

CODE V Access for Distance Students

- Send email to sales@opticalres.com, indicate you need CODE V for your distance learning class, include your full contact info
- We ship you all installation materials

Purpose

- The purpose of this presentation is to provide you with an overview of CODE V structure, interface, and capabilities for optical system modeling, analysis, and optimization
- This will be done both via this presentation and via CODE \vee demonstrations

Presentation Topics

- Structure of CODE V
- Interface elements
- The Basics
- How to enter a lens
- How to analyze a lens
- How to optimize a lens
- Resources for learning CODE V
- Frequently used analyses for homework
- Useful supplied macros
- CODE V odds-\&-ends
- Conclusions

Opening a Lens

- New Lens Wizard can open a blank lens, CODE V sample lens, or a patent lens

Opening a Lens

Data Entry

- 3 main windows for entering data
- Lens Data Manager
- System Data
- Surface Properties

Data Entry

- Right-click for context sensitive menus

- Some operations (e.g. insert, delete) require you to highlight the row first
- Some fields (e.g. Surface Type, Refract Mode) you double-click for a drop down list

Data Entry

- Allows copy/paste of cell values or a range of cells

- Allows use of expressions in cells

Data Entry

- Be sure that the program accepts data that is entered by one of these methods:
- Clicking on a different cell
- Clicking the "Commit Changes..." button
- Hitting the TAB key
- Hitting the ENTER key

Data Entry - Ex. Doublet

- Open a blank lens from New Lens Wizard
- From menus open Lens > System Data
- Set pupil size, Entrance Pupil
 Diameter $=33.3$
- Use F,d,c wavelengths (can use a pre-stored spectrum)
- Define fields as Object Angle, 0,2 , and 3 degrees

Data Entry - Ex. Doublet

- Insert 2 surfaces

Right-click

- Enter data for thicknesses and curvatures Type BSM24 and SF1 for glass material (automatically searches the catalogs)

Data Entry - Ex. Doublet

- Add a paraxial image solve and do a quick best focus

CODE V 101, Slide 14

Data Entry - Ex. Doublet

- Commands (copy and paste to the command line)

```
LEN NEW
EPD 33.3
WL 656.2725 587.5618 486.1327
YAN 0 2 3
INS S1..2
S1 61.0722 10.3456 BSM24
S2 -42.1754 2.3513 SF1
S3 -316.1385 0
PIM
WAV; BES; RFO; GO
STO S1
```


Data Entry - Ex. Reflective

- Start with a new lens, and enter system and surface info same as the previous doublet example
- Entrance Pupil Diameter (EPD) 75
- Wavelengths d,F,c spectrum (656.3, 587.6, 486.1)
- Fields, Object angles 05.5 degrees
- Solves, Paraxial image solve
- Insert 4 surfaces, and make surface 1 the stop

- Lens Data Manager		
Surface \#	Surface Name	$\begin{array}{r} \text { Surf } \\ \text { Ty } \end{array}$
Object		Sphert
Stop		Asphel
2		Sphert
3		Sphert
4		Spher
5		Sphere
Image		Sphere

Data Entry - Ex. Reflective

- Note negative thicknesses. Rays travel in the opposite direction after each reflection. The coordinate system doesn't change

- Access Asphere coefficients in Surface Properties window

Data Entry - Ex. Reflective

- Commands (copy and paste to the command line)

LEN NEW	
EPD	75.0
WL	656.3587 .6486 .1
YAN	0.05 .5
PIM	
INS S1..4	
STO S1	
S1	1777.467 6.304 PSK2_SCHOTT
ASP	
K	0.0
A	-0.4049e-7
B	-0.1216e-11
S2	0.0170 .946
S3	-211.8173-96.2601 REFL
S4	-40.9571-5.9437 PSK2_SCHOTT
S5	$0.0-1.7313$

- More examples in New Lens Wizard, sample lenses (cassrc.len, maksutov.len, offner11, threemir, threemrc)
- For more info see Training Course Notes, Introduction, "Reflective Systems" (www.oraservice.com)

Homework Analyses

- Display>List Lens Data...

- List surface data, system data, first order data, indices, etc.
- Display>View Lens
- 2D layout
- Display>3D Viewing
- Open-GL solid model, interactive rotation/zoom

Homework Analyses

- Analysis>Diagnostics>Paraxial Ray Trace
- $1^{\text {st }}$ order ray trace
- Analysis>Diagnostics>Third Order Aberrations
- List the surface contributions and sum of the transverse third order aberrations for the system
- Analysis $>$ Diagnostics>Fifth Order Aberrations
- List the surface contributions and sum of the third and fifth order aberrations for the system (and elliptical coma)
- Output can be in terms of transverse or wave aberrations
- Output can be in terms of imaging or pupil aberrations

Homework Analyses

- Analysis>Diagnostics>Ray Aberration Curves or OPD Aberration Curves
- Useful for determining which aberrations are present in the lens
- Quick buttons actually run a macro which does autoscaling

5.7 waves Spherical Aberration

Homework Analyses

- Analysis>Geometrical>Spot Diagram
- Plots ray intercepts at the final surface for each field
- Analysis $>$ Diffraction $>$ MTF
- Modulation Transfer Function values and plots
- Analysis>Diffraction>Wavefront Analysis
- Listing of RMS Wavefront error

FIELD			$\begin{gathered} \text { RMS } \\ \text { (WAVES) } \end{gathered}$	$\begin{aligned} & \text { SHIFT } \\ & \text { (MM.) } \end{aligned}$	STREHL
	FRACT	DEG			
X	0.00	0.00		0.000000	
Y	0.00	0.00	0.109992	0.000000	0.62025
X	0.00	0.00		0.000000	
Y	0.69	14.00	0.866632	0.011204	0.00000
X	0.00	0.00		0.000000	

बया।
OPTICAL RESEARCH ASSOCIATES

Homework Analyses

- Analysis > Diagnostics > Pupil Map
- OPD or intensity plot of wavefront at the exit pupil
- Analysis > Diffraction > Point Spread Function
- Intensity plot of the PSF

Homework Analyses

- Settings button allows you to change options and re-run analysis

- Option Set... button allows you to save your options to apply in the future

* Leave windows open so you can re-execute with the same options

Homework Analyses

- Use tear-away feature to compare before and after analysis

- Or save the text as a .txt file to see the name change in the navigation tree

Homework Reports

- To save text or plotted output for your reports, use the File > Save Window As ... choice

Quick Ray Aberration Plot	

- For plotted output, you can also use Copy \& Paste (CTRL-C, CTRL-V)
- The LDM Spreadsheet and Review Spreadsheets can also be printed directly
- Verify the appearance with File > Print Preview

Demo - Setup Lens

- File > New, click "Next", choose patent lens, click "Next", click "Filter...", select F/\# 1-4, Semi-Field of View 20-33, Number of elements 1-3
- Choose or02248, click "Finish"
- This is a wider field, faster $\mathrm{f} /$ \# than needed.
- Lens > System Data, select Pupil, chose Image F/\# 3.5
- Select Wavelengths, change W2 weight to 2
- Select Fields, set type to object angle, define 4 fields: 011 1926.5
- Select System Settings, change title to "CODE V Demo"
- Display > View Lens, note vignetting,
- System Data, select Fields, click "Set Vignetting..."
- Display > View Lens, note vignetting,
- Display $>$ List lens data> First order data
- Edit > Scale, select Scale Effective Focal Length, surfaces 1 to 6 , Scale Value $=6$
- Re-run first order data, note change in EFL
- Re-draw lens

Demo - Run Analysis

- Analysis > Diffraction > MTF, maximum freq. 68, increment freq. 17
- Analysis > Geometrical > Spot Diagram, select Aberration Scaling, Value 0.02
- Analysis > Diagnostics > Ray Aberration Curves, change Scale to 0.02

Optimizing a Lens

- One of CODE V's main strengths is the effectiveness of its optimization algorithms
- In particular, CODE V's ability to control constraints exactly works better than any other commercial software
- CODE V optimization is easy to use, with very little input required by you in many cases
- This is mainly achieved through CODE V's use of intelligent defaults
- However, the Automatic Design feature is also flexible and you can control many details of the optimization if you wish to

Optimizing a Lens

- Add variables to any desired parameter
- Can select multiple cells by left-click and drag, or use CTRL+click
- Right-click on any highlighted cell, choose "Vary"

Lens Data Manager						
Surface	$\underbrace{\text { Surface }}$ Naxe	${ }_{\text {surface }}^{\text {supe }}$	${ }^{\text {Y Radius }}$	ss	${ }_{\text {class }}$	${ }_{\substack{\text { Refrace } \\ \text { Hode }}}$
Object		sphere	Infinity	Infinte		
		$\underbrace{\text { a }}_{\substack{\text { sphere } \\ \text { Sphere }}}$		${ }_{\text {2, }}^{\text {2.007 }}$		
stop		sphere	-19,1000			
		Sphere	22,0000	${ }^{\text {a }}$ 2.254		
${ }_{6}^{6}$		Sphere	--16.7000	${ }^{43} 8.058$	Fae Proentes	
				of data		

Optimizing a Lens

- Select Optimization > Automatic Design

- Check General Constraints
- Define glass map

General constraints are limits placed on thicknesses for all surfaces.

The glass map defines the boundary of glasses when varying the refractive index (Tools > Macro Manager > Sample Macros > Materials Info > vp_plot.seq)

optical research associates
CODE V 101, Slide 31

Optimizing a Lens

- Define any specific constraints (EFL, distortion, surface thicknesses, ray trace data, etc.). These may override general constraints.
- Note: exact constraints handled by linear algebra solutions (Lagrange multipliers) separate from error function, weighted constraints included in error function.

Optimizing a Lens

- Set output controls for drawing the lens at each cycle and printing text output.
- If desired, change exiting conditions (max cycles, improvement factor, interactive mode).
- Hit "OK" when finished, re-run any analyses.

Demo- Optimization

- Vary curvatures for surfaces 1-6
- Vary thickness for surfaces 1-5 and image. Leave the paraxial image solve on surface 6
- Vary all glasses
- Open Automatic Design window, under Output Controls select Draw system at each cycle, under Specific Constraints add EFL = 6, click OK
- Rerun analyses and compare before and after results (open new window or use tear-away feature)
- Analysis > Diffraction > MTF, Maximum freq. 68, Increment freq. 17
- Analysis > Geometrical > Spot Diagram, select Aberration Scaling, Value 0.02
- Analysis > Diagnostics > Ray Aberration Curves, Scale 0.02
- Note that middle lens is too thin. Click settings button in Automatic Design window, under General Constraints change Minimum Center Thickness to 0.5 , click OK
- Note thicker lenses. Rerun analyses and compare results.

Demo-Optimization

- Commands

```
in cv_macro:extlen 'or02248' ! load patent lens
fno 3.5 ! pupil spec for f/#
WTW W2 2 ! wavelength weight
yan 0 11 19 26.5 ! object field angles in Y
tit 'CODE V Demo' ! set title
vie;go ! 2D plot
in cv_macro:setvig ! set vignetting
vie;go ! 2D layout
fir ! list 1st order data
SCA EFL SI..I-1 6 ! scale lens to EFL of 6
fir ! list 1st order data
mtf; mfr 68; ifr 17; go ! run MTF, max freq. 68, increment 17
spo; ssi .02; go ! run spot diagram, plot scale . 02
rim; ssi .02; go ! run ray aberration curves, plot scale .02
ccy s1..6 0 ! vary curvatures
thc s1..5 0 ! vary thicknesses
thc si 0
gc1 sl 0 ! vary glasses
gc1 s3 0
gc1 s5 0
```


Demo-Optimization

- Commands (cont'd)

```
aut;dra;efl=6;go
! optimize, draw the system at each cycle
mtf; mfr 68; ifr 17; go ! rerun analysis as before
spo; ssi .02; go
rim; ssi .02; go
aut;dra;efl=6;mnt .5;go ! optimize, set min thickness of .5
mtf; mfr 68; ifr 17; go ! rerun analysis as before
spo; ssi .02; go
rim; ssi .02; go
```


Resources for Learning CODE V

- Various CODE V Help Choices (HELP > ...)
- The Customer area of the ORA website: www. oraservice.com
- Introductory \& Advanced Training presentations
- CODE V User Group meeting presentations
- CODE V Webinar recordings
- Release notes
- E-news Tips
- Tech Support FAQs
- Macro downloads
- Technical papers

Intro Topics in CODE V Training
Optics 101
Digital Camera
User Interface
Tech Talk
Apertures/Vignetting
Performance Eval.
Optimization
Reflective Systems
Tilts/Decenters
Non-Spherical
Afocal
Zoom
Tolerance Analysis
Macros

CODE V Help Features

CODE V Help

- CODE V reference manual (PDF) has the most info

Useful CODE V Macros

- CODE V has a very powerful and easy-to-learn macro language
- In addition, many sample macros are supplied with CODE V
- Many of these will perform analyses that you will want to use
- These macros are accessible from the Tools > Macro Manager ... Sample Macros menu choice, or
- You can add sample macros that you use frequently to a menu or to a toolbar

$$
\| \lambda_{1} \lambda_{1} \lambda_{2}
$$

Useful CODE V Macros

- A subset of particularly useful macros:
- REFCHECK
- GLASSFIT
- ABERRATIONGENERATOR
- PLASTICPRV
- BFLPLOT
- FL \& NODP
- MTFVSFLD
- QUICKVIEW
- RSIVIEW
- LENSTABLE

UTI LITIES: REFCHECK

- CODE V uses 5 special
"reference" rays for determining apertures, and verifying the system setup before running an analysis
- REFCHECK.SEQ verifies that these rays trace, and helps to diagnose problems

Utilities: Aberration Generator

- ABERRATIONGENERATOR.SEQ sets up a lens module with user defined amounts of aberrations
- Characteristic curves for image plane transverse ray aberrations and exit pupil OPD aberrations can be viewed.

OPTICAL RESEARCH ASSOCIATES

Material Info: PLASTI CPRV

- To access a database of polymer optical materials, run the PLASTICPRV.SEQ macro

1st ORDER ANALYSIS: BFLPLOT

- BFLPLOT.SEQ plots the longitudinal focus shift as a function of wavelength
- Very useful for color aberration studies

$1^{\text {st }}$ ORDER ANALYSIS: FL \& NODP

- FL.SEQ computes and lists the EFL for the components in a lens

				-	
in "C:\CODEV970\macro\fl.seq"				\checkmark	
Double Gauss - U.S. Patent 2,532,751					
Elem	Surfs	Focal Length	Diameter		
1	1-2	130.476376	55.9923		
2	3-5	-173.912642	48.3598		
3	7-9	-926.521622	38.0989		
4	10-11	92.224052	40.8518		
1				$\stackrel{\rightharpoonup}{ }$	
\| 14	${ }^{\text {d }}$ \|	Text/			

- NODP.SEQ computes and lists the Nodal Point positions for the designated surface range

OPTICAL RESEARCH ASSOCIATES

DI FFRACTION ANALYSIS: MTFVSFLD

- MTFVSFLD.SEQ creates a plot of the MTF as a function of field

UTI LITIES: QUI CKVIEW

- QUICKVIEW.SEQ provides a simple one tab dialog with access to the most frequently utilized Display > View Lens ... choices

UTI LI TIES: RSI VIEW

- RSIVIEW.SEQ traces a single ray and displays that ray on a view lens plot

I nterface Customization

- Macros that you like can be added to a Menu and/or toolbar button (Tools > Customize):

After clicking Apply, drag the selected button up to the toolbar Hovering the mouse over the button will show the macro tooltip

OPTICAL RESEARCH ASSOCIATES

I nterface Customization

- Customize status bar with EFL, BFL, F/\#, reduction ratio

- Common menu commands can be accessed via these icons. Just click and drag to the

CODE V ODDS-\&-ENDS

- Apertures and Vignetting
- CODE V errors and warnings
- Commands vs. GUI
- CODE V file types
- Other CODE V strengths

Odds \& Ends: Apertures and Vignetting

- For accurate results in any optical design software, it is very important to understand how apertures are used
- CODE V (and some other programs) also use the concept of Vignetting factors, whose use should be understood
- Review the Apertures and Vignetting section from the I ntroduction to CODE V training
- www.oraservice.com > Training Course Notes > Introduction

Odds \& Ends: Warnings/ Errors

- During the execution of CODE V, you may encounter errors, and you will encounter warnings.
- Errors and warnings appear in:
- Command window
- Error log window

- Info tab of tabbed output windows
- Errors stop execution, and action must be taken to solve the problem
- Warnings are informational, and you should evaluate if they are important for your system

Odds \& Ends: Commands vs. GUI

- All GUI operations echo commands to command window.

Change thickness of surface 5 in the LDM, the equivalent command is printed in the command window.

Typing this expression at the CODE V> prompt would do the same

- Use commands and macros to save time

Odds \& Ends: Commands vs. GUI

- To run a macro (also called a sequence file):
- Do some action in the GUI
- At the command window, collapse text to see the commands that were generated \qquad
- Open CV editor,
- CODE $\vee>$ edit test
- Add commands to the text file
- Hit CTRL+S (saves as test.seq)
- Run the macro,
- CODE $\vee>$ tow in test

Data displayed in a tabbed output window. Navigate with the TAB key.

Keyboard shortcuts:
CTRL+L LDM
CTRL+SPACE Command window
UP ARROW
Recall Last command

Odds \& Ends: Commands vs. GUI

- Ex. - Run multiple Analyses at once
- Restore cassrc.len
- Run Display > View Lens
- Run Analysis > Geometrical > Spot Diagram
- Run Analysis > Diagnostics > Ray Aberration Curves
- Run Analysis > Diffraction > MTF
- CODE V > edit plots
- CODE V > tow in plots
- Re-execute as desired to see system quality
plots.seq

wnd ope 4	! Open 4 plot windows
wnd sca p1..4.5	! Set scale to 50\%
vie;fan 0 5;go	! 2D layout
rim;go	! Ray aberration curves
fie;lsa;go	! Field curves
mtf;go	MTF plot

Odds \& Ends: Commands vs. GUI

- Ex. - Iterate a lens parameter
- Restore singlet.len
- Change stop surface to an asphere
- Under Surface Properties, change conic constant to -0.1
- Run Analysis > Diagnostics > OPD Curves
- CODE V > edit iterate
- CODE V > tow in iterate
- Re-execute and change increment as needed to minimize aberration

```
^inc == -.1 ! Variable for increment
k sl (k sl)+^inc ! Set conic constant for surface 1 equal to the
current value + the increment
Run ray aberration curves
```


Odds \& Ends: Commands vs. GUI

- Ex. - Loop through a lens parameter
loop.seq

Odds \& Ends: Commands vs. GUI

- Ex. - Use database items to calculate desired data
- CODE V > in calc_sf 1 Shape factor $X=\frac{r_{2}+r_{1}}{r_{2}-r_{1}}$
calc_sf.seq
$\wedge_{s}==\# 1 \longleftarrow$! Variable for surface \#, uses input parameter
! Store db items for ROC values
${ }^{\wedge} r 1==\left(r d y s^{\wedge} s\right)$
${ }^{\wedge}$ r2 $==\left(r d y s^{\wedge} s+1\right)$
$\wedge_{\mathrm{sf}}==\left(\wedge_{r 1}+\wedge_{r 2}\right) /\left(\wedge_{r 2}-\wedge_{r} 1\right) \quad$! Eqn. for shape factor
wri 'Shape factor' ^sf ! Print results

Odds \& Ends: Commands vs. GUI

- Ex. - Save data to buffer and plot results
- Restore dbgauss.len
bufplotTRA.seq

```
Out n ! turn off output for faster execution
ver n ! turn off echoing of commands
buf del b1 ! delete buffer 1 contents
* count == 0 ! variable to count # of points in loop
! loop variable ^w from 400 to 700, in steps of 10
for ^w 400 700 10
    *count == ^count + 1
    wl ^w ! define a single wavelength for the system
    buf del bo ! delete the default buffer for recording
    buf y ! turn on recording of data into b0
    tra;go ! run transmission option
    buf n ! turn off recording of data into bo
```


Odds \& Ends: Commands vs. GUI

- Ex. - Save data to buffer and plot results (bufplot.seq cont'd)

```
    buf fnd bo 'Ave Transmittance' ! find location of desired data
    ^tra == (buf.num bo ic jc+1) ! save data from b0, current row and
col+1
    buf put b1 i^count ^w ^tra ! put data into b1, at row ^count
end for
out y ! turn on output
ver y ! turn on echoing of commands
buf lis b1 ! list contents of b1
! user graphic
ugr
tit 'Transmission Plot' ! plot title
xla 'Wavelength (nm)' ! x-axis label
yla 'Avg. Transmittance' ! y-axis label
dpo 'Tran. data' ! define data set
    spl pnt ! spline fit curve and show data points
    bim b1 1 1 1 2 ^count ! import data from b1
end
```


Odds \& Ends: Commands vs. GUI

- Common commands

Restore a lens
Run a macro/sequence
Save a lens
Save a lens as a sequence file Change working directory

Show system specifications Set pupil
entrance pupil diameter
image f/number
image numerical aperture
object numerical aperture
Set wavelengths
Set field points
object angle
object height
real image height
Paraxial image solve

Enter surface info
Set radius
Set thickness
Define glass

Evaluate an expression Write multiple data

RES CV_LENS:COOKE1
IN TEST
SAV TEMP
WRL TEMP
CD

SPC

EPD 20
FNO 2.5
NA . 2
NAO . 2
WL 656587486

YAN 035
YOB $0 \quad 5 \quad 7$

PIM

S1 -50 5 NBK7
RDY S1 -50 (RDY S1)
THI S1 5
(THI SI)
GL1 S1 NBK7

EVA 2*(THI SI)
WRI "S1" (RDY S1) (THI

Odds \& Ends: Commands vs. GUI

```
List buffer contents
Change separator between columns
Delete buffer contents
Turn on/off buffer (b0) recording
Query buffers
Export buffer to a text file
Import text file to a buffer
Put data into buffer
    - use current row/col
    relative to current row/col
Move pointer within a buffer
Find data in a buffer
Return number from a buffer
Return string from a buffer
Return all data from a row
```

Buf lis b1
Buf sep "|"
Buf del bl
Buf $y \mid n$
Buf?
Buf exp b1 data.xls
BUF IMP B1 DATA. DAT
BUF PUT B1 I2 J3 3.14
BUF PUT B1 IC JC 3.14
BUF PUT B1 IC+1 JC+4 3.14
BUF MOV B1 I2 J5
BUF FND BO "Ave Transmittance:"
(BUF.NUM B1 IC JC+1) (BUF.STR B1 IC JC) BUF.TXT B1 IC)

- For more commands, see p. 25-1 of the CODE V reference manual (pdf file)
- A list of all database items is found on p. 25B-1
- Also, the prompting guide is a good quick reference for syntax (p. 157)

OPTICAL RESEARCH ASSOCIATES

Odds \& Ends: Files

- CODE V uses several files of the form filename.ext, where the .ext is descriptive of the type of file:
- .LEN files are binary with all the LDM information
- . ENV files are binary with all the GUI windows associated with a lens that is saved from the GUI
- .SEQ files are ASCII files that contain CODE V commands and/or CODE V Macro-Plus
- .INT files are ASCII files that typically contain interferogram information, but can be used for other purposes
- .MUL files are ASCII files that contain multi-layer coating information
- . LIS files are ASCII text output files
- .PLT files are ASCII line plot files (HP plotting format)
- .RAS files are ASCII raster plot files
- .V3D files are ASCII V3D plot files

Odds \& Ends: Files

- CODE V supports file versioning, unless there is a space in the name
- e.g. save a file 5 times \qquad testlens.len testlens.4.Ien testlens.3.len testlens.2.Ien
 testlens.1.len (oldest)
- CODE V supports click and drag to open files

Odds \& Ends: Strengths

- Other CODE V features to be aware of:
- Global Synthesis®, a power global optimization algorithm
- TOR, an accurate and extremely fast tolerance analysis method for MTF and RMS wavefront error
- Much faster than Monte Carlo methods
- The Field Map (FMA) option to plot various metrics across the 2D field (including Zernike wavefront coefficients)
- Based on Dr. Kevin Thompson's and Dr. John Rogers' U of A doctoral work
- Ideal for designing tilted \& decentered systems
- 2007 user group presentation, "Effective Use of the CODE V Field Map Option (FMA)" (www.oraservice.com)

Odds \& Ends: Strengths

- Other CODE V features to be aware of:
- A COM API supporting CODE V interfaces with Excel, MATLAB, and other applications
- 2D Image Simulation (IMS), the ability to simulate the appearance of an input .BMP object as imaged by the CODE V lens system

OPTICAL RESEARCH ASSOCIATES

Odds \& Ends: I MS Ex. (latcolor)

- Commands

```
! Use aberration macro to setup lens module with 0.1 wvs spherical
in "c:\CODEV101\macro\aberrationgenerator.seq" 0 0 0.1 0 0 0 0
WL 656.3 587.6 486.1 ! add WL's
MCO S2 C7 3 ! 3 wvs W2 lateral color
MCO S2 C8 10 ! 10 wvs W3 lateral color
spo;go ! Spot diagram
ims;tgr 256; CME RGB; PDP YES; GO ! Image simulation
```


Odds \& Ends: I MS Ex. (fisheye)

- Restore Fisheye
- Use field angles 0, 77 degrees
- Analysis > Diffraction > Point Spread Function
- "Computation", must use FFT Grid Size > 64
- Analysis > Diffraction > 2D Image Simulation
- "Object Definition", File grid400.bmp
- "PSF Controls", choose FFT Grid Size
- "Color Controls", set to RGB if color image
- "Output Controls", select Display PSF Map

IMS Simulation

Odds \& Ends: I MS Ex. (ripple)

- Restore singlet
- Change field angles to 0, 0.2 degrees
- Change S1 to user defined surface, name is cv_uds_sinusoid
- Conic constant -0.54
- Sinusoid wavelength 0.625
- Sinusoid amplitude 8.5e-5

Odds \& Ends: I MS Ex. (ripple)

- IMS results

I MS Simulation

- 2007 User Group presentation - "Slope Error Tolerances for Optical Surfaces", Dr. J. Rogers, www.oraservice.com

Odds \& Ends: I MS Ex. (ripple)

- Commands

```
RES CV_LENS:SINGLET
YAN 0 . 2
UDS S1
UMR UDS S1 CV_UDS_SINUSOID ; UMF UDS
S1
UCO S1 C1 -0.54
UCO S1 C7 0.625
UCO S1 C6 8.5E-005
MTF;GEO NO;NRD 128;PLO FRE Y;GO
```

```
IMS
OBJ
C:\CODEV101\IMAGE\USAF1951_460KP.BMP
TGR 512
NRD 128
SYM ROT
PDP YES
GO
```


Conclusions

- This covers a portion of the CODE V capabilities but should be enough for most of your classwork
- Be sure to submit your best CODE V project to our annual Student Design Contest (www.opticalres.com)
- \$4,000 in prizes awarded each year

