
Netherlands Institute for Radio Astronomy

COBALT: Creating a High-
Throughput, Real-Time
Production System Using
CUDA, MPI and OpenMP

GTC 2014
Jan David Mol
Wouter Klijn

1 ASTRON is part of the Netherlands Organisation for Scientific Research (NWO)

Outline

 Introduction to LOFAR and Radio astronomy

 COBALT system

 Hardware software co-design

 Performance

 Time line

 Software

 Refactoring / OpenCL vs CUDA / JIT compilation

 Abstraction layer / Libraries

 Conclusions

 2

Introducing LOFAR

 3

Central antenna fields

 4

300m

Dutch antenna field,
Inset: low band antenna

 5

Phased Arrays

 6

Receiver

Receiving array

Physical
delay

Artificial delay
Combiner

Output

Current compute cluster:
IBM Blue Gene/P

 7

Critical Design Review
Feb 2013

 Recommendations:

 Consolidate choices fast:

 OpenCL vs CUDA

 AMD vs Nvidia (vendor lock in?)

 Get hardware ASAP

 Contain external dependencies (infrastructure and

system administration)

 Exchange man power for hardware if possible

 Limited available experience with GPU programming!

 8

Central processing
Abstract workflow

 9

Hardware prototypes
(Mar 2013)

 10

CPU1 CPU2

GPU1

40GbE

GPU2

IB1

IB2

LOFAR

CPU1 CPU2

GPU1

2x

10GbE

GPU2

IB1 IB2

2x

10GbE

LOFAR

40GbE

PCIe balance

load on QPI

First Design

Dell R720

Second Design

Dell T620

Hardware Prototype

 GPU idle temperatures:

 11

| NVIDIA-SMI 5.319.12 Driver Version: 319.12

|===============================+======================+======================|

| 0 Tesla K10.G2.8GB Off | 0000:04:00.0 Off | N/A |

| N/A 75C P0 43W / ERR! | 0% 9MB / 3583MB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 1 Tesla K10.G2.8GB Off | 0000:05:00.0 Off | N/A |

| N/A 76C P0 42W / ERR! | 0% 9MB / 3583MB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 2 Tesla K10.G2.8GB Off | 0000:45:00.0 Off | N/A |

| N/A 62C P0 42W / ERR! | 0% 9MB / 3583MB | 0% Default |

+-------------------------------+----------------------+----------------------+

| 3 Tesla K10.G2.8GB Off | 0000:46:00.0 Off | N/A |

| N/A 46C P0 36W / ERR! | 0% 9MB / 3583MB | 0% Default |

+-------------------------------+----------------------+----------------------+

Duct-taped vs. 3D-printed
air-flow guides (Apr 2013)

 GPU full load temperature

 Validated by DELL this week

 12

| NVIDIA-SMI 5.319.12 Driver Version: 319.12 |

|===============================+======================+======================|

| 0 Tesla K10.G2.8GB Off | 0000:04:00.0 Off | N/A |

| N/A 48C P0 92W / ERR! | 2% 54MB / 3583MB | 99% Default |

+-------------------------------+----------------------+----------------------+

| 1 Tesla K10.G2.8GB Off | 0000:05:00.0 Off | N/A |

| N/A 52C P0 91W / ERR! | 2% 54MB / 3583MB | 100% Default |

+-------------------------------+----------------------+----------------------+

| 2 Tesla K10.G2.8GB Off | 0000:45:00.0 Off | N/A |

| N/A 51C P0 92W / ERR! | 2% 54MB / 3583MB | 99% Default |

+-------------------------------+----------------------+----------------------+

| 3 Tesla K10.G2.8GB Off | 0000:46:00.0 Off | N/A |

| N/A 49C P0 95W / ERR! | 2% 54MB / 3583MB | 99% Default |

+-------------------------------+----------------------+----------------------+

Final Cobalt Hardware (Jun 2013)
System Ready (Sep 2013)

 8 production nodes

 1 hot spare / development / test node

 All infrastructure ready (Oct 2013)

13

MPI Tuning

 14

Cobalt Performance

 Lower input losses than BG/P

 Output losses at >30 Gbit/s to storage

 15

GPU Correlator Load

 16

64 stations (192 Gbit/s) 80 stations (240 Gbit/s)

Software

 4 coders (3 FTE)

 Project lead (management, 1 FTE)

 Project scientist (commissioning, 1 FTE)

 February 2013: Project start

 December 2013: Intended deadline

 March 2014: Delivery

 17

Project Time Line Month Hardware Development Software

2012 Prototype written

Feb ’13 Design Sprints (3w), Agile Refactor

Mar Prototype GTC 2013

Apr Air-flow guides Automated Tests
(Jenkins + Ctest)

Port OpenCL ->
CUDA

May

Jun Arrives MPI: multi-machine

Jul Installed Code reviews

Aug Configured, tuned

Sep System ready
Network reconfig

Oct System back up Stability, Tuning

Nov One-click roll out

Dec

Jan ’14

Feb Performance drop

Mar iDRAC reboot Production Rewrite MPI stack 18 c
o
m

m
is

s
io

n
in

g

fe
a
tu

re
s

Refactoring proof-of-concept

 Research software -> development -> production

 From single 5 KLOC file to .hpp + .cpp per class

 Tests in separate sources

 No global variables

 Refactor before major changes:

 Kill the God Class

 Separate functionality in on purpose classes

 Testable and maintainable

 19

CUDA vs OpenCL

 20

Kernel performance difference: ~2%,

but CUDA also has GPUDirect, etc.

Feature CUDA OpenCL

AMD support No Yes (OpenCL 1.2)

NVIDIA support Yes Poor (OpenCL 1.1)

Vendor lock-in Yes No

Platform lock-in Yes (GPU) No (GPU, CPU, FPGA)

Debugger/profiler Yes (Nsight) Poor (CodeXL)

Learning material Yes Yes

Ease of use Easy learning curve Good syntactic sugar

OpenCL -> CUDA port

 First a 1:1 port

 ‘Easy’

 Great way to learn

 Verify output and

 performance!

 Obstacles:

 No SWIZZLE in CUDA -> compact code expands in port

 No JIT in CUDA -> we can fake it

 Terminology differences

 21

CUDA vs OpenCL: Terminology

CUDA OpenCL

GPU Device

Global Memory Global Memory

Shared Memory Local Memory

Local Memory Private Memory

Grid Index Space

Block Work Group

 22

CUDA vs OpenCL: Work loads

 23

CUDA JIT compilation: How?

 Put your code in a .cu file

 Run nvcc from your program:

 Load the module, call the function (need Driver API...):

 24

CUDA JIT compilation: Why?

 #define/nvcc -D: input parameters -> runtime constants

 #ifdef: Tune/skip functionality

 Fewer instructions -> faster code

 Fewer registers needed -> more parallellism

 Fewer dynamic constructs -> simpler code

 25

JIT gives us the C preprocessor

to optimise code

JIT caveats

 fork() required to call nvcc.

 Problem: MPI stack is not fork() safe!

 Solution: move all runtime compilation before MPI_Init.

 Problem: Parallel nvcc invocation caused crashes in nvcc

 Solution: serialize & early initialization of run.

 26

C++ CUDA abstraction layer (1)

 Abstraction layer on CUDA (and OpenCL)

 Inspired by OpenCL C++ bindings

 Wrap each resource in a class

 C++ exception handling -> no silent failure

 C++ resource management -> no leaks

 Cleaner code, easier to debug, easier to test, simpler tests 27

More layers

 Rich “Kernel” class:

 Run-time compilation

 Buffer sizes & initialization

 Execution

 Performance monitoring

 Sanity checks

 Pipelines chain “Kernel” classes

 Buffer classes combining GPU/CPU memory

 ‘Automate’ transfers

 Data inspection

28

Allows path back to OpenCL

Parallelization methods

 29

Libraries libraries libraries

 We use many HPC libraries:

 CUDA driver API (GPU parallisation…)

 OpenMPI (parallisation over cluster, 1 process/CPU)

 OpenMP (CPU core parallelisation)

 Pthreads (CPU core parallisation)

 LibNUMA (binds hardware used by process)

 Casacore, HDF5, FFTW (astronomy/DSP)

 LibSSH2 (remote process invocation)

 POSIX (network/system programming):

 Networking

 Shared memory

 30

CPU Multithreading

 We use:

 60% of CPU (`top’)

 53% of DRAM bandwidth (‘Intel PCM’)

 OpenMP + pthreads:

 OpenMP merges parallellism into your control flow

 Pthreads needed for background tasks

 31

Multithreading caveats

 OpenMPI still sensitive to forking, threading

 Written for single-threaded applications

 Some libraries need global lock:

 Casacore, HDF5

 OpenMPI (also, MVAPICH2 in practice)

 32

Numerous libraries are not thread safe!

Library conflicts

 Libraries want their own allocation yet do similar things:

 cuMemHostAlloc

 MPI_Alloc

 shmget

 OpenMPI + shared memory = leaks and crashes

 33

Some libraries do not cooperate

Numerical Stability

 Slight instability (output jitter) unavoidable:

 Differences in GPU architecture (Fermi, Kepler, etc.)

 Differences in compiler (CUDA 4 vs 5, etc.)

 Differences in compiler flags (--use-fast-math, etc.)

 Code changes (optimizations, etc.)

 Careful analysis needed if output changes

 Whether benign or critical

 A newly blessed output might be in the order of GBytes!

 34

Conclusions

 Hardware/software co-design = smooth operations

 Design choices depend on hardware + OS + libraries

interoperability

 JIT gives faster code

 OpenCL-like C++ wrapper provides cleaner code

 A GPU production cluster is more than CUDA alone

 4 developers without GPU experience got COBALT in production

in 1 year.

 mol@astron.nl klijn@astron.nl

35

mailto:mol@astron.nl

Beam Former: GPU Performance
(16 bit, full bw)

 36

CS CS + IS

135 CS TABs 1 IS + 101 CS TABs

