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Introducing LOFAR 
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Central antenna fields 

  4 

300m 



Dutch antenna field, 
Inset: low band antenna 

  5 



Phased Arrays 
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Current compute cluster: 
IBM Blue Gene/P 

 

  7 



Critical Design Review 
Feb 2013 

 Recommendations: 

 Consolidate choices fast: 

 OpenCL vs CUDA 

 AMD vs Nvidia (vendor lock in?) 

 Get hardware ASAP 

 Contain external dependencies (infrastructure and 

system administration) 

 Exchange man power for hardware if possible 

 

 Limited available experience with GPU programming! 
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Central processing 
Abstract workflow 
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Hardware prototypes 
(Mar 2013) 
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Hardware Prototype 

 GPU idle temperatures: 
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| NVIDIA-SMI 5.319.12   Driver Version: 319.12         

|===============================+======================+======================| 

|   0  Tesla K10.G2.8GB    Off  | 0000:04:00.0     Off |                  N/A | 

| N/A   75C    P0    43W / ERR! |   0%    9MB / 3583MB |      0%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   1  Tesla K10.G2.8GB    Off  | 0000:05:00.0     Off |                  N/A | 

| N/A   76C    P0    42W / ERR! |   0%    9MB / 3583MB |      0%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   2  Tesla K10.G2.8GB    Off  | 0000:45:00.0     Off |                  N/A | 

| N/A   62C    P0    42W / ERR! |   0%    9MB / 3583MB |      0%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   3  Tesla K10.G2.8GB    Off  | 0000:46:00.0     Off |                  N/A | 

| N/A   46C    P0    36W / ERR! |   0%    9MB / 3583MB |      0%      Default | 

+-------------------------------+----------------------+----------------------+ 



Duct-taped vs. 3D-printed 
air-flow guides (Apr 2013) 

 GPU full load temperature 

 Validated by DELL this week 
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| NVIDIA-SMI 5.319.12   Driver Version: 319.12         |                        

|===============================+======================+======================| 

|   0  Tesla K10.G2.8GB    Off  | 0000:04:00.0     Off |                  N/A | 

| N/A   48C    P0    92W / ERR! |   2%   54MB / 3583MB |     99%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   1  Tesla K10.G2.8GB    Off  | 0000:05:00.0     Off |                  N/A | 

| N/A   52C    P0    91W / ERR! |   2%   54MB / 3583MB |    100%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   2  Tesla K10.G2.8GB    Off  | 0000:45:00.0     Off |                  N/A | 

| N/A   51C    P0    92W / ERR! |   2%   54MB / 3583MB |     99%      Default | 

+-------------------------------+----------------------+----------------------+ 

|   3  Tesla K10.G2.8GB    Off  | 0000:46:00.0     Off |                  N/A | 

| N/A   49C    P0    95W / ERR! |   2%   54MB / 3583MB |     99%      Default | 

+-------------------------------+----------------------+----------------------+ 



Final Cobalt Hardware (Jun 2013) 
System Ready (Sep 2013) 

 8 production nodes 

 1 hot spare / development / test node 

 All infrastructure ready (Oct 2013) 
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MPI Tuning 
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Cobalt Performance 

 Lower input losses than BG/P 

 Output losses at >30 Gbit/s to storage 
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GPU Correlator Load 
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64 stations (192 Gbit/s) 80 stations (240 Gbit/s) 



Software 

 4 coders (3 FTE) 

 Project lead (management, 1 FTE) 

 Project scientist (commissioning, 1 FTE) 

 

 February 2013: Project start 

 December 2013: Intended deadline 

 March 2014: Delivery 
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Project Time Line Month Hardware Development Software 

2012 Prototype written 

Feb ’13 Design Sprints (3w), Agile Refactor 

Mar Prototype GTC 2013 

Apr Air-flow guides Automated Tests 
(Jenkins + Ctest) 

Port OpenCL -> 
CUDA 

May 

Jun Arrives MPI: multi-machine 

Jul Installed Code reviews 

Aug Configured, tuned 

Sep System ready 
Network reconfig 

Oct System back up Stability, Tuning 

Nov One-click roll out 

Dec 

Jan ’14 

Feb Performance drop 

Mar iDRAC reboot Production Rewrite MPI stack 18 c
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Refactoring proof-of-concept 

 Research software -> development -> production 

 From single 5 KLOC file to .hpp + .cpp per class 

 Tests in separate sources 

 No global variables 

 

 Refactor before major changes: 

 Kill the God Class 

 Separate functionality in on purpose classes 

 Testable and maintainable 
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CUDA vs OpenCL 

  20 

Kernel performance difference: ~2%, 

but CUDA also has GPUDirect, etc. 

Feature CUDA OpenCL 

AMD support No Yes (OpenCL 1.2) 

NVIDIA support Yes Poor (OpenCL 1.1) 

Vendor lock-in Yes No 

Platform lock-in Yes (GPU) No (GPU, CPU, FPGA) 

Debugger/profiler Yes (Nsight) Poor (CodeXL) 

Learning material Yes Yes 

Ease of use Easy learning curve Good syntactic sugar 



OpenCL -> CUDA port 

 First a 1:1 port 

 ‘Easy’ 

 Great way to learn 

 Verify output and 

 performance!  

 

 Obstacles: 

 No SWIZZLE in CUDA -> compact code expands in port 

 No JIT in CUDA -> we can fake it 

 Terminology differences 
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CUDA vs OpenCL: Terminology 

CUDA OpenCL 
 

GPU Device 

Global Memory Global Memory 

Shared Memory Local Memory 

Local Memory Private Memory 

Grid Index Space 

Block Work Group 
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CUDA vs OpenCL: Work loads 
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CUDA JIT compilation: How? 

 Put your code in a .cu file 

 Run nvcc from your program: 

 

 

 Load the module, call the function (need Driver API...): 
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CUDA JIT compilation: Why? 

 #define/nvcc -D: input parameters -> runtime constants 

 

 #ifdef: Tune/skip functionality 

 

 

 Fewer instructions -> faster code 

 Fewer registers needed -> more parallellism 

 Fewer dynamic constructs -> simpler code 
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JIT gives us the C preprocessor 

to optimise code 



JIT caveats 

 fork() required to call nvcc. 

 

 Problem: MPI stack is not fork() safe! 

 Solution: move all runtime compilation before MPI_Init. 

 

 Problem: Parallel nvcc invocation caused crashes in nvcc 

 Solution: serialize & early initialization of run. 
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C++ CUDA abstraction layer (1) 

 Abstraction layer on CUDA (and OpenCL) 

 Inspired by OpenCL C++ bindings 

 Wrap each resource in a class 

 C++ exception handling -> no silent failure 

 

 

 

 C++ resource management -> no leaks 

 

 

 

 Cleaner code, easier to debug, easier to test, simpler tests   27 



More layers 

 Rich “Kernel” class: 

 Run-time compilation 

 Buffer sizes & initialization 

 Execution 

 Performance monitoring 

 Sanity checks 

 Pipelines chain “Kernel” classes 

 Buffer classes combining GPU/CPU memory 

  ‘Automate’  transfers 

  Data inspection 
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Allows path back to OpenCL 



Parallelization methods 
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Libraries libraries libraries 

 We use many HPC libraries: 

 CUDA driver API (GPU parallisation…) 

 OpenMPI (parallisation over cluster, 1 process/CPU) 

 OpenMP (CPU core parallelisation) 

 Pthreads (CPU core parallisation) 

 LibNUMA (binds hardware used by process) 

 Casacore, HDF5, FFTW (astronomy/DSP) 

 LibSSH2 (remote process invocation) 

 POSIX (network/system programming): 

 Networking 

 Shared memory 
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CPU Multithreading 

 We use: 

 60% of CPU (`top’) 

 53% of DRAM bandwidth (‘Intel PCM’) 

 

 OpenMP + pthreads:  

 OpenMP merges parallellism into your control flow 

 Pthreads needed for background tasks 
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Multithreading caveats 

 

 

 OpenMPI still sensitive to forking, threading 

 Written for single-threaded applications 

 

 Some libraries need global lock: 

 Casacore, HDF5 

 OpenMPI (also, MVAPICH2 in practice) 
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Numerous libraries are not thread safe! 



Library conflicts 

 

 

 Libraries want their own allocation yet do similar things: 

 cuMemHostAlloc 

 MPI_Alloc 

 shmget 

 

 OpenMPI + shared memory = leaks and crashes 
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Some libraries do not cooperate 



Numerical Stability 

 Slight instability (output jitter) unavoidable: 

 Differences in GPU architecture (Fermi, Kepler, etc.) 

 Differences in compiler (CUDA 4 vs 5, etc.) 

 Differences in compiler flags (--use-fast-math, etc.) 

 Code changes (optimizations, etc.) 

 

 Careful analysis needed if output changes 

 Whether benign or critical 

 A newly blessed output might be in the order of GBytes! 
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Conclusions 

 Hardware/software co-design = smooth operations 

 Design choices depend on hardware + OS + libraries 

interoperability 

 

 JIT gives faster code 

 OpenCL-like C++ wrapper provides cleaner code 

 A GPU production cluster is more than CUDA alone 

 

 4 developers without GPU experience got COBALT in production 

in 1 year. 
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Beam Former: GPU Performance 
(16 bit, full bw) 

  36 

CS CS + IS 

135 CS TABs 1 IS + 101 CS TABs 


