COAL MINING TECHNOLOGY

A Presentation by

MANOJ KUMAR SINGH

Manager(IE), NCL-HQ, Singrauli(MP)-486 889

E-mail: mks ie@nclhq.nic.in, M-9993875526

MINING TECHNOLOGY

OPENCAST MINING TECHNOLOGY

- Shovel-Dumper
- Dragline
- Surface Miner

UNDERGROUND MINING TECHNOLOGY

- Bord & Pillar
- Side Discharge Loader(SDL)
- Load Haul Dump(LHD)
- Continuous Miner
- Longwall
- Shortwall Mining

OTHER MINING TECHNOLOGY

Highwall Mining

UG MINING TECHNOLOGY

UG MINING METHOD

- BORD & PILLAR
- LONGWALL

INTERMITTENT MINING METHOD

- SIDE DISCHARGE LOADER (SDL)
- LOAD HAUL DUMP (LHD)

MASS PRODUCTION TECHNOLOGY

- CONTINUOUS MINER
- LONGWALL

UG MINING METHODS

BORD & PILLAR Method

 Coal deposits are mined by cutting a network of 'roads' into the coal seam and leaving behind 'pillars' of coal to support the roof of the mine.

LONGWALL Method

- It involves the full extraction of coal from a section of the seam or 'face' using mechanical shearers to cut and remove the coal at the face.
- Self advancing Roof Supports are used to temporarily hold up the roof while coal is extracted.

BORD & PILLAR Mining

- Bord & Pillar is the traditional mining method used in India.
- It is employed where geo-mining conditions are complex.
- Coal is removed from the coal faces initially by developing a set of galleries leaving pillars in between to support the roof.
- Thereafter, the pillars are extracted by depillaring.
- Initially only 30% of the coal can be extracted, while most of the remaining coal is extracted during de-pillaring.

BORD & PILLAR METHOD

- Coal deposits are mined by cutting a network of 'roads' into the coal seam & leaving behind 'pillars' of coal to support the roof of the mine.
- These pillars can be up to 40% of the total coal in the seam – although this coal can sometimes be recovered at a later stage by 'retreat mining'. The roof is then allowed to collapse and the mine is abandoned.
- Smaller deposits can have Manual loading & intermediate technologies with continuous miners or LHDs & SDLs.
- Mechanisation in Bord and pillar has limitations of gradients. Seams steeper than 12°(1 in 5) are not suitable.

Room and Pillar Mining Technique

BORD & PILLAR MINING

SEMI-MECHANISED METHOD

- Currently, most of CIL mines using Bord & Pillar remove coal from the face by blasting & deploy SDL or LHD for loading and transportation of coal in the active mining areas.
- Coal transportation to surface is either by a series of belt conveyors or rope haulage drawn coal tubs.
- This method requires less capital investment but is more labour intensive.

CONTINUOUS MINING METHOD

- In many of CIL new underground mines, bord & pillar mining is carried out using Continuous Miner method where geo-mining conditions permit.
- The coal is mined by a continuous miner unit & loaded to shuttle cars which deliver coal to feeder breaker linked with belt conveyor for onward transportation to surface.

LONGWALL MINING

- Longwall is a fully mechanised underground mining method where the roof at the coal face is supported by self-advancing powered supports & the coal is mined by a shearer.
- Armoured face conveyor & stage loader-crusher are used for transportation of coal at the Longwall face.
- A series of belt conveyors is used to transport coal to the surface.
- When the mining of a Longwall panel has been completed, the equipment is moved to a new Longwall face.
- The key characteristics of Longwall Mining include high productivity, high recovery rate and safety & reliability.

9

LONGWALL MINING

- It involves the full extraction of coal from a section of the seam or 'face' using mechanical shearers to cut and remove the coal at the face.
- The coal 'face' can vary in length from 100 to 350 metres.
- Self advancing Roof Supports (SARS) are used (hydraulically-powered supports) to temporarily hold up the roof while coal is extracted.
- When coal has been extracted from the area, the roof is allowed to collapse.
- Over 75% of the coal in the deposit can be extracted from panels of coal that can extend 3 km through the coal seam.
- Large reserve & uniform deposit are mined by Longwall mining.
- It is a bulk production but capital intensive technology. 10

POWERED SUPPORT LONGWALL

POWER SUPPORT LONGWALL package

- For EXTRACTION
- Shearer 1
- Powered support 1 set
- Armoured Face Conveyor 1
- Stage loader crusher 1
- Power pack 1
- For DEVELOPMENT
 - Continuous miner package or
 - Road header package

SELECTION OF UG METHOD

Manual

In all grdients

SDL

• Where the gradient is <= 1 in 5 (12°)

LHD

• Where the gradient is <= 1 in 6 (10°)

Continuous Miner

• Where the gradient is <= 1 in 8 (7°)

Longwall

• Where the property is devoid of fault.

MAJOR UG EQUIPMENTS

WINNING & LOADING

- DRILLING MACHINES (Hand held, Tyre/ crawler mounted)
- ROAD HEADER
- SHEARER
- CONTINUOUS MINER
- SIDE DISCHARGE LOADER(SDL)
- LOAD HAUL DUMP(LHD)

TRANSPORTATION

- CONVEYORS (Belt conveyors, Chain conveyors)
- HAULAGES (Direct haulage, Endless haulage, Main & tail haulage)
- WINDING SYSTEMS (Drum winder, Friction/koepe winder)
- MAN RIDING SYSTEMS
- SHUTTLE CARS/RAM CARS
- LOCOS

SIDE DISCHARGE LOADER (SDL)

LOAD HAUL DUMP (LHD)

ROAD HEADER

CONTINUOUS MINER

CONTINUOUS MINER package

- For DEVELOPMENT & EXTRACTION
 - Continuous miner* 1 no.
 - Shuttle cars 2 no.
 - Twin/ Quad bolter* 1 no.
 - Feeder breaker 1 no.
 - Power pack 1 no.
 - Mobile goaf edge support (Optional) -2
 - (* In some package both the machines are integrated into one)

SHUTTLE CAR

ROOF BOLTER

SHEARER

POWERED SUPPORT

Support UG Equipments

VENTILATION FANS

PUMPS

SAFETY RELATED EQUIPMENTS

- Self contained self rescuers
- Gas monitoring devices

SHOT FIRING EQUIPMENT

SUPPORTS

- Shield type hydraulic power support
- Individual hydraulic/friction/screw supports

MONITORING DEVICES

ROOF BOLTER

- Hand held
- Crawler mounted

COMMUNICATION SYSTEMS

- Conventional wire based
- From surface to UG- wireless and from UG to surface –
 Combination of wire and microwave

Comp.

ECL

BCCL

CCL

NCL

WCL

SECL

MCL

CIL

U/G MECHANISATION IN CIL (1st.April 2010)

SDL

154

137

19

87

271

21

689

LHD

24

6

7

126

111

32

306

High

Cap

LHD

8

8

Road

Header

2

4

6

PSLW

1

3

5

SHW

2

Cont.

Miner

2

5

25

PRODUCTIVITY IN UG

SIDE DISCHARGE LOADER

 110 tonnes per day (For a 5-heading district having 3 SDLs)

LOAD HAUL DUMPER

 200 tonnes per day (For a 5-heading district having 3 LHDs)

CONTINUOUS MINER

• 1,200 to 2,400 tonnes per day (depending on the seam thickness)

POWERED SUPPORT LONGWALL

3,280 tonnes per day onwards (1 MTY)

TO ENHANCE UG COAL PRODUCTION IN INDIA

Introduction of mass production technology

- Longwall
- Continuous Miner (CM)
- Low Capacity Continuous Miner (LCCM)

Application of UDM, SDL & LHD

 Application of Universal Drilling Machine (UDM) with SDLs and LHDs for improving rate of output in B&P method of working.

ECONOMICS OF UG MINING

- UG mining, by and large remains, a losing proposition
- In the existing pricing mechanism it is difficult to recover the higher cost of UG production
- The average cost of production from UG mining was Rs. 1,819 per tonne (2005-06) of coal
- The coking coal & good grade deposits are largely amenable to UG mining
- In future UG mining will be done from greater depths, further increasing the cost of production
- In this scenario, the customer should be ready to pay higher price.

ENVIRONMENTAL & SAFETY ISSUES

- During UG mining, the inherent dangers of roof & side fall, fire, explosion, noxious gases, water inundation etc. are to be dealt with.
- Roof & side fall remains the most common cause of UG mine accidents.
- Switching to mass production technology will reduce the no. of accidents due to strata control and those related with the handling of explosives.
- Extensive R&D work is being done to limit accidents due to roof fall. One such major R&D work for detecting of early bed separation and hidden slips accompanied with audible warning is going on in IIT Kharagpur
- Use of bolting techniques will reduce the chances of accidents in semi-mechanised mines

KEY SAFETY ISSUES IN COAL MINING

HIGHWALL AND LOW WALL STABILITY

INTERNAL AND EXTERNAL DUMP STABILITY

STABLE PROFILE OF DRAGLINE DUMPS

SAFETY IN MINING LAYOUTS

SAFETY IN BLASTING OPERATIONS

SAFETY RELATED TO MINING OPERATIONS

SAFETY RELATED TO MINING EQUIPMENT

OC MINING TECHNOLOGY

DISCONTINUOUS MINING

- Shovel-Dumper Mining
- Dragline Mining
- Combined Mining
- Surface Miner

CONTINUOUS MINING

- Bucket Wheel Excavator (BWE)
- Conveyor System
- Spreaders
- Tripper Cars

HYBRID MINING

• In-Pit Crushing & Conveying System

KEY DRIVERS FOR CHANGE IN TECHNOLOGY

- Surge in demand
- Cost competitiveness
- Quality improvement
- Ensuring higher safety in UG & OC mines
- Increase in level of mechanisation in UG & OC operations
- Environmental issues
- Improving man & machine productivity
- Improving percentage of extraction in UG mines

SHOVEL-DUMPER MINING

- It is the most sought after technology in opencast mining due to its inherent flexibility of operation.
- It can be used more or less in all types of deposits from flatter to highly steep, softer to hard rocks etc.
- In future, in addition to shovels, coal industry may go for high capacity wheel loaders (tyre mounted) also.

SHOVEL-DUMPER COMBINATIONS

10cum Shovel + 100T Dumper

17 to 20cum Shovel + 100T/150T Dumper

20 to 22cum Shovel + 150T Dumper

25 to 28cum Shovel + 150T/240T Dumper

34cum Shovel + 240T/360T/400T Dumper

50cum Shovel + 360T/400T Dumper

ROPE SHOVELS

- Low operating & maintenance cost of rope shovels make them ideally suited for stripping overburden in large quantities.
- 42 cum bucket capacity rope shovel at Gevra OCP (SECL) is the biggest rope shovels deployed in CIL & India.
- Internationally the largest Rope Shovel deployed is of 63cum bucket capacity.

HYDRAULIC SHOVELS

- Hydraulic Shovels are ideally suited for selective mining and for operation in low bank heights in medium hard strata conditions.
- Currently, 18 cum bucket capacity hydraulic shovels are the biggest hydraulic shovels deployed in CIL & India.
- The largest Hydraulic Shovels deployed in the world are
 +50 cum bucket capacity front end shovels.

ROPE SHOVEL

HYDRAULIC SHOVEL

HYDRAULIC BACKHOE SHOVEL

WHEEL LOADER

DUMPERS

- Dumpers offer the most flexible means of transporting the mined coal or overburden to the designated areas.
- Currently, 240 T capacity rear dumpers at Gevra OCP (SECL) are the biggest Dumpers deployed in CIL & India.
- The largest dumpers deployed internationally are 400T at present.

DRAGLINE MINING

- Dragline mining is the most cost effective technology for the bedded deposits and is the first-choice technology for large opencast mining.
- Draglines do not require dumpers for transport of the mine waste as the overburden stripped by the draglines is directly cast into de-coaled pit.
- The largest dragline operating in India is 30 cum bucket capacity & boom length of 96 m (Bishrampur OCP, SECL).
- Internationally, the largest dragline size is 76 to 122cum bucket capacity with 132 to 76m boom length.

DRAGLINE

BUCKET WHEEL EXCAVATOR (BWE)

- Applicable in flatter deposits with relatively softer strata which do not require blasting e.g. Lignite.
- The BWE is a Continuous Mining Technology and works in conjunction with Conveyor belts & Spreaders.
- The current deployment of BWE is limited to 350 Lt, 500 Lt, 700 Lt & 1,400 Lt size units.
- It is expected that 2,800 Lt. BWE will be deployed in future.
- Conveyor systems of 1,600 mm, 2,000mm & 2,400 mm are in operation in the mines of NLC & GMDC.
- It is likely that in future the size of conveyors will be 3,000 mm.

BUCKET WHEEL EXCAVATOR (BWE)

CONTINUOUS MINING WITH BWE

IN-PIT CRUSHING & CONVEYING

- In pit crushing of coal is generally found to be economical in high capacity opencast mines where reasonable lead distance and lifts are involved.
- This technology is, however, associated with extremely high Capital & Operating costs.
- Mobile in-pit crushing and conveying technology for coal is in operation at the Piparwar OCP (CCL)
- Shiftable in-pit crushing & conveying of overburden (OB) is in operation at Ramagundem-II Mine (SCCL)

IN-PIT CRUSHING & CONVEYING

SURFACE MINER

- It finds its natural applications in projects where drilling and blasting is prohibited or where selective overburden is required.
- Some of the opencast coal mines of MCL (CIL) are presently using surface miners on contractual basis for extraction of banded coal seams.
- Presently surface miner is used as cutting machine only and pay loader has been added for loading the coal into the tipping trucks.
- Tripper cars and Spreader systems of 11,000 TPH & 20,000 TPH are already in operation in NLC

ADVANTAGES OF SURFACE MINER

- Less coal loss and dilution.
- Improved coal recovery especially in areas sensitive to blasting.
- Less stress and strain on trucks due to minimum impact of the excavated material.
- Primary crushing and fragmentation of coal.
- Reduced capacity requirements for coal washing/preparation plants.

SURFACE MINER IN OB

Pic.2: Example of machine with middle drum configuration

SURFACE MINER IN COAL

SPREADER

HIGHWALL MINING

- Highwall/Trench mining is a remote controlled mining method which extracts coal from the base of an exposed highwall via a series of parallel entries driven to a significant depth within the coal horizon.
- It allows recovery of coal from surface pits that have reached final highwall position, or in areas where coal has become sterilized, e.g. in-service corridors.
- A trench of suitable dimension is dug centrally where Highwall is not available, and parallel drivages are made in both directions along dip as well as along rise.
- The technology may have wide application in extracting reserves of thin seams (0.8m to 1.5m).
- The method is under use at Sharda Project (SECL)

HIGHWALL MINER

Current OC Equipment Sizes in India

• DRAGLINE : 24 to 30 cum/96 to 71m

ROPE SHOVEL : 42cum (Gevra-SECL)

• HYDRAULIC SHOVEL : 18cum

• DUMPER : 240T (Gevra-SECL)

Bucket Wheel Excavator: upto 1,400 Lt

Tripper Car & Spreader: upto 20,000 TPH

 In-pit crushing & conveying(Coal): 2,800TPH (Piparwar-CCL)

 In-pit crushing & conveying(OB): 3,500TPH (Ramagundam-II-SCCL)

Surface Miner : 750TPH

• Drills: upto 381mm, Dozers: upto 850hp

Motor Graders : upto 280hp

• Front End Loaders : upto 11.50cum

HEMM POPULATION IN CIL (1st.April 2010)

3,260

Comp.	Dragline	Shovel	Dumper	Dozer	Drill	Surface
						Miner

ECL

BCCL

CCL

NCL

WCL

SECL

MCL

CIL