
- Use cables to carry data
- Twisted-wire pair, coaxial cable and fiber optic.

# Types of Media

#### 2) Radiating media

- Referred as unbounded media.
- A message in an unbounded medium radiates forever in all directions but will be weaker if further it goes.
- Radio broadcast, microwave radio broadcast, satellite and infrared transmission.

#### **Twisted Pair**

- A pair of wires are twisted together.
- Twisted pair is the ordinary copper wire that connects home and many business computers to the telephone company.
- Telephone system will carries most of the data consists heavily of twisted-wire pair.



#### Two types of Twisted Pair

- Shielded Twisted Pair (UTP)
- Unshielded Twisted Pair (UTP)



Shielded Twisted Pair (STP) vs Unshielded Twister Pair (UTP)

- STP cables are shielded while UTP cables are unshielded
- STP cables are more immune to interference and noise than UTP cables
- STP cables are better at maximizing bandwidth compared to UTP cables
- STP cables cost more per meter compared to UTP cables
- STP cables are heavier per meter compared to UTP cables
- UTP cables are more prevalent in SOHO networks while STP is used in more high-end applications

#### **Coaxial Cable**

- Coaxial cable offer much faster data transmission, it is used for underground and underwater lines.
- It is not susceptible to noise or electrical interference and can transmit data over long distance.
- Coaxial cable can carry up to
   10000 voice grade channel.



#### **Coaxial Cable**



#### Coaxial can be used in 2 ways:

- 1) Digital baseband transmission Baseband is a data only digital transmission at high-speed on a single shared channel.
- 2) Broadband transmission Use high-frequency carrier waves and analog transmission. Broadband transmission can simultaneously transmit data using a number of different frequency (allows transmit data at high speed and low speed, voice and video signal) on a single cable.

#### Fiber Optic

- Fiber optic consist of a core of glass or plastic which carries the signal.
- Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communication.
- Transmission techniques involves the use of lasers to generate the signal.



#### Fiber Optic

#### **Advantages:**

- a) Large data capacity (30 000 simultaneous calls).
- b) High speed transmission (1 Gbps)
- d High secure
- d) Very low transmission error rate.

### Radiating Media

#### Radio Transmission

- Its frequency is between 10 kHz to 1GHz.
- It is simple to install and has high attenuation.
- These waves are used for multicast communications.

### Radiating Media

#### Microwave Transmission

- It travels at high frequency than the radio waves. It requires the sender to be inside of the receiver. It operates in a system with a low gigahertz range. It is mostly used for unicast communication.
- There are 2 types of Microwave Transmission:
  - Terrestrial Microwave
  - Satellite Microwave

### Radiating Media

#### Radio waves us. Microwaves

- Radio waves in general have long distance communication capabilities, but microwaves do not have these abilities.
- Radio waves are mostly used in the communication field whereas microwaves are used in industries and astronomy.

### Analogue vs Digital Transmission

- Transmission means electromagnetic signals which are capable on a variety of transmission media.
- To convey information determines the efficiency and reliability of the transmission.
- Analog and Digital in data communication has 3 context :
  - Information
  - 2) Signaling
  - 3) Transmission

### Analogue vs Digital Transmission



### **Analogue Transmission**

- Analog transmission is a method of conveying voice, data, image, signal, or video information.
- It uses a continuous signal varying in amplitude, phase, or another property that is in proportion to a specific characteristic of a variable.

### **Analogue Transmission**

- Analog transmission takes on continuous values or some interval.
- Most information collected by sensor (temperature and pressure) are continuousvalued.
- Analog signal will varying electromagnetic wave that may be transmitted over variety of media, depending on frequency.
- Example: Voice and video

### RS-232C Interface

- Short for recommended standard-232C, a standard interface approved by the Electronic Industries
   Alliance (EIA) for connecting serial devices.
- In 1987, the EIA released a new version of the standard and changed the name to EIA-232-D.
- And in 1991, the EIA teamed up with Telecommunications Industry association (TIA) and issued a new version of the standard called EIA/TIA-232-E.
- Many people, however, still refer to the standard as RS-232C, or just RS-232.

### RS-232C Interface

- Almost all modems conform to the EIA-232 standard and most personal computers have an EIA-232 port for connecting a modem or other device.
- The EIA-232 standard supports two types of connectors -- a 25-pin Dtype connector (DB-25) and a 9pin D-type connector (DB-9).
- The type of serial communications used by PCs requires only 9 pins so either type of connector will work equally well.



### RS-232C Interface





### Digital Transmission

- Digital transmission is on discrete values.
- Digital signal is a sequence of voltage pulses that may be transmitted over a wire medium.
- Example : text and integers

### X.21 Interface

- This interface specifies physical, electrical and procedural interface between the host and network for digital transmission.
- X.21 interface
  - Digital connection to a digital public telephone network
- X.21bis interface
  - Terminal to packet switch network via analog line



## Analog vs. Digital

| Feature             | Analog Characteristics                                                                                              | Digital Characteristics                                                                                                                   |
|---------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Signal              | Continuously variable, in both amplitude and frequency                                                              | Discrete signal, represented as either changes in voltage or changes in light levels                                                      |
| Traffic measurement | Hz (for example, a telephone channel is 4KHz)                                                                       | Bits per second (for example, a T-<br>1 line carries 1.544Mbps, and an<br>E-1 line transports 2.048Mbps)                                  |
| Bandwidth           | Low bandwidth (4KHz), which means low data transmission rates (up to 33.6Kbps) because of limited channel bandwidth | High bandwidth that can support high-speed data and emerging applications that involve video and multimedia                               |
| Network capacity    | Low; one conversation per telephone channel                                                                         | High; multiplexers enable multiple conversations to share a communications channel and hence to achieve greater transmission efficiencies |

# Analog vs. Digital

| Feature                  | Analog Characteristics                                                                                                                                                                    | Digital Characteristics                                                                                                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Network<br>manageability | Poor; a lot of labor is needed for network maintenance and control because dumb analog devices do not provide management information streams that allow the device to be remotely managed | Good; smart devices produce alerts, alarms, traffic statistics, and performance measurements, and technicians at a network control center (NCC) or network operations center (NOC) can remotely monitor and manage the various network elements |
| Power requirement        | High because the signal contains a wide range of frequencies and amplitudes                                                                                                               | Low because only two discrete signals—the one and the zero—need to be transmitted                                                                                                                                                               |
| Security                 | Poor; when you tap into an analog circuit, you hear the voice stream in its native form, and it is difficult to detect an intrusion                                                       | Good; encryption can be used                                                                                                                                                                                                                    |

# Analog vs. Digital

| Feature     | Analog Characteristics                                                                  | Digital Characteristics                                                                                                                                                                                                                                                                                |
|-------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Error rates | High; 10 <sup>-5</sup> bits (that is, 1 in 100,000 bits) is guaranteed to have an error | Low; with twisted-pair, 10 <sup>-7</sup> (that, is 1 in 10 million bits per second) will have an error, with satellite, 10 <sup>-9</sup> (that is, 1 in 1 billion per second) will have an error, and with fiber, 10 <sup>-11</sup> (that is only 1 in 10 trillion bits per second) will have an error |