
ABOUT CNCF
The Cloud Native Computing
Foundation (CNCF) hosts critical
projects of cloud native software
stacks, including Kubernetes®
and Prometheus™. CNCF provides
a neutral home for collaboration,
bringing together the industry’s
top developers, end users and
vendors, including the world’s
largest public cloud providers.

Cloud native computing uses
an open source software stack
to orchestrate containerized
services on any public, private or
hybrid cloud. CNCF is part of The

organization. For more
information about CNCF, please
visit: https://www.cncf.io/.

CNCF WG-Serverless Whitepaper v1.0
Abstract
This paper describes a new model of cloud native computing enabled by
emerging “serverless” architectures and their supporting platforms. It defines
what server-less computing is, highlights use cases and successful examples
of serverless computing, and shows how serverless computing differs from (and
interrelates with) other cloud application development models such as Infra-
structure-as-a- Service (IaaS), Platform-as-a-Service (PaaS), and container
orchestration or Containers-as-a-Service (CaaS).

This paper, published by the CNCF Serverless Working Group, includes a logical
description of the mechanics of a generic serverless platform with an associat-
ed programming model and message format, but it does not prescribe a
standard. It introduces several industry serverless platforms and their capabili-
ties, but it does not recommend a particular implementation.

develop the

WG Chair/TOC Sponsor: Ken Owens (Mastercard)

WG Members (alphabetical by last name):
Sarah Allen (Google), Ben Browning (Red Hat), Lee Calcote (SolarWinds), Amir
Chaudhry (Docker), Doug Davis (IBM), Louis Fourie (Huawei), Antonio Gulli
(Goo-gle), Yaron Haviv (iguazio), Daniel Krook (IBM), Orit Nissan-Messing
(iguazio), Chris Munns (AWS), Ken Owens (Mastercard), Mark Peek (VMWare),
Cathy Zhang (Huawei), Chris A.

Additional Contributors (alphabetical by last name):
Kareem Amin (Clay Labs), Amir Chaudhry (Docker), Sarah Conway (Linux
Founda-tion), Zach Corleissen (Linux Foundation), Alex Ellis (ADP), Brian Grant
(Google), Lawrence Hecht (The New Stack), Lophy Liu, Diane Mueller (Red Hat),
Bálint Pató, Peter Sbarski (A Cloud Guru), Peng Zhao (Hyper)

The CNCF Serverless Working Group is a forum for the CNCF community
to explore the intersection of cloud native and serverless technology. The
working group focuses on defining common terminology, scope of serverless
as it relates to cloud native technology. This includes identifying common use
cases and patterns with existing serverless implementations and analyzing
the role of serverless relative to container orchestration. Their work will
summarize potential next steps for the community and/or CNCF, outlining
areas for possible harmonization, candidate projects and interoperability work.

To get involved in CNCF’s work to advance serverless computing, join the
CNCF Serverless Working Group or the community project CloudEvents, a
draft specification for a common, vendor-neutral format for event data that is
aimed to be proposed to the CNCF TOC as an official project later this year.

https://github.com/cncf/wg-serverless
https://github.com/cloudevents/spec

2

Table of Contents

Abstract
Serverless Computing
What is serverless computing?
A short history of serverless technology
Serverless use cases
Serverless vs. Other Cloud Native Technologies
Container Orchestration
Platform-as-a-Service
Serverless
Which Cloud Native Deployment Model Should You Use?
Running an Application Based on Multiple Platforms
Detail View: Serverless Processing Model
Function LifeCycle
Function Requirements
Function Invocation Types
Function Code
Function Definition
Function Input
Function Output
Serverless Function Workflow
Conclusion
Next Steps for the CNCF
Appendix A: Glossary
Appendix B: Additional References

3

Serverless Computing
What is serverless computing?
Serverless computing refers to the concept of building and running applications that do
not require server management. It describes a finer-grained deployment model where
applications, bundled as one or more functions, are uploaded to a platform and then
executed, scaled, and billed in response to the exact demand needed at the moment.

Serverless computing does not mean that we no longer use servers to host and run
code; nor does it mean that operations engineers are no longer required. Rather, it refers
to the idea that consumers of serverless computing no longer need to spend time and
resources on server provisioning, maintenance, updates, scaling, and capacity planning.
Instead, all of these tasks and capabilities are handled by a serverless platform and are
completely abstracted away from the developers and IT/operations teams. As a result,
developers focus on writing their applications’ business logic. Operations engineers are
able to elevate their focus to more business critical tasks.

There are two primary serverless personas:

 1. Developer: writes code for, and benefits from the serverless platform which
 provides them the point of view that there are no servers nor that their code
 is always running.
 2. Provider: deploys the serverless platform for an external or internal customer.

Servers are still required to run a serverless platform. The provider will need to manage
servers (or virtual machines or containers). The provider will have some cost for
running the platform, even when idle. A self-hosted system can still be considered
serverless: typically one team acts as the provider and another as the developer.

A serverless computing platform may provide one or both of the following:

 1. Functions-as-a-Service (FaaS), which typically provides event-driven
 computing. Developers run and manage application code with functions that
 are triggered by events or HTTP requests. Developers deploy small units of
 code to the FaaS, which are executed as needed as discrete actions, scaling
 without the need to manage servers or any other underlying infrastructure.
 2. Backend-as-a-Service (BaaS), which are third-party API-based services that
 replace core subsets of functionality in an application. Because those APIs
 are provided as a service that auto-scales and operates transparently, this
 appears to the developer to be serverless.

4

Serverless products or platforms deliver the following benefits to developers:

1. Zero Server Ops: Serverless dramatically changes the cost model of
running software applications through eliminating the overhead involved in
the maintenance of server resources.

a. No provisioning, updating, and managing server infrastructure.
Managing servers, virtual machines and containers is a significant
overhead expense for companies when one includes headcount, tools,
training, and time. Serverless vastly reduces this kind of expense.

b. Flexible Scalability: A serverless FaaS or BaaS product can instantly
and precisely scale to handle each individual incoming request. For
the developer, serverless platforms have no concept of “pre-planned
capacity,” nor do they require configuring “auto-scaling” triggers or
rules. The scaling occurs automatically without intervention from the
developer. Upon completion of the request processing, the serverless
FaaS automatically scales down the compute resources so that there
is never idle capacity.

2. No Compute Cost When Idle: One of the greatest benefits of serverless
products from a consumer perspective is that there are no costs resulting
from idle capacity. For example, serverless compute services do not
charge for idle virtual machines or containers; in other words, there is no
charge when code is not running or no meaningful work is being done. For
databases, there is no charge for database engine capacity waiting idly
for que ries. Of course this does not include other costs such as stateful
storage costs or added capabilities/functionality/feature set.

5

A short history of serverless technology

While the idea of an on-demand, or “pay as you go,” model can be traced back to 2006
verless is from Iron.io

in 2012 with their IronWorker product, a container-based distributed work-on-
demand platform.

There have since been more serverless implementations in both public and private
cloud. First there were BaaS offerings, such as Parse in 2011 and Firebase in 2012
(acquired by Facebook and Google, respectively). In November 2014, AWS Lambda
was launched, and early 2016 saw announcements for IBM OpenWhisk on Bluemix
(now IBM Cloud Functions, with the core open source project governed as Apache
OpenWhisk), Google Cloud Functions, and Microsoft Azure Cloud Functions. Huawei
Function Stage launched in 2017. There are also numerous open source serverless
frameworks. Each of the frameworks, both public and private, have unique sets of
language runtimes and services for handling events and processing data.

These are just a few examples; for a more complete and up-to-date list see the
Serverless Landscape document. The Detail View: Serverless Processing Model section
contains more detail about the entire FaaS model.

2006 2011 2012
Zimki Parse Firebase

2014
AWS Lambda

2016 2017
Huawei Function Stage

IronWorker

IBM OpenWhisk on Bluemix (now IBM
Cloud Functions) Google Cloud Functions,
& Microsoft Azure Cloud Functions

https://aws.amazon.com/lambda/
https://www.ibm.com/cloud-computing/bluemix/openwhisk
http://openwhisk.incubator.apache.org
http://openwhisk.incubator.apache.org
https://cloud.google.com/functions/
https://azure.microsoft.com/en-us/services/functions/
http://www.huaweicloud.com/product/functionstage.html
http://www.huaweicloud.com/product/functionstage.html

6

Serverless use cases
While serverless computing is widely available, it is still relatively new. In general, a
serverless approach should be considered a top choice when the workload is:

For example, for common HTTP-based applications, there are clear upsides in terms of
automated scale and a finer-grained cost model. That said, there can be some tradeoffs
in using a serverless platform. For example, function startup after a period of inactivity
may result in performance declines if the number of instances of the function drops
down to zero. Therefore, choosing whether to adopt a serverless architecture requires a
careful look at both the functional and nonfunctional aspects of the compute model.

Non-HTTP-centric and non-elastic scale workloads that weren’t good fits for an IaaS,
PaaS, or CaaS solution can now take advantage of the on-demand nature and efficient
cost model of a serverless architecture. Some of these workloads include:

• Executing logic in response to database changes (insert, update, trigger, delete)

• Performing analytics on IoT sensor input messages (such as MQTT messages)

• Handling stream processing (analyzing or modifying data in motion)

• Managing single time extract, transform, and loarequire a lot of processing for a
short time (ETL)

• Providing cognitive computing via a chatbot interface (asynchronous, but
correlated)

• Scheduling tasks performed for a short time, such as cron or batch style
invocations

• Serving machine learning and AI models (retrieving one or more data elements such

Asynchronous,
concurrent, easy
to parallelize into
independent units
of work

Infrequent or
has sporadic
demand, with large,
unpredictable
variance in scaling
requirements

Stateless,
ephemeral, without
a major need for
instantaneous cold
start time

Highly dynamic in
terms of changing
business
requirements
that drive a need
for accelerated
developer velocity

7

as tables, NLP, or images and matching against a pre-learned data model to identify
text, faces, anomalies, etc.)

• Continuous integration pipelines that provision resources for build jobs on-demand,
instead of keeping a pool of build slave hosts waiting for jobs to be dispatched

This section describes existing and emerging workloads and use cases where serverless
architectures excels. It also includes details on early results, patterns, and best practices
distilled from early success stories.

Each of these scenarios show how serverless architectures have addressed a technical
problem where it would be inefficient or impossible with Iaas, PaaS, or CaaS. These
examples:

• Solved a brand new problem efficiently where an on-demand model wasn’t available

• Solved a traditional cloud problem much more efficiently (performance, cost)

• Showed a dimension of “largeness”, whether in size of data processed or requests
handled

• Showed resilience by scaling automatically (up and down) with a low error rate

• Brought a solution to market much faster than previously possible (days to hours)

The workloads listed in this section can be run on a public cloud (hosted serverless
platform), on premises, or at the edge.

Multimedia processing

A common use case, and one of the earliest to crystallize, is the implementation of
functions that execute some transformational process in response to a new file upload.
For example, if an image is uploaded to an object storage service such as Amazon S3,
that event triggers a function to create a thumbnail version of the image and store it
back to another object storage bucket or Database-as-a-Service. This is an example of a
fairly atomic, parallelizable compute task that runs infrequently and scales in response
to demand.

Examples include:

• Santander built a proof of concept using serverless functions to process mobile
check deposits using optical character recognition. This type of workload is quite
variable, and processing demand on payday—once every two weeks—can be several
times larger than the most idle time of the pay period.

https://www.slideshare.net/DanielKrook/optimize-existing-banking-applications-and-build-new-ones-faster-with-ibm-cloud-functions

8

• Categorizing a film automatically by passing each video frame through an image
recognition service to extract actor, sentiment, and objects; or processing drone
footage of a disaster area to estimate the extent of damage.

Database changes or change data capture (CDC)

In this scenario, a function is invoked when data is inserted, modified, or deleted from
a database. In this case, it functions similarly to a traditional SQL trigger, almost like
a side effect or action parallel to the main synchronous flow. The effect is to execute
an asynchronous piece of logic that can modify something within that same database
(such as logging to an audit table), or in turn invoke an external service (such as sending
an email) or updating an additional database such as in the case of DB CDC (change
data capture) use case. These use cases can vary in their frequency and need for
atomicity and consistency due to business need and distribution of services that handle
the changes.

Examples include:

• Auditing changes to a database, or ensuring that they meet a particular quality or
analytics standard for acceptable changes.

• Automatically translating data to another language as or shortly after it’s entered.

IoT sensor input messages

With the explosion of autonomous devices connected to networks comes additional
traffic that is both massive in volume and uses lighter-weight protocols than HTTP.
Efficient cloud services must be able to quickly respond to messages and scale in
response to their proliferation or sudden influx of messages. Serverless functions can
efficiently manage and filter MQTT messages from IoT devices. They can both scale
elastically and shield other services downstream from the load.

Examples include:

• GreenQ’s sanitation use case (the Internet of Garbage) where the truck pickup route
was optimized based on the relative fullness of trash receptacles.

• Using serverless on an IoT device (like AWS Greengrass) to collect local sensor
data, normalize it, compare with triggers, and push events up to an aggregation
unit/cloud.

https://github.com/IBM-Cloud/openwhisk-darkvisionapp
https://github.com/IBM-Cloud/openwhisk-darkvisionapp
https://www.wired.com/2014/05/how-the-internet-of-garbage-cans-will-remake-our-future-cities/
https://www.wired.com/2014/05/how-the-internet-of-garbage-cans-will-remake-our-future-cities/
https://aws.amazon.com/greengrass/

9

Stream processing at scale

Another non-transactional, non-request/response type of workload is processing
data within a potentially infinite stream of messages. Functions can be connected to
a source of messages that must each be read and processed from an event stream.
Given the high performance, highly elastic, and compute intensive processing workload,
this can be an important fit for serverless. In many cases, stream processing requires
comparing data against a set of context objects (in a NoSQL or in-mem DB) or
aggregating and storing data from streams into a object or a database system.

Examples include:

• Mike Roberts has a good Java/AWS Kinesis example handling billions of
messages efficiently.

• SnapChat uses serverless on Google AppEngine to process messages.

Chat bots

Interacting with humans doesn’t necessarily require millisecond response time, and
in many ways a bot that replies to humans may actually benefit from a slight delay to
make the conversation feel more natural. Because of this, a degree of initial latency
from waiting for the function to be loaded from a cold start may be acceptable. A bot
may also need to be extremely scalable when added to a popular social network like
Facebook, Whack, so pre-provisioning an always-on daemon in a PaaS or IaaS model
in anticipation of sudden or peak demand may not be as efficient or cost-effective as a
serverless approach.

Examples include:

• Support and sales bots that are plugged into large social media services such as
Facebook or other high traffic sites.

• Messaging app Wuu uses Google Cloud Functions to enable users to create and
share content that disappears in hours or seconds.

• See also the HTTP REST APIs and web applications below.

Batch jobs or scheduled tasks

Jobs that require intense parallel computation, IO, or network access for only a few
minutes a day in an asynchronous manner can be a great fit for serverless. Jobs can
consume the resources they need efficiently for the time they run in an elastic manner,
and not incur resource costs for the rest of the day when they are not used.

https://martinfowler.com/articles/serverless.html
https://www.recode.net/2017/3/1/14661126/snap-snapchat-ipo-spending-2-billion-google-cloudhttp://
https://firebase.google.com/docs/functions/case-studies/wuu.pdf
https://firebase.google.com/docs/functions/case-studies/wuu.pdf
https://firebase.google.com/docs/functions/case-studies/wuu.pdf

10

Examples include:

• A scheduled task could be a backup job that runs every night.

• Jobs that send many emails in parallel scale out function instances.

HTTP REST APIs and web applications

Traditional request/response workloads are still quite a good fit for serverless whether
the workload is a static web site or one that uses a programming language like
JavaScript or Python to generate a response on demand. Even though they may incur a
startup cost for the first user, there is precedent for that type of delay in other compute
models, such as the initial compilation of a JavaServer Page into a servlet, or starting
up a new JVM to handle additional load. The benefit is that individual REST calls (each
of the 4 GET, POST, UPDATE, and DELETE endpoints in a microservice, for example)
can scale independently and be billed separately, even if they share a common data
backend.

Examples include:

• Australian census ported to a serverless architecture shows speed of
development, cost improvements, and autoscaling.

• “How I cut my AWS bill by 90% by going serverless.”

• AutoDesk example: “Costs a small fraction (~1%) of the traditional cloud
approach.”

• Online coding/education (exam, test, etc.) runs exercise code in an event-driven
environment, and provides feedback to the user based on a comparison with
expected results for that exercise. The serverless platform runs the answer-checking
on demand and scale as needed, paying for only the time during which code is running.

Mobile backends

Using serverless for mobile backend tasks is also attractive. It allows developers to
build on the REST API backend workload above the BaaS APIs, so they can spend time
optimizing a mobile app and less on scaling its backend. Examples include: optimizing
graphics for a video game and not investing in servers when the game becomes
a viral hit; or for consumer business applications that need quick iterations to find
product/market fit, or when time-to-market is critical. Another example is in batching
notifications to users or processing other asynchronous tasks for an offline-first
experience.

https://medium.com/serverless-stories/challenge-accepted-building-a-better-australian-census-site-with-serverless-architecture-c5d3ad836bfa
https://medium.com/serverless-stories/challenge-accepted-building-a-better-australian-census-site-with-serverless-architecture-c5d3ad836bfa
https://medium.freecodecamp.org/how-i-cut-my-aws-bill-by-90-35c937596f0c
https://www.infoq.com/news/2016/08/serverless-autodesk
https://www.infoq.com/news/2016/08/serverless-autodesk

11

Examples include:

• Mobile apps that need a small amount of server-side logic; developers can focus
their effort on native code development.

• Mobile apps that use direct-from-mobile access to BaaS using configured security
policy, such as Firebase Auth/Rules or Amazon Cognito, with event-triggered
serverless compute.

• “Throwaway” or short-term use mobile applications, such as the scheduling app for
a large conference, that has very little demand on the weekends before and after the
conference, but needs to scale up and down greatly; surges post-keynote based on
schedule viewing demands over the course of the event on Monday and Tuesday
mornings, then back down at midnight those days.

Business Logic

The orchestration of microservice workloads that execute a series of steps in a
business process is another good use case for serverless computing when deployed
in conjunction with a management and coordination function. Functions that perform
specific business logic such as order request and approval, stock trade processing, etc.
can be scheduled and coordinated with a stateful manager. Event requests from client
portals can be serviced by such a coordination function and delivered to appropriate
serverless functions.

Examples include:

• A trading desk that handles stock market transactions and processes trade orders
and confirmations from a client. The orchestrator manages the trades using a graph
of states. An initial state accepts a trade request from a client portal and delivers
the request to a microservice function to parse the request and authenticate the
client. Subsequent states steer the workflows based on a buy or sell transaction,
validate fund balances, ticker, etc. and send a confirmation to the client. On receipt
of a confirmation request event from the client, follow-on states invoke functions
that manage execution of the trade, update the account, and notify the client of the
completion of the transaction.

Continuous Integration Pipeline

A traditional CI pipeline includes a pool of build slave hosts waiting idle for jobs to
be dispatched. Serverless is a good pattern to remove the need for pre-provisioned
hosts and reduce costs. Build jobs are triggered by new code commit or PR merged. A
function call is invoked to run the build and test case, executing only for the time needed,
and not incurring costs while unused. This lowers costs and can reduce bottlenecks
through autoscaling to meet demand.

12

Examples include:

• Serverless CI - Hyper.sh integration for Buildbot

Serverless vs. Other Cloud Native
Technologies

There are three primary development and deployment models that most application
developers might consider when looking for a platform to host their cloud-native
applications. Each model has its own set of differing implementations (whether an
open source project, hosted platform, or on-premises product). These three models are
commonly built upon container technology for its density, performance, isolation, and
packaging features, but containerization is not a requirement.

In order of increasing abstraction away from the actual infrastructure that is running
their code, and toward a greater focus on only the business logic that’s developed, they
are Container Orchestration (or Containers-as-a-Service), Platform-as-a-Service, and
Serverless (Functions-as-a-Service). All of these approaches provide a way to deploy
cloud-native application, but they prioritize different functional and non-functional
aspects based on their intended developer audience and workload type. The following
section lists some of the key characteristics of each.

Container Orchestration

Platform-as-a-Service

Serverless

In
cr

ea
si

ng
 fo

cu
s

on
 b

us
in

es
s

lo
gi

c

Decreasing concern (and control) over stack implementation

Examples:
Kubernetes, Docker
Swarm, Apache Mesos

Examples:

Cloud Foundry, OpenShift,

Deis, Heroku

Examples:

AWS Lambda, Azure Functions,

IBM Cloud Functions

https://blog.hyper.sh/serverless-ci-hyper-docker-integration-for-buildbot.html

13

Keep in mind that no single approach is a silver bullet for all cloud-native development
and deployment challenges. It’s important to match the needs of your particular
workload against the benefits and drawbacks of each of these common cloud-native
development technologies. It’s also important to consider that subcomponents of your
application may be more suitable for one approach versus another, so a hybrid approach
is possible.

Container Orchestration
Containers-as-a-Service (CaaS) - Maintain full control over infrastructure and get
maximum portability. Examples: Kubernetes, Docker Swarm, Apache Mesos

Container orchestration platforms like Kubernetes, Swarm, and Mesos allow teams to
build and deploy portable applications, with flexibility and control over configuration,
which can run anywhere without the need to reconfigure and deploy for different
environments.

Benefits include maximum control, flexibility, reusability and ease of bringing existing
containerized apps into the cloud, all of which is possible because of the degree of
freedom provided by a less-opinionated application deployment model.

Drawbacks of CaaS include significantly more added developer responsibility for the
operating systems (including security patches), load balancing, capacity management,
scaling, logging and monitoring.

Target audience

• Developers and operations teams who want control over how their application and
all of its dependencies are packaged and versioned, ensuring portability and reuse
across deployment platforms.

• Developers looking for high performance among a cohesive set of interdependent,
independently scaled microservices.

• Organizations moving containers to the cloud, or deploying across private/public
clouds, and who are experienced with end-to-end cluster deployments.

Developer/Operator experience

• Create a Kubernetes cluster, Docker Swarm stack, or Mesos resource pool
(done once).

• Iterate and build container images locally.

• Push tagged application images to a registry.

14

• Deploy containers based on container images to cluster.

• Test and observe application in production.

Benefits

• The developer has the most control, and the responsibility that comes with that
power, for what’s being deployed. With container orchestrators one can define the
exact image versions to deploy, and in what configuration, along with policies that
govern their runtime.

• Control over runtime environment (e.g. runtimes, versions, minimal OS, network
configuration).

• Greater reusability and portability of container images outside the system.

• Great fit for bringing containerized apps and systems to the cloud.

Drawbacks

• More responsibility for the filesystem image and execution environment, including
security patches and distribution optimizations.

• More responsibility for managing load balancing and scaling behavior.

• Typically more responsibility for capacity management.

• Typically longer startup times, today.

• Typically less opinionated about application structure, so there are fewer guide rails.

• Typically more responsibility for build and deployment mechanisms.

• Typically more responsibility for integration of monitoring, logging, and other
common services.

Platform-as-a-Service
Platform-as-a-Service (PaaS) - Focus on the application and let the platform handle
the rest. Examples: Cloud Foundry, OpenShift, Deis, Heroku

Platform-as-a-Service implementations enable teams to deploy and scale applications
using a broad set of runtimes, binding to a catalog of data, AI, IoT, and security services
through injection of configuration information into the application, without having to
manually configure and manage a container and OS. It is a great fit for existing web
apps that have a stable programming model.

Benefits include easier management and deployment of applications, auto-scaling and
pre-configured services for the most common application needs.

15

Drawbacks include lack of OS control, granular container portability and load balancing
and application optimization as well as potential vendor lock-in and needing to build and
manage monitoring and logging capabilities on most PaaS platforms.

Target audience

• Developers who want a deployment platform that enables them to focus on
application source code and files (not packaging them) and without worrying
about the OS.

• Developers who are creating more traditional HTTP-based services (apps and APIs)
with routable hostnames by default. However, some PaaS platforms now support
generic TCP routing as well.

• Organizations that are comfortable with a more established model of cloud
computing (as compared to serverless) supported by comprehensive docs and
many samples.

Developer/Operator experience

• Iterate on applications, build and test in local web development environment.

• Push application to PaaS, where it is built and runs.

• Test and observe application in production.

• Update configuration to ensure high availability and scale to match demand.

Benefits

• The developer’s frame of reference is on the application code, and the data services
to which it connects. There’s less control over the actual runtime, but the developer
avoids a build step and can also choose scaling and deployment options.

• No need to manage underlying OS.

• Buildpacks provide influence over the runtime, giving as much or as little control
(sensible defaults) as desired.

• Great fit for many existing web apps with a stable programming model.

Drawbacks

• Loss of control over OS, possibly at the mercy of buildpack versions.

• More opinionated about application structure, tending towards 12-Factor
microservices best practices at the potential cost of architecture flexibility.

• Potential platform lock-in.

16

Serverless
Functions-as-a-Service (FaaS) - Write logic as small pieces of code that respond to a variety
of events. Examples: AWS Lambda, Azure Functions, IBM Cloud Functions based on
Apache OpenWhisk, Google Cloud Functions, Huawei Function Stage and Function
Graph, Kubeless, iron.io, funktion, fission, nuclio

Serverless enables developers to focus on applications that consist of event-driven
functions that respond to a variety of triggers and let the platform take care of the rest
- such as trigger-to-function logic, information passing from one function to another
function, auto-provisioning of container and run-time (when, where, and what), auto-
scaling, identity management, etc.

The benefits include the lowest requirement for infrastructure management of any
of the cloud native paradigms. There is no need to consider operating or file system,
runtime or even container management. Serverless enjoys automated scaling, elastic
load balancing and the most granular “pay-as-you-go” computing model.

Drawbacks include less comprehensive and stable documentation, samples, tools,
and best practices; challenging debugging; potentially slower responses times; lack of
standardization and ecosystem maturity and potential for platform lock-in.

Target audience

• Developers who want to focus more on business logic within individual functions
that automatically scale in response to demand and closely tie transactions to cost.

• Developers who want to build applications more quickly and concern themselves
less with operational aspects.

• Developers and teams creating event-driven applications, such as those that
respond to database changes, IoT readings, human input etc.

• Organizations that are comfortable adopting cutting-edge technology in an area
where standards and best practices have not yet been thoroughly established.

Developer/Operator experience

• Iterate on function, build and test in local web development environment.

• Upload individual functions to the serverless platform.

• Declare the event triggers, the functions and its runtime, and event-to-function
relationship.

• Test and observe application in production.

17

• No need to update configuration to ensure high availability and scale to
match demand.

Benefits

• The developer point of view has shifted farther away from operational concerns
like managing the deployment of highly available functions and more toward the
function logic itself.

• The developer gets automated scaling based on demand/workload.

• Leverages a new “pay-as-you-go” cost model that charges only for the time code is
actually running.

• OS, runtime, and even container lifecycle is completely abstracted (serverless).

• Better fit for emerging event-driven and unpredictable workloads involving IoT,
data, messages.

• Typically stateless, immutable and ephemeral deployments. Each function runs
with a specified role and well-defined/limited access to resources.

• Middleware layers will get tuned/optimized, will improve application performance
over time.

• Strongly promotes the microservices model, as most serverless runtimes enforce
limits on the size or execution time of each individual function.

• As easy to integrate third-party APIs as custom-built serverless APIs, both scaling
with usage, with flexibility of being called from client or server.

Drawbacks

• An emerging computing model, rapid innovation with less comprehensive and
stable documentation, samples, tools, and best practices.

• Due to the more dynamic nature of the runtime, it may be more challenging to
debug when compared to IaaS and PaaS.

• Due to the on-demand structure, the “cold start” aspect on some serverless
runtimes could be a performance issue if the runtime removes all instances of a
function when idle.

• In more complex cases (e.g., functions triggering other functions), there can be
more operational surface area for the same amount of logic.

• Lack of standardization and ecosystem maturity.

• Potential for platform lock-in due to the platform’s programming model, eventing/
message interface and BaaS offerings.

18

Which Cloud Native Deployment Model
Should You Use?
In order to determine which model is best for your particular needs, a thorough
evaluation of each approach (and several model implementations) should be made. This
section will provide some suggestions for areas of consideration as there is no one-size-
fits-all solution.

Evaluate Features and Capabilities

Experiment with each approach. Find what works best for your needs from a
functionality and development experience point of view. You’re trying to find the answers
to questions such as:

Does my application seem like a fit based on the workloads described in the
earlier section where serverless proves its value? Do I anticipate a major benefit
from serverless versus the alternatives that justifies a change?

How much control do I really need over the runtime and the environment in
which it runs? Do minor runtime version changes affect me? Can I override
the defaults?

Can I use the full set of features and libraries available in my language of choice?
Can I install additional modules if needed? Do I have to patch or upgrade
them myself?

How much operational control do I need? Am I willing to give up over the lifecycle
of the container or execution environment?

What if I need to change the code of my service? How fast can I deploy it?

How do I secure my service? Do I have to manage that? Or can I offload to a
service that can do it better?

Evaluate and Measure Operational Aspects

Gather performance numbers such as time to recovery with PaaS and a Container
Orchestrator as well as cold starts with a Serverless platform. Explore and quantify the
impact of other important non-functional characteristics of your application on each
platform, such as:

Resiliency:

• How do I make my application resilient to a data-center failure?

• How do I ensure continuity of service while I deploy updates?

19

• What if my service fails? Will the platform automatically recover? Will it be invisible
to end-users?

Scalability:

• Does the platform support auto-scaling in case I have a sudden change in demand?

• Is my application designed to take advantage of stateless scaling effectively?

• Will my serverless platform overwhelm any other components such as a database?
Can I manage or throttle back-pressure?

Performance:

• How many function invocations per second per instance or per HTTP client?

• How many servers or instances will be required for given workload?

• What is the delay from invocation to response (in cold and warm start)?

• Is the latency between the microservices, vs co-located features within a single
deployment, an issue?

One of the potential outcomes of the CNCF Serverless Working Group could be a
decision framework for when to choose a particular model, and how to test given a set
of recommended tools. See the Conclusion section for more detail.

Evaluate and Consider the Full Spectrum of Potential Costs

This covers both development costs and runtime resource costs.

• Not everyone will have the luxury of starting their development activities from
scratch. Therefore, the cost of migrating existing applications to one of the cloud
native models needs to be carefully considered. While a lift-and-shift model to
containers may seem the cheapest, it may not be the most cost effective in the
long run. Likewise, the on-demand model of serverless is very attractive from a cost
perspective, but the development effort needed to split a monolithic application into
functions could be daunting.

• How much will integration with dependent services cost? Serverless compute may
appear the most economical at first, but it may require more expensive third party
service costs, or autoscale very quickly which may result in greater usage fees.

• Which features/services do the platforms offer for free? Am I willing to buy into a
vendor’s ecosystem at the potential cost of portability?

Running an Application Based on Multiple Platforms

When looking at the various cloud hosting technologies that are available it may

20

not be obvious but there is no reason why a single solution needs to be used for all
deployments. In fact, there is no reason why the same solution needs to be used
within a single application. Once an application is split into multiple components, or
microservices, you then have the freedom to deploy each one separately on completely
different infrastructures, if that’s what’s best for your needs.

Likewise, each microservice can also be developed with the best technology (i.e.
language) for its particular purpose. The freedom that comes with “breaking up of the
monolith” brings new challenges though, and the following sections highlight some of
the aspects that should be considered when choosing a platform and developing your
microservices.

Split Components Across Deployment Targets

Think about matching the right technology to the right job, for example an IoT demo
might use both a PaaS application to handle requests to a dashboard of connected
devices and a set of serverless functions to handle MQTT message events from the
devices themselves. Serverless isn’t a magic bullet, but rather a new option to consider
within your cloud native architecture.

Design for More Than One Deployment Target

Another design choice is to make your code as generic as possible, allow it to be tested
locally, and rely on contextual information, such as environment variables, to influence
how it runs in particular environments. For example, a set of plain old Java objects
might be able to run within any of the three major environments, and exact behavior
tailored based on available environment variables, class libraries, or bound services.

Continue to Use DevOps Pipelines for Any of the Approaches

Most container orchestration platforms, PaaS implementations, and serverless
frameworks can be driven by command line tools, and the same container image can
potentially be built once and reused across each platform.

Consider Abstractions to ease Portability Between Models

There is a growing ecosystem of third party projects that bridge the gap for porting
HTTP-based web applications that currently run on a PaaS or a CaaS to serverless
platforms. These include several tools from Serverless, Inc. and the Zappa Framework.

Serverless frameworks provide adaptors that enable applications written using popular
web application frameworks such as Python WSGi and JAX-RS REST API to run on

21

serverless platforms. These frameworks can also provide portability and abstraction of
the difference between multiple serverless platforms.

Detail View: Serverless Processing Model
This section summarizes the current function usage within serverless frameworks and
draws a generalization of the serverless function requirements, lifecycle, invocation
types and the required abstractions. We aim to define the serverless function
specification so that the same function could be coded once and used in different
serverless frameworks. This section does not define the exact function configuration
and APIs.

We can generalize a FaaS solution as having several key elements shown in the
following diagram:

• Event sources - trigger or stream events into one or more function instances

• Function instances - a single function/microservice, that can be scaled
with demand

• FaaS Controller - deploy, control and monitor function instances and their sources

• Platform services - general cluster or cloud services used by the FaaS solution
(sometimes referred to as Backend-as-a-Service)

Let’s start by looking at the lifecycle of a function in a serverless environment.

22

Function LifeCycle
The following sections describe the various aspects of a function’s lifecycle and how
serverless frameworks/runtimes typically manage them.

Function Deployment Pipeline

The lifecycle of a function begins with writing code and providing specifications and
metadata (see Function Definition below), a “builder” entity will take the code and
specification, compile, and turn it into an artifact (a code binary, package, or container
image). Artifacts then get deployed on a cluster with a controller entity in charge of
scaling the number of function instances based on the events traffic and/or load on
the instances.

Function Operations

Serverless frameworks may allow the following actions and methods to define and
control function lifecycle:

• Create - Creates a new function, including its spec and code

• Publish - Creates a new version of a function that can be deployed on the cluster

• Update Alias/Label (of a version) - Updating a version alias

• Execute/Invoke - Invoke a specific version not through its event source

• Event Source association - Connect a specific version of a function with an
event source

• Get - Returns the function metadata and spec

• Update - Modify the latest version of a function

• Delete - Deletes a function, could delete a specific version or the function with all
its versions

23

• List - Show the list of functions and their metadata

• Get Stats - Return statistics about the runtime usage of a function

• Get Logs - Return the logs generated by a function

When creating a function, providing its metadata (as described later under function
spec) as part of the function creation, it will be compiled and possibly published. A
function may be started, disabled and enabled later on. Function deployments need to
be able to support the following usecases:

• Event streaming, in this use case there may always be events in queue however the
processing may need to be paused/resumed through an explicit request

• Warm startup - function that has minimal number of instances at any time, such
that the “first” event received has a warm start since the function is already deployed
and is ready to serve the event (as opposed to a cold start where the function gets
deployed on the first invocation by an “incoming” event)

A user can Publish a function, this will create a new version (copy of the “latest” version),
the published version may be tagged/labeled or have aliases, see more below.

A user may want to Execute/Invoke a function directly (bypass the event source or
API gateway) for debug and development processes. A user may specify invocation
parameters such as desired version, Sync/Async operation, Verbosity level, etc.

Users may want to obtain function Statistics (e.g. number of invocations, average runtime,
average delay, failures, retries, etc.), statistics can be the current metric values or a time-series
of values (e.g. stored in Prometheus or cloud provider facility such as AWS Cloud Watch).

24

Users may want to retrive function Log data. This may be filtered by severity level and/
or time range, and/or content. The Log data is per function, it include events such
as function creation and deletion, explicit errors, warnings, or debug messages, and
optionally the Stdout or Stderr of a function. It would be prefered to have one log entry
per invocation or a way to associate log entries with a specific invocation (to allow
simpler tracking of the function execution flow).

Function Versioning and Aliases

A Function may have multiple versions, providing the user the ability to run different level
of codes such as beta/production, A/B testing etc. When using versioning, the function
version is “latest” by default, the “latest” version can be updated and modified, potentially
triggering a new build process on every such change.

Once a user wants to freeze a version he will use a Publish operation that will create
a new version with potential tags or aliases (e.g. “beta”, “production”) to be used when
configuring an event source, so an event or API call can be routed to a specific function
version. Non-latest function versions are immutable (their code and all or some of
the function spec) and cannot be changed once published; functions cannot be “un-
published” instead they should be deleted.

Note that most implementations today do not allow function branching/fork (updating
an old version code) since it complicates the implementation and usage, but this may be
desired in the future.

When there are multiple versions of the same function, the user must specify the version
of the function he would like to operate and how to divide the traffic of events between
the different versions (e.g. a user can decide to route 90% of an event traffic to a stable
version and 10% to a beta version a.k.a “canary update”). This can be either by specifying
the exact version or by specifying the version alias. A version alias will typically reference
to a specific function version.

When a user creates or updates a function, it may drive a new build and deployment
depending on the nature of the change.

Event Source to Function Association

Functions are invoked as a result of an event triggered by an event source. There is a
n:m mapping between functions and event sources. Each event source could be used
to invoke more than a single function, a function may be triggered by multiple event
sources. Event source could be mapped to a specific version of a function or to an alias
of the function, the latter provides a means for changing the function and deploys a new
version without the need to change the event association. Event Source could also be

25

defined to use different versions of the same function with the definition of how much
traffic should be assigned to each.

After creating a function, or at a later point in time, one would need to associate the
event source that should trigger the function invocation as a result of that event. This
requires a set of actions and methods such as:

• Create event source association

• Update event source association

• List event source associations

Event Sources

Different types of event sources includes:

• Event and messaging services, e.g.: RabbitMQ, MQTT, SES, SNS, Google Pub/Sub

• Storage services, e.g.: S3, DynamoDB, Kinesis, Cognito, Google Cloud Storage, Azure
Blob, iguazio V3IO (object/stream/DB)

• Endpoint services, e.g.: IoT, HTTP Gateway, mobile devices, Alexa, Google Cloud
Endpoints

• Configuration repositories, e.g.: Git, CodeCommit

• User applications using language-specific SDKs

• SchEnables invocation of functions on regular intervals.

While the data provided per event could vary between the different event sources, the
event structure should be generic with the ability to encapsulate specific information
with respect to the event source (details under Event data and metadata).

Function Requirements

• The following list describes the set of common requirements that functions, and
serverless runtimes, should meet based on the state of art as of today:

• Functions must be decoupled from the underlying implementation of the different
event classes

• A Function may be invoked from multiple event sources

• No need for a different function per invocation method

• Event source may invoke multiple functions

• Functions may require a mechanism for long-lasting bindings with underlying
platform services, which may be cross function invocations. Functions could be
short-lived but the bootstrap may be expensive if it needs to be done on every

26

invocation, such as in the case of logging, connecting, mounting external data
sources.

• Each function can be written in a different code language from other functions that
are using within the same application

• Function runtime should minimize the event serialization and deserialization
overhead if possible (e.g. use native language structures or efficient encoding

schemes).

Workflow related requirements:
• Functions may be invoked as part of a workflow, where the result of the function is a

trigger of another function

• A function can be triggered by an event or an “and/or combination of events”

• One event could trigger multiple functions executed in sequence or parallel

• “and/or combination of events” could trigger m functions running in sequence or
parallel or branching

• In the middle of the workflow, different events or function results might be received,
which would trigger branching to different functions

• Part or all of a function’s result needs to be passed as input to another function

• Functions may require a mechanism for long-lasting bindings with underlying
platform services, which may be cross function invocations or function could be
short lived.

Function Invocation Types

Functions can be invoked from different event sources depending on the different
use-cases, such as:

1. Synchronous Request (Req/Rep), e.g. HTTP Request, gRPC call

• Client issues a request and waits for an immediate response. This is a
blocking call.

2. Asynchronous Message Queue Request (Pub/Sub), e.g. RabbitMQ, AWS SNS,
MQTT, Email, Object (S3) change, scheduled events like CRON jobs

• Messages are published to an exchange and distributed to subscribers

• No strict message ordering. Exactly once processing

3. Message/Record Streams: e.g. Kafka, AWS Kinesis, AWS DynamoDB Streams,
Database CDC

27

• An ordered set of messages/records (must be processed sequentially)

• Usually a stream is sharded to multiple partitions/shards with a single worker (the
shard consumer) per shard

• Stream can be produced from messages, database updates (journal), or files (e.g.
CSV, Json, Parquet)

• Events can be pushed into the function runtime or pulled by the function runtime

4. Batch Jobs, e.g. ETL jobs, distributed deep learning, HPC simulation

• Jobs are scheduled or submitted to a queue, and processed at run time using
multiple function instances in parallel, each handling one or more portion of the
working set (a task)

• The job is complete when all the parallel workers successfully completed all the
computation tasks

Function Code
Function code and dependencies and/or binaries may reside in an external repository
such as S3 object bucket or Git repository, or provided directly by the user. If the code is
in an external repository the user will need to specify the path and credentials.

The serverless framework may also allow the user to watch the code repository for changes
(e.g. using a web hook) and build the function image/binary automatically on every commit.

28

A function may have dependencies on external libraries or binaries, those need to
be provided by the user including a way to describe their build process (e.g. using a
Dockerfile, Zip).

Additionally, the function could be provided to the framework via some binary packaging,
such as an OCI image.

Function Definition
Serverless function definitions may contain the following specifications and metadata,
the function definition is version specific:

• Unique ID

• Name

• Description

• Labels (or tags)

• Version ID (and/or Version Aliases)

• Version creation time

• Last Modified Time (of function definition)

• Function Handler

• Runtime language

• Code + Dependencies or Code path and credentials

• Environment Variables

• Execution Role and Secret

• Resources (Required CPU, Memory)

• Execution Timeout

• Log Failure (Dead Letter Queue)

• Network Policy / VPC

• Data Bindings

Metadata details

Function frameworks may include the following metadata for functions:

• Version - each function version should have a unique identifier, in addition versions
can be labeled using one or more aliases (e.g. “latest”, “production”, “beta”). API
gateways and event sources would route traffic/events to a specific function
version.

29

• Environment Variables - the user may specify Environment variables that will be
provided to the function at runtime. Environment variables can also be derived
from secrets and encrypted content, or derived from platform variables (e.g. like
Kubernetes EnvVar definition). Environment variables enable developers to control
function behavior and parameters without the need to modify code and/or rebuild
the function allowing better developer experience and function reuse.

• Execution Role - the function should run under a specific user or role identity that
grants and audits its access to platform resources.

• Resources - define the required or maximum hardware resources such as Memory
and CPU used by the function.

• Timeout - specify the maximum time a function call can run until it is terminated by
the platform.

• Failure Log (Dead Letter Queue) - a path to a queue or stream that will store the list
of failed function executions with appropriate details.

• Network Policy - the network domain and policy assigned to the function (for the
function to communicate with external services/resources).

• Execution Semantics - specifies how the functions should be executed (e.g. at least
once, at most once, exactly once per event).

Data Bindings
Some serverless frameworks allow a user to specify the input/output data resources
used by the function, this enables developer simplicity, performance (data connections
are preserved between executions, data can be pre-fetched, etc.), and better security
(data resources credentials are part of the context not the code).

Bound data can be in the form of files, objects, records, messages etc., the function
spec may include an array of data binding definitions, each specifying the data resource,
its credentials and usage parameters. Data binding can refer to event data (e.g. the DB
key is derived from the event “username” field), see more in: https://docs.microsoft.
com/en-us/azure/azure-functions/functions-triggers-bindings.

Function Input
Function input includes event data and metadata, and may include a context object.

Event data and metadata

Event details should be passed to the function handler, different events may have
varying metadata, so it would be desirable for functions to be able to determine the type

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings

30

of event and easily parse the common and event specific metadata.

It can be desirable to decouple the event classes from the implementation, for example:
a function processing a message stream would work the same regardless if the
streaming storage is Kafka or Kinesis. In both cases, it will receive a message body and
event metadata, the message may be routed between different frameworks.

An event may include a single record (e.g. in Request/Response model), or accept
multiple records or micro-batch (e.g. in Streaming modes).

Examples for common event data and metadata used by FaaS solutions:

• Event Class/Kind

• Version

• Event ID

• Event Source/Origin

• Source Identity

• Content Type

• Message Body

• Timestamp

Examples for event/record specific metadata

• HTTP: Path, Method, Headers, Query Args

• Message Queue: Topic, Headers

• Record Stream: table, key, op, modified-time, old fields, new fields

Examples of event source structures:

• http://docs.aws.amazon.com/lambda/latest/dg/eventsources.html

• https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-
bindings

• https://cloud.google.com/functions/docs/concepts/events-triggers

Some implementations focus on JSON as a mechanism to deliver event information
to the functions. This may add substantial serialization/deserialization overhead for
higher speed functions (e.g. stream processing), or low-energy devices (IoT). It may be
worth considering native language structures or additional serialization mechanisms as
options in these cases.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://cloud.google.com/functions/docs/concepts/events-triggers

31

Function Context
When functions are called, frameworks may want to provide access to platform
resources or general properties that span multiple function invocations, instead of
placing all the static data in the event or forcing the function to initialize platform
services on every call.

Context is delivered as a set of input properties, environment variables or global
variables. Some implementations use a combination of all three.

Examples for Context:

• Function Name, Version, ARN

• Memory Limit

• Request ID

• Cloud Region

• Environment Variables

• Security keys/tokens

• Runtime/Bin paths

• Log

• Data binding

Some implementations initialize a log object (e.g. as global variables in AWS or part
of the context in Azure), using the log object users can track function execution using
integrated platform facilities. In addition to traditional logging, future implementations
may abstract counter/monitoring and tracing activities as part of the platform context to
further improve functions usability.

Data bindings are part of the function context, the platform initiates the connections to
the external data resources based on user configuration, and those connections may be
reused across multiple function invocations.

Function Output
When a function exits it may:

• Return a value to the caller (e.g. in HTTP request/response example)

• Pass the result to the next execution phase in a workflow

• Write the output to the log

32

There should be a deterministic way to know if the function succeeded or failed through
a returned error value or exit code.

Function output may be structured (e.g. HTTP response object) or unstructured (e.g.
some output string).

Serverless Function Workflow
In the serverless domain, use cases fall into one of the following categories:

1. One event triggers one function

2. An and/or combination of events trigger one function

3. One event triggers multiple functions executed in sequence or in parallel

4. The result of the function could be a trigger of another function

5. N events (in and/or) triggers m functions, i.e. an event-function interleaved workflow,
eg. event1 triggers function1, completion of function1 together with event2 and
event 3 trigger function2, then different result of function2 triggers branching to
function3 or function4.

A user needs a way to specify their serverless use case or workflow. For example, one
use case could be “do face recognition on a photo when a photo is uploaded onto the
cloud storage (photo storage event happens).” Another IoT use case could be “do motion
analysis” when a motion detection event is received, then depending on the result of
the analysis function, either “trigger the house alarm plus call to the police department”
or just “send the motion image to the house owner.” Refer to the use cases section for
more detailed information.

AWS provides “step function” primitives (state machine based primitives) for the user to
specify its workflow, but step function does not allow specification of what event/events
triggering what functions in the workflow. Please refer to https://aws.amazon.com/
step-functions/.

https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/

33

The following graph is an example of a user’s workflow that involves events and
functions. Using such a function graph, the user can easily specify the interaction
between events and functions as well as how information can be passed between
functions in the workflow.

The Function Graph States include the following :

Event State This state allows for waiting for events from event sources,
 and then triggering a function run or multiple functions run in
 sequence or in parallel or in branch.

Operation/Task State This state allows the run of one or more functions in sequence
 or in parallel without waiting for any event.

Switch/Choice State This state permits transitions to multiple other states (eg.
 a previous function result triggers branching/transition to
 different next states).

End/Stop State This state terminates the workflow with Fail/Success.

Pass State This state injects event data in-between two states.

Delay/Wait State This state causes the workflow execution to delay for a
 specified duration or until a specified time/date.

States and associated information need to be saved in some persistent storage for
failure recovery. In some use cases, the user may want information from one state to be
passed to the next state. This information could be part of the function execution result
or part of input data associated with an event trigger. An information filter needs to be
defined at each state to filter out the information that needs to be passed between states.

34

Conclusion
Serverless architectures provide an exciting new deployment option for cloud native
workloads. As we saw in the Serverless Workloads section there are certain use

should be given to when it is appropriate. Short-lived, event-driven processing is driving
early adoption and use cases for businesses that expect a high rate of change with
unpredictable capacity and infrastructure needs are emerging. See the Additional
References section for more reading material and insights into serverless computing.

The CNCF Servleress Working Group, in partnership with Redpoint Ventures, recently
published a a Serverless Landscape. It illustrates some of the major erverless projects,
tooling and services that are available in the ecosystem. It is not intended to represent
a comprehensive, fully inclusive serverless ecosystem, nor is it an endorsement, rather
just an overview of the landscape.. It is expected that owners of each will provide
updates in an attempt to keep it up to date.

Next Steps for the CNCF
With respect to what, if anything, the CNCF should consider doing in this space,
the following suggestions are offered for the Technical Oversight Committee’s
consideration:

• Encourage more serverless technology vendors and open source developers to join
the CNCF to share ideas and build upon each other’s innovation. For example, keep

cases where serverless technology provides major benefits over other cloud
hosting technologies.

However, serverless technology is not a perfect fit for all cases and careful consideration

http://www.redpoint.com
https://github.com/cncf/landscape

35

the open source projects listed in the Serverless Landscape document updated and
the matrix of capabilities maintained.

• Foster an open ecosystem by establishing interoperable APIs, ensuring
interoperable implementations with vendor commitments and open source tools.
New interoperability and portability efforts similar to CSI and CNI with the help of
both platform providers and third-party developer library creators. Some of these
may merit their own CNCF working group, or may continue as an initiative of the
Serverless WG. For example:

• Events: define a common event format and API along with metadata. Some
initial proposals can be found in the Serverless WG github repo.

• Deployment: leveraging the existing CNCF members that are also serverless
providers, start a new working group to explore possible small steps that can
be taken to harmonize on a common set of function definitions, metadata.
For example:

• Application definition manifests, such as the AWS SAM and the
OpenWhisk Packaging Specification.

• Function WorkFlow across different providers’ serverless platforms. There are many
usage scenarios that go beyond a single event triggering a single function and
would involve a workflow of multiple functions executed in sequence or in parallel
and triggered by different combinations of events + return values of the function
in the previous step of the workflow. If we can define a common set of constructs
that the developers can use to define their use case workflow, then they will be
able to create tools that can be used across different serverless platforms. These
constructs specify the relationship/interaction between the events and functions,
relationship/interaction between functions in the workflow as well as how to pass
information from one function to the next step function, etc. Some examples are
AWS Step Function Constructs and Huawei’s Function Graph/Workflow Constructs.

• Foster an ecosystem of open source tools that accelerate developer adoption and
velocity, exploring areas of concern, such as:

• Instrumentation

• Debugability

• Education: provide a set of design patterns, reference architectures, and common
vocabulary for new users.

• Glossary of terms: maintain glossary of terms (Appendix A) in a published form
and ensure that Working Group documents use these terms consistently

• Use cases: maintain list of use cases, grouped by common patterns, creating a
shared higher-level vocabulary. Supporting the following goals:

• For developers who are new to Serverless platforms: increase
understanding of common use cases, identifying good entry points

https://github.com/cncf/wg-storage
https://github.com/cncf/wg-networking
https://github.com/cncf/wg-serverless/tree/master/proposals
https://github.com/awslabs/serverless-application-model
https://github.com/apache/incubator-openwhisk-wskdeploy/tree/master/specification#openwhisk-packaging-specification

36

• For Serverless providers and library/framework authors, facilitate
consideration of common needs

• Sample applications and open source tools in the CNCF GitHub repo, with a
preference for highlighting the interoperability aspects or linking to external
resources for each provider.

• Provide guidance on how to evaluate functional and nonfunctional characteristics
of serverless architectures relative to CaaS or PaaS. This could take the form of a
decision tree or recommend a set of tools from within the CNCF project family.

• Begin a process for CNCF outputs (for the suggested documents referenced above),
such as from this Serverless Working Group and the Storage Working Groups, to live
on as Markdown files in GitHub where they can be collaboratively maintained over
time, which is particularly important given the speed of innovation in this space.

Appendix A: Glossary
This section defines some of the terms used in this whitepaper.

Backend-as-a-Service
Applications often leverage services that are managed outside of the application
itself - for example, a remote storage service. This allows for the application to focus
on its key business logic. This collection of 3rd party services is sometimes referred
to as Backend-as-a-Service (BaaS). While these may be used from traditional
compute platforms or from Serverless, it is important to note that BaaS plays
an important role in the Serverless architecture as it will often be the supporting
infrastructure (e.g. provides state) to the stateless Functions themselves. BaaS
platforms may also generate events that trigger Serverless compute.

Cold Start
“Cold start” refers to the starting of an instance of the function, typically with new
code, from an undeployed state.

Context
A Serverless platform typically provides a Context object as an input parameter
when executing a Function, including Trigger metadata and other information about
the environment or the circumstances around this specific Function invocation.

Data Binding
Function may require data bindings for long lasting connections to data such as

37

backend storage (such as mount points/volumes/object store), databases, etc.
The data binding may include secure information such as secrets that can not be
preserved within the function itself. The data binding may be used across several
Function invocations.

Development Framework
The environment in which Functions are developed. This can be local (e.g. on a
laptop) or in a hosted environment.

Event

 The notification of something that happened.

Event Association
Mapping between event sources and the the specific Functions that are meant to be
executed as a result of the event

Event Data

Information pertaining to the Event that occurred. See Event data and metadata for
more information.

Event Source
Functions could be invoked through one or more event source types such as HTTP
gateways, message queues, streams, etc. or generated based on a change in the
system, such as a database write, IoT sensor activation or period of inactivity.

Function/Action
The code that is executed as a result of a Trigger.

Function Graph/Workflow
A developer’s Serverless scenario usually involves definition of an Event, Function,
Event-Function interaction and coordination between Functions. In some use cases,
there are multiple Events and multiple Functions. A Function Graph/Workflow
describes the Event-Function interaction and Function coordination. It provides
a way for the user to specify what Events trigger what Functions, whether the
Functions are executed in sequence or in parallel, transition between Functions, and
how information is passed from one Function to the next Function in the workflow.
Function Graphs can be viewed as a collection of workflow states and the transition

38

between these states, with each state having its associated Events and Functions.
An example of the Function Graph/Workflow is AWS’s step function.

Function Parameters
When a Function is invoked, the Runtime Framework will typically provide metadata
about this particular invocation as a set of parameters (see Context).

Functions-as-a-Service
FaaS describes the core functionality of a platform to run functions provided by the
end user on demand. It’s a core component of a serverless platform, which includes
the additional quality-of-service features that manage functions on behalf of the
user including autoscale and billing.

Invocation
The act of executing a Function. For example, as a result of an Event.

Runtime Framework
The runtime environment/platform in which Serverless workflows are executed,
Triggers are mapped to Functions, Functions hosting container resource and
language package/library are dynamically provisioned, and those Functions
are executed. Sometimes Runtime Frameworks will have a fixed set of runtime
languages in which the Functions can be written.

Trigger
A request to execute a Function. Often Triggers are the result of an incoming Event,
such as an HTTP request, database change, or stream of messages.

Warm Start
“Warm starts” refers to the starting of an instance of the function from a stopped
(but deployed) state.

39

Appendix B: Additional References
The following references are provided for those looking for additional resources on
serverless computing:

Serverless Architectures by Mike Roberts

Containers vs serverless - Navigating application deployment options by Daniel Krook

Serverless Computing: Current Trends and Open Problems by Ioana Baldini, et al.

Serverless: Background, Challenges and Future by Yaron Haviv

What is serverless good for? by Andreas Nauerz

Serverless Architecture: Five Design Patterns by Mark Boyd

How Two College Kids Built A Better Census by Stefanie Monge

7 AWS Lambda Tips from the Trenches by Mitchell Harris

Why The Future Of Software And Apps Is Serverless by Ken Fromm

The Serverless Guide authored by the community, curated by Serverless, Inc.

Microservice Orchestration for Serverless Computing by Cathy Zhang, Louis Fourie

https://martinfowler.com/articles/serverless.html
https://www.slideshare.net/DanielKrook/containers-vs-serverless-navigating-application-deployment-options
https://medium.com/@yaronhaviv/serverless-background-challenges-and-future-d0928df71758
https://medium.com/openwhisk/what-serverless-is-good-for-from-serverless-mobile-backends-to-data-streaming-cognitive-c0dd4aec90e9http://
https://thenewstack.io/serverless-architecture-five-design-patterns/
https://medium.com/serverless-stories/challenge-accepted-building-a-better-australian-census-site-with-serverless-architecture-c5d3ad836bfa
https://medium.com/m/global-identity?redirectUrl=https://read.acloud.guru/lambda-for-alexa-skills-7-tips-from-the-trenches-684c963e6ad1
http://readwrite.com/2012/10/15/why-the-future-of-software-and-apps-is-serverless/
https://serverless.github.io/guide/
https://conferences.oreilly.com/oscon/oscon-tx/public/schedule/detail/61681
http://cncf-wg-serverless
https://github.com/cloudevents/spec

