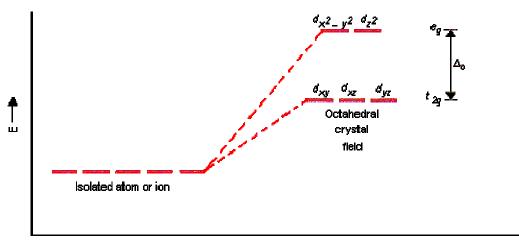
CO ORDINATION COMPOUNDS

One Mark Questions:

- 1. Define Ligand . Give one example also.

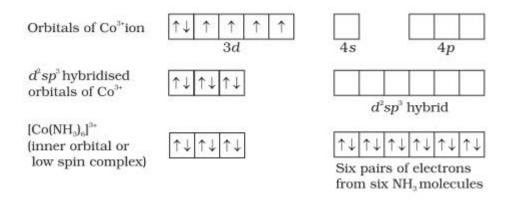

 The ion or molecules which are coordinately bonded to central metal atom in the coordination entity are called ligands.
- 2. Why Coordination compounds are coloured? Due to d-d transition.
- 3. What is Homoleptic complexes?

 The complexes in which a metal is bound to only one kind of donor groups. E.g., $[Co(NH_3)_6]^{3+}$
- 4. What is the Oxidation no. of cobalt in $K[Co(CO)_4]$? +1
- 5. Amongest the following which is most stable complex is

A)
$$[Fe(H2O)_6]^{3+}$$
 B) $Fe(C_2O_4)_3]^{3-}$ ANS. B

Two mark questions

- 1.Write IUPAC name of the following [CO(NH₃)₆Cl₃
 Hexaaminocobalt(III)chloride
- 2. Draw figure to show splitting of d- orbitals in an octahedral crystal field.



3. Which isomerisms are shown by following

- a) [$CO(NH_3)_5(NO_2)]Cl_2$ and [$CO(NH_3)_5(ONO)]Cl_2$ b)[$Co(NH_3)_5SO_4]Br$ and [$Co(NH_3)_5Br]SO_4$
- A)Linkage isomerism b)Ionisation isomerism
- 4. Explain structure of $[CO(NH_3)_6^{3+}]$ on the basis of valence bond theory.

Structure on the basis of valence bond theory

1) In the diamagnetic octahedral complex,[Co(NH₃)₆]³⁺, the cobalt ion is in +3 oxidation state and has the electronic configuration 3d⁶. The hybridisation scheme is as shown in diagram.

Six pairs of electrons, one from each NH₃ molecule, occupy the six hybrid orbitals. Thus, the complex has octahedral geometry and is diamagnetic because of the absence of unpaired electron. In the formation of this complex, since the inner d orbital (3d) is used in hybridisation, the complex, [Co(NH₃)₆]³⁺ is called an inner orbital or low spin or spin paired complexes.

03 Marks questions

- 1. Write the formulas for the following coordination compounds:
 - i. Tetraamminediaquacobalt(III) chloride
 - ii. Potassium tetracyanonickelate(II)
 - iii. Tris(ethane-1,2-diamine) chromium(III) chloride

Answer

- i. $[Co(H_2O)_2(NH_3)_4]Cl_3$
- ii. $K_2[Ni(CN)4]$
- iii. $[Cr(en)_3]Cl_3$
- 2. Write the IUPAC names of the following coordination compounds:
 - i. $[Co(NH_3)_6]Cl_3$
 - ii. $[Co(NH_3)_5Cl]Cl_2$
 - iii. $K_3[Fe(CN)_6]$

Answer

Hexaamminecobalt(III) chloride

Pentaamminechloridocobalt(III) chloride

Potassium hexacyanoferrate(III)

- 3. Indicate the types of isomerism exhibited by the following complexes and draw the structures for these isomers:
 - i. $K[Cr(H_2O)_2(C_2O_4)_2]$
 - ii. [Co(en)₃]Cl₃
 - iii. $[Co(NH_3)_5(NO_2)](NO_3)_2$

<u>Answer</u> Both geometrical (*cis*-, *trans*-) isomers for $K[Cr(H_2O)_2(C_2O_4)_2]$ can exist. Also, optical isomers for *cis*-isomer exist.

Trans-isomer is optically inactive. On the other hand, cis-isomer is optically active.

(ii) Two optical isomers for [Co(en)₃]Cl₃exist.

$$\begin{array}{c} CH_2 - H_2N \\ \downarrow \\ CH_2 - H_2N \\ \downarrow \\ CH_2 - H_2N \\ \downarrow \\ CH_2 \end{array} \begin{array}{c} CH_2 \\ \downarrow \\ NH_2 \\ \downarrow \\ CH_2 \end{array} \end{array} \\ \equiv \begin{array}{c} N \\ \downarrow \\ N \\ \downarrow \\ N \end{array} \begin{array}{c} N \\ \downarrow \\ N \\ N \end{array}$$

Two optical isomers are possible for this structure.

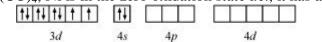
(iii)[Co(NH₃)₅(NO₂)](NO₃)₂ A pair of optical isomers:

It can also show linkage isomerism. $[Co(NH_3)_5(NO_2)](NO_3)_2 \ and \ [Co(NH_3)_5(ONO)](NO_3)_2$

It can also show ionization	isomerism.
[Co(NH3)5(NO2)](NO3)2 and	$d [Co(NH_3)_5(NO_3)](NO_3)(NO_2)$

4. Give evidence that $[Co(NH_3)_5Cl]SO_4$ and $[Co(NH_3)_5SO_4]Cl$ are ionization isomers.

<u>Answer</u> When ionization isomers are dissolved in water, they ionize to give different ions. These ions then react differently with different reagents to give different products.


$$[Co(NH_3)_5Cl]SO_4+Ba^{2+} \longrightarrow BaSO_4$$
 white precipitate

5. [NiCl₄]²⁻ is paramagnetic while [Ni(CO)₄] is diamagnetic though both are tetrahedral. Why?

Answer Though both $[NiCl_4]^{2-}$ and $[Ni(CO)_4]$ are tetrahedral, their magnetic characters are different. This is due to a difference in the nature of ligands. Cl^- is a weak field ligand and it does not cause the pairing of unpaired 3d electrons. Hence, $[NiCl_4]^{2-}$ is paramagnetic.

In Ni(CO)₄, Ni is in the zero oxidation state i.e., it has a configuration of $3d^8 4s^2$.

But CO is a strong field ligand. Therefore, it causes the pairing of unpaired 3d electrons. Also, it causes the 4s electrons to shift to the 3d orbital, thereby giving rise to sp^3 hybridization. Since no unpaired electrons are present in this case, [Ni(CO)₄] is diamagnetic.

6. $[Fe(H_2O)_6]^{3+}$ is strongly paramagnetic whereas $[Fe(CN)_6]^{3-}$ is weakly paramagnetic. Explain.

Ans. In both $[Fe(H_2O)_6]^{3+}$ and $[Fe(CN)_6]^{3-}$, Fe exists in the +3 oxidation state i.e., in d^5 configuration.

Since CN^- is a strong field ligand, it causes the pairing of unpaired electrons. Therefore, there is only one unpaired electron left in the d-orbital.

Therefore,

$$\mu = \sqrt{n(n+2)}$$
$$= \sqrt{1(1+2)}$$
$$= \sqrt{3}$$

= $1.732\,\mathrm{BM}$ On the other hand, $\mathrm{H}_2\mathrm{O}$ is a weak field ligand. Therefore, it cannot cause the pairing of electrons. This means that the number of unpaired electrons is 5. Therefore.

$$\mu = \sqrt{n(n+2)}$$

$$= \sqrt{5(5+2)}$$

$$= \sqrt{35}$$

 $\approx 6\,\text{BM}$ Thus, it is evident that $[\text{Fe}(\text{H}_2\text{O})_6]^3$ is strongly paramagnetic, while $[\text{Fe}(\text{CN})_6]^{3-}$ is weakly paramagnetic.

7. Explain $[Co(NH_3)_6]^{3+}$ is an inner orbital complex whereas $[Ni(NH_3)_6]^{2+}$ is an outer orbital complex.

Ans.

$[\text{Co}(\text{NH}_3)_6]^{3+}$	$[Ni(NH_3)_6]^{2+}$		
Oxidation state of cobalt = $+3$	Oxidation state of $Ni = +2$		
Electronic configuration of cobalt = d^6	Electronic configuration of nickel = d^8		
111111	1111111		
3d 4s 4p 4d	3d $4s$ $4p$ $4d$		
NH ₃ being a strong field ligand causes	If NH ₃ causes the pairing, then only one		
pairing. Therefore, Ni can undergo a	orbital is empty. Thus, it cannot undergo		
hybridization.	hybridization. Therefore, it undergoes		
† J † J † J	hybridization.		
3d 4s 4p 4d	11111111		
d^2sp^3	3d 4s 4p 4d		
Hence, it is an inner orbital complex.	sp^3d^2		
_	Hence, it forms an outer orbital complex.		

8. Predict the number of unpaired electrons in the square planar $[Pt(CN)_4]^{2-}$ ion.

Answer

 $[Pt(CN)_4]^{2-}$, In this complex, Pt is in the +2 state. It forms a square planar structure. This means that it undergoes dsp^2 hybridization. Now, the electronic configuration of Pd(+2) is $5d^8$.

 CN^- being a strong field ligand causes the pairing of unpaired electrons. Hence, there are no unpaired electrons in $[Pt(CN)_4]^{2^-}$

9. The hexaquomanganese(II) ion contains five unpaired electrons, while the hexacyanoion contains only one unpaired electron. Explain using Crystal Field Theory.

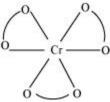
$[Mn(H_2O)_6]^{2+}$	$\left[\operatorname{Mn}(\operatorname{CN})_{6}\right]^{4}$
Mn is in the +2 oxidation state.	Mn is in the +2 oxidation state.
The electronic configuration is d ⁵ .	The electronic configuration is d ⁵ .
The crystal field is octahedral. Water is a v	The crystal field is octahedral. Cyanide
field ligand. Therefore, the arrangement of	strong field ligand. Therefore, the arranger
electrons in $Mn(H_2O)_6]^{2+}$ is $t_{2g}^3 e_g^2$.	of the electrons in $[Mn(CN)_6]^4$ ist $_{2g}^5 e_g^0$.

Hence, hexaaquo manganese (II) ion has five unpaired electrons, while hexacyano ion has only one unpaired electron.

10. Calculate the overall complex dissociation equilibrium constant for the $\text{Cu(NH}_3)_4^{2+}$ ion, given that β_4 for this complex is 2.1×10^{13} .

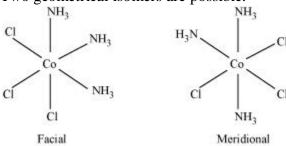
 $\beta_4 = 2.1 \times 10^{13}$

- The overall complex dissociation equilibrium constant is the reciprocal of the overall stability constant, β_4 . $1/\beta_4 = 1/2.1 \times 10^{13}$ $= 4.7 \times 10^{-14}$
- 11. Explain the bonding in coordination compounds in terms of Werner's postulates.


Answer

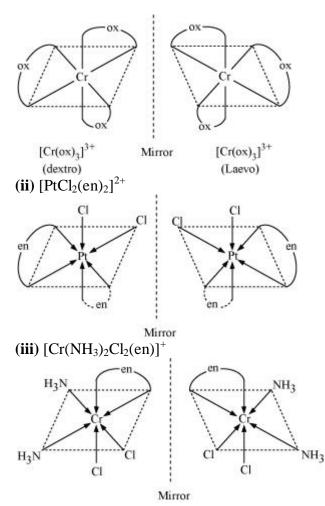
Werner's postulates explain the bonding in coordination compounds as follows:

- (i) A metal exhibits two types of valencies namely, primary and secondary valencies. Primary valencies are satisfied by negative ions while secondary valencies are satisfied by both negative and neutral ions.
- (In modern terminology, the primary valency corresponds to the oxidation number of the metal ion, whereas the secondary valency refers to the coordination number of the metal ion.
- (ii) A metal ion has a definite number of secondary valencies around the central atom. Also, these valencies project in a specific direction in the space assigned to the definite geometry of the coordination compound.
- (iii) Primary valencies are usually ionizable, while secondary valencies are non-ionizable.
- 12. How many geometrical isomers are possible in the following coordination entities? (i) $[Cr(C_2O_4)_3]^{3-}$ (ii) $[Co(NH_3)_3Cl_3]$


Answer

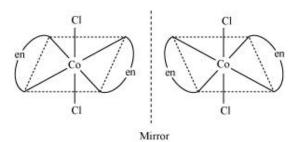
(i) For $[Cr(C_2O_4)_3]^{3-}$, no geometric isomer is possible as it is a bidentate ligand.

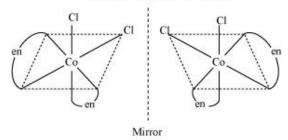
(ii) [Co(NH₃)₃Cl₃]


Two geometrical isomers are possible.

- 13. Draw the structures of optical isomers of:
 - (i) $[Cr(C_2O_4)_3]^{3-}$
 - (ii) $[PtCl_2(en)_2]^{2+}$
 - (iii) $[Cr(NH_3)_2Cl_2(en)]^+$

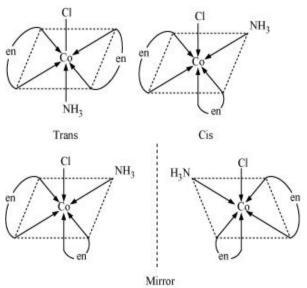
<u>Answer</u>


 $\overline{\mathbf{(i)}} [Cr(C_2O_4)_3]^{3-}$

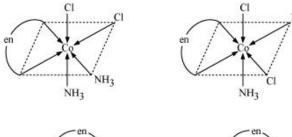

- 14. Draw all the isomers (geometrical and optical) of:

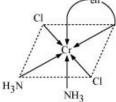
 - (i) [CoCl₂(en)₂]⁺ (ii) [Co(NH₃)Cl(en)₂]²⁺ (iii) [Co(NH₃)₂Cl₂(en)]⁺

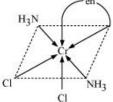
 $\frac{\textbf{Answer}}{\textbf{(i)} \left[CoCl_2(en)_2 \right]^+}$



Trans [CoCl2(en)2] isomer-optically inactive (Superimposable mirror images)

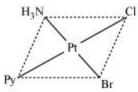

Cis [CoCl₂(en)₂]⁺isomer-optically active (Non-superimposable mirror images)

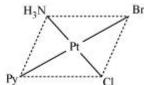

In total, three isomers are possible. (ii) $[Co(NH_3)Cl(en)_2]^{2+}$

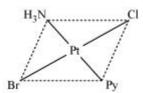


Trans-isomers are optically inactive.

Cis-isomers are optically active. (iii) $[Co(NH_3)_2Cl_2(en)]^+$



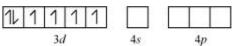



15. Write all the geometrical isomers of $[Pt(NH_3)(Br)(Cl)(py)]$ and how many of these will exhibit optical isomers?

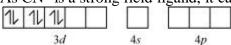
Answer

 $[Pt(NH_3)(Br)(Cl)(py)$

From the above isomers, none will exhibit optical isomers. Tetrahedral complexes rarely show optical isomerization. They do so only in the presence of unsymmetrical chelating agents.

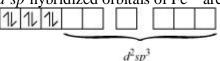

- 16. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory:
- (i) $[Fe(CN)_6]^{4-}$
- (ii) $[FeF_6]^{3-}$
- (iii) $[Co(C_2O_4)3]^{3-}$

Ans. (i) $[Fe(CN)_6]^{4-}$


In the above coordination complex, iron exists in the +II oxidation state.

Fe²⁺: Electronic configuration is $3d^6$

Orbitals of Fe²⁺ ion:

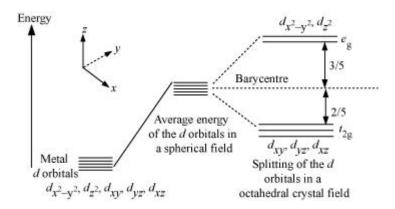


As CN is a strong field ligand, it causes the pairing of the unpaired 3d electrons.

Since there are six ligands around the central metal ion, the most feasible hybridization is d^2sp^3 .

 d^2sp^3 hybridized orbitals of Fe²⁺ are:

6 electron pairs from CN⁻ ions occupy the six hybrid d^2sp^3 orbitals. Then,


6 pairs of electrons
From 6 CN ions Hence, the geometry of the complex is octahedral and the complex is diamagnetic (as there are no unpaired electrons).
(ii) $[FeF_6]^{3-}$ In this complex, the oxidation state of Fe is +3. Orbitals of Fe^{+3} ion:
There are 6 F ⁻ ions. Thus, it will undergo d^2sp^3 or sp^3d^2 hybridization. As F ⁻ is a weak field ligand, it does not cause the pairing of the electrons in the $3d$ orbital. Hence, the most feasible hybridization is sp^3d^2 . sp^3d^2 hybridized orbitals of Fe are
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
sp^3d^2 6 electron pairs from F ions Hence, the geometry of the complex is found to be octahedral. (iii) $[Co(C_2O_4)_3]^{3-}$ Cobalt exists in the +3 oxidation state in the given complex. Orbitals of Co^{3+} ion: 1 1 1 1 1 1
Oxalate is a weak field ligand. Therefore, it cannot cause the pairing of the $3d$ orbital electrons. As there are 6 ligands, hybridization has to be either sp^3d^2 or d^2sp^3 hybridization. sp^3d^2 hybridization of Co^{3+} :
sp^3d^2 The 6 electron pairs from the 3 oxalate ions (oxalate anion is a bidentate ligand) occupy these sp^3d^2 orbitals.
6 electron pairs from 3 oxalate ions

Hence, the geometry of the complex is found to be octahedral.

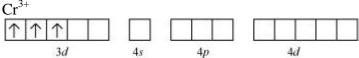
17. Draw figure to show the splitting of d orbitals in an octahedral crystal field.

Answer

The splitting of the d orbitals in an octahedral field takes palce in such a way that $d_{x^2-y^2}$, d_{z^2} experience a rise in energy and form the e_g level, while d_{xy} , d_{yz} and d_{zx} experience a fall in energy and form the t_{2g} level.

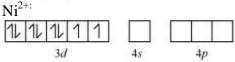
18. What is spectrochemical series? Explain the difference between a weak field ligand and a strong field ligand.

Answer


A spectrochemical series is the arrangement of common ligands in the increasing order of their crystal-field splitting energy (CFSE) values. The ligands present on the R.H.S of the series are strong field ligands while that on the L.H.S are weak field ligands. Also, strong field ligands cause higher splitting in the d orbitals than weak field ligands.

$$I- < Br^{-} < S^{2-} < SCN^{-} < Cl^{-} < N_{3} < F^{-} < OH^{-} < C_{2}O_{4}^{2-} \sim H_{2}O < NCS^{-} \sim H^{-} < CN^{-} < NH_{3} < en \sim SO_{3}^{2-} < NO_{2}^{-} < phen < CO$$

19. $\left[Cr(NH_3)_6\right]^{3+}$ is paramagnetic while $\left[Ni(CN)_4\right]^{2-}$ is diamagnetic. Explain why?


<u>Answer</u>

 $\overline{\text{Cr is in}}$ the +3 oxidation state i.e., d^3 configuration. Also, NH₃ is a weak field ligand that does not cause the pairing of the electrons in the 3d orbital.

Therefore, it undergoes d^2sp^3 hybridization and the electrons in the 3d orbitals remain unpaired. Hence, it is paramagnetic in nature.

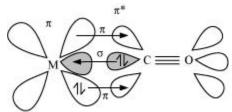
In $[Ni(CN)_4]^{2-}$, Ni exists in the +2 oxidation state i.e., d^8 configuration.

 CN^- is a strong field ligand. It causes the pairing of the 3d orbital electrons. Then, Ni^{2+} undergoes dsp^2 hybridization.

As there are no unpaired electrons, it is diamagnetic.

20. A solution of $[Ni(H_2O)_6]^{2+}$ is green but a solution of $[Ni(CN)_4]^{2-}$ is colourless. Explain.

Answer In $[\text{Ni}(\text{H}_2\text{O})_6]^{2+}$, H_2O is a weak field ligand. Therefore, there are unpaired electrons in Ni^{2+} . In this complex, the d electrons from the lower energy level can be excited to the higher energy level i.e., the possibility of d-d transition is present. Hence, $\text{Ni}(\text{H}_2\text{O})_6]^{2+}$ is coloured.

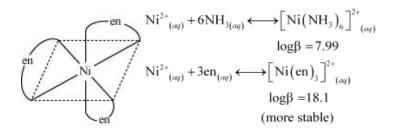

In $[Ni(CN)_4]^{2-}$, the electrons are all paired as CN^- is a strong field ligand. Therefore, d-d transition is not possible in $[Ni(CN)_4]^{2-}$. Hence, it is colourless.

21. $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{2+}$ are of different colours in dilute solutions. Why?

Answer The colour of a particular coordination compound depends on the magnitude of the crystal-field splitting energy, Δ . This CFSE in turn depends on the nature of the ligand. In case of $[Fe(CN)_6]^{4-}$ and $[Fe(H_2O)_6]^{2+}$, the colour differs because there is a difference in the CFSE. Now, CN^- is a strong field ligand having a higher CFSE value as compared to the CFSE value of water. This means that the absorption of energy for the intra d-d transition also differs. Hence, the transmitted colour also differs.

22. Discuss the nature of bonding in metal carbonyls.

Answer The metal-carbon bonds in metal carbonyls have both σ and π characters. A σ bond is formed when the carbonyl carbon donates a lone pair of electrons to the vacant orbital of the metal. A π bond is formed by the donation of a pair of electrons from the filled metal d orbital into the vacant anti-bonding π^* orbital (also known as back bonding of the carbonyl group). The σ bond strengthens the π bond and vice-versa. Thus, a synergic effect is created due to this metal-ligand bonding. This synergic effect strengthens the bond between CO and the metal.



Synergic bonding in metal carbonyls

23. What is meant by the *chelate effect*? Give an example.

<u>Answer</u> When a ligand attaches to the metal ion in a manner that forms a ring, then the metal- ligand association is found to be more stable. In other words, we can say that complexes containing chelate rings are more stable than complexes without rings. This is known as the chelate effect.

For example:

- 24. Discuss briefly giving an example in each case the role of coordination compounds in:
 - (i) biological system
 - (ii) medicinal chemistry
 - (iii) analytical chemistry

(i) Role of coordination compounds in biological systems:

We know that photosynthesis is made possible by the presence of the chlorophyll pigment. This pigment is a coordination compound of magnesium. In the human biological system, several coordination compounds play important roles. For example, the oxygen-carrier of blood, i.e., haemoglobin, is a coordination compound of iron.

(ii) Role of coordination compounds in medicinal chemistry:

Certain coordination compounds of platinum (for example, *cis*-platin) are used for inhibiting the growth of tumours.

(iii) Role of coordination compounds in analytical chemistry:

During salt analysis, a number of basic radicals are detected with the help of the colour changes they exhibit with different reagents. These colour changes are a result of the coordination compounds or complexes that the basic radicals form with different ligands.

(iii) Role of coordination compounds in extraction or metallurgy of metals:

The process of extraction of some of the metals from their ores involves the formation of complexes. For example, in aqueous solution, gold combines with cyanide ions to form [Au(CN)₂]. From this solution, gold is later extracted by the addition of zinc metal.

5 Marks Questions

1 .FeSO₄ solution mixed with $(NH_4)_2SO_4$ solution in 1:1 molar ratio gives the test of Fe²⁺ ion but CuSO₄ solution mixed with aqueous ammonia in 1:4 molar ratio does not give the test of Cu²⁺ ion. Explain why?

Ans.
$$(NH_4)_2SO_4 + FeSO_4 + 6H_2O \longrightarrow FeSO_4.(NH_4)_2SO_4. 6H_2O$$
 Mohr's salt
$$CuSO_4 + 4NH_3 + 5H_2O \longrightarrow [Cu(NH_3)_4]SO_4.5H_2O$$
 Tetraamminecopper(II)sulfate

Both the compounds i.e., FeSO₄.(NH₄)₂SO₄. 6H₂Oand [Cu(NH₃)₄]SO₄.5H₂Ofall under the category of addition compounds with only one major difference i.e., the former is an example of a double salt, while the latter is a coordination compound.

A double salt is an addition compound that is stable in the solid state but that which breaks up into its constituent ions in the dissolved state. These compounds exhibit individual properties of their constituents. For e.g.FeSO₄.(NH₄)₂SO₄.6H₂Obreaks into Fe²⁺, NH⁴⁺, and SO₄²⁻ ions. Hence, it gives a positive test for Fe²⁺ ions.

A coordination compound is an addition compound which retains its identity in the solid as well as in the dissolved state. However, the individual properties of the constituents are lost. This happens because $[Cu(NH_3)_4]SO_4.5H_2O$ does not show the test for Cu^{2+} . The ions present in the solution of $[Cu(NH_3)_4]SO_4.5H_2O$ are $[Cu(NH_3)_4]^{2+}$ and SO_4^{2-} .

2. Explain with two examples each of the following: coordination entity, ligand, coordination number, coordination polyhedron, homoleptic and heteroleptic.

Answer

(i)Coordination entity:

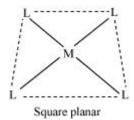
A coordination entity is an electrically charged radical or species carrying a positive or negative charge. In a coordination entity, the central atom or ion is surrounded by a suitable number of neutral molecules or negative ions (called ligands). For example:

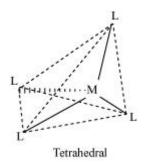
$$\left[\operatorname{Ni}(\operatorname{NH}_3)_6\right]^{2+}$$
, $\left[\operatorname{Fe}(\operatorname{CN})_6\right]^{4+}$ = cationic complex $\left[\operatorname{PtCl}_4\right]^{2-}$, $\left[\operatorname{Ag}(\operatorname{CN})_2\right]^-$ = anionic complex $\left[\operatorname{Ni}(\operatorname{CO})_4\right]$, $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]$ = neutral complex

(ii)Ligands

The neutral molecules or negatively charged ions that surround the metal atom in a coordination entity or a coordinal complex are known as ligands. For example, $^{\rm NH}_3$, $^{\rm H}_2$ $^{\rm O}$, $^{\rm Cl}_{\rm -}$, $^{\rm OH}$. Ligands are usually polar in nature and possess at least one unshared pair of valence electrons.

(iii)Coordination number:


The total number of ligands (either neutral molecules or negative ions) that get attached to the central metal atom in the coordination sphere is called the coordination number of the central metal atom. It is also referred to as its ligancy.


For example:

- (a) In the complex, $K_2[PtCl_6]$, there as six chloride ions attached to Pt in the coordinate sphere. Therefore, the coordination number of Pt is 6.
- (b) Similarly, in the complex $[Ni(NH_3)_4]Cl_2$, the coordination number of the central atom (Ni) is 4.

(vi)Coordination polyhedron:

Coordination polyhedrons about the central atom can be defined as the spatial arrangement of the ligands that are directly attached to the central metal ion in the coordination sphere. For example:

(v)Homoleptic complexes:

These are those complexes in which the metal ion is bound to only one kind of a donor

group. For eg:
$$\left[\text{Co(NH}_3)_6\right]^{3+}$$
, $\left[\text{PtCl}_4\right]^{2-}$ etc.

(vi)Heteroleptic complexes:

Heteroleptic complexes are those complexes where the central metal ion is bound to more than one type of a donor group.

For e.g.:
$$\left[\text{Co}\left(\text{NH}_3\right)_4\text{Cl}_2\right]^+$$
, $\left[\text{Co}\left(\text{NH}_3\right)_5\text{Cl}\right]^{2+}$

3. What is meant by unidentate, didentate and ambidentate ligands? Give two examples for each.

Answer

A ligand may contain one or more unshared pairs of electrons which are called the donor sites of ligands. Now, depending on the number of these donor sites, ligands can be classified as follows:

(a)Unidentate ligands: Ligands with only one donor sites are called unidentate ligands. For

e.g.,
$$^{N}H_{3}$$
, Cl^{-} etc.

(b)Didentate ligands: Ligands that have two donor sites are called didentate ligands. For e.g.,

(a) Ethane-1,2-diamine

(b) Oxalate ion

$$(C_2O_4^{2-})$$
 or COO^-

(c)Ambidentate ligands:

Ligands that can attach themselves to the central metal atom through two different atoms are called ambidentate ligands. For example:

(a)

(The donor atom is N)

$$(M-0)$$
 N=0 \rightarrow Nitrito group

(The donor atom is oxygen)

(The donor atom is S)

(The donor atom is N)

- 4. Specify the oxidation numbers of the metals in the following coordination entities:
- (i) $[Co(H_2O)(CN)(en)_2]^{2+}$

(i)
$$\left[\text{Co}(\text{H}_2\text{O})(\text{CN})(\text{en})_2 \right]^{2+}$$

Let the oxidation number of Co be x. The charge on the complex is +2.

$$\begin{bmatrix} \text{Co} & (\text{H}_2\text{O}) & (\text{CN}) & (\text{en})_2 \end{bmatrix}^{2+} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ x + 0 + (-1) + 2(0) = +2 \\ x - 1 = +2 \\ x = +3 \end{bmatrix}$$

$$(ii)^{\left[\operatorname{Pt}\left(\operatorname{Cl}\right)_{4}\right]^{2^{-}}}$$

Let the oxidation number of Pt be x. The charge on the complex is -2.

$$\begin{bmatrix} Pt & (Cl)_4 \end{bmatrix}^{2-}$$

$$\downarrow \qquad \downarrow$$

$$x + 4(-1) = -2$$

$$x = +2$$

(iii)
$$\left[\text{Co} \quad (\text{Br})_2 \quad (\text{en})_2 \right]^{2+}$$

 $\downarrow \qquad \downarrow \qquad \downarrow$
 $x + 2(-1) + 2(0) = +1$
 $x - 2 = +1$
 $x = +3$

(iv)
$$K_3[Fe(CN)_6]$$

i.e., $[Fe(CN)_6]^{3-}$

$$x + 6(-1) = -3$$
$$x = +3$$

(v)
$$\begin{bmatrix} \operatorname{Cr} & (\operatorname{NH}_3)_3 & \operatorname{Cl}_3 \end{bmatrix}$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$x + 3(0) + 3(-1) = 0$$

$$x - 3 = 0$$

$$x = +3$$

- 5. Specify the oxidation numbers of the metals in the following coordination entities:
- (i) $[Co(H_2O)(CN)(en)_2]^{2+}$
- (ii) [PtCl₄]²⁻
- (iii) $[CoBr_2(en)_2]^+$
- $(iv)K_3[Fe(CN)_6]$
- (v) $[Cr(NH_3)_3Cl_3]$

 $\overline{(\mathbf{i})[\mathrm{Co}(\mathrm{H}_2\mathrm{O})(\mathrm{CN})(\mathrm{en})_2]^{2+}}$

Let the oxidation number of Co be x.

The charge on the complex is +2.

[Co (H₂O) (CN) (en)₂]²⁺

$$\downarrow \qquad \downarrow \qquad \downarrow$$

 $x + 0 + (-1) + 2(0) = +2$
 $x - 1 = +2$
 $x = +3$

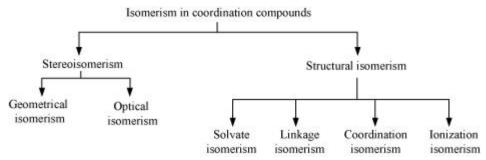
 $\textbf{(ii)} {[PtCl_4]}^{2-}$

Let the oxidation number of Pt be x.

The charge on the complex is -2.

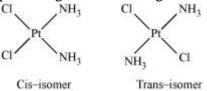
x - 3 = 0x = +3

6. Using IUPAC norms write the formulas for the following: (i)Tetrahydroxozincate(II)

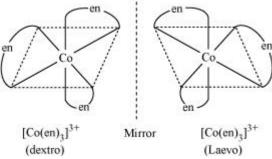

- (ii) Potassium tetrachloridopalladate(II)
- (iii)Diamminedichloridoplatinum(II)
- (iv) Potassium tetracyanonickelate(II)
- (v)Pentaamminenitrito-O-cobalt(III)

- (i) [Zn(OH]²⁻
- (ii) K₂[PdCl₄] (iii) [Pt(NH₃)₂Cl₂]
- $(iv)K_2[Ni(CN)_4]$
- (v) $[Co(ONO) (NH_3)_5]^{2+}$

- 7. Using IUPAC norms write the systematic names of the following:
 - i) [Co(NH₃)6]Cl₃
 - (ii) $[Pt(NH_3)_2Cl(NH_2CH_3)]Cl$
 - (iii) $[Ti(H_2O)6]^{3+}$
 - (iv) $[Co(NH_3)_4Cl(NO_2)]Cl$
 - (v) $[Mn(H_2O)6]^{2+}$


- (i)Hexaamminecobalt(III) chloride
- (ii) Diammine chlorido (methylamine) platinum (II) chloride
- (iii)Hexaquatitanium(III) ion
- $(iv) \\ Tetra amminich lori donitrito-N-Cobalt (III) \ chlori de$
- (v)Hexaquamanganese(II) ion
- **8.** List various types of isomerism possible for coordination compounds, giving an example of each.

Answer


(a)Geometric isomerism:

This type of isomerism is common in heteroleptic complexes. It arises due to the different possible geometric arrangements of the ligands. For example:

(b)Optical isomerism:

This type of isomerism arises in chiral molecules. Isomers are mirror images of each other and are non-superimposable.

(c)Linkage isomerism: This type of isomerism is found in complexes that contain ambidentate ligands. For example:

 $[Co(NH_3)_5 (NO_2)]Cl_2$ and $[Co(NH_3)_5 (ONO)Cl_2]$

Yellow form Red form

(d)Coordination isomerism:

This type of isomerism arises when the ligands are interchanged between cationic and anionic entities of different metal ions present in the complex.

 $[Co(NH_3)_6]$ $[Cr(CN)_6]$ and $[Cr(NH_3)_6]$ $[Co(CN)_6]$

(e)Ionization isomerism:

This type of isomerism arises when a counter ion replaces a ligand within the coordination sphere. Thus, complexes that have the same composition, but furnish different ions when dissolved in water are called ionization isomers. For e.g., $Co(NH_3)_5SO_4)Br$ and $Co(NH_3)_5Br]SO_4$.

(f)Solvate isomerism:

Solvate isomers differ by whether or not the solvent molecule is directly bonded to the metal ion or merely present as a free solvent molecule in the crystal lattice.

 $[Cr[H_2O)_6]Cl_3\ [Cr(H_2O)_5Cl]Cl_2\cdot H_2O\ [Cr(H_2O)_5Cl_2]Cl\cdot 2H_2O$

Violet Blue-green Dark green

9. Aqueous copper sulphate solution (blue in colour) gives:

(i)a green precipitate with aqueous potassium fluoride, and

(ii)a bright green solution with aqueous potassium chloride

Explain these experimental results.

Answer

Aqueous CuSO₄ exists as $[Cu(H_2O)_4]SO_4$. It is blue in colour due to the presence of $[Cu[H_2O)_4]^{2+}$ ions.

(i) When KF is added:

$$\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4\right]^{2^+} + 4\operatorname{F}^- \longrightarrow \left[\operatorname{Cu}(\operatorname{F})_4\right]^{2^-} + 4\operatorname{H}_2\operatorname{O}$$
(green)

(ii) When KCl is added:

$$\left[\operatorname{Cu}(\operatorname{H}_2\operatorname{O})_4\right]^{2^+} + 4\operatorname{Cl}^- \longrightarrow \left[\operatorname{CuCl}_4\right]^{2^-} + 4\operatorname{H}_2\operatorname{O}$$
(bright green)

In both these cases, the weak field ligand water is replaced by the F⁻ and Cl⁻ ions.

- 10. What is the coordination entity formed when excess of aqueous KCN is added to an aqueous solution of copper sulphate? Why is it that no precipitate of copper sulphide is obtained when $H_2S(g)$ is passed through this solution?
- 11. What is crystal field splitting energy? How does the magnitude of Δ_0 decide the actual configuration of *d*-orbitals in a coordination entity?
 - 12. Give the oxidation state, *d*-orbital occupation and coordination number of the central metal ion in the following complexes:

```
 \begin{aligned} &\textbf{(i)} K_3 [Co(C_2O_4)_3] \\ &\textbf{(ii)} cis\text{-}[Cr(en)_2Cl_2]Cl \\ &\textbf{(iii)} \ (NH_4)_2 [CoF_4] \\ &\textbf{(iv)} \ [Mn(H_2O)_6]SO_4 \end{aligned}
```

13. Write down the IUPAC name for each of the following complexes and indicate the oxidation state, electronic configuration and coordination number. Also give stereochemistry and magnetic moment of the complex:

```
 \begin{aligned} &\textbf{(i)} K[Cr(H_2O)_2(C_2O_4)_2].3H_2O \\ &\textbf{(ii)} \ [Co(NH_3)_5Cl]Cl_2 \\ &\textbf{(iii)} CrCl_3(py)_3 \\ &\textbf{(iv)} Cs[FeCl_4] \\ &\textbf{(v)} K_4[Mn(CN)_6] \end{aligned}
```

14. What is meant by stability of a coordination compound in solution? State the factors which govern stability of complexes.

ANSWERS (03Marks)