

center for cognitive computing systems research

Codesigning Cognitive Computing Systems and Applications

Wen-mei Hwu, Co-Director with Jinjun Xiong (IBM) on behalf of the entire C³SR team University of Illinois at Urbana-Champaign

November 2, 2017

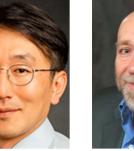
Cognitive Computing – the C3SR View

 A cognitive computing application fuses vast, unstructured data and vast human knowledge base to extend human capabilities by solving problems, making actionable recommendations, and producing customized learning experiences

C3SR Vision

- The rise of cognitive computing has created new opportunities to rethink all the three layers of computing systems applications, software, and hardware.
- Dramatic enhancement in the efficacy, efficiency and variety of cognitive computing applications can be achieved through dramatic enhancement in the programmability, throughput, latency, capacity, and affinity of computing systems.

C³SR faculties & students (Est. 9/2016)

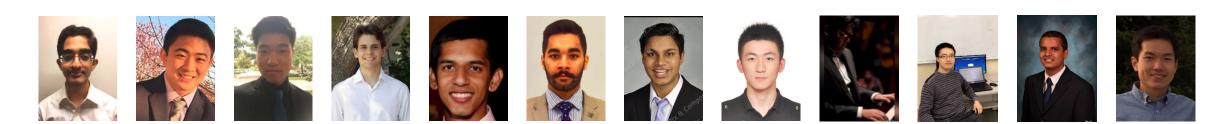


Suma Bhat

Julia Hockenmaier Wen-mei Hwu

Nam Sung Kim

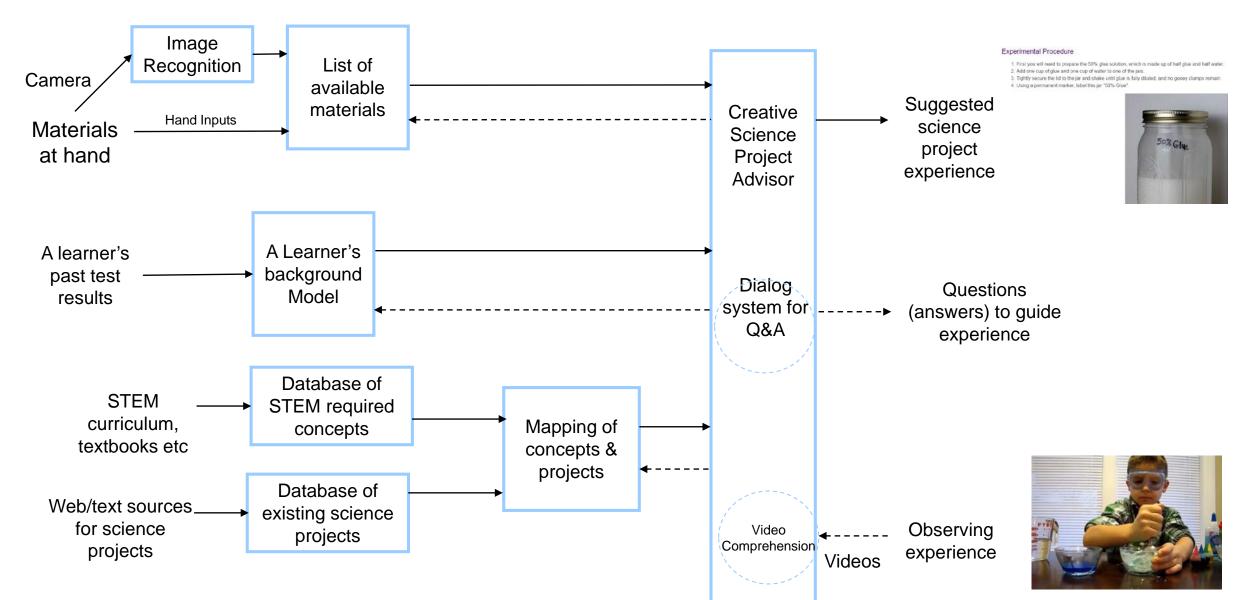
Dan Roth



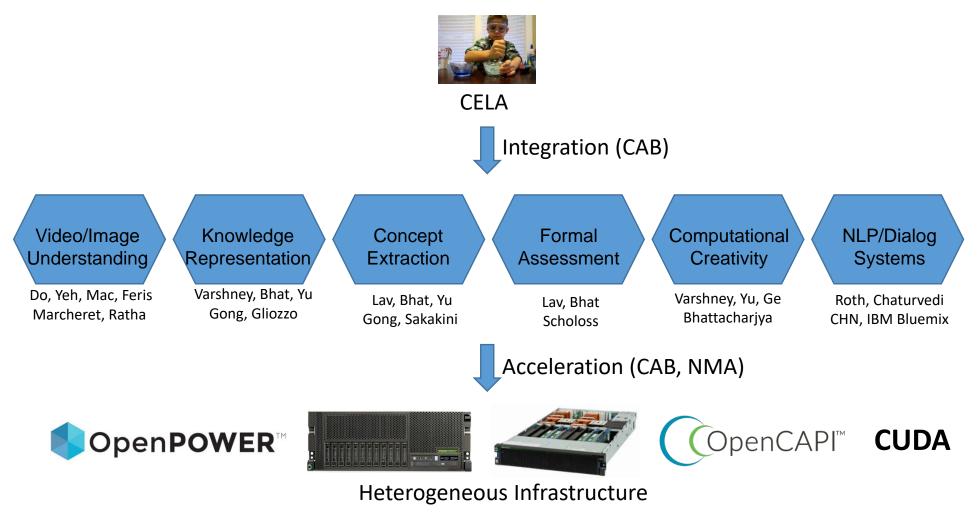
Rakesh Nagi

Lav Varshney

The Three Pillars of C3SR:


- Creative experiential learning advisor (CELA) as a grand challenge use case for cognitive capabilities
- Cognitive application builder (CAB) to make the underlying heterogeneous infrastructure easy to consume for cognitive application developers
- Cognitive systems innovations (Erudite) for workload acceleration, including Near Memory Acceleration (NMA)

A New Modality of Application Development


- Cognitive applications demand functionalities that we have failed to program
 - Computer vision, natural language dialogs, stock trading, fraud detection, ...
- Use labeled data data that come with the input values and their desired output values – to learn what the logic should be
 - Capture each labeled data item by adjusting the program logic
 - Learn by example!
- This introduces a new modality of application development
 - Training, Testing, Integration, Profiling, Debugging, etc.

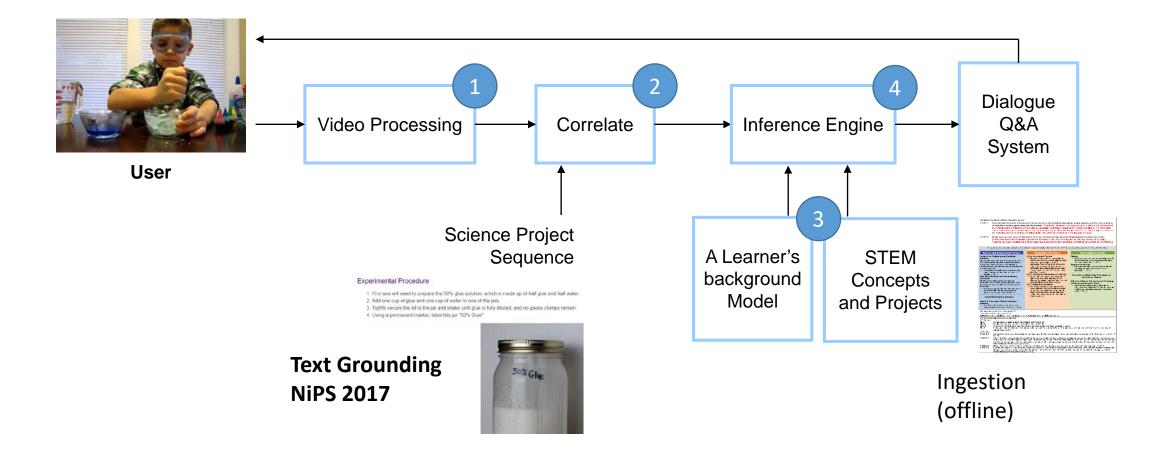
Application Driver

CELA: personalized education via multi-modality data comprehension and computational creativity

Decomposition of CELA's Research Challenges

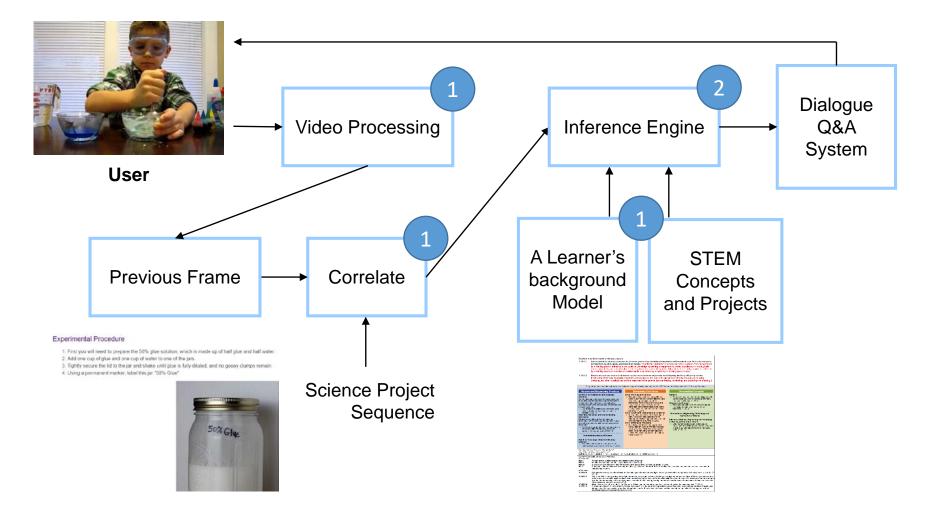
 Requires a tool to integrate core services that are optimized for the underlying heterogeneous infrastructure

Cognitive Application Builder


A system-level challenge

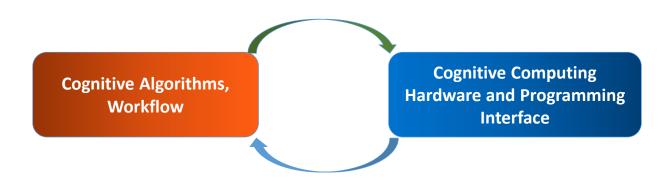
Workflow description Innovative AI techniques, Data, Models, Frameworks

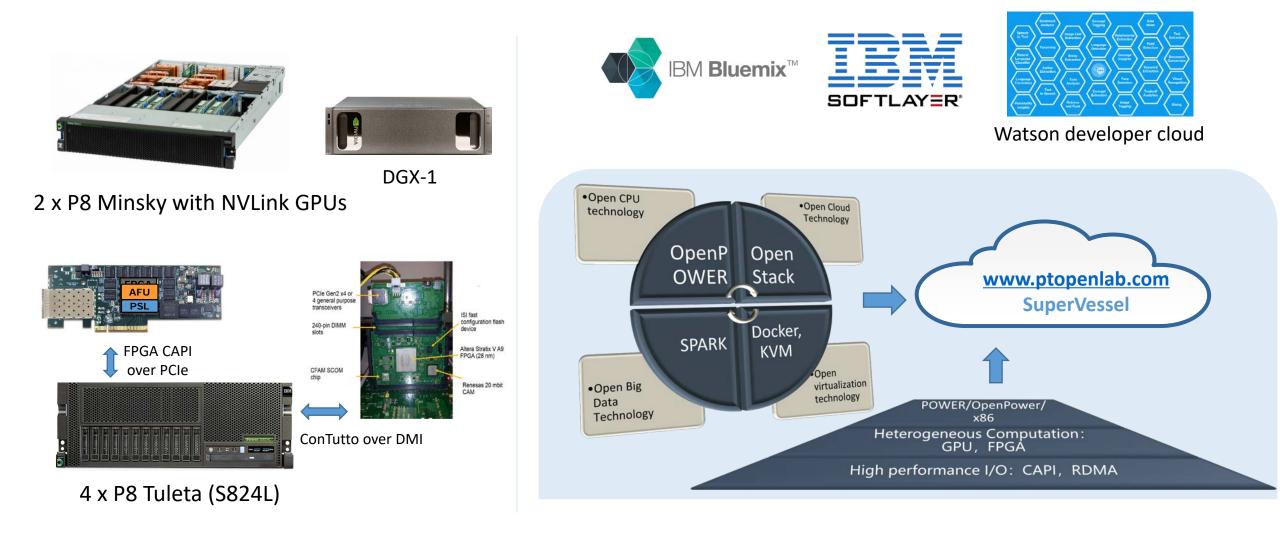
High-performance, scalable, robust applications


- CAB: A language, compiler, and runtime for easy development of cognitive applications
 - Software synthesis to exploit accelerators and efficient communication
 - Introspection for debugging and performance evaluation
 - Workflow profiling, optimization and orchestration for system-level performance
 - Decentralized application architecture for scalability, composability, testing, and development

CELA as a Driving Use Case for CAB

CAB simplifies component connection, workflow description, model training/selection, and iterative development


CELA as a Driving Use Case for CAB

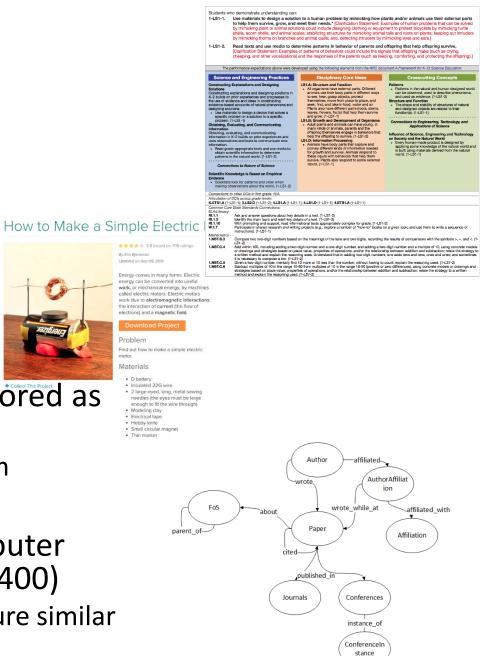

• CAB will automatically transform workflows for high-performance execution

C3SR Approach to Cognitive Computing System Design

- To develop scalable cognitive applications by co-designing
 - advanced methods and algorithms for cognitive computation, and
 - optimized heterogeneous computing systems for these workloads.
- Generations of complete prototype systems
 - Initial existing methods, algorithms and workflows running on existing hardware
 - **Refined** innovative methods, algorithms and workflows enabled by the next generation memory/storage technology and accelerators
 - Novel ambitious methods, algorithms and workflows empowered by new memory and near memory/near IO acceleration technologies.

Initial Experimental Heterogeneous Infrastructure

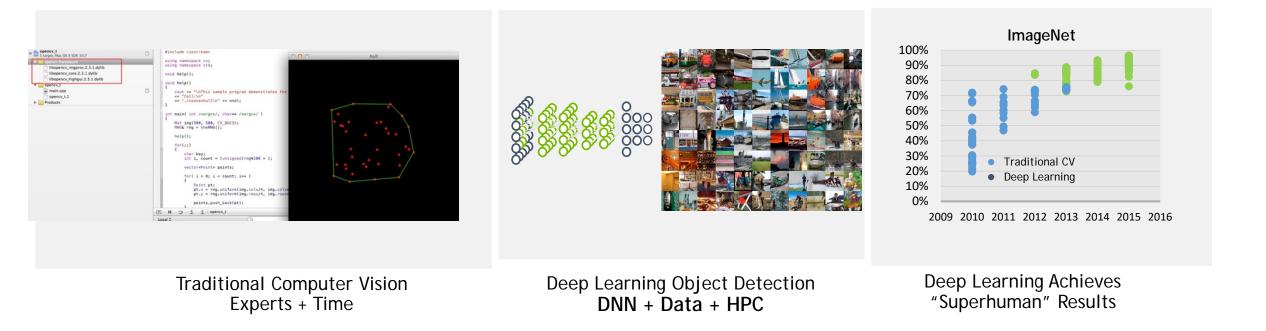
Great support from Brad McCredie


• A dedicated program manager and team (Ben Kreuz, JT Kellingon, Adam McPadden, Dean Sciacca, Jonanthan Dement)

Selected center progress highlights

- Curated datasets
- The CarML system for model development and deployment
- Workload acceleration
- The Erudite NMA system

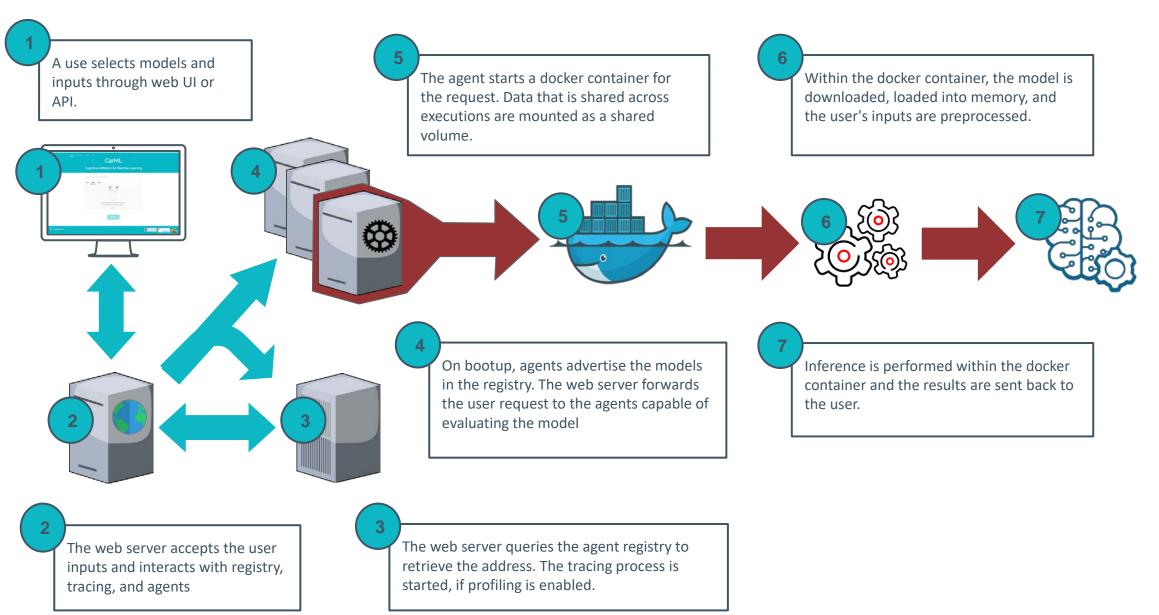
Curated Datasets


- Extracted STEM concept dependency from next generation science standard that includes
 - Performance Expectations
 - Science and Engineering Practices
 - Disciplinary Core Ideas
 - Crosscutting Concepts
 - Connections
- Extracted science projects from websites and stored as a structured data
 - Extracted all 1188 projects from ScienceBuddies.com
- Extracted DBLP bibliographic database for computer science and MICRO 50 years of publications (~1400)
 - All stored in a graph database (~100G) with a structure similar to the Microsoft Academic Graph

Selected center progress highlights

- Curated datasets
- The CarML system for model development and deployment
- Workload acceleration
- The Erudite NMA system

Deep Learning Revolution - a humble beginning in 2010



2M training images

CarML – Cognitive Artifacts for Machine Learning

- CarML.org
- An open source distributed platform to easily deploy and benchmark machine learning frameworks and models across hardware architectures, through a common interface.
 - An experimentation platform for ML users
 - A deployment platform for ML developers
 - A benchmarking platform for systems architects

CarML.org as a Web Service

Model Catalog

- Repository contains more than 100 DL models
- Support for Tensorflow, Caffe, Caffe2, and MXNet
 - PyTorch, CNTK, Paddle, ... planned
- Versioned models and frameworks
 - Allows to experiment with custom DL layers

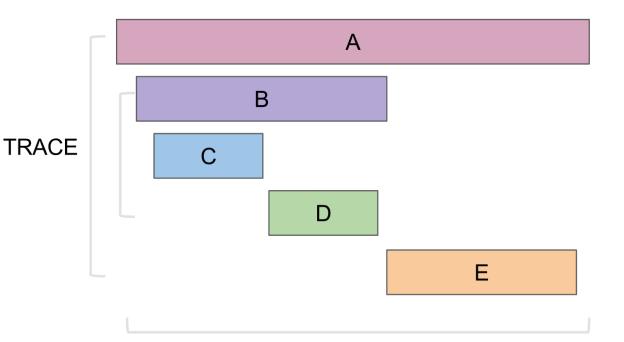
Dataset Catalog

• Repository contains common DL datasets

- CIFAR 10/100
- MNIST
- ImageNet
-
- Allows one to compare DL models on validation datasets

Machine Catalog

- X86 and Power8 Systems
 - CPU only mode and/or GPU mode
- Planned to have ARM cores and integration with simulators


Tracing and Monitoring Options

- Integration with PAPI
- Integration with Perf Events
- Integration with NVIDIA's CUPTI
- Integration with OSX's Instruments

Tracing

Terminology

A **Trace** is a directed acyclic graph (DAG) of **Spans** Spans can reference one another.

time

SPANS

CarML: api_request

Trace Start: September 25, 2017 2:21 PM Duration: 1.142s Services: 4 Depth: 6 Total Spans: 28

0.228s		0.457s	0.685s	0.914s	1.14
Span Name	Timeline	285.49ms	570.98ms	856.47ms	1.14
CarML apl_request				819.46ms	
CarML /carml.org.dlframework.Predict/Open	e			800.83ms	
Carml.org.dlframework.Predict /carml.org.dlframework.Predict/Open				794.7ms	
mxnet Load				794.28ms	
mxnet Download	c		458.92ms		
mxnet LoadPredictor				333.59ms	
G CarML api_request				6	
CarML /carmLorg.diframework.Predict/URLs					
Carml.org.dlframework.Predict /carml.org.dlframework.Predict/U					
mxnet ReadURL				41.62ms	
mxnet ReadImage				🛑 11.26ms	
mxnet Decodelmage				💼 10.66ms	
mxnet ResizeImage				0.11ms	
mxnet Preprocessimage				§ 2.95ms	
mxnet Predict					
go-mxnet WaitForVar				0.02ms	
go-mxnet DeleteVariable				25.72ms	
go-mxnet DeleteVariable				14.34ms	
go-mxnet Convolution, Activation, Pooling				16.15ms	3
go-mxnet Convolution, Activation, Pooling				14.50	6ms
go-mxnet Convolution,Activation				· 5.2	2ms
go-mxnet Convolution,Activation				5.	77ms
go-mxnet Convolution, Activation, Pooling				. 4	.32ms
go-mxnet FullyConnected,Activation,Drop					68.3n
go-mxnet FullyConnected,Activation,Drop					
go-mxnet FullyConnected					
go-mxnet SoftmaxOutput					
go-mxnet WaitForVar					

View Options

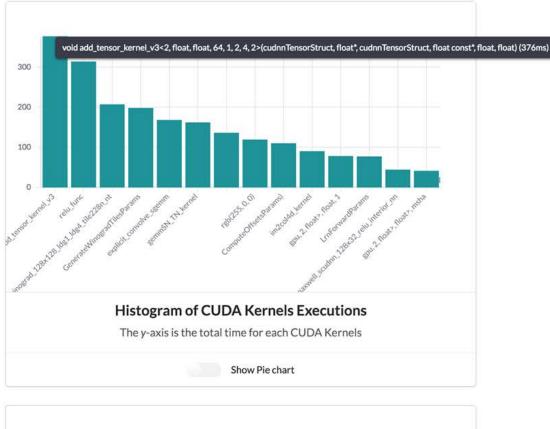
Observers

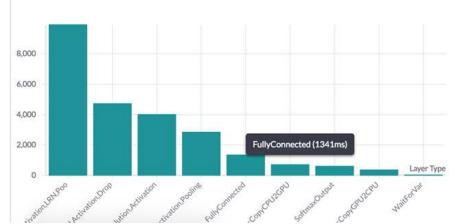
- Subscribe on StartSpan / EndSpan events
- Capture hardware counters for each event
 - PAPI
 - NVML
 - Perf

CUPTI

- Capture CUDA runtime & driver events
- Integrated with the CarML tracer
 - Implemented in Go
 - Declare CUPTI callback function in Go
 - Pass CUPI Go handle into C code
 - Events to capture are configurable

CUPTI

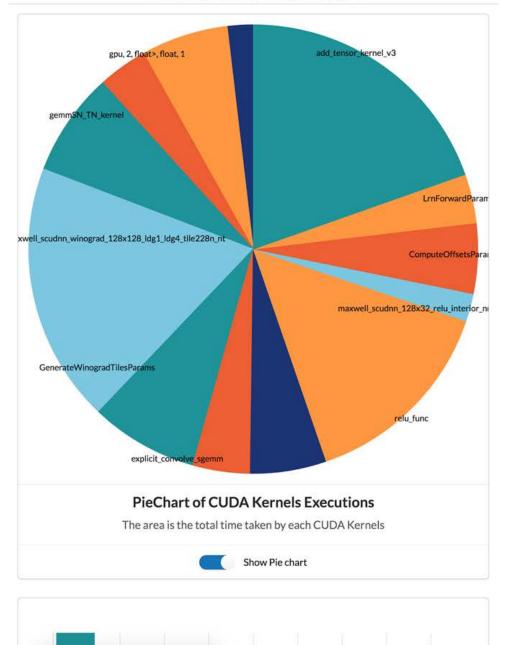

func callback(userData unsafe.Pointer, domain0 C.CUpti_CallbackDomain, cbid0 C. handle := (*CUPTI)(unsafe.Pointer(userData)) if handle == nil { log.Debug("expecting a cupti handle, but got nil") return domain := types.CUpti_CallbackDomain(domain0) switch domain { case types.CUPTI_CB_DOMAIN_DRIVER_API: cbid := types.CUpti_driver_api_trace_cbid(cbid0) switch cbid { case types.CUPTI_DRIVER_TRACE_CBID_cuLaunchKernel: handle.onCULaunchKernel(domain, cbid, cbInfo) return case types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyHtoD_v2, types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoH_v2, types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoD_v2, types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyHtoDAsync_v2, types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoHAsync_v2, types.CUPTI_DRIVER_TRACE_CBID_cuMemcpyDtoDAsync_v2: handle.onCudaMemCopyDevice(domain, cbid, cbInfo) return default: log.WithField("cbid", cbid.String()). WithField("function_name", demangleName(cbInfo.functionName)). Debug("skipping runtime call") return 1 case types.CUPTI_CB_DOMAIN_RUNTIME_API: cbid := types.CUPTI_RUNTIME_TRACE_CBID(cbid0) switch cbid { case types.CUPTI_RUNTIME_TRACE_CBID_cudaDeviceSynchronize_v3020, types.CUPTI_RUNTIME_TRACE_CBID_cudaStreamSynchronize_v3020: handle.onCudaDeviceSynchronize(domain, cbid, cbInfo) return case types.CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020, types.CUPTI_RUNTIME_TRACE_CBID_cudaMemcpyAsync_v3020: handle.onCudaMemCopy(domain, cbid, cbInfo) return case types.CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020: handle.onCudaLaunch(domain, cbid, cbInfo) return case types.CUPTI_RUNTIME_TRACE_CBID_cudaThreadSynchronize_v3020: handle.onCudaSynchronize(domain, cbid, cbInfo) return case types.CUPTI_RUNTIME_TRACE_CBID_cudaConfigureCall_v3020: handle.onCudaConfigureCall(domain, cbid, cbInfo) return


Current Work

Filter files

File	Size	Last Modified
🗅 caffe2_out		
➢ mxnet_out		
BVLC-AlexNet-v1.0		
mxnet_0.11.0_BVLC-	162	3 hours
AlexNet_1.0_1	kB	ago
mxnet_0.11.0_BVLC-	169	3 hours
AlexNet_1.0_2	kB	ago
mxnet_0.11.0_BVLC-	182	3 hours
AlexNet_1.0_4	kB	ago
mxnet_0.11.0_BVLC-	189	3 hours
AlexNet_1.0_8	kB	ago
mxnet_0.11.0_BVLC-	148	3 hours
AlexNet_1.0_16	kB	ago
mxnet_0.11.0_BVLC-	259	3 hours
AlexNet_1.0_32	kB	ago
mxnet_0.11.0_BVLC-	320	3 hours
AlexNet_1.0_64	kB	ago
mxnet_0.11.0_BVLC-	455	3 hours
AlexNet_1.0_128	kB	ago
mxnet_0.11.0_BVLC-	700	3 hours
AlexNet_1.0_256	kB	ago
mxnet_0.11.0_BVLC-	1.16	3 hours
AlexNet_1.0_512	MB	ago
BVLC-GoogLeNet-v1.0		
mxnet_0.11.0_BVLC-	851	3 hours
GoogLeNet_1.0_1	kB	ago
mxnet_0.11.0_BVLC-	860	3 hours
GoogLeNet_1.0_2	kB	ago
mxnet_0.11.0_BVLC-	864	3 hours
GoogLeNet_1.0_4	kB	ago

mxnet/BVLC-AlexNet::2



Filter files

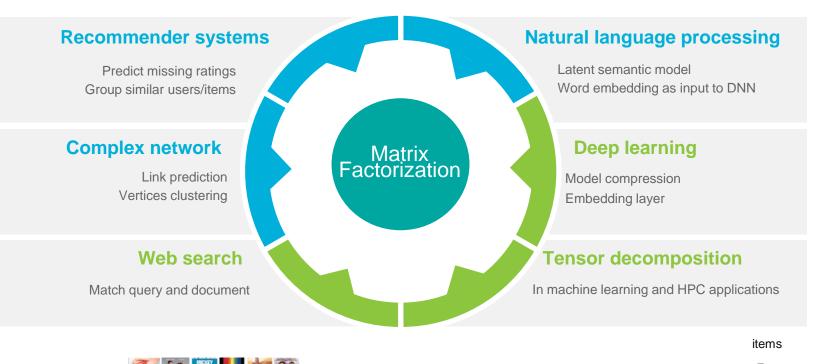
File	Size	Last Modified
🗀 caffe2_out		
➢ mxnet_out		
BVLC-AlexNet-v1.0		
mxnet_0.11.0_BVLC-	162	3 hours
AlexNet_1.0_1	kB	ago
mxnet_0.11.0_BVLC-	169	3 hours
AlexNet_1.0_2	kB	ago
mxnet_0.11.0_BVLC-	182	3 hours
AlexNet_1.0_4	kB	ago
mxnet_0.11.0_BVLC-	189	3 hours
AlexNet_1.0_8	kB	ago
mxnet_0.11.0_BVLC-	148	3 hours
AlexNet_1.0_16	kB	ago
mxnet_0.11.0_BVLC-	259	3 hours
AlexNet_1.0_32	kB	ago
mxnet_0.11.0_BVLC-	320	3 hours
AlexNet_1.0_64	kB	ago
mxnet_0.11.0_BVLC-	455	3 hours
AlexNet_1.0_128	kB	ago
mxnet_0.11.0_BVLC-	700	3 hours
AlexNet_1.0_256	kB	ago
mxnet_0.11.0_BVLC-	1.16	3 hours
AlexNet_1.0_512	MB	ago
BVLC-GoogLeNet-v1.0		
mxnet_0.11.0_BVLC-	851	3 hours
GoogLeNet_1.0_1	kB	ago
mxnet_0.11.0_BVLC-	860	3 hours
GoogLeNet_1.0_2	kB	ago
mxnet_0.11.0_BVLC-	864	3 hours
GoogLeNet_1.0_4	kB	ago
mxnet_0.11.0_BVLC-	893	3 hours

mxnet/BVLC-AlexNet::2

Model Accuracy on different machines (CPU)

-m mxnet-l	caffe-m	caffe-l	caffe2-m	caffe2-l
58 0.6764	0.4268	0.6764	0.4268	0.6764
34 0.9991	0.9984	0.9991	0.9968	0.9991
34 0.8501	0.7999	0.7999	0.7999	0.9484
	0.0045	0.0045	0.0045	0.9108
	58 0.6764	58 0.6764 0.4268 34 0.9991 0.9984 34 0.8501 0.7999 ver	58 0.6764 0.4268 0.6764 34 0.9991 0.9984 0.9991 34 0.8501 0.7999 0.7999 ver	58 0.6764 0.4268 0.6764 0.4268 34 0.9991 0.9984 0.9991 0.9968 34 0.8501 0.7999 0.79999 0.79999 ver

m: minsky I- mac img: cheeseburger


Selected center progress highlights

- Curated datasets
- The CarML System for Model Development and Deployment
- Workload acceleration
- The Erudite NMA system

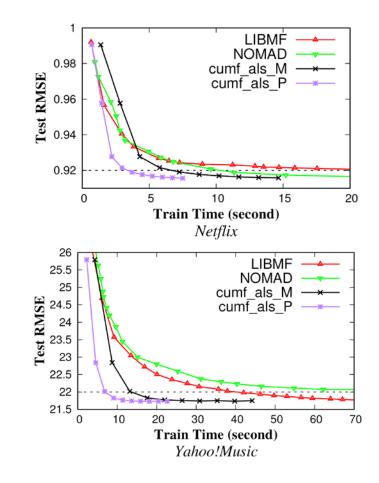
Workload acceleration research at C3SR

- Focus on impactful cognitive workloads for acceleration
 - Matrix factorization on GPU
 - Long-term Recurrent Convolutional Network acceleration
 - ResNet inference acceleration
 - Neuron Machine Translation acceleration
 - DNN inference acceleration
 - Graph analytic acceleration
- In discussion with other CHN centers to collect performance critical cognitive workloads
- Plan to deliver a set of cognitive benchmarks optimized for OpenPOWER

Matrix factorization: one of key workloads

 Θ^T Х Users Ratings (R) 3 2 $\theta_{\rm v}$ 0 3 5 1 users ? 4 2 ≈ R ε 3 3 1 4 \mathbf{X}_{u}^{T} 2 4 3 1 3 5 NETFLIX \rightarrow n items amazon.com Quora Music Spotify

cuMF acceleration


• cuMF formulation: factorize matrix R into

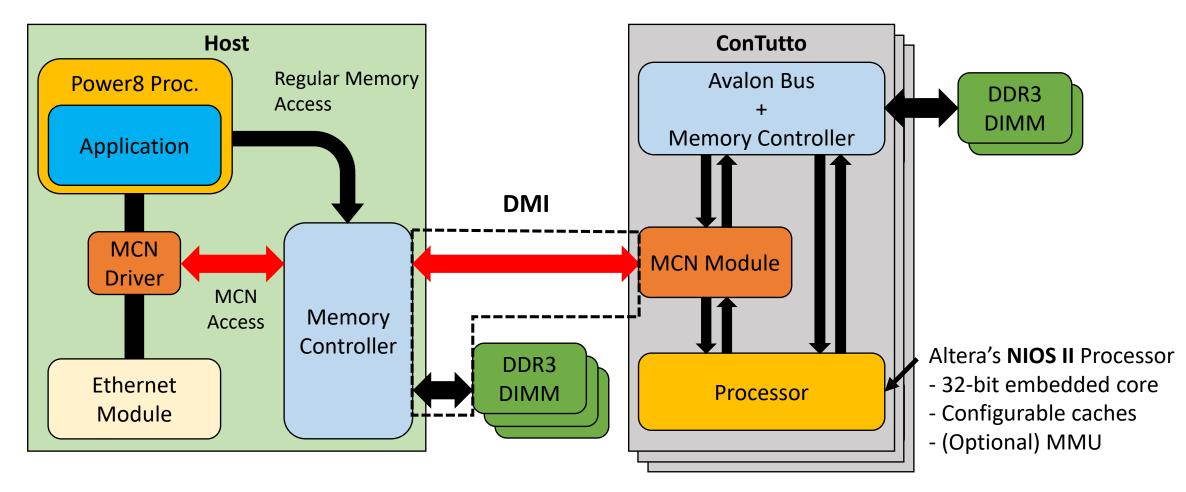
 $R \approx X \cdot \Theta^T$

• while minimizing the empirical lost

$$J = \sum_{u,v} (r_{uv} - \boldsymbol{x}_u^T \boldsymbol{\theta}_v)^2 + \lambda (\sum_u n_{x_u} ||\boldsymbol{x}_u||^2 + \sum_v n_{\theta_v} ||\boldsymbol{\theta}_v||^2)$$

- Connect cuMF to Spark MLlib via JNI
- cuMF_ALS @4 Maxwell (\$2.5/hour)
 ≈ 10x speedup over SparkALS @50 nodes
 ≈ 1% of SparkALS's cost (\$0.53/hour/node)
- Open source @ http://github.com/cuMF/
- Demoed at SC'16 and GTC'16 on Minsky
- Presented to Jen-Hsun Huang on Feb 1, 2017

- cuMF_ALS w/ FP16 on Maxwell and Pascal
- LIBMF: 1 CPU w/ 40 threads
- NOMAD
 - 32 nodes for Netflix and Yahoo
- 2-10x as fast


Selected center progress highlights

- Curated datasets
- The CarML System for Model Development and Deployment
- Workload acceleration
- The Erudite NMA system

Key Erudite Features

- Persistent objects for main stream languages (C++, Java, Python, etc.)
- Storage-Class Memory (Flash RAM).
- Near Memory Acceleration and memory-channel networking
- API for collaborative CPU/GPU/NMA execution

High-level Diagram of Current MCN Implementation

 Host requires a new kernel driver to transform TCP/IP packet to memory access and vice versa.

- Creative experiential learning advisor (CELA) as a grand challenge use case for cognitive capabilities
- Cognitive application builder (CAB) to make the underlying heterogeneous infrastructure easy to consume for cognitive application developers
- Cognitive systems innovations (Erudite) for workload acceleration, including Near Memory Acceleration (NMA)