
Revised: 20021021

CodeWarrior™
Development Tools

Motorola

® DSP56800
Embedded Systems

Targeting Manual

CWDSP56800TM/D
REV: 5
02/2002

Metrowerks, the Metrowerks logo, and CodeWarrior are registered trademarks of
Metrowerks Corp. in the US and/or other countries. All other tradenames and
trademarks are the property of their respective owners.
© Copyright. 2002. Metrowerks Corp. ALL RIGHTS RESERVED.
The reproduction and use of this document and related materials are governed by a
license agreement between Metrowerks Corp. and its licensee. Consult that license
agreement before use or reproduction of any portion of this document. If you do not
have a copy of the license agreement, contact your Metrowerks representative or call
800-377-5416.
Metrowerks reserves the right to make changes to any product described or referred to
in this document without further notice. Metrowerks makes no warranty, representation
or guarantee regarding the merchantability or fitness of its products for any particular
purpose, nor does Metrowerks assume any liability arising out of the application or use
of any product described herein and specifically disclaims any and all liability.

Metrowerks software is not authorized for and has not been designed, tested,
manufactured, or intended for use in developing applications where the failure,
malfunction, or any inaccuracy of the application carries a risk of death, serious
bodily injury, or damage to tangible property, including, but not limited to, use in
factory control systems, medical devices or facilities, nuclear facilities, aircraft or
automobile navigation or communication, emergency systems, or other applications
with a similar degree of potential hazard.

Documentation stored on electronic media may be printed for non-commercial personal
use only, further to the license agreement related to the product associated with the
documentation. Subject to the foregoing non-commercial personal use, no portion of this
documentation may be reproduced or transmitted in any form or by any means,
electronic or mechanical, without prior written permission from Metrowerks.
USE OF ALL SOFTWARE, DOCUMENTATION AND RELATED MATERIALS ARE
SUBJECT TO THE METROWERKS END USER LICENSE AGREEMENT FOR SUCH
PRODUCT.

How to Contact Metrowerks:

Corporate Headquarters

Metrowerks Corporation
9801 Metric Blvd.
Austin, TX 78758
U.S.A.

World Wide Web

http://www.metrowerks.com

Ordering & Technical Support

Voice: (800) 377-5416
Fax: (512) 997-4901

http://www.metrowerks.com/
http://www.metrowerks.com/games

Targeting DSP56800

DSP–3

Table of Contents

1 Introduction 9

The CodeWarrior IDE and Its Documentation 9
New In This Release 10
References . 11

2 Getting Started 13

System Requirements 13
DSP56800 Hardware Requirements 14

Installing the CodeWarrior IDE for DSP56800. 16
Installing the CodeWarrior IDE 16
What Gets Installed. 18

Installing DSP56800 Hardware 19
Using Parallel Port 20
Installing the PCI Command Converter 21
Installing the Ethernet Command Converter 26
Installing ADS UCC with ISA Bus Interface 30
Using Serial Port to connect DSP568L811 Board 36
Using the Domain Technologies SB-56K 38

3 Development Tools 41

Tools Overview. 41
CodeWarrior IDE. 41
CodeWarrior Compiler for DSP56800 42
CodeWarrior Assembler for DSP56800 42
CodeWarrior Linker for DSP56800 42
CodeWarrior Debugger for DSP56800 42

The Development Process 43
Project Files versus Makefiles 43
Editing Code . 44
Compiling. 44
Linking . 46
Debugging . 46
Viewing Preprocessor Output 46

Table of Contents

DSP–4

Targeting DSP56800

4 Tutorial 47

CodeWarrior IDE for DSP56800 Tutorial 47
Creating a Project 47
Working with the Debugger 59
References. 69

5 Target Settings 71

Target . 72
Target Settings Overview 72
Displaying Target Settings Panel Window 72
Changing Target Settings 73
Exporting and Importing Panel Options to XML Files 74
Restoring Target Settings 74
Target Settings . 75
Access Paths . 78
Build Extras . 82
Runtime Settings . 84
File Mappings . 86
Source Trees . 88
M56800 Target . 91

Language . 93
C/C++ Language 93
C/C++ Warnings. 98
M56800 Assembler 101

Code Generation . 103
ELF Disassembler 103
M56800 Processor 106
Global Optimizations 109

Linker. . 111
M56800 Linker . . 111

Editor . . 116
Custom Keywords Panel 116

Debugger . 120
Other Executables Panel. 120
Debugger Settings 120

M56800 Target Settings 123

Table of Contents

Targeting DSP56800

DSP–5

6 C for DSP56800 129

General Notes on C 129
Number Formats . 129

DSP56800 Integer Formats 130
DSP56800 Floating-Point Formats 131
DSP56800 Fixed-Point Formats 131

Calling Conventions, Stack Frames 132
Calling Conventions 132
Stack Frame . 133

Code and Data Storage 134
Optimizing Code . . 134

Page 0 Register Assignment 134
Register Coloring. 134
Array Optimizations 136
Multiply and Accumulate (MAC) Optimizations 137

Pragma Directives . 139
Description of Pragma Interrupt 139
Pragma Optimization 142
Constant Data Section. 143

Linker Issues . . 145
Deadstripping Unused Code and Data 145
Link Order . 145

7 Inline Assembly Language and Intrinsic Functions 147

Working With DSP56800 Inline Assembly Language. 147
Inline Assembly Language Syntax for DSP56800 147
Adding Assembly Language to C Source Code 149
Assembly Language Quick Guide 150
Creating Labels for M56800 Assembly. 150
Using Comments in M56800 Assembly 150

Calling Assembly Language Functions from C Code. 151
Calling Inline Assembly Language Functions 151
Calling Pure Assembly Language Functions 152

Calling Functions from Assembly Language 153
Intrinsic Functions for DSP56800 154

An Overview of Intrinsic Functions 154
Fractional Arithmetic 155

Table of Contents

DSP–6

Targeting DSP56800

Macros Used with Intrinsics 156
List of Intrinsic Functions: Definitions and Examples 156

Absolute/Negate. 157
Addition/Subtraction. 158
Control . 160
Conversion . 161
Copy . 163
Deposit/ Extract . 164
Division. . 166
Multiplication/ MAC 167
Normalization . . 171
Rounding . . 173
Shifting . . 173

Pipeline Restrictions 177

8 Debugging 181

Target Settings for Debugging 181
M56800 Target Settings 182

Command Converter Server 192
Essential Target Settings for Command Converter Server . . 192
Changing the Command Converter Server Protocol to Parallel

Port . . 193
Changing the Command Converter Server Protocol to PCI. . 195

DSP56800 Menu . 196
Load Default Target 196
Load/Save Memory 196
Fill Memory . . 199

Using DSP56800 Simulator 201
Cycle/Instruction Count 202
Memory Map . 203

Watchpoints and Breakpoints 203
Change of Flow FIFO Dump 210

Global Variable Watchpoints 212
Register Details Window 215
Viewing Memory . . 216

Viewing X: Memory 216
Viewing P: Memory 218

Table of Contents

Targeting DSP56800

DSP–7

 Debugging on a Complex Scan Chain 220
Setting Up. . 220
JTAG Initialization File 221

 Debugging a Loaded Target 221
System-Level Connect 222

9 ELF Linker and Command Language 223

Structure of Linker Command Files 223
Memory Segment 224
Closure Blocks . . 224
Sections Segment. 226

Linker Command File Syntax. 226
Alignment. . 226
Arithmetic Operations 227
Comments . 228
Deadstrip Prevention 228
Variables, Expressions and Integral Types 228
File Selection . 231
Function Selection 231
ROM to RAM Copying 232
Stack and Heap . 235
Writing Data Directly to Memory 235

Linker Command File Keyword Listing 236
Sample M56800 Linker Command File. 246

10 Flash Programming 251

Setting up the Debugger for Flash Programming 251
Setting up the Linker Command File for Flash Programming . . 252

Specifying P: Memory 253
Specifying X: Memory 253

Preparing the Hardware for Flash Programming 253
Flash Programming Tips. 254
Flash Programming the Reset and Interrupt Vectors 254

Table of Contents

DSP–8

Targeting DSP56800

11 Libraries and Runtime Code 255

MSL for DSP56800 . 255
Using MSL for DSP56800 255
Allocating Stacks and Heaps for the DSP56800 258

Runtime Initialization 260

12 Troubleshooting 263

Troubleshooting Tips 263
The Debugger Crashes or Freezes When Stepping Through a REP

Statement . 264
“Can’t Locate Program Entry On Start” or “Fstart.c Undefined”

. . 264
When Opening a Recent Project, the CodeWarrior IDE Asks If My

Target Needs To Be Rebuilt 264
"Timing values not found in FLASH configuration file. Please

upgrade your configuration file. On-chip timing values will be
used which may result in programming errors" 265

IDE Closes Immediately After Opening 265
Errors When Assigning Physical Addresses With The

Org

Directive . . 266

The Debugger Reports a Plug-in Error 266
Windows Reports a Failed Service Startup 266
No Communication With The Target Board 267
Downloading Code to DSP Hardware Fails 268
The CodeWarrior IDE Crashes When Running My Code. . . 268
The Debugger Acts Strangely 268
Problems With Notebook Computers 268
How to make Parallel Port Command Converter work on

Windows® 2000 Machines 269

A Porting Issues 271

Converting the DSP56800 3.x and 4.x Projects to 5.x Projects . . 271
Porting Motorola 56824EVM projects to the CodeWarrior IDE . 272
Porting DSP56811 to DSP56824 Projects 277
Using XDEF and XREF Directives 277
Using the ORG Directive 277

Index 279

Targeting DSP56800

DSP–9

1

Introduction

This manual explains how to use the CodeWarrior™ Integrated
Development Environment (IDE) to develop code for the DSP56800
family of processors.

This chapter contains the following sections:

• The CodeWarrior IDE and Its Documentation

• New In This Release

• References

The CodeWarrior IDE and Its Documentation

The CodeWarrior IDE has a simple graphical user interface and
versatile tools for developing software. Using the CodeWarrior IDE,
you can develop a program, plug-in, library, or other code.

The CodeWarrior IDE lets you assemble source-code files, resource
files, library files, and configuration settings in a project without
writing a complicated build script or makefile. You can also add or
delete source-code files from a project using the mouse and
keyboard instead of tediously editing a build script.

For any project you can create and manage several configurations
for use on different computer platforms. The platform on which you
run the CodeWarrior IDE is called the host. From that host, you use
the CodeWarrior IDE to develop code to target various platforms.

The term target has two meanings in the CodeWarrior IDE:

• Platform Target

The operating system, processor, or microcontroller for
which you write code. If you write code for a particular
processor running a specific desktop operating system, you
are creating code for a platform target.

Introduction

New In This Release

DSP–10

Targeting DSP56800

•

Build Target

The settings and files that determine the contents of your
code, as well as the process in which this code compiles and
links into the final output.

The IDE allows you specify multiple build targets for a particular
platform target. For example, you can compile a debugging version
(build target) and an optimized version (build target) of your
program for the Windows



 operating system (platform target). The
build targets can share files in the same project even though each
build target uses its own settings. After debugging the program,
generating a final version is as simple as selecting the project’s build
target and using a single

Make

 command.

The CodeWarrior IDE has compilers, linkers, a debugger, a source-
code browser, and editing tools. You can edit, navigate, examine,
compile, link, and debug code all within the CodeWarrior IDE.
Options for code generation, debugging, and navigation of your
project are all configurable in the CodeWarrior IDE.

Most features of the CodeWarrior IDE apply to several hosts,
languages, and build targets. However, each build target has its
own unique features. This manual explains those features unique to
the CodeWarrior IDE for the DSP56800.

For a complete understanding of the CodeWarrior IDE, refer to the
CodeWarrior IDE User’s Guide for general information and this
manual for information specific to DSP56800.

NOTE

The CodeWarrior Release Notes contain information about new fea-
tures, bug fixes, and incompatibilities that do not appear in the docu-
mentation because of release deadlines. Release Notes are on the

CodeWarrior IDE CD.

New In This Release

Refinements in this version are:

• Addition of board-specific projects to the DSP56800 EABI
stationery

Introduction

References

Targeting DSP56800

DSP–11

• Automatic enabling of debugger

• Addition of Command Converter protocol

• Enhancement of pragma interrupt capability

• Addition of File Mappings panel

• Flagging of pipeline dependencies due to occurrence of errors in
inline assembler

• Upgrade of stationeries to support all targets in both Flash and
RAM

• Option for adjustment of assembler for delayed load of N-
registers

• Enhanced setting of hardware breakpoints

• Automatic re-establishment of hardware breakpoints upon
launching the debugger

• Addition of option for debugging a target chip within a JTAG
chain

References

• The following manuals are included with this product:

– Code Warrior IDE User Guide

– Assembler Reference Manual

–

MSL C Reference

(Metrowerks standard C libraries)

• To learn more about the DSP56800 processor, refer to the
following manuals:

–

DSP56800 Family Manual.

 Motorola, Inc., 2001

–

DSP56F801 Hardware User Manual

. Motorola, Inc., 2001

–

DSP56F803 Hardware User Manual

. Motorola, Inc., 2001

–

DSP56F805 Hardware User Manual

. Motorola, Inc, 2001

–

DSP56F807 Hardware User Manual

. Motorola, Inc., 2001

–

DSP56L811 User’s Manual.

 Motorola, Inc., 1996

–

DSP56F824 Hardware User Manual

. Motorola, Inc, 1999

–

DSP56F826 Hardware User Manual

. Motorola, Inc., 2001

–

DSP56F827 Hardware User Manual

. Motorola, Inc, 2001

Introduction

References

DSP–12

Targeting DSP56800

• For more information on the various command converters
supported by the CodeWarrior IDE for DSP56800, refer to the
following manuals:

–

Suite56™ Ethernet Command Converter User’s Manual,

Motorola, Inc., 2000.

–

Suite56™ PCI Command Converter User’s Manual,

Motorola, Inc., 1999.

–

Suite56™ Parallel Port Command Converter User’s Manual

,
Motorola Inc., 1999.

To download electronic copies of these manuals or order printed
versions, visit this web address:

http://www.motorola.com

Targeting DSP56800

DSP–13

2

Getting Started

This chapter explains how to install and run the CodeWarrior™ IDE
on your Windows

®

 operating system. This chapter also explains
how to connect hardware for each of the communications protocols
supported by the CodeWarrior debugger.

This chapter contains the following sections:

• System Requirements

• Installing the CodeWarrior IDE for DSP56800

• Installing DSP56800 Hardware

System Requirements

This section lists system requirements for operating the
CodeWarrior IDE for DSP56800 software.

Table 2.1 lists requirements for installing and using the
CodeWarrior IDE and the DSP56800 Simulator software.

Table 2.1 Windows Requirements for the CodeWarrior IDE

Hardware • 133 MHz microprocessor: Intel

®

 Pentium®,
AMD

™

 K6

™

, or equivalent

• 200 MB hard drive space

• 32 MB RAM

• CD-ROM drive for installation
Software Windows

®

 95/98/2000/NT (NT 4.0
recommended)

Gett ing Started

System Requirements

DSP–14

Targeting DSP56800

DSP56800 Hardware Requirements

You can use various DSP56800 hardware configurations with the
CodeWarrior IDE. Table 2.2 lists these configurations.

NOTE Each protocol in Table 2.2 is selected from the M56800 Target Settings
panel.

Table 2.2 DSP56800 Hardware Requirements

Target
Connection

Boards
Supported

Hardware Provided With
Command Converter

Parallel port
on-board
Command
Converter

56824EVM
56F805EVM
56F803EVM
56801EVM
56807EVM
56826EVM
56827EVM

• 25-pin parallel-port
interface cable

• Power supply, 9–12 Vdc,
500 mA with 2.5 mm
receptacle (inside
positive)

External
Parallel Port
Command
Converter

56824EVM
56F805EVM
56F803EVM
56L811EVM
56801EVM
56807EVM
56826EVM
56827EVM

• Motorola Parallel Port
Command Converter

• 25-pin parallel-port
interface cable

PCI Command
Converter

56824EVM
56F805EVM
56F803EVM
56801EVM
56807EVM
56826EVM
56827EVM

• 25-pin OCD ribbon cable

• Target Interface Module

• JTAG 14-pin ribbon
interface cable

Getting Started
System Requirements

Targeting DSP56800 DSP–15

Ethernet
Command
Converter

56824EVM
56F805EVM
56F803EVM
56F801EVM
56F807EVM
56F826EVM
56F827EVM

• 10 base T RJ-45 cable

• 25-pin OCD ribbon cable

• JTAG 14-pin ribbon cable

• Target Interface Module

Motorola
Application
Development
System (ADS)
Universal
Command
Converter
(UCC) with the
ISA bus
interface

56824ADS
56F805ADS
56F803ADS
56L811ADS
56801ADS
56807ADS
56826ADS
56827ADS

• One open 16-bit ISA
expansion slot

• One free I/O address:
$0100, $0200, or $0300

• Motorola Application
Development System

• 37-pin ribbon interface
cable (included with ADS)

• 14-pin ribbon interface
cable (included with ADS)

Domain
Technologies
SB-56K Multi-
DSP Emulator

56824EVM
56F805EVM
56F803EVM
56L811EVM
56801EVM
56807EVM
56826EVM
56827EVM

• Domain Technologies SB-
56K Multi-DSP Emulator.
Refer to the following
website for more
information:

• http://
www.domaintec.com

Serial port 56L811EVM • Motorola DSP56L811EVM
board

• 9-pin serial-port interface
cable

• Power supply, 9–12 Vdc,
500 mA with 2.5 mm
receptacle (inside
positive)

Target
Connection

Boards
Supported

Hardware Provided With
Command Converter

Getting Started
Installing the CodeWarrior IDE for DSP56800

DSP–16 Targeting DSP56800

Table 2.3 Jumper Settings for Enabling JTAG Communication Interface

Installing the CodeWarrior IDE for DSP56800
The CodeWarrior installer automatically installs all the necessary
components for you to begin development. If you have any
questions about the installer, read the instructions on the
CodeWarrior CD.

Installing the CodeWarrior IDE

Install the CodeWarrior IDE:

1. Insert the CodeWarrior CD into your computer's CD-ROM
drive. If Auto Install is disabled on your computer, run the
setup.exe program at the root directory on the CD.

2. Follow the CodeWarrior software installation instructions.
After installing the CodeWarrior IDE, restart your computer
to ensure that the newly installed drivers are available for
use.

3. Register the CodeWarrior software. Registered and 30-day
evaluation users have separate registering procedures:

• Registered Users

Run the Register CodeWarrior program
(MWRegister.exe) from the taskbar, located in the
CodeWarrior group. This program is also run as part of
the installation procedure as the last step.

Hardware Jumper Setting from default

DSP56L811EVM JG7 5-6 closed

DSP56824EVM JG6 1-2 closed

DSP56F805EVM JG5 1-2 closed

DSP56F803EVM JG2 1-2 closed

DSP56F801EVM JG5 1-2 closed

DSP56F807EVM JG4 1-2 closed

DSP56F826EVM JG1 1-2 closed

DSP56F827EVM JG1 1-2 closed

Getting Started
Installing the CodeWarrior IDE for DSP56800

Targeting DSP56800 DSP–17

• 30-day Evaluation Users

Visit the following website and enter your validation
code (located on the CodeWarrior tools CD case):

http://www.metrowerks.com/key/eval/

You will receive a license key by email after you submit
the evaluation form on the website.

4. Install the license key as follows:

a. Locate the license.dat file in your CodeWarrior
installation folder. The file is located at the root of the
CodeWarrior installation directory, so if you have
installed the CodeWarrior software at the default
installation path, you can find it here:

C:\Program Files\Metrowerks\CodeWarrior\license.dat

It is important that this file remain at this location.

b. Use any standard text editor to open this file. For
example, NotePad.

c. Copy or type the key starting on a new line at the bottom
of this file. For example, if your dummy license key was:

FEATURE dummykey metrowerks 1.000 permanent uncounted 0335B9E8897F\
 VENDOR_STRING="Dummy key for placeholder" HOSTID=ANY

And the existing IDE license key is:

FEATURE Win32_CWIDE_Limited metrowks 4.2 permanent uncounted \
 2C3C43468173 HOSTID=ANY
FEATURE Win32_CWIDE_Unlimited metrowks 4.2 permanent uncounted \
 D8C287BC5B1B HOSTID=ANY

After you register with Metrowerks, Inc.
(license@metrowerks.com), you will receive a new key. Replace the
dummy license key with the new key. For example, if your new
license key is:

FEATURE Win32_Plugins_DSP56800 metrowks 5.0 1-feb-2002 uncounted \
 61178DDE2D29 HOSTID=ANY
FEATURE Win32_Plugins_DSP56800Comp metrowks 5.0 1-feb-2002 uncounted \
 2BC235F509D8 HOSTID=ANY

Getting Started
Installing the CodeWarrior IDE for DSP56800

DSP–18 Targeting DSP56800

After pasting or typing in the new key, the file contains:

FEATURE Win32_CWIDE_Limited metrowks 4.2 permanent uncounted \
 2C3C43468173 HOSTID=ANY
FEATURE Win32_CWIDE_Unlimited metrowks 4.2 permanent uncounted \
 D8C287BC5B1B HOSTID=ANY
FEATURE Win32_Plugins_DSP56800 metrowks 5.0 1-feb-2002 uncounted \
 61178DDE2D29 HOSTID=ANY
FEATURE Win32_Plugins_DSP56800Comp metrowks 5.0 1-feb-2002 uncounted \
 2BC235F509D8 HOSTID=ANY

d. Any future keys can likewise be appended to the bottom
of this file.

If you encounter difficulty in installing this key, please
contact Metrowerks Customer support at:

Ph: (800) 377-5416

Fax: (512) 873-4901

email: license@metrowerks.com

NOTE Do not move the license.dat file after installation.

What Gets Installed

Table 2.4 describes the folders that are installed as part of the full
standard CodeWarrior IDE for DSP56800 installation. Each folder is
located in your CodeWarrior installation directory.

Table 2.4 Contents Installed with the CodeWarrior IDE for DSP56800

Directory name Contents

Bin The CodeWarrior IDE application and
associated plug-in tools.

CodeWarrior
Manuals

The CodeWarrior documentation tree.

CodeWarrior
Examples

Target specific example projects and code.

CW Release
Notes

Release notes for the CodeWarrior IDE
and each tool.

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–19

Installing DSP56800 Hardware
This section explains how to connect the DSP568xx hardware to
your computer. Parallel port connections are explained in the Kit
Installation Guide for each individual DSP568xxEVM board. All
descriptions assume the default jumper settings, as explained in the
Hardware User Manual for your product, unless otherwise stated.

NOTE Parallel port connections with boards that support direct parallel port
connections are not covered in this chapter. Refer to the Kit Installa-
tion Guide or Hardware User Manual for your specific board. You
can use the DSP56800 Simulator provided with the CodeWarrior
IDE instead of installing additional DSP568xx hardware.

M56800_EABI_Too
ls

Drivers for the ADS Universal Command
Converter and ADS parallel port drivers.
Additional default files used by the
CodeWarrior IDE for the DSP56800
stationery.

CodeWarrior
Help

All the core help files for the IDE, as well
as target specific help. All help files are
accessed through the Help menu or F1
help.

Licensing The registration program and additional
licensing information.

M56800 Support Includes Metrowerks Standard Library
(MSL), a subset of the standard MSL
adapted specifically for DSP56800.

Motorola
Documentation

Documentation specific to the Motorola
DSP568xx series.

Stationery Default settings that are used to create
DSP56800 projects. Each target stationery
item is set to a specific debugging
protocol.

Directory name Contents

Getting Started
Installing DSP56800 Hardware

DSP–20 Targeting DSP56800

Using Parallel Port

Connect the parallel port cable to your DSP568xxxEVM board as
described below.

Connecting the Parallel Port Cable to DSP568xxEVM Board

1. Connect the 25-pin male connector at one end of a parallel
port cable to the 25-pin female connector on your computer
(Figure 2.1).

2. Connect the 25-pin female connector at the other end of the
parallel port cable to the 25-pin male connector on the
DSP568xxEVM.

Figure 2.1 Connecting Parallel Port Cable to DSP568xxEVM Board

Connecting the Parallel Port Cable to Suite56™ Parallel Port
Command Converter Module and DSP568xxEVM Board

1. Enable the JTAG port.

Table 2.3 shows the jumpers that you need to change from
the default configuration for your particular hardware.

2. Connect the 25-pin male connector at one end of a parallel
port cable to the 25-pin female connector on your computer
(Figure 2.2).

DSP568xxEVM

 Host
Computer

Parallel Port

25-pin Parallel Port Cable

Power Supply
Connector

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–21

Figure 2.2 Connecting Parallel Port Cable to Suite56TM Parallel Command
Converter Module and DSP568xxEVM Board

3. Connect the 25-pin female connector at the other end of the
parallel port cable to the 25-pin male connector on the
Suite56TM Parallel Port Command Converter module.

4. Locate the 14-pin ribbon cable hanging from the Suite56TM
Parallel Port Command Converter module. Connect the 14-
pin female connector of the ribbon cable to the 14-pin JTAG
male connector on the DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

5. Plug the power supply into a wall socket.

6. Connect the power supply to the power connector on the
DSP568xxEVM board.

The green LED next to the power connector lights up.

Installing the PCI Command Converter

Connect the PCI Command Converter and your Motorola
DSP568xxEVM board to your computer as described below.

DSP568xxEVM

 Host

JTAG / OnCE port

Computer

Parallel Port

14-pin Ribbon
Cable

Suite56TM Parallel

Power Supply Connector

25-pin Parallel
Port Cable

Command Converter
Module

Getting Started
Installing DSP56800 Hardware

DSP–22 Targeting DSP56800

Installing the PCI Command Converter

Install the PCI Command Converter hardware:

1. Place your PCI Command Converter card on a static-proof
mat.

2. Shut down your computer.

WARNING! Do not touch the components and connectors on the board or inside
your computer without first being grounded. Otherwise, you could
damage the hardware with static discharge.

3. Locate an empty card slot in your computer.

4. Insert the PCI Command Converter card in the empty card
slot.

NOTE One end of the 25-pin cable has a 24-pin female connector. A
ground cable is retrofitted to a wire of the 25-pin cable at the same
end of the cable. The ground cable is crimped to a female discon-
nect terminal.

5. Connect the 24-pin female connector at one end of the 25-pin
cable to the 24-pin female connector on the PCI Command
Converter card (Figure 2.3).

6. Connect the female disconnect terminal of the ground cable
to the socket protruding from the PCI Command Converter
card in your computer.

7. Connect the 25-pin female connector at the other end of the
25-pin cable to the 25-pin male connector on the OCDemonTM
Wiggler.

Procedure for Manual Installation of PCI Command Converter
Drivers

Windows® 95

The required files are located in the following directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win 95
98

1. Install CodeWarrior for DSP56800 Software Development
Tools.

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–23

2. Shut down your computer.

3. Install the PCI command converter hardware into an empty
PCI slot.

4. Turn on your computer.

5. The Found New Hardware window appears.

a. Click the Driver from Disk Provided from Hardware
Manufacturer box.

b. Click OK.

6. The Install from Disk window appears. Browse to the following
directory:

C:\Program Files\Metrowerks\CodeWarrior\DSP EABI
Support\Ads PCI Drivers\Win 95 98

NOTE This is the default installation directory. If you changed this directory
during the software installation, you will need to select your custom
directory. Then, click the Next button.

7. Double-click on the raptor.inf file.

8. Click the Finish button.

9. Copy windrvr.sys file to \Windows\System32\Drivers.

10.Copy windrvr.vxd file to \Windows\System\vmm32.

11.From the command prompt, change to the following
directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win 95
98

12.Type the following:

wdreg -name "Macraigor_PCI" -file windrvr install

Windows® 98

The required files are located in the following directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win 95
98

1. Install CodeWarrior for DSP56800 Software Development
Tools.

2. Shut down your computer.

Getting Started
Installing DSP56800 Hardware

DSP–24 Targeting DSP56800

3. Install the PCI command converter hardware into an empty
PCI slot.

4. Turn on your computer.

5. The Add New Hardware Wizard window appears. Click the Next
button.

6. Check the Search button and then click the Next button.

7. Click the Browse button.

8. Select the following directory:

C:\Program Files\Metrowerks\CodeWarrior\DSP EABI
Support\Ads PCI Drivers\Win 95 98

NOTE This is the default installation directory. If you changed this directory
during the software installation, you will need to select your custom
directory. Then, click the Next button.

 Windows 98 finds the correct driver.

9. Copy the windrvr.sys file to
\Windows\System32\Drivers

10.Copy the windrvr.vxd file to \Windows\System\vmm32.

11.From the command prompt, change to the following
directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win 95
98

12.Type the following:

wdreg -name "Macraigor_PCI" -file windrvr install

Windows NT® 4.0

The required files are located in the following directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win NT

1. Copy the raptor.inf file to /winnt/inf.

2. Copy the windrvr.vxd file to /winnt/system32/drivers.

3. Copy the windrvr.sys file to /winnt/system32/drivers.

4. Install the raptor.inf file by right-clicking on this file and
selecting the Install button.

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–25

5. From the command prompt, change to the following
directory:

CodeWarrior\DSP EABI Support\Ads PCI Drivers\Win NT

6. Type the following:

wdreg -name "Macraigor_PCI" -file windrvr install

7. Shut down your computer.

8. Install the PCI command converter hardware into an empty
PCI slot.

9. Turn on your computer.

Connecting the PCI Command Converter to the DSP568xxEVM
Board

To connect the PCI Command Converter to your DSP568xxEVM
board, follow the steps explained in “Installing the PCI Command
Converter” on page 22 before performing the steps in this section.

Connect the PCI Command Converter to your DSP568xxEVM
board:

1. Enable the JTAG port.

Table 2.3 shows the jumpers that you need change from the
default configuration for your particular hardware. Refer to
the Hardware User Manual or Kit Installation Guide for your
particular board for information on default jumper settings.

2. Locate the 14-pin ribbon cable hanging from the OCDemonTM
Wiggler. Connect the 14-pin female connector of the ribbon
cable to the 14-pin JTAG male connector on the
DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

3. Plug the power supply into a wall socket.

4. Connect the power supply to the power connector on the
DSP568xxEVM board.

5. The green LED next to the power connector lights up. The
board is now connected.

Getting Started
Installing DSP56800 Hardware

DSP–26 Targeting DSP56800

Figure 2.3 Attaching PCI Command Converter to DSP568xxEVM Board

Installing the Ethernet Command Converter

Connect the Ethernet Command Converter and your Motorola
DSP568xxEVM board to your computer as described below.

Configuring Network Settings for Ethernet Command
Converter

Connect the Ethernet Command Converter hardware to your
computer:

1. Shut down your computer.

2. Connect the 9-pin male connector at one end of an RS-232
serial cable to the 9-pin female connector on the Ethernet
Command Converter (Figure 2.4).

3. Connect the 9-pin female connector at the other end to of the
RS-232 serial cable to the 9-pin male connector on your
computer.

DSP568xxEVM

Power Supply

 Host

JTAG / OnCE port
OCDemon“

PCI Command

Computer

25-pin Cable

 Converter Card

14-pin Ribbon
Cable

Wiggler

Ground Cable

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–27

Figure 2.4 Connecting Ethernet Command Converter to Host Computer

4. Open Hyper Terminal or similar program (Figure 2.5) using
the procedure appropriate for the operating system you are
using:

• For NT workstations, select Program > Accessories > Hyper Terminal
from the Start menu.

• For Windows® 95 and 98, select Program > Communications > Hyper
Terminal from the Start menu.

 Host
Computer

OCDemonTM Ethernet
Command Converter

RS-232
9-pin Serial
Cable

Getting Started
Installing DSP56800 Hardware

DSP–28 Targeting DSP56800

Figure 2.5 eDemon Command Menu in HyperTerminal

5. Set up the Hyper Terminal with the following COM port
settings:

6. Plug the receptacle portion of detachable power cord into the
power supply.

7. Insert the plug portion of the detachable power supply into a
wall outlet.

8. Connect the 5V power supply cable to the OCDemonTM
Ethernet Command Converter (black box).

Bits per
second:

19200

Data bits: 8 8

Stop bit: 1

Flow control: Xon/Xoff or
None

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–29

After a delay of 15 to 20 seconds, the eDemon Command
Menu appears. Figure 2.5 shows the eDemon Command
Menu using HyperTerminal on Windows NT.

9. Follow the instructions from the eDemon Command Menu
to enter the IP Address and other network settings.

Refer to the OCDemonTM Ethernet Command Converter User’s
Manual for more information on testing your network
connection and firmware upgrades for the Ethernet
Command Converter module.

10.After setting up your network settings for the Ethernet
Command Converter, disconnect the RS-232 cable from the
Command Converter.

Connecting the Ethernet Command Converter to the
DSP568xxEVM Board

To connect your DSP568xxEVM with the Ethernet Command
Converter, follow the steps explained in “Configuring Network
Settings for Ethernet Command Converter” on page 26 before
performing the steps in this section.

Connect the Ethernet Command Converter to your DSP568xxEVM
board:

1. Enable the JTAG port.

You must enable the JTAG/OnCE port on your hardware.
Table 2.3 shows the jumpers that you need to change from
the default configuration for your particular hardware.

2. Connect the 25-pin male connector at one end of a parallel
port cable to the 25-pin female connector on the back panel of
the OCDemonTM Ethernet Command Converter (Figure 2.6).

3. Connect the 25-pin female connector at the other end of the
25-pin parallel port cable to the 25-pin male connector on the
OCDemonTM target interface module.

4. Locate the 14-pin ribbon cable on the OCDemonTM target
interface module. Connect the 14-pin female connector of the
ribbon cable to the 14-pin JTAG male connector on the
DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

Getting Started
Installing DSP56800 Hardware

DSP–30 Targeting DSP56800

5. Connect one end of the RJ-45 base T cable to the Ethernet
Command Converter (black box).

6. Connect the other end of the RJ-45 base T cable to the
network.

7. Apply power to the DSP568xxEVM.

8. Plug the power supply into a wall socket.

9. Connect the power supply to the power connector on the
DSP568xxEVM board.

The green LED next to the power connector lights up. The
board is now connected.

Figure 2.6 Connecting Ethernet Command Converter to DSP568xxEVM
Board

Installing ADS UCC with ISA Bus Interface

Connect the Application Development System (ADS) Universal
Command Converter (UCC) and your computer using the Industry
Standard Architecture (ISA) bus interface as described below.

DSP568xxEVM

 Host
Computer

14-pin Ribbon
Cable

OCDemonTM Ethernet
Command Converter25-pin Parallel

Port Cable

Ethernet
10 Base T
RJ-45 cable

JTAG / OnCE Port

Power Supply

Target
Interface
Module

Network

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–31

Install the Universal Command Converter and ISA Bus

Install the ADS UCC hardware:

1. Place the Motorola Universal Command Converter card on a
static-proof mat.

2. Locate an empty card slot in your computer.

3. Insert the Motorola Universal Command Converter card in
the empty card slot.

4. Find an open I/O address for the ADS card.

5. Find an open I/O address according to your operating
system.

Windows 95 and Windows 98

1. From the Start menu, access the Control Panel. Double-click
Systems. Select the Device Manager tab.

2. Click the Properties button. The Computer Properties window
appears (Figure 2.7).

Figure 2.7 Computer Properties Window

Getting Started
Installing DSP56800 Hardware

DSP–32 Targeting DSP56800

3. In the Computer Properties window, click the Input/Output radio
button.

4. In the address list, verify that one of the following addresses
is unused:

• 0100 - 0102

• 0200 - 0202

• 0300 - 0302

5. If all of these addresses are used, reconfigure your system to
accept the ADS card.

6. Close the Computer Properties window.

Windows NT

1. Click Start > Programs > Administrative Tools >
Windows NT Diagnostics to open the Windows NT Diagnostics
window.

2. Click the Resources tab.

3. Click the I/O Port button.

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–33

Figure 2.8 Windows NT Diagnostics Resources Panel

4. In the address list (Figure 2.8), verify that one of the
following addresses is unused:

• 0100 - 0102

• 0200 - 0202

• 0300 - 0302

If all of these addresses are used, you must reconfigure your
system to accept the ADS card as follows:

a. If your Windows NT installation directory is c:\winnt,
copy the mdsp.sys file to the directory:

 c:\winnt\system32\drivers\

The mdsp.sys file is in the following path:

Getting Started
Installing DSP56800 Hardware

DSP–34 Targeting DSP56800

DSP EABI
Support\AdsDrivers\WinNT\CodeWarrior\

b. On a DOS command line, type regini address, where
address reflects the empty address you selected for the
card. For example, type regini 100 to use I/O address
$0100, which is the default.

5. Shut down your computer.

WARNING! Do not touch the components and connectors on the boards or in-
side your computer without first being grounded. Otherwise, you
could damage the hardware with static discharge.

Adjusting Jumpers and Making Connections

1. Adjust the jumper settings on the ISA card.

Adjust the jumper group JG2 to match the I/O address you
determined in step 4.

For example, if you want to use 0100 - 0102, close all
jumpers other than jumper A8. If you want to use 0200 -
0202, close all jumpers other than jumper A9. Refer to Table
2.5.

Table 2.5 ISA Card Jumper Settings

2. Verify that all the IRQ jumpers (JG1) are open.

3. Open your computer and locate an empty card slot in your
computer.

4. Insert the Motorola ISA interface card into the empty card
slot and close your computer.

5. Connect the 37-pin female connector at one end of a 37-pin
ribbon cable to the 37-male connector on the ISA card (Figure
2.9).

To use this I/O address… CLOSE all JG2 jumpers
except…

0100 - 0102 A8

0200 - 0202 A9

0300 - 0302 A8 and A9

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–35

6. Connect the 37-pin female connector at the other end of the
37-pin ribbon cable to the 37-pin male connector on the ADS
Universal Command Converter card.

7. Arrange the Command Converter jumpers according to
Table 2.6.

Table 2.6 ADS Universal Command Converter Jumper Settings

8. Turn on your computer.

The green LED on the ADS Universal Command Converter
lights up.

Connect ADS UCC and ISA Bus to DSP568xxEVM Board

To connect your DSP568xxEVM with the ADS Universal Command
Converter, follow the steps in “Install the Universal Command
Converter and ISA Bus” on page 31 before performing the steps in
this section.

Connect the ADS Universal Command Converter to your
DSP568xxEVM board (Figure 2.9):

1. Enable the JTAG port.

You must enable the JTAG/OnCE port on your hardware.
Table 2.3 shows the jumpers that you need to change from
the default configuration for your particular hardware.

2. Connect 14-pin female connector at one end of a 14-pin
ribbon cable to the 14-pin JTAG male connector on the ADS
UCC board.

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

3. Connect the 14-pin female connector at the other end of the
cable to the 14-pin JTAG male connector on the
DSP568xxEVM card.

ADS UCC Jumper
Location

Settings Known to Work With
CodeWarrior IDE for DSP56800

JG1 Use the factory defaults.

JG2 1-2, 3-4, and 5-6 CLOSED

JG3 2-3 CLOSED

Getting Started
Installing DSP56800 Hardware

DSP–36 Targeting DSP56800

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

4. Plug in the power supply into a wall socket.

5. Connect the power supply to the power connector on the
DSP568xxEVM card.

The green LED next to the power connector lights up. The
board is now connected.

Figure 2.9 Complete Setup for ADS UCC Setup

Using Serial Port to connect DSP568L811
Board

Connect the serial port cable and Motorola DSP568L811 board to
your computer as described below.

Connecting the Serial Port Cable to DSP568L811EVM Board

1. Arrange all the jumpers as shown in Table 2.7.

DSP568xxEVM

power supply

ADS UCC

 Host

JTAG / OnCE ports ISA card

Computer14-pin Ribbon
Cable 37-pin Ribbon

 Cable

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–37

Table 2.7 Motorola DSP56L811EVM Jumper Settings

2. Connect the 9-pin female connector at one end of a 9-pin
serial cable to the 9-pin male connector on your computer.

3. Connect the 9-pin male connector at the other end of the
serial cable to the 9-pin female connector on the
DSP56L811EVM card (Figure 2.10).

Jumper
location

Settings Known to Work With CodeWarrior
IDE for DSP56800

JG1 1-2 CLOSED; 3-4 OPEN

JG2 1-2 CLOSED; 3-4 OPEN

JG3 1-2 OPEN; 3-4 CLOSED

JG4 1-2 CLOSED; 3-4 OPEN

JG5 1-2, 3-4, 5-6, and 7-8 CLOSED

JG6 1-2 OPEN

JG7 1-3, 2-4 CLOSED, 5-6 OPEN

JG8 1-2 OPEN

JG9 2-3 CLOSED

JG10 1-2 OPEN

JG11 1-2 CLOSED

JG12 1-2 OPEN

Getting Started
Installing DSP56800 Hardware

DSP–38 Targeting DSP56800

Figure 2.10 Connecting the DSP56L811EVM Card to Serial Port

4. Plug in the power supply into a wall socket.

5. Connect the power supply to the power connector on the
DSP56L811EVM card.

The green LED next to the power connector lights up. The
board is now connected.

Using the Domain Technologies SB-56K

Connect the Domain Technologies SB-56K Multi-DSP Emulator and
your Motorola DSP568xxEVM board to your computer:

Connect the Domain Technologies SB-56K

1. Locate an empty 9-pin COM port on your computer.

2. Connect one end of a 9-pin female serial cable to the 9-pin
male connector on your computer (Figure 2.11).

Motorola DSP56L811EVM

 Host

COM Port

Computer
9-pin Serial
Port Cable

Power Supply

Getting Started
Installing DSP56800 Hardware

Targeting DSP56800 DSP–39

Figure 2.11 Connecting the DSP568xxEVM to SB-56K

3. Connect the 9-pin male connector at the other end of the
serial cable to the 9-pin female connector on the SB-56K
Emulator.

4. Locate the 14-pin ribbon cable hanging from the SB-56K
Emulator. Connect the 14-pin female connector of the ribbon
cable to the 14-pin JTAG male connector on the
DSP568xxEVM board.

Ensure that the red stripe on the ribbon cable corresponds to
pin 1 on the DSP568xxEVM card.

5. Plug in the power supply into a wall socket.

DSP568xxEVM

Power Supply

SB-56K

Computer

JTAG / OnCE Port
COM Port

14-pin Ribbon
 Cable

9-pin Serial
Cable

Getting Started
Installing DSP56800 Hardware

DSP–40 Targeting DSP56800

Targeting DSP56800 DSP–41

3
Development Tools

Programming for a DSP56800 board is like programming for any
other platform target. If you have never used the CodeWarrior
IDE™ before, familiarize yourself with these tools:

• CodeWarrior IDE

• CodeWarrior Compiler Architecture

• CodeWarrior Assembler for DSP56800

• CodeWarrior Linker for DSP56800

• CodeWarrior Debugger for DSP56800

If you are an experienced CodeWarrior IDE user, review the
DSP56800 runtime software environment.

Tools Overview

CodeWarrior IDE

The CodeWarrior IDE allows you create software applications. It
controls the project manager, the source-code editor, the class
browser, the compiler, linker, and the debugger.

In the project manager, you can organize all the files and settings
related to your project so that you can see your project at a glance
and navigate among your source-code files. The CodeWarrior IDE
automatically manages build dependencies.

A project can have multiple “build targets.” A build target is a
separate build (with its own settings) that uses some or all of the
files in the project. For example, you can have both a debug version
and a release version of your software as separate build targets
within the same project.

Development Tools
Tools Overview

DSP–42 Targeting DSP56800

The CodeWarrior IDE has an extensible architecture that uses plug-
in compilers and linkers to target various operating systems and
microprocessors. The CodeWarrior CD includes a C compiler for
the DSP56800 family of processors. Other CodeWarrior software
packages include C, C++, and Java compilers for Win32, Mac® OS,
Linux, and other hardware and software combinations.

CodeWarrior Compiler for DSP56800

The CodeWarrior compiler for DSP56800 is an ANSI-compliant C
compiler. This compiler is based on the same compiler architecture
used in all CodeWarrior C compilers. When it is used together with
the CodeWarrior linker for DSP56800, you can generate DSP56800
applications and libraries.

CodeWarrior Assembler for DSP56800

The CodeWarrior assembler for DSP56800 has an easy-to-use
syntax. The CodeWarrior IDE assembles any file with an .asm
extension in the project. For further information, refer to the
Assembler Reference Manual.

CodeWarrior Linker for DSP56800

The CodeWarrior linker for Motorola DSP56800 is an Executable
and Linker Format (ELF) linker. This linker lets you generate an ELF
file (the default output file format) for your application. This linker
also lets you generate an S-record output file for your application.

CodeWarrior Debugger for DSP56800

The CodeWarrior debugger controls your program’s execution and
lets you see what happens internally as your program runs. You use
the debugger to locate problems in your program’s execution.

The debugger can execute your program one statement at a time
and suspend execution when control reaches a specified point.
When the debugger stops a program, you can view the chain of
function calls, examine and change the values of variables, and
inspect the contents of the processor’s registers.

Development Tools
The Development Process

Targeting DSP56800 DSP–43

For general information about the debugger, including its general
features and its visual interface, refer to the IDE User Guide.

The Development Process
While working with the CodeWarrior IDE, you proceed through the
development stages familiar to all programmers: write code,
compile and link code, and debug code. For complete information
on performing tasks like editing, compiling, linking, and
debugging, refer to the IDE User Guide.

The difference between the CodeWarrior IDE and traditional
command-line environments is in how the software (in this case the
IDE) helps you manage your work more effectively. If you are
unfamiliar with an integrated development environment in general,
or with the CodeWarrior IDE in particular, you will find the topics
in this section helpful.

Read these topics to find out how using the CodeWarrior IDE
differs from command-line programming:

• Project Files versus Makefiles

• Editing Code

• Compiling

• Linking

• Debugging

• Viewing Preprocessor Output

Project Files versus Makefiles

The CodeWarrior IDE project is analogous to a collection of
makefiles because you can have multiple builds in the same project.
For example, you can have one project that maintains both a debug
version and a release version of your code. You can build either or
both of these versions as you wish. Different builds within a single
project are called “build targets.”

The IDE uses the project window to list the files in a project. A
project can contain various types of files, such as source-code files
and libraries.

Development Tools
The Development Process

DSP–44 Targeting DSP56800

You can add or remove files from a project. You can assign files to
one or more build targets within the same project. These
assignments let you manage files common to multiple build targets.

The IDE automatically handles the interdependencies between files,
and it tracks which files have changed since the last build. When
you rebuild a project, only those files that have changed are
recompiled.

The IDE also stores compiler and linker settings for each build
target. You can modify these settings by using the IDE or by using
#pragma statements in your code.

Editing Code

The CodeWarrior IDE features a text editor designed for
programmers. It handles text files in MS-DOS/Windows, UNIX,
and Mac OS formats.

To open and edit a source-code file or any other editable file in a
project, use either of the following options:

• Double-click the file in the project window.

• Click the file. The file is highlighted. Drag the file to the
Metrowerks CodeWarrrior IDE window.

The editor window has excellent navigational features that allow
you to switch between related files, locate any particular function,
mark any location within a file, or go to a specific line of code.

Compiling

You can compile any source-code file in the current build target.
Select the source code file in the project window and then select
Project > Compile from the menu bar of the Metrowerks CodeWarrior
Window.

To compile all the files in the current build target that were
modified since they were last compiled, select Project > Bring Up To
Date from the menu bar of the Metrowerks CodeWarrior Window.

In UNIX and other command-line environments, object code
compiled from a source-code file is stored in a binary file (a .o or

Development Tools
The Development Process

Targeting DSP56800 DSP–45

.obj file). On Windows targets, the CodeWarrior IDE stores and
manages object files internally in the data folder.

CodeWarrior Compiler Architecture

A proprietary compiler architecture is at the heart of the
CodeWarrior IDE. This architecture handles multiple languages and
platform targets. Front-end language compilers generate an
intermediate representation (IR) of syntactically correct source code.
The IR is memory-resident and language-independent. Back-end
compilers generate code from the IR for specific platform targets.
The CodeWarrior IDE manages the whole process. The
CodeWarrior IDE build system is depicted in Figure 3.1.

Figure 3.1 CodeWarrior Build System

As a result of this architecture, the CodeWarrior IDE uses the same
front-end compiler to support multiple back-end platform targets.
In some cases, the same back-end compiler can generate code from a
variety of languages.Users derive significant benefit from this
architecture. For example, an advance in the C/C++ front-end
compiler means an immediate advance in all code generation.
Optimizations in the IR mean that any new code generator is highly

Development Tools
The Development Process

DSP–46 Targeting DSP56800

optimized. Targeting a new processor does not require compiler-
related changes in the source code, so porting is much simpler.

All compilers are built as plug-in modules. The compiler and linker
components are modular plug-ins. Metrowerks publishes this API,
allowing developers to create custom or proprietary tools. For more
information, go to the Metrowerks Support on the World Wide Web
at this URL:

http://www.metrowerks.com/support

Once the compiler generates object code, the plug-in linker
generates the final executable file. Multiple linkers are available for
some platform targets to support different object-code formats.

Linking

Linking object code into a final binary file is easy: select Project >
Make from the menu bar of the Metrowerks CodeWarrior Window.
The Make command brings the active project up to date, then links
the resulting object code into a final output file.

The IDE controls the linker through linker command files. There is
no need to specify a list of object files; the Project Manager tracks all
the object files automatically. You can also use the Project Manager
to specify link order. The M56800 Target settings panel lets you set the
name of the final output file.

Debugging

To debug a project, select Project > Debug from the menu bar of the
Metrowerks CodeWarrior Window.

Viewing Preprocessor Output

To view preprocessor output, select the file in the project window
and click Project > Preprocess from the main menu. The CodeWarrior
IDE displays a window that shows you what your file looks like
after going through the preprocessor.

You can use this feature to track down bugs caused by macro
expansion or other subtleties of the preprocessor.

Targeting DSP56800 DSP–47

4
Tutorial

This chapter gives you a quick start at learning how to use the
CodeWarrior™ IDE for DSP56800.

CodeWarrior IDE for DSP56800 Tutorial
This chapter provides a tour of the software development
environment of the CodeWarrior IDE for DSP56800. You will learn
how to use the tools to program for DSP56800 boards.

This tutorial introduces you to many important elements of the
CodeWarrior IDE that you will use when programming for
DSP56800. However, the tutorial does not cover or explain all the
features of the IDE.

You will learn how to create, compile, and link code that runs on
DSP56800 systems.

If you are already familiar with the CodeWarrior software, read
through the steps in this tutorial anyway. You will encounter the
DSP56800 compiler and linker for the first time, as well as other
features specific to DSP56800 application development.

This tutorial is divided into segments. In each segment, you will
perform steps that introduce you to the critical elements of the
CodeWarrior IDE programming environment. The segments are:

• Creating a Project

• Working with the Debugger

Creating a Project

In this section of the tutorial, you work with the CodeWarrior IDE
to create a project.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–48 Targeting DSP56800

You will start using a project stationery. A project stationery file is a
template that describes a pre-built project, complete with source-
code files, libraries, and all the appropriate compiler and linker
settings. When you create a project based on stationery, the
stationery is duplicated and becomes the basis of your new project.

You can create customized project stationery as well. Project
stationery is a useful feature of the CodeWarrior IDE.

Practice working with a sample project as follows:

1. Launch the CodeWarrior IDE.

The Metrowerks CodeWarrior window appears with a menu
bar at the top (Figure 4.1).

Figure 4.1 Metrowerks CodeWarrior Window

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–49

Create a new project from project stationery:

1. From the menu bar of the Metrowerks CodeWarrior
window, select File > New.

The New window appears with a list of options in the Project
tab (Figure 4.2).

Figure 4.2 New Window

2. Select DSP56800 EABI Stationery in the Project tab.

NOTE To create a new project without using stationery, select Empty Project

in the New window. This option lets you create a project from
scratch. If you are a beginner, do not use an empty project because
of the complexities involved in using the correct libraries and files
and selecting the correct build target settings.

3. Type a name in the Project name field (in this tutorial use
“sample” as the name).

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–50 Targeting DSP56800

The CodeWarrior IDE adds the .mcp extension
automatically to your file when the project is saved. The
.mcp extension allows any user to recognize the file as a
Metrowerks CodeWarrior project file. In this tutorial, the file
name is sample.mcp.

4. Set the location for the project use.

If you want to change the default location, perform the
following steps:

a. In the New window, click the Set button. The Create New
Project dialog box (Figure 4.3) appears:

Figure 4.3 Create New Project Dialog Box

b. Use the standard navigation controls in the Create New
Project dialog box to specify the path where you want the
project file to be saved.

c. Click the Save button. The CodeWarrior IDE closes the
Create New Project dialog box.

If you want to use the default location for your project, go to
step 5.

In either case, the CodeWarrior IDE creates a folder with the
same name as your project in the directory you select.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–51

NOTE Enable the Create Folder checkbox in the Create New Project file dialog
box to create a new folder for your project in the selected location.

5. Click OK in the New window.

The New Project window appears (Figure 4.4) with a list of
board-specific project stationeries.

Figure 4.4 New Project Window

6. Select M56824 as the Project Stationery for your target.

7. Click OK in the New Project window.

A project window appears (Figure 4.5). This window
displays all the files and libraries that are part of the project
stationery.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–52 Targeting DSP56800

Figure 4.5 CodeWarrior Project Window

The project window is the central location from which you control
development. You can use this window to:

• Add or remove source files

• Add libraries of code

• Compile code

• Generate debugging information and much more

8. View a source file.

a. Select the Files tab in the project window.

b. Open source and startup files.

Hierarchical controls are displayed next to folders
(groups) in the project window. You can expand or
collapse a view.

Debug
MakeSynchronize

Target

Modification
Dates

Settings
Project
Inspector

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–53

Click the hierarchical controls next to ‘code’ and
‘support’ to expand and view their contents (Figure
4.6).

Figure 4.6 CodeWarrior Project Window with Expanded Hierarchical
Folders

c. Double-click the M56800_main.c file in the project window,
the source code in the file is displayed in a CodeWarrior
source-code editor window (Figure 4.7).

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–54 Targeting DSP56800

Figure 4.7 CodeWarrior Editor Window

9. Set the build target.

The CodeWarrior IDE allows you to write code for a variety
of microprocessors and operating systems. These are called
“build targets.” When you work with a new CodeWarrior
project, the first thing you do is specify what your build
target is.

a. To specify a build target, double-click the Settings icon in
the Project window (see Figure 4.5 for location of icons in
the Project window).

The Target Settings window {external RAM (mode 3) Settings in
sample} appears (Figure 4.8).

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–55

This window contains several different panels. In Figure 4.8,
the Target Settings Panels is displayed in the Target Settings
window.

Figure 4.8 Target Settings Window

b. If it is not already visible, click Target from the tree
structure in the Target Settings Panels pane to expand the
hierarchical view.

c. Click Target Settings from the hierarchical tree.

The Target Settings panel appears which displays all the options
related to selecting a build target.

If you select M56800 Linker from the Linker list box, the
CodeWarrior IDE recognizes that the code you are writing is
intended for DSP56800 processors.

The Target Settings window is the location for all options
related to the build target. Every panel and option is
explained in the CodeWarrior documentation. Most of the

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–56 Targeting DSP56800

general settings panels are explained in the IDE User Guide.
DSP56800 target-specific panels are explained in this
targeting manual.

10.Set build target options:

a. In the Target Settings Panels panel, click M56800 Target in the
tree structure to expand the hierarchical view.

b. Click M56800 Target Settings from the hierarchical tree.

The M56800 Target Settings panel appears (Figure 4.9).

Figure 4.9 M56800 Target Settings Panel

11.Set linker options.

a. In the Target Settings Panels pane, click Linker in the tree
structure to expand the hierarchical view.

b. Click M56800 Linker from the hierarchical tree.

The M56800 Linker panel appears (Figure 4.10).

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–57

Figure 4.10 M56800 Linker Settings

12.Examine the default settings and select the options according
to your requirements. Close the Target Settings window when
you are finished by clicking the OK button.

13.Generate debugging information.

For the debugger to work, it needs certain information from
the CodeWarrior IDE so that it can connect object code to
source code. You must instruct the CodeWarrior IDE to
produce this information.

There is a debug-related column in the project window
(Figure 4.11). Every file, for which the IDE generates
debugging information, has a dot in the Debug column. To
enable symbolic information for a file, click the Debug
column next to the file. A dot appears confirming that
debugging information is generated for that file.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–58 Targeting DSP56800

Figure 4.11 Turning on Debugging Per File

14.Compile the code using either of the following options:

• From the menu bar of the Metrowerks CodeWarrior window,
select Project > Make.

• In the project window, double-click the Make icon.

The above step updates all files that need to be compiled and
re-linked in the project. The IDE tracks these dependencies
automatically.

NOTE The Make command in the menu bar of the Metrowerks CodeWarrior
window compiles selected files, not all changed files. The Bring Up

To Date command in the menu bar compiles all changed files, but
does not link the project into an executable.

When you select the Make command, the IDE compiles all of
the code. This may take some time as the IDE locates the files,
opens them, and generates the object code. When the
compiler completes the task, the linker creates an executable

Debug Column

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–59

from the objects. You can see the compiler’s progress in the
project window and in the toolbar.

Editing the Contents of a Project

To change the contents of a project:

1. Add source files to the project.

Most stationery projects contain source files that act as
placeholders. Replace these placeholders with your own
files.

To add files, use one of the following options:

• From the menu bar of the Metrowerks CodeWarrior window,
select Project > Add Files.

• Drag files from the desktop or Windows Explorer to the project
window.

To remove files:

a. Select the files in the project window that you want to
delete.

b. Press the Backspace or Delete key.

2. Edit code in the source files.

Use the IDE’s source-code editor to modify the content of a
source-code file. To open a file for editing, use either of the
following options:

• Double-click the file in the project window.

• Select the file in the project window and press Enter.

Once the file is open, you can use all of the editor’s features
to work with your code.

You have now been introduced to the major components of
CodeWarrior IDE for DSP56800, except for the debugger. You are
now familiar with the project manager, source code editor, and
settings panels.

Working with the Debugger

In this section, you will explore the CodeWarrior debugger.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–60 Targeting DSP56800

This tutorial assumes that you have already started the
CodeWarrior IDE and have opened a sample project.

NOTE CodeWarrior IDE automatically enables the debugger and sets de-
bugger-related settings within the project.

3. Access the Target Settings window (Figure 4.9).

4. Set debugger options.

a. In the Target Settings Panels pane, click Debugger in the tree
structure to expand the hierarchical view.

b. Click M56800 Target Settings from the hierarchical tree

The M56800 Target Settings panel appears (Figure 4.12).

Figure 4.12 Selecting Debugger Settings

5. Select the correct protocol in the M56800 Settings Panel:

• ADS Command Converter

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–61

Select the ADS Command Converter protocol if you are using
the ADS Universal Command Converter (UCC).

• Serial - EVM

Select the Serial - EVM protocol if you are only using the
DSP56L811EVM board with serial interface.

• Serial - SB56K

Select the Serial - SB56K protocol if you are using the Domain
Technologies SB-56K Multi-DSP Emulator.

• Parallel Port - ADS or EVM

Select the Parallel Port - ADS or EVM protocol if you are using
the external Motorola Suite56™ Parallel Command
Converter or the on-board parallel port interface of the
EVM board.

• Simulator

Select the Simulator protocol if you want to run your code on
the DSP56800 Simulator instead of downloading the code to
actual hardware.

• PCI

Select the PCI protocol if you are using the Motorola
Suite56TM PCI Command Converter.

• Ethernet

Select the Ethernet protocol if you are using the Motorola
Suite56TM Ethernet Command Converter.

• Command Converter Server

Select the Command Converter Server protocol if you want
to debug a target with a complex chain locally or to debug
remotely.

6. Set protocol specific options:

• Parallel Port - ADS or EVM

Select from LPT1, LPT2, LPT3, or LPT4 depending on which
parallel port you have used to connect the DSP568xxEVM
card.

• Serial - EVM or SB56K

Select from COM 1, COM 2, COM 3, or COM 4, depending on
which serial port you used to connect the DSP56L811EVM card or
SB-56K Emulator.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–62 Targeting DSP56800

• ADS Command Converter

Select the ADS Base Address, which is either 0x100, 0x200,
or 0x300, depending on the address of the ISA ADS card.

• Simulator

Select the Simulator to simulate the DSP56800 processor. The
simulator allows selecting bandwidth for CPU usage. Options are
Low, Medium, and High.

• Always reset on download

Select this option to reset the board every time you
download code to the board. If unchecked, the board is
reset only before the initial download.

NOTE Note that this option is not displayed if you select Simulator from the Proto-

col menu.

7. Debug the project by using either of the following options:

• From the Metrowerks CodeWarrior window, select Project >
Debug.

• Click the Debug button in the project window.

This command instructs the IDE to compile and link the
project. An ELF file is created in the process. ELF is the file
format created by the CodeWarrior linker for DSP56800. The
ELF file contains the information required by the debugger
and prepared by the IDE. When you debug the project on
DSP hardware, the debugger displays the following message:

Resetting hardware. Please wait.

This reset step occurs automatically only once per debugging
session. To reset the boards manually, press the Reset button
on your board. Next, the debugger displays this message:

Downloadinging external RAM (mode 3) Settings .elf

When the download to the board is complete, the IDE
displays the Program window (external RAM_mode 3 .elf in
sample) shown in Figure 4.13.

NOTE Source code is shown only for files that are in the project folder or
that have been added to the project in the project manager, and for

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–63

which the IDE has created debug information. You must navigate
the file system in order to locate sources that are outside the project
folder and not in the project manager, such as library source files.

Figure 4.13 Program Window

8. Navigate through your code.

The Program window has three panes:

• Stack pane

The Stack pane shows the function calling stack.

• Variables pane

Step Out

Step Into
Step Over

Run

Break
Kill

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–64 Targeting DSP56800

The Variables pane displays local variables.

• Source pane

The Source panel displays source or assembly code.

The toolbar at the top of the Program window has buttons that
allows you access to the execution commands in the Debug
menu.

9. Set breakpoints.

a. Scroll through the code in the Source pane of the Program
window until you come across the main() function.

b. Click the gray dash in the far left-hand column of the
window, next to the first line of code in the main()
function. A red dot appears (Figure 4.14), confirming you
have set your breakpoint.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–65

Figure 4.14 Breakpoint in the Program Window

NOTE To remove the breakpoint, click the red dot. The red dot disappears.

10.View and edit register values.

11.Registers are platform-specific. Different chip architectures
have different registers.

a. From the menu bar of the Metrowerks CodeWarrior
window, select View > Registers.

In this tutorial, the General Purpose Registers window appears
(Figure 4.15).

Breakpoint
Setting

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–66 Targeting DSP56800

Figure 4.15 General Purpose Registers for DSP56800

b. To edit values in the register window, double-click a
register value. Change the value as you wish.

12.View Data X:Memory.

All variables reside at a specific memory address determined
at runtime.

a. To view the memory address range of a variable, select
Data > View Memory from the menu bar of the Metrowerks
CodeWarrior window.

The Memory window appears (Figure 4.16).

b. Locate the Page list box at the bottom of the View Memory
window. Select X Memory from the Page list box.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–67

Figure 4.16 View X:Memory Window

13.Enter the memory address in the Display field.

Enter a hexadecimal address in standard C hex notation, for
example, 0x100.

The window displays the contents of X: memory.

If you are using the EVM hardware, type the address,
0x2000 in the Display text field and press Enter. You see the
memory starting at that location. This is the DATA section in
the EVM board’s memory. The memory address location for
DATA (and CODE) are set in the Memory Segment and
Sections Segment of the linker command file. Note that you
see both the hexadecimal and ASCII values for X: memory.
The contents of this window are editable as well.

14.View Data P:Memory.

a. To view the memory address range of a variable, select
Data > View Memory from the menu bar of the Metrowerks
CodeWarrior window.

The Memory window appears (Figure 4.17).

b. Locate the Page list box at the bottom of the View Memory.
Select P Memory from the Page list box.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–68 Targeting DSP56800

c. Using the View list box, you have the option to view four
types of P:Memory:

• Raw Data

• Disassembly

• Source

• Mixed

d. Enter the memory address in the Display field.

Enter a hexadecimal address in standard C hex notation,
for example, 0x1000.

Figure 4.17 shows Raw Data.

Figure 4.17 View P:Memory Window

15.Run the debugger.

a. From the menu bar of the Metrowerks CodeWarrior
window, select Project > Run.

This command executes your code until a breakpoint is
reached in the Program window.

b. Display local variables by selecting one from the list and
clicking the control to the left of that variable in the
Program window (Figure 4.13).

Local variables are displayed in the top-right pane of the
Program window.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

Targeting DSP56800 DSP–69

16.Quit the application.

a. Use either of the following options:

• Select Project > Run.

• Click the Run icon in the toolbar of the Program window.

The code runs to its conclusion. You can now exit the
debugger.

b. From the menu bar of the Metrowerks CodeWarrior
window, select Debug > Kill. This stops the code execution
and quits debugging.

References

You have completed the tutorial and used the basic elements of the
CodeWarrior IDE for DSP56800.

Refer to the IDE User Guide to learn more about the features
available to you.

Tutorial
CodeWarrior IDE for DSP56800 Tutorial

DSP–70 Targeting DSP56800

Targeting DSP56800 DSP–71

5
Target Settings

Each build target in a CodeWarrior™ project has its own settings.
This chapter explains the target settings for DSP56800 software
development. These settings affect the CodeWarrior™ DSP56800
compiler, linker, and assembler. Some of the target settings panels
are explained in greater detail in the IDE User Guide.

This chapter contains the following sections:

• Target Settings Overview

• Target Settings

• Access Paths

• Build Extras

• Runtime Settings

• File Mappings

• Source Trees

• M56800 Target

• C/C++ Language

• C/C++ Warnings

• M56800 Assembler

• ELF Disassembler

• M56800 Processor

• Global Optimizations

• M56800 Linker

• Custom Keywords Panel

• Other Executables Panel

• Debugger Settings

• M56800 Target Settings

Target Sett ings
Target

DSP–72 Targeting DSP56800

Target

Target Settings Overview

These settings control:

• Compiler options

• Linker output

• Assembler options

• Error and warning messages

When you create a project using stationery, the build targets, which
are part of the stationery, already include default target settings.
You can use those default target settings (if the settings are
appropriate), or you can change them.

NOTE Use the DSP56800 project stationery when you create a new
project.

Displaying Target Settings Panel Window

To display any settings panel for an open project, use either of the
following options:

• Select Target Settings from the Edit menu of the Metrowerks
CodeWarrior window, where Target is the name of the current
build target in the CodeWarrior project.

• Click the Target Settings icon in the project window.

The Target Settings window appears (Figure 5.1).

Target Sett ings
Target

Targeting DSP56800 DSP–73

Figure 5.1 Target Settings Panel Window

The Target Settings panel window is the most important window in
the CodeWarrior IDE. This is where your target operating system or
microprocessor is selected.

The left side of the Target Settings window contains a list of target
settings panels that apply to the current build target. Select the
preferred target settings panel. The CodeWarrior IDE displays the
target settings panel that you selected.

Changing Target Settings

To change target settings:

1. Select Edit > Target Name Settings.

2. To view the Target Settings panel, click on the name of the Target
Settings panel in the Target Settings panels list on the left side of
the Target Settings window.

Target Sett ings
Target

DSP–74 Targeting DSP56800

The CodeWarrior IDE displays the target settings panel that
you selected.

3. Change the settings in the panel.

Exporting and Importing Panel Options to XML
Files

The CodeWarrior IDE can export options for the current settings
panel to an Extensible Markup Language (XML) file or import
options for the current settings panel from a previously saved XML
file.

Exporting Panel Options to XML File

1. Click the Export Panel button.

2. Assign a name to the XML file and save the file in the desired
location.

Importing Panel Options from XML File

1. Click the Import Panel button.

2. Locate the XML file to where you saved the options for the
current settings panel.

3. Open the file to import the options.

Restoring Target Settings

After you change settings in an existing project, you can restore
previous settings using either of the following methods:

• To restore the previous settings, click the Revert button at the
bottom of the Target Settings window.

• To restore the settings to the factory defaults, click the Factory
Settings button at the bottom of the window.

Only panels appropriate for the current build target are available.
The current build target is displayed in a menu in the toolbar of the
project window.

NOTE Use the DSP56800 project stationery to create a new project. The
stationery already has reasonable or default values for all of the set-
tings panels. You can also create stationery files with your own pre-

Target Sett ings
Target

Targeting DSP56800 DSP–75

ferred settings. Modify a new project to suit your requirements, then
save it inside the stationery folder.

Target Settings

The Target Settings panel (Figure 5.2), lets you set the name of your
build target, as well as the linker and post-linker plug-ins to be used
with the build target. By selecting a linker, you are specifying which
family of processors to use. The other available panels in the Target
Settings window change to reflect your choice.

Because the linker choice affects the visibility of other related
panels, you must first set your build target before you can specify
other options, like compiler and linker settings.

Figure 5.2 Target Settings Panel

Target Name

Use the Target Name field to set or change the name of a build target.
When you use the Targets view in the project window, you see the
name entered in the Target Name field.

Target Sett ings
Target

DSP–76 Targeting DSP56800

The name you specify here is not the name of your final output file.
It is instead a name for your personal use that you assign to the
build target. You specify the name of the final output file in the
Output File Name field of the M56800 Target panel.

Linker

Select a linker from the items listed in the Linker menu.

For DSP56800 projects, you must select the M56800 Linker. The
selected linker defines the build targets. After you select a linker,
only the panels appropriate for your build target (in this case,
DSP56800) are available.

Pre-Linker

Some build targets have pre-linkers that perform additional work,
such as data-format conversion, before the final executable file is
built. CodeWarrior IDE for DSP56800 does not require a pre-linker,
so set the Pre-Linker menu to None.

Post-Linker

Some build targets have post-linkers that perform additional work,
such as data-format conversion, on the final executable file.
CodeWarrior IDE for DSP56800 does not require a post-linker, so set
the Post-Linker menu set to None.

Output Directory

This field shows the directory to which the IDE saves the executable
file that is built from the current project. The default output
directory is the same directory in which the project file is located. If
you want to save the executable file to a different directory, click the
Choose button. The Please Select an Access Path dialog box appears
(Figure 5.3).

Target Sett ings
Target

Targeting DSP56800 DSP–77

Figure 5.3 Please Select an Access Path Dialog Box

Use the dialog box to select the directory to which you want the IDE
to save the executable file.

You can specify how the CodeWarrior IDE stores an access path by
selecting any of the following options in the Path Type list box of the
Please select an access path dialog box:

• Absolute Path

This option allows the IDE to store the access path from the
root level of the startup hard drive to the folder whose access
path you want to add, including all folders in between. You
must update absolute access paths if you move the project to
another system, rename the hard disk, or rename any of the
folders along the access path.

• Project Relative

This option allows the IDE to store the access path from the
folder that contains the project to the folder whose access
path you want to add. You do not need to update the project
relative access paths if you move a project, as long as the
hierarchy of the relative path is the same. You cannot create a
relative path to a folder on a different hard drive than where
your project file resides.

Target Sett ings
Target

DSP–78 Targeting DSP56800

• Compiler Relative

This options allows the IDE to store the access path that
contains the CodeWarrior IDE to the folder whose access
path you want to add. You do not need to update the
compiler relative access paths if you move a project, as long
as the hierarchy of the relative path is the same. You cannot
create a relative path to a folder on a different hard drive
than where your CodeWarrior IDE resides.

• Systems Relative

This option allows the IDE to store the access path from the
operating system’s base folder to the folder whose access
path you want to add. You do not need to update the systems
relative access paths if you move a project, as long as the
hierarchy of the relative path is the same. You cannot create a
relative path to a folder on a different hard drive than where
your operating system’s base folder resides.

4. Click OK.

Save Project Entries Using Relative Paths

When you check this check box in the Target Settings panel, the IDE
uses relative paths to locate the files in your project. Relative paths
are useful for distinguishing between two or more files with
identical names.

Access Paths

Use the Access Paths panel (Figure 5.4) for the CodeWarrior IDE to
search for additional access paths while compiling and linking.
Search works top-down through the access paths. You can add
paths that are Absolute, Project Relative, Compiler Relative, or
System Relative. If you cannot change the location of your source
and library files, you may need to change your access paths if they
do not fall into one of the current locations in the Access Paths panel.

Target Sett ings
Target

Targeting DSP56800 DSP–79

Figure 5.4 Access Path Panel

User Paths

Click this radio button to display the User Paths pane in the Access
Paths panel.

System Paths

Click this radio button to display the System Paths pane in the
Access Paths panel.

Always Search User Paths

Enable this check box to search for system header files or interface
files.

Target Sett ings
Target

DSP–80 Targeting DSP56800

Add Default

Click this button to restore access paths in the User Paths pane or
System Paths pane after you delete them. The restored path appears
in the active pane.

Host Flags

Select any of the following options:

• All. Allows all host platforms to use the access path.

• None. Prevents any host from using the access path.

• Mac OS. Allows the IDE to search the access path only on a Mac
OS computer.

• Windows. Allows the IDE to search the access path only on a
Windows PC.

• UNIX. Allows the IDE to search the access path only on a UNIX
workstation.

Add Access Path

To add a new access path, perform the following steps:

1. Select the User Paths pane or System Paths pane in the Access
Path panel.

2. Click the Add button.

The Browse for Folder dialog box (Figure 5.5) appears:

Target Sett ings
Target

Targeting DSP56800 DSP–81

Figure 5.5 Browse for Folder

3. Use the dialog box to select the folder to which you want to
add an access path.

4. You can specify how the CodeWarrior IDE stores an access
path by selecting one of the following options in the Path Type
list box of the Browse for Folder dialog box (Figure 5.5):

• Absolute Path

• Project Relative

• Compiler Relative

• Systems Relative

Change Access Path

If you change the location of your source and library files, you may
need to change your access paths if they do not fall into one of the
current selections in the Access Paths panel.

To change an access path, perform the following steps:

1. Select the path in the User Paths pane or System Paths pane.

2. Click the Change button.

The Browse for Folder dialog box (Figure 5.5) appears.

Target Sett ings
Target

DSP–82 Targeting DSP56800

3. Use this dialog box to select a new access path.

Remove Access Path

To remove an access path, perform the following steps:

1. Select the path that you want to remove from the User Paths
pane or System Paths pane.

2. Click the Remove button to delete the path from the pane.

Build Extras

The Build Extras panel (Figure 5.6) contains various options that
affect the way the IDE builds a project, including the use of a third-
party debugger.

Figure 5.6 Build Extras Panel

Target Sett ings
Target

Targeting DSP56800 DSP–83

Extras

Use modification date caching

Check this check box to enable the IDE to check the modification
date of each project prior to making the project. Checking the check
box causes the IDE to cache the modification dates of the files in a
project.

Cache Subprojects

Check this check box to improve multi-project updating and
linking. The option also allows the IDE to generate symbolics
information for both the build targets and the subprojects within
each build target. Disable this check box to reduce the amount of
memory required by the CodeWarrior IDE.

Activate Browser

Check the check box to allow the IDE to generate symbolics
information for the project during each build. The symbolics
information is required for opening browser windows.

Dump internal browse information after compile

Check this check box to review the raw browser information that a
plug-in compiler or linker provides for the IDE.

Use External Debugger

Check the check box to use an external debugger in place of the
CodeWarrior debugger.

Application

Click the Browse button for the Application box. The Open dialog
box appears. Locate and select the debugger application from the
dialog box.

You must check the check box for Use External Debugger to enable the
Browse button.

Arguments

Type command-line arguments to pass to the project at the
beginning of a debugging session.

Target Sett ings
Target

DSP–84 Targeting DSP56800

Initial Directory

Click the Browse button. The Please Select an Access Path dialog box
appears. Locate and select the path to the external debugger from
the dialog box.

You must check the check box for Use External Debugger to enable the
Browse button.

Runtime Settings

The Runtime Settings panel (Figure 5.7) includes options for
specifying a debugging application for non-executable files,
defining a working directory, listing program arguments, and
creating environment variables.

Figure 5.7 Runtime Settings Panel

Target Sett ings
Target

Targeting DSP56800 DSP–85

Host Application for Libraries & Code Services

Use the text box for Host Application for Libraries & Code Services
specify a host application when debugging a non-executable field,
such as shared library, dynamic link library (DLL), or code resource.
The application that you specify is not the debugger application, but
rather the application with which the non-executable file interacts.

General Settings

Working Directory

Use this text box to specify the default directory to which the
current project has access. Debugging occurs in this location. If you
do not specify a directory, debugging occurs in the same field as the
executable file.

Program Arguments

Use this text box to type command-line arguments to pass to the
project at the beginning of a debugging session. The program
receives these arguments after you select Project > Run from the
menu bar of the Metrowerks CodeWarrior window.

Environment Settings

This section allows you to specify environment variables to pass to
your program as part of the environment parameter in your
program’s main() function, or as part of environment calls. These
variables are only available to the target program. When your
program terminates, the settings are no longer available.

To enable the Environment Settings text, you must make entries in the
Variable and Value text boxes at the same time.

Variable

Type a name for the environment variable.

Value

Type a value for the environment variable.

Target Sett ings
Target

DSP–86 Targeting DSP56800

Add an Environment Variable

To add an environment variable, perform the following steps:

1. Type a name in the Variable text box.

2. Type a value in the Variable text box.

3. Click the Add button.

The new environment variable appears in the Environment Settings
text box.

Change an Environment Variable

To change an environment variable, perform the following steps:

1. Select an environment variable that you want to change from
the Environment Settings text box.

2. Change the name in the Variable text box.

3. Change the value in the Value text boxes.

4. Click the Change button.

The changes appear in the Environment text box.

Delete an Environment Variable

Select an environment variable that you want to remove from the
Environment text box.

To delete an environment variable, perform the following steps:

1. Select an environment variable that you want to remove from
the Environment Settings text box.

2. Change the name in the Variable text box.

3. Click the Remove button. The environment variable is
removed from the Environment Settings text box.

File Mappings

The File Mappings panel (Figure 5.8) is used to associate a file name
extension, such as “.c” or “p” with a plug-in compiler. The
CodeWarrior IDE assigns a compiler to process files with matching
file-name extensions.

Target Sett ings
Target

Targeting DSP56800 DSP–87

Figure 5.8 File Mappings Panel

Mapping Info

File Type

Use this text box to type the file type for the selected file mapping in
the File Mappings list.

Extension

Use this text box to enter a file-name extension, such as the “.c” or
“.h” extensions, for a selected file type in the File Mapping list.

Refer to a list of default file-name extensions in Appendix A.

Compiler

Use this list box to select a compiler for the selected File Type in the
File Mapping list.

Target Sett ings
Target

DSP–88 Targeting DSP56800

Edit Language

Select any of the following from the Edit Language list box:

• None

• C/C++

• Disassembly

• Java

• Pascal

• PEF Export List

• Rez

• XML

Flags

Resource File

Select this file to cause the IDE to include in your finished
product the resources from the files with the selected file mapping.

Launchable

Select this file to cause the IDE to open the source-code file
with the application that created it after you double-click the file in
the Project window.

Precompiled

Select this file to cause the IDE to compile files with the
selected mapping before compiling other files.

Ignored by Make

Select this file to cause the IDE to ignore files with the
selected file mapping when compiling or linking the project.

Source Trees

The Source Trees settings panel (Figure 5.9) allows you to define
project-specific source trees (root paths). You can define your
project’s access paths and build-target output in terms of source

Target Sett ings
Target

Targeting DSP56800 DSP–89

trees. Using this approach, you can share projects across various
hosts.

Figure 5.9 Source Trees Settings Panel

Source Trees List

Name

This column shows the name of each source tree. When you define
access paths in terms of source trees, you use this name in your
access path’s definition.

Path

This column shows the path to each source tree. You might need to
modify the paths of the source trees when you transfer your project
to a new host.

Target Sett ings
Target

DSP–90 Targeting DSP56800

Source Tree Info

Name Source Tree

Type a name for a new source tree in the text box, or to change the
name of an existing source tree.

Type

Use the list box to select the type of source tree:

• Absolute Path

This type defines a path from the root level of the hard drive
to a desired folder, including all intermediate folders.

• Environment Variable

This type defines an environment variable in the operating
environment (Windows, Solaris, and Linux).

• Registry Key

This type defines a key entry in the operating-environment
registry.

Add Source Tree

To add a new source tree, perform the following steps:

1. Select the type of source tree from the Type menu.

2. Enter a name for the new source tree in the Name text box.

3. If you select Absolute Path in the Type list box, the Choose
button is enabled.

a. Click the Choose button to select a path using a standard
dialog box (Figure 5.5).

b. Click the Add button. The new source tree appears in the
Source Trees list.

4. Click Save in the Target Settings window to save your
changes.

Change Source Tree

To change a source tree, perform the following steps:

1. Select the source tree that you want to change from the
Source Trees list.

2. Click the Change button.

Target Sett ings
Target

Targeting DSP56800 DSP–91

3. Change the name in the Name text box.

4. Change the type of source tree in the Type text boxes.

The modified source tree name and path for the source tree
are displayed in the Source Trees list.

5. Click Save in the Target Settings window to save your
changes.

Remove Source Tree

To remove a source tree, perform the following steps:

1. Select the source tree that you want to remove from the
Source Trees list.

2. Click the Remove button to delete the source tree.

3. Click Save in the Target Settings window to save your
changes.

M56800 Target

The M56800 Target panel (Figure 5.10) instructs the compiler and
linker about the environment in which they are working, such as
available memory and stack size. This panel is only available when
the current build target uses the M56800 Linker.

Target Sett ings
Target

DSP–92 Targeting DSP56800

Figure 5.10 M56800 Target Panel

The items in the M56800 Target panel are:

Project Type

The Project Type menu determines the kind of project you are
creating. The available project types are Application and Library.

Use this menu to select the project type that reflects the kind of
project you are building (Figure 5.10).

Output File Name

The Output File Name field specifies the name of the executable file or
library to create. This file is also used by the CodeWarrior debugger.
By convention, application names must end with the extension
“.elf” (without the quotes), and library names must end with the
extension “.lib” (without the quotes).

Target Sett ings
Language

Targeting DSP56800 DSP–93

NOTE When building a library, ensure that use the extension “.lib,” as
this is the default file-mapping entry for libraries.

If you wish to change an extension, you must add a file-mapping
entry in the File Mappings settings panel.

Language

C/C++ Language

Settings in the C/C++ Language panel (Figure 5.11), only affect C
language features implemented for the DSP56800.

The following options are not applicable to the DSP56800 compiler.
Disable the options at all times:

• Activate C++ Compiler

• ARM Conformance

• Enable C++ Exceptions

• Enable RTTI

• Pool Strings

• Enable bool support

• Enable wchar_t Support

• Multi-Byte Aware

• EC++ Compatibility Mode

• Enable Objective C

Target Sett ings
Language

DSP–94 Targeting DSP56800

Figure 5.11 C/C++ Language Panel

The C/C++ Language panel options are:

• Inline Depth

Select this function if you want the compiler to determine
whether to inline a function based on the settings of ANSI
Keywords Only and the Inline Depth and Auto-inline
options.

NOTE When you call an inline function, the compiler inserts the function’s
code instead of issuing instructions to call that function. Inline func-
tions makes your programs faster because you execute the func-
tion’s code immediately without a function call, but possibly larger
because the function’s code may be repeated in several different
places.

If you do not select ANSI Keywords Only option, you can
declare C functions to be inline. The list box for the

Target Sett ings
Language

Targeting DSP56800 DSP–95

Inlining options allows you to select inline no functions, only
functions declared inline, or all small functions as shown in
Table 5.1.

Table 5.1 Options for Inline Depth Menu

• Auto-Inline

Select this option to allow the compiler to choose which
functions to inline.

• Deferred Inlining

Select this option if you want the compiler to allow inlining
of inline and auto-inline functions that are called before these
functions are declared.

The compiler requires more memory for this option.

• Don’t Reuse Strings

Select this option if you want the compiler to store each
string literal separately.

When you do not select this option, the compiler stores only
one copy of identical string literals. This option helps you
save memory if your program contains identical string
literals that you would not modify.

If you do not select this option and if you change one of the
strings, all the strings will be changed.

• Require Function Prototypes

Select this option if you want the compiler to generates an
error if you use a function that is defined after it is referenced
and does not have a prototype. If the function is implicitly
defined, that is, defined before it is referenced, and does not

Options Inline

Don’t Inline Does not inline functions, not even C or
C++ declared inline.

Smart Inline small functions to a depth of 2 to 4
inline functions deep.

1 to 8 Always inlines functions to the depth
specified by the numerical selection.

Always Inline Always inlines functions, no matter the
depth.

Target Sett ings
Language

DSP–96 Targeting DSP56800

have a prototype, then the compiler will issue a warning
when this option is on. This option helps you to prevent
errors that occur when you call a function before you declare
or define it. For example, without a function prototype, you
may pass data of the wrong type. As a result, your code may
not work as you expect even though it compiles without
error.

• ANSI Strict

This option affects several extensions to the C language
supported by the CodeWarrior compiler. The extensions are:

– C++ style comments

– Unnamed arguments in functions definitions

– A # not followed by argument in a macro

– Using an identifier after #endif

– Using typecasted pointers as 1values

– Converting pointers to types of the same size

– Arrays of zero length in structures

– The “D” constant suffix

In each case the extension is available only if the option is not
selected. If the option is selected, then these extensions to the
ANSI C standard are disabled.

• ANSI Keywords Only

Select this option if you want the compiler to generate an
error if it encounters any of the CodeWarrior C additional
keywords. Use this option if you are writing code that must
strictly follow the ANSI/ISO standard.

When this option is not selected, the following additional
keywords are available to you:

– asm

This keyword allows you to use the compiler’s built-in
inline assembler.

– inline

This keyword allows you to declare a C function as inline.

• Expand Trigraphs

Select this option if you want the C compiler to ignore
trigraph characters. Many common character constants look

Target Sett ings
Language

Targeting DSP56800 DSP–97

like trigraph sequences (specially on Mac OS), and this
extension allows you to use them without including escape
characters.

If you are writing code that must follow the ANSI/ISO
standard strictly, select this option.

NOTE If this option is on, exercise caution when you initialize strings or
multi-character constants that contain questions marks.

• Map newlines to CR

When you select this option, the C compiler allows you to
choose how to interpret the newline (‘\n’) and return (‘\r’)
characters.

In most compilers, ‘\r’ is translated to the value 0x0D, the
standard value for carriage return, and ‘\n’ is translated to
0x0A, the standard value for linefeed.

However, the C compiler in the Macintosh Programmers
Workshop, known as MPW C, ‘\r’ is translated to 0x0A and
‘\n’ is translated to 0x0D - the opposite of the typical
behavior.

If you select this option, the compiler uses the MPW C
conventions for ‘\n’ and ‘\r’ characters.

If you do not select this option, the compiler uses the
CodeWarrior C and C++ conventions for the ‘\n’ and ‘\r’
characters.

• Relaxed Pointer Type Rules

When you select this option, the compiler treats char* and
unsigned char* as the same type. While prototypes are
checked for compatible pointer types, direct pointer
assignments are allowed.

This option is useful for if you are using code written before
the ANSI/ISO standard. Old source code frequently uses
these types interchangeably.

• Enum Always Int

When you select this option, the underlying type is always
signed int. All enumerators must be no larger than a
signed int. If an enumerated constant is larger than an
int, the compiler generates an error.‘

Target Sett ings
Language

DSP–98 Targeting DSP56800

However, if you do not select this option, enumerators that
can be represented as an unsigned int are implicitly
converted to signed int. The compiler chooses the integral
data type that supports the largest enumerated constant. The
type could be as small as a char or as large as long int.

• Use Unsigned Chars

Select this option to allow the C compiler to treat a char
declaration as an unsigned char declaration.

To check whether this option is on, use _option (unsigned
char). By default, this option is off.

NOTE If you select this option, your code may not be compatible with librar-
ies that were compiled with this option turned off.

C/C++ Warnings

Settings in the C/C++ Warnings panel (Figure 5.12), affect only C
language features implemented for DSP56800.

There are no C++ warning features applicable to DSP56800
development.

The following options are not applicable to the DSP56800E
compiler. Disable the options at all times:

• Hidden Virtual Functions

• Inconsistent use of ‘class’ and ‘struct’ Keywords

Target Sett ings
Language

Targeting DSP56800 DSP–99

Figure 5.12 C/C++ Warnings Panel

The C/C++ Language panel options are:

• Illegal Pragmas

When you select this option, the compiler displays a warning
if it encounters an illegal pragma.

Listing 5.1 Example of Pragma Statements that generate Warnings

#pragma near_data off // WARNING: near data is not a pragma

• Empty Declarations

When you select this option, the compiler declares a warning
if it encounters a declaration with no variable name.

Target Sett ings
Language

DSP–100 Targeting DSP56800

Listing 5.2 Example of Empty Declarations that generate Warnings

int ; // WARNING
int i; // OK

• Possible Errors

Select this option if you want the compiler check to for some
common typographical mistakes that are legal C syntax, but
that may have unwanted side effects, such as putting in
unintended semicolons or confusing = and ==. The compiler
generates a warning if it encounters one of these:

– An assignment in a logical expression or the condition in
a while, if, or for expression. This check is useful if
you frequently use = when you meant to use ==.

– An equal comparison in a statement that contains a single
expression. This check is useful if you frequently use ==
when you meant to use =.

– A semicolon (;) directly after a while, if, or for
statement.

• Unused Variables

When you select this option, compiler generates a warning
when it encounters a variable that you declare, but do not
use. This check helps you find misspelled variable names and
variables you have written out of your program.

If you want to use this warning, but need to declare a
variable that you do not use, use the pragma unused
statement.

• Unused Arguments

When you select this option, the compiler generates a
warning when it encounters an argument you declare but do
not use. This check helps you find misspelled argument
names and arguments you have written out of your program.

There are two ways to avoid this warning:

– Use the pragma unused statement.

– You can turn off the ANSI Strict option in the C/C++
Language Panel and not assign a name to the unused
argument.

• Extra Commas

Target Sett ings
Language

Targeting DSP56800 DSP–101

When you select this option, the compiler generates a
warning when it encounters an extra comma. For example,
this statement is legal in C, but it causes a warning when this
option is on:

Listing 5.3 Example of Extra Comma that generate a Warning

int a[] = {1, 2, 3, 4, }; // ^ WARNING: Extra comma after 4

• Extended Error Checking

When you select this option, the compiler generates a
warning (not an error) if it encounters one of the following
syntax problems:

– A non-void function that does not contain a return
statement.

– An integer or floating-point value assigned to an enum
type.

– An empty return statement (return;) in a function
that is not declared void.

• Implicit Arithmetic Conversions

When you select this option, the compiler issues a warning if
the destination of an operation is not large enough to hold all
possible results. For example, assigning the value of a
variable type long to a variable of type char results in a
warning if this option is on.

• Non-Inlined Functions

Select this option if you want the compiler to issue a warning
when it is unable to inline a function.

If you want to check if the option is on, use _option.

M56800 Assembler

The M56800 Assembler panel (Figure 5.13) determines the format used
for the assembly source files and the code generated by the
DSP56800 assembler.

Target Sett ings
Language

DSP–102 Targeting DSP56800

Figure 5.13 M56800 Assembler Settings Panel

The items in this panel are:

Case Sensitive Identifiers

When this option is enabled, the assembler distinguishes lowercase
characters from uppercase characters for symbols. For example, the
identifier flag is the not the same as Flag when the option is
enabled.

NOTE This option must be enabled when mixing assembler and C code.

Generate Listing File

The Generate Listing File option determines whether or not a listing
file is generated when the CodeWarrior IDE assembles the source
files in the project. The assembler creates a listing file that contains
file source along with line numbers, relocation information, and

Target Sett ings
Code Generation

Targeting DSP56800 DSP–103

macro expansions when the option is enabled. When the option is
disabled, the assembler does not generate the listing file.

When a listing file is output, the file is created in the same directory
as the assembly file it is listing with an.lst extension appended to
the end of the file name.

Detects pipeline errors for delays to N register loads

Checking this option enables the assembler to generate error
messages.

In move X:(Rntoffset),N, N is not available in the instruction
following immediately. This option allows the assembler to insert
NOP instructions to resolve the restrictions in pipeline
dependencies.

Prefix File

The Prefix File field contains the name of a file to be included
automatically at the beginning of every assembly file in the project.
This field lets you include common definitions without using an
include directive in every file.

Code Generation

ELF Disassembler

The ELF Disassembler panel (Figure 5.14) controls settings related to
the disassembly view, which appear when you when you
disassemble object files. To view the disassembly of a module, select
Project > Disassemble from the menu bar of the Metrowerks
CodeWarrior window.

Target Sett ings
Code Generation

DSP–104 Targeting DSP56800

Figure 5.14 ELF Disassembler Panel

The items in this panel are:

Information on ELF Files

Show Headers

The Show Headers option determines whether or not the assembled
file lists any ELF header information in the disassembled output.

Show Symbol and String Tables

The Show Symbol and String Tables option determines whether the
disassembler lists the symbol table for the disassembled module.

Verbose Info

The Verbose Info option instructs the disassembler to show
additional information about certain types of information in the ELF
file. For the .symtab section some of the descriptive constants are

Target Sett ings
Code Generation

Targeting DSP56800 DSP–105

shown with their numeric equivalents. The sections .line,
.debug, extab and extabindex are also shown with an
unstructured hex dump.

Show Relocations

The Show Relocations option shows relocation information for the
corresponding text (.reala.text) or data (.reala.data) section.

Show Code Modules

The Show Code Modules option determines whether the disassembler
outputs the ELF code sections for the disassembled module.

When enabled, the Use Extended Mnemonics, Show Source Code, Show
Addresses and Object Code, and Show Comments options become
available.

Use Extended Mnemonics

The Use Extended Mnemonics option determines whether the
disassembler lists the extended mnemonics for each instruction for
the disassembled module.

This option is displayed only if Show Code Modules is enabled.

Show Addresses and Object Code

The Show Addresses and Object Code option determines whether the
disassembler lists the address and object code for the disassembled
module.

This option is available only if Show Code Modules is enabled.

Show Source Code

The Show Source Code option determines whether the disassembler
lists the source code for the module presented. Source code is
displayed in mixed mode with line number information from the
original C source.

This option is available only if the Show Code Modules option is
enabled.

Target Sett ings
Code Generation

DSP–106 Targeting DSP56800

Show Comments

The Show Comments option displays comments produced by the
disassembler in sections where comment columns are provided.

This option is available only if Show Code Modules is enabled.

Show Data Modules

The Show Data Modules option determines whether the disassembler
outputs any ELF data sections (such as .rodata and .bss) for the
module that was disassembled.

Disassemble Exception Tables

The Disassemble Exception Tables option determines whether or not
the disassembler outputs any C++ exception tables for the
disassembled module. This option is not enabled for DSP56800
because exception tables are not supported.

This option is available when you enable Show Data Modules.

Show Debug Info

The Show Debug Info option informs the disassembler to include
DWARF symbol information in the disassembled output.

M56800 Processor

The M56800 Processor settings panel (Figure 5.15) determines the
kind of code the compiler creates. This panel is available only when
the current build target uses the M56800 Linker.

Target Sett ings
Code Generation

Targeting DSP56800 DSP–107

Figure 5.15 M56800 Processor Settings Panel

The items in this panel are:

Peephole Optimization

This option controls the use of peephole optimizations. The
peephole optimizations are small local optimizations that eliminate
some compare instructions and optimize some address register
updates for more efficient sequences.

Instruction Scheduling

This option determines whether the compiler rearranges
instructions to take advantage of the M56800’s scheduling
architecture. This option results in faster execution speed, but is
often difficult to debug.

Target Sett ings
Code Generation

DSP–108 Targeting DSP56800

NOTE Instruction Scheduling can make source-level debugging difficult be-
cause the source code might not correspond exactly to the underly-
ing instructions. Disable this option when debugging code.

Allow REP Instructions

This option controls REP instruction usage. Such instructions are
generally more efficient, but they prevent you from servicing any
incoming interrupts inside a REP construct. If you are using
interrupts or writing a time-critical real-time application, avoid
using REP instructions.

Allow DO Instructions

This option controls the compiler’s support for the DO instruction.
Since the compiler never nests DO instructions, interrupt routines
are always free to use those instructions.

Make Strings ReadOnly

This option determines whether you can specify a location to store
string constants. If this option is disabled, the compiler stores string
constants in the data section of the ELF file. If this option is enabled,
the compiler stores string constants in the read-only .rodata
section.

Create Assembly Output

This option allows the compiler to produce a .asm assembler-
compatible file for each C source file in the project. The.asm file is
located in the same path as the Project/Debug file and has the same
name as the .c file containing main.

For example, MyProgram.c would produce the assembly output
MyProgram.asm.

Compiler Emits 32-bit CMP

This option allows the compiler to use a 32-bit compare instruction.
Enable this option for all target CPUs except for the DSP56811.

Target Sett ings
Code Generation

Targeting DSP56800 DSP–109

Compiler adjusts for delayed load of N-registers

When N-register (offset registers) are used consecutively, this
option allows the compiler to send NOP instruction to resolve the
restrictions in pipeline dependencies.

Write const data to .rodata section

This option allows the compiler to write all constant data to a read-
only memory section (.rodata). You must add .rodata section in the
linker command file. This option is overridden by the use_rodata
pragma.

Global Optimizations

Use the Global Optimizations panel (Figure 5.16), to configure how the
compiler rearranges its object code to produce smaller and faster
object-code. Some optimizations remove redundant operations in a
program, while other optimizations analyze an item’s use in a
program. The goal of these optimizations is to improve
performance.

NOTE Use compiler optimizations only after you have debugged your soft-
ware. Optimizing may break the one-to-one relationship between
source and object code.

Target Sett ings
Code Generation

DSP–110 Targeting DSP56800

Figure 5.16 Global Optimizations Panel

Optimizing for Space or Speed

You can optimize for space (size of the code in memory) or speed.
Although some code optimizations can reduce both size and
execution time, there is often a trade-off between these two factors.
The Smaller Code Size and Faster Execution Speed settings allow you to
control these trade-offs.

For example, if you click the Faster Execution Speed radio button,
then the compiler optimizes code for speed even if it adversely
affects the code size.

Faster Execution Speed

This option improves the execution speed of object code. With this
option on, object code is faster but may be larger. Click the Smaller
Code Size radio button to reduce the effect that this option has on a
size of a program.

Target Sett ings
Linker

Targeting DSP56800 DSP–111

Smaller Code Size

This setting reduces the size of object code that the compiler
produces. If you select this radio button, object code is smaller but
may be slower.

Linker

M56800 Linker

The M56800 Linker panel (Figure 5.17), controls the behavior of the
linker. This panel is available only when the current build target
uses the M56800 Linker.

Figure 5.17 M56800 Linker Settings Panel

Target Sett ings
Linker

DSP–112 Targeting DSP56800

Generate Symbolic Info

The Generate Symbolic Info option controls whether the linker
generates debugging information.

When you enable this option, the linker generates debugging
information included in the linked ELF file. This setting does not
generate a separate file.

If the Generate Symbolic Info option is not enabled, the Store Full Path
Names option is not available.

NOTE If you disable the Generate Symbolic Info option, you cannot
debug your project using the CodeWarrior debugger. For this rea-
son, the option is enabled by default.

Store Full Path Names

The Store Full Path Names option controls how the linker includes
path information for source files when generating debugging
information.

When the option is enabled, the linker includes full path names to
the source files. When the option is disabled, the linker uses only the
file names. In typical usage, this option is enabled.

This option is available only if you enable Generate Symbolic Info.

Generate Link Map

The Generate Link Map option controls whether the linker generates a
link map. The file name for the link map adds the extension xMAP to
the generated file name. The IDE places the link map in the Debug
subdirectory.

For each object and function in the output file, the link map shows
which file provided the definition. The link map also shows the
address given to each object and function, a memory map of where
each section resides in memory, and the value of each linker-
generated symbol.

Although the linker aggressively strips unused code and data when
the CodeWarrior IDE compiles the relocatable file, it never

Target Sett ings
Linker

Targeting DSP56800 DSP–113

deadstrips assembler relocatable files or relocatable files built with
other compilers. If a relocatable file was not built with the
CodeWarrior C compiler, the link map lists all of the unused but
unstripped symbols. You can use that information to remove the
symbols from the source manually and rebuild the relocatable file in
order to make your final process image smaller.

List Unused Objects

The List Unused Objects option controls whether the linker includes
unused objects in the link map.

Enable this option to let the linker include unused objects in the link
map. The linker does not link unused code in the program.

Usually, this option is disabled. However, you might want to enable
it in certain cases. For example, you might discover that an object
you expect to be used is not actually used.

Show Transitive Closure

The Show Transitive Closure option recursively lists in the link map
file all of the objects referenced by main(). Listing 6.1 shows some
sample code. To show the effect of the Show Transitive Closure option,
you must compile the code.

Listing 5.4 Sample Code to Show Transitive Closure

void foot(void){ int a = 100; }
void pad(void){ int b = 101; }

int main(void){
 foot();
 pad();
 return 1;
}

After you compile the source, the linker generates a link map file as
shown in Listing 6.2.

Target Sett ings
Linker

DSP–114 Targeting DSP56800

Listing 5.5 Effects of Show Transitive Closure in Link Map File

Link map of FSTART_
 1] FSTART_ (func,global) found in MSL C 56800.Lib FSTART.c
 2] FIntVec (notype,global) found in MSL C 56800.Lib
Init56811.asm
 2] F_stack_addr (object,global) found in dsp568_heap_stack.c
 2] FInt_Addr (notype,global) found in MSL C 56800.Lib
Init56811.asm
 2] Fmain (func,global) found in M56800_main.c
 3] Ffoot (func,global) found in M56800_main.c
 3] Fpad (func,global) found in M56800_main.c
 2] Ffflush (notype,global) found in MSL C 56800.Lib console.asm
 3] F__stdout_ready (object,global) found in MSL C 56800.Lib
console.c
 3] rtlib.bss.lo (section,local) found in MSL C 56800.Lib
console.asm
 3] rtlib.data (section,local) found in MSL C 56800.Lib
console.asm

Disable Deadstripping

The Disable Deadstripping option prevents the linker from removing
unused code and data.

Generate ELF Symbol Table

The Generate ELF Symbol Table option generates an ELF symbol table,
as well as a list of relocations in the ELF executable file.

Suppress Warning Messages

The Suppress Warning Messages option controls whether the linker
displays warnings.

When this option is disabled, the linker displays warnings in the
Message window. When this option is disabled, the linker does not
display warnings.

In typical usage, this option is disabled.

Target Sett ings
Linker

Targeting DSP56800 DSP–115

Generate S-Record File

This option controls whether the linker generates an S-Record file
based on the application object image.

The file name for the S-Record adds the .s extension to the generated
file name. The linker generates S3 type S-Records.

Sort By Address

This option enables the compiler to sort S-records generated by the
linker using byte address.

Generate Byte Address

This option enables the linker to generate S-records in bytes.

Max Record Length

The Max Record Length field specifies the maximum length of the S-
record generated by the linker. This field is available only if you
enable Generate S-Record File. The maximum value allowed for an S-
Record length is 256 bytes.

NOTE Most programs that load applications onto embedded systems have
a maximum allowable length for the S-Records. The CodeWarrior
debugger can handle S-Records that are 256 bytes long. If you are
using something other than the CodeWarrior debugger to load your
embedded application, you need to determine the maximum allow-
able length.

EOL Character

The EOL Character menu defines the end-of-line character for the S-
record file. This field is available only if you enable Generate S-
Record File. The end-of-line characters are:

• <cr> <lf> for DOS

• <cr> for Mac OS

• <lf> for Unix

Target Sett ings
Editor

DSP–116 Targeting DSP56800

Entry Point

The Entry Point field specifies the function that the linker first uses
when the program runs. This function is the program’s starting
point.

The default FSTART_ function is the IDE’s bootstrap or glue code
that sets up the DSP56800 environment before your code executes.
This function is in the FSTART.asm file, which is part of the
Metrowerks Standard Library for DSP56800. The FSTART
function performs other tasks, such as clearing the hardware
stack, creating an interrupt table, and fetching the stack start and
exception handler addresses.

The final task performed by FSTART_ is to call your main()
function.

For the DSP56800 development environment, the FSTART.asm file
is located in the following path:

\M56800 Support\Msl\Msl_c\DSP_56800\Src\FSTART.asm

Force Active Symbols

The Force Active Symbols text field allows the linker to include
symbols in the link even if the symbols are not referenced. In
essence, it is a way to make symbols immune to deadstripping.
When listing multiple symbols, use a single space between them as
a separator.

Editor

Custom Keywords Panel

The CodeWarrior IDE can use different colors for each type of text.
To change these colors, select the Custom Keywords panel (Figure
5.18). This can configure as many as four keyword sets, each with a
list of keywords, and syntax coloring for a project.

Target Sett ings
Editor

Targeting DSP56800 DSP–117

Figure 5.18 Custom Keywords Panel

Keyword Set

You have two options to select the color:

• Color dialog box

• Custom Keywords dialog box

Color Dialog Box

Click the color swatch. The Color dialog box appears (Figure 5.19):

Target Sett ings
Editor

DSP–118 Targeting DSP56800

Figure 5.19 Color Dialog Box

Basic Colors

Select the color by clicking the rectangular box in the Color dialog
box.

Color/Solid

When you select a color, the selected color appears in the color strip
adjacent to the right side of the dialog box. Drag the arrow located
on the right of the color strip to change the color shade. Click the
Add to Custom Color button to save the chosen color shade. The new
shade of color appears in one of the rectangle under Custom Colors.

Custom Keywords Dialog Box

You can define a collection of keywords to which you can assign a
unique color. This custom keyword set can include functions, types,
and other names that you want to highlight with a particular color.
You can enter four sets as shown in the Custom Keywords panel
(Figure 5.18). Use the Custom Keywords dialog box to define, modify,
export, and import the sets for use within the IDE.

Click the Edit button adjacent to the swatch. The Custom Keywords
dialog box dialog box appears (Figure 5.20).

Target Sett ings
Editor

Targeting DSP56800 DSP–119

Figure 5.20 Custom Keywords Dialog Box

Custom Keywords

Add

1. Type the custom keyword in the text box at the top of the
Custom Keywords dialog box. The Add button is enabled.

2. Click the Add button. The custom keyword appears in the
dialog box. You can enter up to four sets.

3. Click Done to save the sets and close the dialog box.

Import from file

Using the Import from file option, you can import existing custom
keyword sets for use in the IDE.

Export to file

Using the Export to file option, you can export your custom keyword
sets for use on another IDE host.

Target Sett ings
Debugger

DSP–120 Targeting DSP56800

Debugger

Other Executables Panel

The Other Executables panel (Figure 5.21) does not apply to the
DSP56800 chip.

Figure 5.21 Other Executables Settings Panel

Debugger Settings

The Debugger Settings panel (Figure 5.22) includes options to log
activities, change data-update intervals, and set other related
options.

Target Sett ings
Debugger

Targeting DSP56800 DSP–121

Figure 5.22 Debugger Settings Panel

Location of Relocated Libraries and Code Resources

Use any of the following options to enter a path in the Location of
Relocated Libraries and Code Resources text box.

• Type the path name in the Location of Relocated Libraries and Code
Resources text box.

• Click the Choose button to display a standard dialog box (Figure
5.23) and use the dialog box to select the path.

Target Sett ings
Debugger

DSP–122 Targeting DSP56800

Figure 5.23 Choose the Alternate Executable Dialog Box

The path to the selected executable field then appears in the Location
of Relocated Libraries and Code Resources text box.

Stop on application launch

Check this check box to stop program execution at a specified
temporary breakpoint at the beginning of a debugging session.

Select any of the following three options to stop program execution:

• Click the Program entry point radio button to halt program
execution upon entering the program.

• Click the Default language entry point radio button to always stop
at the main() function.

• Click the User specified radio button and type the field at which
you want to stop.

Other Settings

Auto-target Libraries

This check box applies to the current project when you debug a non-
project file. For example, this situation can occur when you attach a
running process.

Target Sett ings
M56800 Target Settings

Targeting DSP56800 DSP–123

Check the Auto Target Libraries check box to allow the IDE to attempt
to debug dynamically linked libraries (DLL) loaded by the target
application. The IDE attempts to automatically debug the loaded
DLLs for which symbolics information is available.

Cache symbolics between runs

Check this check box to allow the debugger to cache a project’s
symbolics information and refer to that cached information during
subsequent debugging sessions. Leave the check box unchecked to
force the debugger to discard the project’s symbolics information
after each debugging session. Enabling the symbolics cache is useful
for improving the performance of successive debugging sessions.

Log System Messages

Check this check box to log all system messages to a file. Leave the
check box unchecked if you do not wish to create a log file.

Stop at Watchpoints

Check this check box to halt a program’s execution when the
debugger encounters a watchpoint, regardless of whether the
watched value changes. Leave the check box unchecked to halt
execution only when the watched value changes.

NOTE Watchpoints always stop regardless of the settings.

Update Data every x seconds

Check this check box to update the information in debugging
windows while the target is running after a specified time interval.
Type in an interval in the Update Data every x seconds text box, where
x represents the number of seconds you wish to elapse before the
next update. Leave the check box unchecked if you do not wish to
update the debugging information. In this case, debugging-window
information stays the same throughout the debugging session.

M56800 Target Settings
The M56800 Target Settings panel lets you set communication
protocols for interaction between the DSP56800 board and the
CodeWarrior debugger.

Target Sett ings
M56800 Target Settings

DSP–124 Targeting DSP56800

Figure 5.24 M56800 Target Settings Panel

Protocol

• ADS Command Converter

Select the ADS Command Converter protocol if you are using
the ADS Universal Command Converter (UCC).

• Serial - EVM

If you are only using the DSP56L811EVM card with serial
interface.

• Serial - SB56K

If you are using the Domain Technologies SB-56K Multi-DSP
Emulator.

• Parallel Port - ADS or EVM

Select the Parallel Port - ADS or EVM protocol if you are using
the external Motorola Suite56™ Parallel Command
Converter or the on-board parallel port interface of the
EVM board.

Target Sett ings
M56800 Target Settings

Targeting DSP56800 DSP–125

• Simulator

If you want to run your code on the DSP56800 Simulator
instead of downloading the code to actual hardware.

• PCI

If you are using the Motorola Suite56™ PCI Command
Converter with parallel port interface.

• Ethernet

If you are using the Motorola Suite56™ Ethernet Command
Converter.

• Command Converter Server

Select the Command Converter Server protocol if you want
to debug a target with a complex chain locally or to debug
remotely.

• Simulator

Select the Simulator to simulate the DSP56800 processor. The
simulator allows selection of bandwidth for CPU usage.
Options are Low, Medium, and High.

Always Reset on Download

Always reset on download determines whether the debugger always
resets the DSP hardware before starting a debugging session. If
enabled, the debugger automatically resets the hardware before
each session. If disabled, the debugger does not reset the hardware.

Use Flash Config File

When the Use Flash Config File option is enabled, you can specify the
use of a flash configuration file (Listing 6.3) in the text box. If the full
path and file name are not specified, the default location is the same
as the project file.

You can click the Choose button to specify the file. The Choose File
dialog box appears (Figure 5.25).

Target Sett ings
M56800 Target Settings

DSP–126 Targeting DSP56800

Figure 5.25 Choose File Dialog Box

Listing 5.6 Flash Configuration File Format in Column Major

base AddrstartAddr endAddr progMem regBaseAddr Terase Tme
Tnvs Tpgs Tprog Tnvh Tnvh1 Trcv

Where:

baseAddr address where row 0 (zero) starts

startAddr first flash memory address

endAddr last flash memory address

progMem 0 = data (X:), 1 = program memory (P:)

regBaseAddr location in data memory map where
the control registers are mapped

Terase erase time

TME mass erase time

Tnvs PROG/ERASE to NVSTR set up time

Target Sett ings
M56800 Target Settings

Targeting DSP56800 DSP–127

A sample flash configuration file for DSP56F803 and DSP56F805 is
in Listing 6.4. Do not change the contents of this file.

Listing 5.7 Sample Flash Configuration File for DSP56F803/5

NOTE You cannot use Flash ROM with the board set in development
mode. Ensure the Debugger sets OMR on launch is not enabled if you
are using this feature.

Debugger sets OMR on launch

Enable Debugger sets OMR on launch to put the board into
development mode (setting the OMR register to 0x103). Otherwise,
the OMR value is 0x100. This is necessary for boards that do not
have jumpers to set the development mode.

NOTE If you are using Flash ROM, do not enable Debugger sets OMR on

launch.

Always Load Program at Debugger Launch

When the Always load program at debugger launch option is enabled,
the debugger downloads your object code to the target hardware
when you select Project > Debug from the menu bar of the
Metrowerks CodeWarrior window. Disable this option when you
want to debug a target that is already loaded.

Tpgs NVSTR to program set up time

Tprog program time

Tnvh NVSTR hold time

Tnvh1 NVSTR hold time(mass erase)

Trcv recovery time

0 0x0004 0x7dff 1 0x0f40 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006

0 0x8000 0x87ff 1 0x0f80 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006

0 0x1000 0x1fff 0 0x0f60 0x0002 0x0006 0x001A 0x0033 0x0066 0x001A 0x019A 0x0006

Target Sett ings
M56800 Target Settings

DSP–128 Targeting DSP56800

Use Hardware Breakpoints

Enabling the Use hardware breakpoints option lets you set a hardware
breakpoint in your C source code at one location. To set a hardware
breakpoint, enable the Use hardware breakpoints option and set a
breakpoint in the same manner as setting a software breakpoint.

Use hardware breakpoints only for flash debugging. Using a
hardware breakpoint halts execution after an instruction goes into
the pipeline. This causes the execution point to "skid" a few
instructions past the breakpoint.

NOTE Enabling Use hardware breakpoints disables all previously set break-
points.

Auto-clear previous breakpoint on new breakpoint request

This option is only available when you enable the Use hardware
breakpoints option. When you also enable the Auto-clear previous
breakpoint on new breakpoint request and set a breakpoint, the original
breakpoint is automatically cleared and the new breakpoint is
immediately set. If you disable the Auto-clear previous breakpoint on
new breakpoint request option and attempt to set another breakpoint,
you will be prompted the following message:

If you click the Yes button, the previous breakpoint is cleared and
the new breakpoint is set.

If you click the Yes to all button, the Auto-clear previous breakpoint on
new breakpoint request option is enabled and the previously set
breakpoint is cleared out without prompting for every subsequent
occurrence.

If you click the No button, the previous breakpoint is kept and the
new breakpoint request is ignored.

Targeting DSP56800 DSP–129

6
C for DSP56800

This chapter explains the CodeWarrior™ compiler and linker for
DSP56800.

This chapter contains the following sections:

• General Notes on C

• Number Formats

• Calling Conventions, Stack Frames

• Code and Data Storage

• Optimizing Code

• Pragma Directives

• Linker Issues

General Notes on C
 Note the following on the DSP56800 processors:

• C++ language is not supported.

• Floating-point functions (for example, sin, cos, and sqrt) are not
supported.

• The sizeof function in C is not the same as the SIZEOF function
in the linker. In C, the sizeof function returns a number of type
SIZE_T, which the complier declares to be of type unsigned
long int. The sizeof function in C returns the number of
words, whereas the SIZEOF function in the linker returns the
number of bytes.

Number Formats
This section explains how the CodeWarrior compilers implement
integer and floating-point types for DSP56800 processors. Look at

C for DSP56800
Number Formats

DSP–130 Targeting DSP56800

limits.h for more information on integer types and float.h for
more information on floating-point types. Both limits.h and
float.h are in the Metrowerks Standard Library (MSL) folder for
DSP.

DSP56800 Integer Formats

Table 6.1 shows the sizes and ranges of the data types for the
DSP56800 compiler.

Table 6.1 Data Type Ranges

Type Option Setting Size
(bits)

Range

bool n/a 16 true or false

char Use Unsigned Chars is
disabled in the C/
C++ Language
settings panel

16 -32,768 to
32,767

Use Unsigned Chars is
enabled

16 0 to 65,535

signed
char

n/a 16 -32,768 to
32,767

unsigned
char

n/a 16 0 to 65,535

short n/a 16 -32,768 to 32,767

unsigned
short

n/a 16 0 to 65,535

int n/a 16 -32,768 to 32,767

unsigned
int

n/a 16 0 to 65,535

long n/a 32 -2,147,483,648 to
2,147,483,647

unsigned
long

n/a 32 0 to 4,294,967,295

C for DSP56800
Number Formats

Targeting DSP56800 DSP–131

DSP56800 Floating-Point Formats

Table 6.2 shows the sizes and ranges of the floating-point types for
the DSP56800 compiler.

Table 6.2 DSP56800 Floating-Point Types

DSP56800 Fixed-Point Formats

Table 6.3 shows the sizes and ranges of the fixed-point types for the
DSP56800 compiler.

Table 6.3 DSP56800 Fixed-Point Types

pointer small-model enabled 16 0 to 65,535

small-model
disabled (not
available)

32 0 to 4,294,967,295

Type Option Setting Size
(bits)

Range

Type Size
(bits)

Range

float 32 1.17549e-38 to
3.40282e+38

short double 32 1.17549e-38 to
3.40282e+38

double 32 1.17549e-38 to
3.40282e+38

long double 32 1.17549e-38 to
3.40282e+38

Type Declared As Size
(bits)

Range

fixed __fixed__ 16 (-1.0 <= x < 1.0)

C for DSP56800
Calling Conventions, Stack Frames

DSP–132 Targeting DSP56800

NOTE For compatibility reasons, preferably use DSP intrinsics instead of
fixed-point types in Table 6.3 for fractional arithmetic.

Calling Conventions, Stack Frames
The CodeWarrior IDE for Motorola DSP56800 stores data and calls
functions in ways that might be different from other target
platforms.

Calling Conventions

The registers A, R2, R3, Y0, and Y1 pass parameters to functions.
When a function is called, the parameter list is scanned from left to
right. The parameters are passed in this way:

1. The first long fixed-point value is placed in A.

2. The first two 16-bit fixed-point values are placed in Y0 and
Y1.

3. The first two 16-bit addresses are placed in R2 and R3.

4. If there are no long fixed-point parameters, the first non-
fixed-point 32-bit value or 19-bit address is placed in A.

5. If there are no 16-bit fixed-point parameters, the first two 16-
bit non-fixed-point, non-address values are placed in Y0 and
Y1 (and Y0 receives the single value when only one is
passed).

All remaining parameters are pushed onto the stack,
beginning with the rightmost parameter. Multiple-word
parameters (19- and 32-bit values) have their least significant
word pushed onto the stack first.

When calling a routine that returns a structure, the caller passes an
address in R0 which specifies where to copy the structure.

short fixed __shortfixed_
_

16 (-1.0 <= x < 1.0)

long fixed __longfixed__ 32 (-1.0 <= x < 1.0)

Type Declared As Size
(bits)

Range

C for DSP56800
Calling Conventions, Stack Frames

Targeting DSP56800 DSP–133

The registers A, R0, R2, and Y0 are used to return function results as
follows:

• Long fixed-point values are returned in A.

• All 19-bit addresses and 32-bit values are returned in A.

• 16-bit addresses are returned in R2.

• All 16-bit non-address values are returned in Y0.

Stack Frame

The stack frame is generated as shown in Figure 6.1. The stack
grows upward, meaning that pushing data onto the stack
increments the address in the stack pointer.

Figure 6.1 The Stack Frame

The stack pointer register (SP) is a 16-bit register used implicitly in
all PUSH and POP instructions. The software stack supports
structured programming, such as parameter passing to subroutines
and local variables. If you are programming in both assembly-
language and high-level language programming, use stack
techniques. Note that it is possible to support passed parameters
and local variables for a subroutine at the same time within the
stack frame.

 called function stack space
 user locals
 compiler locals
 nonvolatile registers
 status registers
 return address
 parameters
 volatile register space
 calling function stack spaceSP-size

SP

C for DSP56800
Code and Data Storage

DSP–134 Targeting DSP56800

Code and Data Storage
There are two memory sections for the DSP56800: CODE (P
memory) and DATA (X memory) (Table 6.4). The compiler places
code and data in the appropriate sections. You may need to specify
how the program-defined sections map to real memory by using the
ELF Linker and Command Language and the M56800 Linker settings
panel.

Table 6.4 Code and Data Memory

Optimizing Code
Optimizations that are specific to DSP56800 development with the
CodeWarrior IDE are:

Page 0 Register Assignment

The compiler uses page 0 address locations 0x30 - 0x40 as register
variables. Frequently accessed local variables are assigned to the
page 0 registers instead of to stack locations so that load and store
instructions are shortened. Addresses 0x30 - 0x37 (page 0
registers MR0-MR7) are volatile registers and can be overwritten.
The remaining registers (page 0 registers MR8-MR15) are treated as
non-volatile and, if used by a routine, must be saved on entry and
restored on exit.

Register Coloring

The C compiler performs an optimization called register coloring. In
this optimization, the compiler may assign two or more register
variables to the same register. The compiler does this optimization if
the code is not using the two variables at the same time. In this
example, the compiler could place i and j in the same register.

Section Size Range (Hexadecimal)

CODE 64K x 16 bit 0000 - FFFF

DATA 64K x 16 bit 0000 - FFFF

C for DSP56800
Optimizing Code

Targeting DSP56800 DSP–135

Listing 6.1 Register Coloring Example

short i;
int j;

for (i=0; i<100; i++) { MyFunc(i); }
for (j=0; j<100; j++) { MyFunc(j); }

However, if a line of code like the one below is placed anywhere in
the function, the compiler would realize that you are using i and j
at the same time, and would place the variables in different
registers.

MyFunc (i + j);

Register coloring reduces code size and has no effect on execution
time.

Using the DSP56800 development tools, you can instruct the
compiler to:

1. Store all local variables on the stack.

The compiler loads and stores local variables when you read
and write to them. This behavior is standard for the compiler.

If desired, set the optimization level to Off, level 1, or level 2
in the Global Optimizations settings panel.

2. Place as many local variables as possible in registers.

In this case, two or more variables whose lifetimes do not
overlap can be placed in the same register.

If desired, set the optimization level to 3 or 4 in the Global
Optimizations settings panel.

NOTE At optimization level 3 or 4, you can assign local variables to differ-
ent registers in different sections of your code. This behavior could
produce unexpected results if you compile your code at optimization
level 3 or 4 and then attempt to debug your code.

Variables that are declared volatile (or those that have the
address taken) are not kept in registers.

C for DSP56800
Optimizing Code

DSP–136 Targeting DSP56800

Array Optimizations

Array indexing operations are optimized when optimizations are
turned on in the Global Optimizations settings panel.

In Listing 6.2, the i index is optimized out and the operation
performs with address registers.

Listing 6.2 C Code Example for Array Optimizations

void main(void) {
 short a[100], b[100];int i;

 // ... other code

 for (i = 0; i < 100; i++) {
 ArrayA[i] = ArrayB[i]; }
 // ... other code
}

It is easier to understand the optimization process by viewing the
assembler code mixed with C code, created both before (Listing 6.3)
and after (Listing 6.4) optimizations are turned on.

Listing 6.3 Array Example Before Optimizations - Mixed View

for (i = 0;i < 100; i++)
00001004: A7B20000 moves #0,X:0x0032
00001006: A90B bra main+0x18 (0x1018) ; 0x000812
 {
 a[i] = b[i];
00001007: 880F move SP,R0
00001008: DE40FF9D lea (R0+-99)
0000100A: BC32 moves X:0x0032,N
0000100B: F044 move X:(R0+N),X0
0000100C: 880F move SP,R0
0000100D: DE40FF39 lea (R0+-199)
0000100F: BC32 moves X:0x0032,N
00001010: D044 move X0,X:(R0+N)
 }

C for DSP56800
Optimizing Code

Targeting DSP56800 DSP–137

The optimization level has been set to 3 (Listing 6.4). Note that i is
optimized out and the operation is now performed with address
registers.

Listing 6.4 Array Example After Optimizations - Mixed View

for (i = 0; i < 100; i++)
00001008: A7B20000 moves #0,X:0x0032
0000100A: A905 bra START_+0x3 (0x101a) ; 0x000810
 {
 a[i] = b[i];
0000100B: F016 move X:(R2),X0
0000100C: D017 move X0,X:(R3)
0000100D: DE02 lea (R2)+
0000100E: DE03 lea (R3)+
 }

Multiply and Accumulate (MAC) Optimizations

Multiply and Accumulate optimizations use address register
calculations and perform arithmetic operations with a MACR
instruction. The effect of these optimizations reflects in the source
code examples in Listing 6.5 and Listing 6.6.

Listing 6.5 Sample Multiply and Accumulate Operation

void main(void)
{
 __fixed__ a[100], b[100];
 __fixed__ sum = 0;

 int i=0;

 for (i = 0; i < 100; i++){
 sum += a[i] * b[i];
 }
}

The mixed view without optimizations is as follows:

C for DSP56800
Optimizing Code

DSP–138 Targeting DSP56800

Listing 6.6 Assembly Output for Multiply and Accumulate Operation

for (i = 0; i < 100; i++)
00001006: A7B20000 moves #0,X:0x0032
00001008: A90E bra START_ (0x101f) ; 0x000817
 {
 sum += a[i] * b[i];
00001009: 880F move SP,R0
0000100A: DE40FF39 lea (R0+-199)
0000100C: BC32 moves X:0x0032,N
0000100D: F344 move X:(R0+N),Y1
0000100E: 880F move SP,R0
0000100F: DE40FF9D lea (R0+-99)
00001011: BC32 moves X:0x0032,N
00001012: F144 move X:(R0+N),Y0
00001013: B033 moves X:0x0033,X0
00001014: 7C79 macr +Y1,Y0,X0
00001015: 9033 moves X0,X:0x0033
 }

The optimized version with level 3 optimizations (Listing 6.7):

Listing 6.7 Assembly Output for Optimized Multiply and Accumulate
Operation

for (i = 0; i < 100; i++)
0000100A: A7B20000 moves #0,X:0x0032
0000100C: A908 bra START_+0x5 (0x1021) ; 0x000815
 {
 sum += a[i] * b[i];
0000100D: F316 move X:(R2),Y1
0000100E: F117 move X:(R3),Y0
0000100F: B033 moves X:0x0033,X0
00001010: 7C79 macr +Y1,Y0,X0
00001011: 9033 moves X0,X:0x0033
00001012: DE02 lea (R2)+
00001013: DE03 lea (R3)+
 }

C for DSP56800
Pragma Directives

Targeting DSP56800 DSP–139

Pragma Directives
A pragma is a method for modifying compiler settings from the
source code rather than the preference panels. Typically, you would
use the settings panels to set global options and use pragmas for
special cases.

Description of Pragma Interrupt

The pragma interrupt directive controls the compilation of object
code for interrupt routines. The compiler generates a special
prologue and epilogue for functions so that they may be used to
handle interrupts. The contents of the epilogue and prologue vary
depending on the mode selected.

The compiler also emits an RTI or RTS for the return statement
depending upon the mode selected. The SA, R, and CC bits of the
OMR register are set to system default.

To use the interrupt pragma, place the pragma interrupt inside your
interrupt handler as shown in Listing 6.8. This causes the function to
return with an RTI instruction instead of an RTS.

Listing 6.8 Syntax and Examples

void myIntHandler(){
#pragma interrupt
//code...}

There are several ways to use this pragma as described below.

pragma interrupt saveall|called[warn]

The compiler performs the following using the pragma
interrupt [warn] option:

• Sets M01 to –1 if M01 is used by ISR.

• Sets OMR to system default:

– Convergent rounding

– No saturation mode

– 32-bit compares

C for DSP56800
Pragma Directives

DSP–140 Targeting DSP56800

• Saves/restores only registers used by ISR.

• Generates an RTI to return from interrupt.

• If [warn} is present, then emits warnings if this ISR makes calls
to functions that have not been defined with pragma called.

NOTE You must use the [warn] argument only within the scope of function
body.

pragma interrupt saveall [warn]

The compiler performs the following using the pragma
interrupt saveall[warn] argument:

• Always sets M01 to –1.

• Sets OMR to system default 0x103:

– Convergent rounding

– No saturation mode

– 32-bit compares

• Saves/restores hardware stack via a runtime call.

• Generates an RTI to return from interrupt

• If [warn] is present, then emits warnings if this ISR makes calls
to functions that have not been defined with pragma called.

NOTE You must use the saveall[warn] argument only within the scope of
function body.

pragma interrupt called

The compiler performs the following using the pragma
interrupt called argument:

• Saves/restores only registers used by routine.

• Generates an RTS to return from function.

Note the following for the called argument:

• You can use the argument on function declarations or within
scope of function body.

• You must use this argument before interrupt body is compiled.

C for DSP56800
Pragma Directives

Targeting DSP56800 DSP–141

• Use this pragma for all functions called by an interrupt routine.

Listing 6.9 Sample Code - #pragma interrupt saveall|called [warn]

#pragma interrupt called
void calledfunction();

int irq1(void)
{
#pragma interrupt warn
...irq1 code
} /* end of ISR--pragma interrupt state is turned off
automatically */

int irq2(void)
{
#pragma interrupt saveall warn
...irq2 code
calledfunction();
} /* end of ISR--pragma interrupt state is turned off
automatically */

void calledfunction()
{
…code
}

int main (void)
{
irq1();
irq2();
}

NOTE The end of a function always turns off the pragma interrupt directive.

C for DSP56800
Pragma Directives

DSP–142 Targeting DSP56800

Pragma Optimization

Listing 6.10 Synopsis - Pragma Optimization

#pragma optimization_level [<level> | reset]
<level> is an integer number between 0 and 4 inclusive

The optimization_level pragma controls the global optimization
level programmatically through the #pragma preprocessor
statement. The optimization level may be set to any legal value (0-4)
using this method. The 'reset' option resets the optimization level to
its prior value before the #pragma is encountered. This pragma does
not affect the interactive preference panel settings for global
optimization levels. If this pragma occurs in the middle of a
function definition, the entire function is compiled as if the pragma
had occurred before the function definition since the actual
compilation of the function is deferred until the function is parsed
entirely.

Listing 6.11 Sample Code - Pragma Optimization

// Function definition
int afunc (void)
{

// Function statements...
#pragma optimization_level 0
// Remaining function statements...
}

// Restore optimization level to its previous value
#pragma optimization_level reset

The entire function 'afunc' is compiled under optimization level 0.

C for DSP56800
Pragma Directives

Targeting DSP56800 DSP–143

Constant Data Section

By default, the compiler emits const defined data to the .data
section. There are two ways to cause the compiler to emit const
defined data to the .rodata section:

1. Setting the “write const data to .rodata section” option in the
M56800 Processor Settings panel.

This method emits all const-defined data to the .rodata
section.

2. Using #pragma use_rodata [on | off | reset].

 on Write const data to .rodata section.

 off Write const data to .data section.

 reset Toggle pragma state.

To use this pragma, place the pragma before the const data
that you wish the compiler to emit to the .rodata section. This
method overrides the target setting and allows a subset of
constant data to be emitted to or excluded from the .rodata
section.

Listing 6.12 Synopsis - Pragma use_rodata

#pragma use_rodata on|off|reset

By default, the compiler emits const defined data to the .data
section. There are two ways to cause the compiler to emit const
defined data to the .rodata section:

1. Setting the “write const data to .rodata section” option in the
M56800 Processor Settings panel.

This method emits all const-defined data to the .rodata
section.

2. Using #pragma use_rodata [on | off | reset].

 on Write const data to .rodata section.

 off Write const data to .data section.

 reset Toggle pragma state.

To use this pragma, place the pragma before the const data that you
wish the compiler to emit to the .rodata section. This method

C for DSP56800
Pragma Directives

DSP–144 Targeting DSP56800

overrides the target setting and allows a subset of constant data to
be emitted to or excluded from the .rodata section.

Listing 6.13 Sample Code _ Pragma use_rodata

const UInt16 len_l_mult_ls_data = sizeof(l_mult_ls_data) /
sizeof(Frac32) ;
const Int16 g = a+b+c;

#pragma use_rodata on
const Int16 d[]={0xdddd};
const Int16 e[]={0xeeee};
const Int16 f[]={0xffff};
#pragma use_rodata off

main()
{
 // ... code
}

You must add .rodata section information to the linker command
file.

Listing 6.14 Sample Linker Command FIle - Pragma use_rodata

MEMORY {
 .text (RWX) : ORIGIN = 0x2000, LENGTH = 0x00000000
 .data (RW) : ORIGIN = 0x3000, LENGTH = 0x00000000
 .rodata (R) : ORIGIN = 0x5000, LENGTH = 0x00000000
}
SECTIONS {
.main_application :
 {
 # .text sections
 } > .text

 .main_application_data :
 {
 # .data sections
 # .bss sections
 } > .data

C for DSP56800
Linker Issues

Targeting DSP56800 DSP–145

 .main_application_data:
 {
 # .data sections
 * (.rodata)
 } > .rodata
}

Linker Issues
This section explains background information on the DSP56800
linker and its operation.

Deadstripping Unused Code and Data

The DSP56800 linker deadstrips unused code and data only from
files compiled by the CodeWarrior C compiler. Assembler
relocatable files and C object files built by other compilers are never
deadstripped. Libraries built with the CodeWarrior C compiler only
contribute the used objects to the linked program. If a library has
assembly or other C compiler-built files, only those files that have at
least one referenced object contribute to the linked program.
Completely unreferenced object files are always ignored when
deadstripping is enabled.

Link Order

The DSP56800 linker always processes C and assembly source files,
as well as archive files (.a and .lib) in the order specified under
the Link Order tab in the project window. Therefore, if a symbol is
defined in a source-code file and a library, the linker uses the
definition which appears first in the link order.

If you want to change the link order, select the Link Order tab in the
project window and drag your source or library file to the preferred
location in the link order list. Files that appear at the top of the list
are linked first.

C for DSP56800
Linker Issues

DSP–146 Targeting DSP56800

Targeting DSP56800 DSP–147

7
Inline Assembly Language
and Intrinsic Functions

This chapter explains the support for inline assembly language and
intrinsic functions that is built into the CodeWarrior™ compiler.
This chapter only covers the CodeWarrior IDE implementation of
Motorola assembly language.

Working With DSP56800 Inline Assembly
Language

This section explains how to use the CodeWarrior compiler’s for
inline assembly language programming, including assembly
language syntax.

This chapter contains the following sections:

• Working With DSP56800 Inline Assembly Language

• Calling Assembly Language Functions from C Code

• Calling Functions from Assembly Language

• Intrinsic Functions for DSP56800

Inline Assembly Language Syntax for
DSP56800

This section explains the inline assembly language syntax specific to
DSP56800 development with the CodeWarrior IDE.

Inl ine Assembly Language and Intrinsic Functions
Working With DSP56800 Inline Assembly Language

DSP–148 Targeting DSP56800

Function-level Inline Assembly Language

To specify that a block of code in your file should be interpreted as
assembly language, use the asm keyword and standard DSP56800
instruction mnemonics.

To ensure that the C compiler recognizes the asm keyword, you
must disable the ANSI Keywords Only option in the C/C++ Language
panel.

You can use the M56800 inline assembly language to specify that an
entire function is in assembly language by using the syntax displayed
in Listing 7.1.

Listing 7.1 Function-level Syntax

asm <function header>
{
 <local declarations>
 <assembly instructions>
}

The function header is any valid C function header, and the local
declarations are any valid C local declarations.

Statement-level Inline Assembly Language

The M56800 inline assembly language supports single assembly
instructions as well as asm blocks, within a function using the syntax
in Listing 7.2. The inline assembly language statement is any valid
assembly language statement.

Listing 7.2 Statement-level Syntax

asm { inline assembly statement
 inline assembly statement
 ...
}
asm (inline assembly statement ;
 inline assembly statement ;
 ...
)

Inl ine Assembly Language and Intrinsic Functions
Working With DSP56800 Inline Assembly Language

Targeting DSP56800 DSP–149

There are two different ways to represent statement-level assembly.
In the first way, you use braces "{}" to contain the block. Within this
type of block, the semicolon that separates statements is optional. In
the second way, you use parenthesis "()" to contain the block and the
the semicolon between statements is mandatory.

Adding Assembly Language to C Source Code

There are two ways to add assembly language statements in a C
source code file. You can define a function with the asm qualifier, or
you can use the inline assembly language.

The first method uses the asm keyword to specify that all statements
in the function are in assembly language, as shown in Listing 7.3
and Listing 7.7. Note that if you are using this method, you must
define local variables within the function.

Listing 7.3 Defining a Function with asm

asm long MyAsmFunction(void)
{
 /* Local variable definitions */
 /* Assembly language instructions */
}

The second method uses the asm qualifier as a statement to provide
inline assembly language instructions, as shown in Listing 7.4. Note
that if you are using this method, you must not define local variables
within the inline asm statement.

Listing 7.4 Inline Assembly with asm

long MyInlineAsmFunction(void)
{
 asm { move x:(r0)+,x0 }
}

Inl ine Assembly Language and Intrinsic Functions
Working With DSP56800 Inline Assembly Language

DSP–150 Targeting DSP56800

Assembly Language Quick Guide

Keep these points in mind as you write assembly language
functions:

• All statements must either be a label:

[LocalLabel:]

Or an instruction:

((instruction) [operands])

• Each statement must end with a new line

• Assembly language directives, instructions, and registers are not
case-sensitive:

 add x0,y0
 ADD X0,Y0

Creating Labels for M56800 Assembly

A label can be any identifier that you have not already declared as a
local variable. A label must end with a colon.

Listing 7.5 Labels in M56800 Assembly

x1: add x0,y1,a
x2: add x0,y1,a
x3 add x0,y1,a //ERROR, MISSING COLON

Using Comments in M56800 Assembly

Comments in inline assembly language can only be in the form of C
and C++ comments. You cannot begin the inline assembly language
comments with a semicolon (;) nor with a pound sign (#) - the
preprocessor uses the pound sign. You can use the semicolon for
comments in .asm sources. The proper comment format is shown
in Listing 7.6.

Listing 7.6 Comments Allowed in M56800 In-line Assembly Language

 move x:(r3),y0 # ERROR
 add x0,y0 // OK

Inl ine Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

Targeting DSP56800 DSP–151

 move r2,x:(sp) ; ERROR
 adda r0,r1,n /* OK */

Calling Assembly Language Functions from C
Code

You can call assembly language functions from C just like you
would call any standard C function. You need to use standard C
syntax for calling inline assembly language functions and pure
assembly language functions in .asm files.

Calling Inline Assembly Language Functions

You can call inline assembly language functions just like you would
call any standard C function. Listing 7.7 demonstrates how to create
an inline assembly language function in a C source file. This
example adds two 16-bit integers and returns the result.

Notice that you are passing two 16-bit addresses to the add_int
function. You pick up those addresses in R3 and R2, and in Y0 pass
back the result of the addition.

Listing 7.7 Sample Code - Creating an Inline Assembly Language Function

asm int add_int(int * i, int * j)
{
 move x:(r2),y0
 move x:(r3),x0
 add x0,y0
 // int result returned in y0
 rts
}

Now you can call your inline assembly language function with
standard C notation, as in Listing 7.8.

Inl ine Assembly Language and Intrinsic Functions
Calling Assembly Language Functions from C Code

DSP–152 Targeting DSP56800

Listing 7.8 Sample Code - Calling an Inline Assembly Language Function

 int x = 4, y = 2;

 y = add_int(&x, &y); /* Returns 6 */

Calling Pure Assembly Language Functions

In order for your assembly language files to be called from C code,
you need to specify a SECTION mapping for your code so that it is
linked appropriately. You must also specify a memory space
location. Code is usually specified to program memory (P) space
with the ORG directive.

When defining an assembly language function, use the GLOBAL
directive to specify the list of symbols within the current section.
You can then define the assembly language function.

An example of a complete assembly language function is shown in
Listing 7.9. In this function, two 16-bit integers are written to
program memory. A separate function is needed to write to P:
memory because C pointer variables cannot be employed. C pointer
values only allow access to X: data memory.

The first parameter is a short value and the second parameter is the
16-bit address where the first parameter is written.

Listing 7.9 Sample Code - Creating an Assembly Language Function

 ;”my_assym.asm”
 SECTION user ;map to user defined section in CODE
 ORG P: ;put the following program in P
 ;memory

 GLOBALF pmemwrite ;This symbol is defined within the
 ;current section and should be
 ;accessible by all sections
Fpmemwrite:
 MOVE Y1,R0 ;Set up pointer to address
 NOP ;Pipeline delay for R0

Inl ine Assembly Language and Intrinsic Functions
Calling Functions from Assembly Language

Targeting DSP56800 DSP–153

 MOVE Y0,P:(R0)+ ;Write 16-bit value to address
 ;pointed to by R0 in P: memory and
 ;post-increment R0
 rts ;return to calling function

 ENDSEC ;End of section
 END ;End of source program

NOTE The compiler prepends the letter ‘F’ to every function label name.

You can now call your assembly language function from C, as
shown in Listing 7.10.

Listing 7.10 Sample Code - Calling an Assembly Language Function from C

void pmemwrite(short, short); /* Write a value into P: memory */

void main(void)
{
 // ...other code

 // Write the value given in the first parameter to the address
 // of the second parameter in P: memory
 pmemwrite((short)0xE9C8, (short)0x0010);

 // other code...
}

Calling Functions from Assembly Language
Assembly programs can call C function or Assembly language
functions. This section explains the compiler convention for:

• Calling C Functions from Assembly Language

Functions written in C can be called from within assembly
language instructions. For example, if you defined your C
program function as:

 void foot(void) {
 /* Do something */

Inl ine Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

DSP–154 Targeting DSP56800

}

You could then call your C function from assembly language
as:

 jsr Ffoot

• Calling Assembly Language Functions from Assembly
Language

To call an assembly language function from assembly
language, use the jsr instruction with the function name as
defined in your assembly language source. For example, you
can call your function in Listing 7.9 on page 152 as:

 jsr Fpmemwrite

Intrinsic Functions for DSP56800
This section explains issues related to DSP56800 intrinsic functions
and using them with DSP56800 projects.

• An Overview of Intrinsic Functions

• Fractional Arithmetic

• Macros Used with Intrinsics

An Overview of Intrinsic Functions

CodeWarrior C for DSP56800 has intrinsic functions to generate
inline assembly language instructions.

Intrinsic functions are used to target specific processor instructions.
They can be helpful in accomplishing a few different things:

• Intrinsic functions let you pass in data to perform specific
optimized computations. For example, some calculations may be
inefficient if coded in C because the compiler has to follow ANSI
C rules to represent data, and this may cause the program to
jump to runtime math routines for certain computations. In such
cases, it probably is better to code these calculations using
assembly language instructions and intrinsic functions.

• Intrinsic functions can control small tasks. For example, with
intrinsic functions you can set a bit in the operating mode
register to enable saturation. This is more convenient than using

Inl ine Assembly Language and Intrinsic Functions
Intrinsic Functions for DSP56800

Targeting DSP56800 DSP–155

inline assembly language syntax and specifying the operation in
an asm block, every time that the operation is required.

NOTE Support for intrinsic functions is not part of the ANSI C standard.
They are an extension provided by the CodeWarrior compiler.

Fractional Arithmetic

Many of the intrinsic functions for Motorola DSP56800 use
fractional arithmetic with implied fractional values. An implied
fractional value is a symbol, which has been declared as an integer
type, but is to be calculated as a fractional type. Data in a memory
location or register can be interpreted as fractional or integer,
depending on the needs of a user's program.

All intrinsic functions that generate multiply and divide
instructions (DIV, MPY, MAC, MPYR, and MACR) perform
fractional arithmetic on implied fractional values. The following
equation shows the relationship between a 16-bit integer and a
fractional value:

Fractional Value = Integer Value / (215)

Similarly, the equation for converting a 32-bit integer to a fractional
value is as follows:

Fractional Value = Long Integer Value / (231)

Table 7.1 shows how both 16 and 32-bit values can be interpreted as
either fractional or integer values.

Table 7.1 Interpretation of 16- and 32-bit Values

Type Hex Integer
Value

Fixed-point
Value

short int 0x2000 8192 0.25

short int 0xE000 -8192 -0.25

long int 0x20000000 536870912 0.25

long int 0xE0000000 -536870912 -0.25

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–156 Targeting DSP56800

Macros Used with Intrinsics

These macros are used in intrinsic functions:

• Word16. A macro for signed short.

• Word32. A macro for signed long.

List of Intrinsic Functions: Definitions and
Examples

The intrinsic functions supported by the DSP56800 are shown in
Table 7.2. However, please refer to intrinsics_56800.h for any
last minute changes.

Table 7.2 Intrinsic Functions for DSP56800

Category Function Category Function

Absolute/
Negate

__abs Multiplication/
MAC

__mac_r

__negate __msu_r

_L_negate __mult

Addition/
Subtraction

__add __mult_r

__sub _L_mac

_L_add _L_msu

_L_sub _L_mult

Control __stop _L_mult_l
s

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–157

Absolute/Negate
• __abs

• __negate

• _L_negate

__abs

Definition Computes and returns the absolute value of a 16-bit integer.
Generates an ABS instruction.

Assumption

Prototype int __abs(int);

Conversion __fixed2int Normalization __norm_l

__fixed2long __norm_s

__fixed2short Rounding __round

__int2fixed Shifting __shl

__labs __shr

__long2fixed __shr_r

__short2fixed _L_shl

Copy __memcpy _L_shr

__strcpy _L_shr_r

Deposit/
Extract

__extract_h

__extract_l

_L_deposit_h

_L_deposit_I

Division __div

__div_ls

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–158 Targeting DSP56800

 Example int i = -2;
i = __abs(i);

__negate

Definition Negates a 16-bit integer or fractional value returning a 16-bit result.
Returns 0x7FFF for an input of 0x8000.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __negate(Word16 svar1)

 Example int result, s1 = 0xE000;/* - 0.25 */
result = __negate(s1);
// Expected value of result: 0x2000 = 0.25

_L_negate

Definition Negates a 32-bit integer or fractional value returning a 32-bit result.
Returns 0x7FFFFFFF for an input of 0x80000000.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_negate(Word32 lvar1)

 Example long result, sl = 0xE0000000; /* - 0.25 */
result = _L_negate(s1);
// Expected value of result: 0x20000000 = 0.25

Addition/Subtraction
• __add

• __sub

• _L_add

• _L_sub

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–159

__add

Definition Addition of two 16-bit integer or fractional values, returning a 16-bit
result.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __add(Word16 src_dst, Word16 src2)

 Example short s1 = 0x4000;/* 0.5 */
short s2 = 0x2000;/* 0.25 */
short result;

result = __add(s1,s2);
// Expected value of result: 0x6000 = 0.75

__sub

Definition Subtraction of two 16-bit integer or fractional values, returning a 16-
bit result.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __sub(Word16 src_dst, Word16 src2)

 Example short s1 = 0x4000;/* 0.5 */
short s2 = 0xE000;/* -0.25 */
short result;

result = __sub(s1,s2);
// Expected value of result: 0x6000 = 0.75

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–160 Targeting DSP56800

_L_add

Definition Addition of two 32-bit integer or fractional values, returning a 32-bit
result.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_add(Word32 src_dst, Word32 src2)

 Example long la = 0x40000000;/* 0.5 */
long lb = 0x20000000;/* 0.25 */
long result;

result = _L_add(la,lb);
// Expected value of result: 0x60000000 = 0.75

_L_sub

Definition Subtraction of two 32-bit integer or fractional values, returning a 32-
bit result.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_sub(Word32 src_dst, Word32 src2)

 Example long la = 0x40000000;/* 0.5 */
long lb = 0xE0000000;/* -0.25 */
long result;

result = _L_sub(la,lb);
// Expected value of result: 0x60000000 = 0.75

Control

__stop

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–161

__stop

Definition Generates a STOP instruction which places the processor in the low
power STOP mode.

Prototype void __stop(void)

Usage __stop();

Conversion
• __fixed2int

• __fixed2long

• __fixed2short

• __int2fixed

• __labs

• __long2fixed

• __short2fixed

__fixed2int

Definition Converts a 16-bit __fixed__ value to a 16-bit integer.

Prototype int __fixed2int (__fixed__);

Example int i;
__fixed__ i_fix = 0.645;

i = __fixed2int(i_fix); /* Returns 21135 */

__fixed2long

Definition Converts a 32-bit __longfixed__ value to a 32-bit long integer.

Prototype long __fixed2long (__longfixed__);

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–162 Targeting DSP56800

Example long l;
__longfixed__ lfix = 0.645;

l = __fixed2long(lfix); /* Returns 1385126952 */

__fixed2short

Definition Converts a 16-bit __shortfixed__ value to a 16-bit short integer.

Prototype short __fixed2short (__shortfixed__);

Example short s;
__shortfixed__ sfix = 0.645;

s = __fixed2short(sfix); /* Returns 21135 */

__int2fixed

Definition Converts a 16-bit integer value to a 16-bit __fixed__ value.

Prototype __fixed__ __int2fixed (int);

Example int i = 2; __fixed__ ifix;

/* Returns 0.0000610 (2-14)*/
ifix = __int2fixed(i);

__labs

Definition Computes and returns the absolute value of a 32-bit long integer.
Generates an ABS instruction.

Prototype long __labs (long);

Example long l = -2;
l = __labs(l); /* Returns 2 */

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–163

__long2fixed

Definition Converts a 32-bit long integer to a 32-bit __longfixed__ type.

Prototype __longfixed__ __long2fixed (long);

Example long l = 2;
__longfixed__ lfix;

/* Returns 9.31e-10 (2-30)*/
lfix = __long2fixed(l);

__short2fixed

Definition Converts a 16-bit short integer to a 16-bit __shortfixed__ type.

Prototype __shortfixed__ __short2fixed (short);

Example short s = 2;
__shortfixed__ sfix;

/* Returns 0.0000610 (2-14)*/
sfix = __short2fixed(s);

Copy
• __memcpy

• __strcpy

__memcpy

Definition Copy a contiguous block of memory of n characters from the item
pointed to by source to the item pointed to by dest. The
behavior of __memcpy() is undefined if the areas pointed to by
dest and source overlap.

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–164 Targeting DSP56800

Prototype void * __memcpy (void *dest,
 const void *source,
 size_t n);

Example const int len = 9;
char a1[len] = “Socrates\0”;
char a2[len] = null;

/* Now copy contents of a1 to a2 */
__memcpy((char *)a2, (char *)a1, len);

__strcpy

Definition Copies the character array pointed to by source to the character
array pointed to by dest. The source argument must be a
constant string. The function will not be inlined if source is
defined outside of the function call. The resulting character array at
dest is null terminated as well.

Prototype char * __strcpy (char *dest,

 const char *source);

Example char d[11];

__strcpy(d, “Metrowerks\0”);
/* d array now contains the string “Metrowerks” */

Deposit/ Extract
• __extract_h

• __extract_l

• _L_deposit_h

• _L_deposit_I

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–165

__extract_h

Definition Extracts the 16 MSBs of a 32-bit integer or fractional value. Returns a
16-bit value. Does not perform saturation. When an accumulator is
the destination, zeroes out the LSP portion. Corresponds to
"truncation" when applied to fractional values.

Prototype Word16 __extract_h(Word32 lsrc)

Example long l = 0x87654321;
short result;

result = __extract_h(l);
// Expected value of result: 0x8765

__extract_l

Definition Extracts the 16 LSBs of a 32-bit integer or fractional value. Returns a
16-bit value. Does not perform saturation. When an accumulator is
the destination, zeroes out the LSP portion.

Prototype Word16 __extract_l(Word32 lsrc)

Example long l = 0x87654321;
short result;

result = __extract_l(l);
// Expected value of result: 0x4321

_L_deposit_h

Definition Deposits the 16-bit integer or fractional value into the upper 16 bits
of a 32-bit value, and zeroes out the lower 16 bits of a 32-bit value.

Prototype Word32 _L_deposit_h(Word16 ssrc)

Example short s1 = 0x3FFF;

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–166 Targeting DSP56800

long result;

result = _L_deposit_h(s1);
// Expected value of result: 0x3fff0000

_L_deposit_I

Definition Deposits the 16-bit integer or fractional value into the lower 16 bits
of a 32- bit value, and sign extends the upper 16 bits of a 32-bit
value.

Prototype Word32 _L_deposit_l(Word16 ssrc)

Example short s1 = 0x7FFF;
long result;

result = _L_deposit_l(s1);
// Expected value of result: 0x00007FFF

Division
• __div

• __div_ls

__div

Definition Divides two 16-bit short integers as a fractional operation and
returns the result as a 16-bit short integer. Generates a DIV
instruction.

Prototype short __div(short, short);

Example short i = 0x2000; /* Assign 0.25 to i */
short j = 0x4000; /* Assign 0.50 to j */
__fixed__ f;

i = __div(i, j); /* Returns 16384 */
f = __short2fixed(i); /* Returns 0.50 */

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–167

__div_ls

Definition Single quadrant division, that is, both operands positive of two 16-
bit fractional values, returning a 16-bit result. If both operands are
equal, returns 0x7FFF (occurs naturally).

Note Does not check for division overflow cases.

Does not check for divide by zero cases.

Prototype Word16 __div_s(Word16 s_denominator, Word16
s_numerator)

Example short s1=0x2000;/* 0.25 */
short s2=0x4000;/* 0.5 */
short result;

result = __div_s(s2,s1);
// Expected value of result: 0.25/0.5 = 0.5 =
0x4000

Multiplication/ MAC
• __mac_r

• __msu_r

• __mult

• __mult_r

• _L_mac

• _L_msu

• _L_mult

• _L_mult_ls

__mac_r

Definition Multiply two 16-bit fractional values and add to 32-bit fractional
value. Round into a 16-bit result, saturating if necessary. When an
accumulator is the destination, zeroes out the LSP portion.

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–168 Targeting DSP56800

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s
complement rounding, not convergent rounding.

Prototype Word16 __mac_r(Word32 laccum, Word16 sinp1,
Word16 sinp2)

Example short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
short result;
long Acc = 0x0x0000FFFF;

result = __mac_r(Acc,s1,s2);
// Expected value of result: 0xE001

__msu_r

Definition Multiply two 16-bit fractional values and subtract this product from
a 32-bit fractional value. Round into a 16-bit result, saturating if
necessary. When an accumulator is the destination, zeroes out the
LSP portion.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s
complement rounding, not convergent rounding.

Prototype Word16 __msu_r(Word32 laccum, Word16 sinp1,
Word16 sinp2)

Example short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
short result;
long Acc = 0x20000000;

result = __msu_r(Acc,s1,s2);
// Expected value of result: 0x4000

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–169

__mult

Definition Multiply two 16-bit fractional values and truncate into a 16-bit
fractional result. Saturates only for the case of 0x8000 x 0x8000.
When an accumulator is the destination, zeroes out the LSP portion.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __mult(Word16 sinp1, Word16 sinp2)

Example short s1 = 0x2000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */
short result;

result = __mult(s1,s2);
// Expected value of result: 0.625 = 0x0800

__mult_r

Definition Multiply two 16-bit fractional values, round into a 16-bit fractional
result. Saturates only for the case of 0x8000 x 0x8000. When an
accumulator is the destination, zeroes out the LSP portion.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s
complement rounding, not convergent rounding.

Prototype Word16 __mult_r(Word16 sinp1, Word16 sinp2)

Example short s1 = 0x2000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */
short result;

result = __mult_r(s1,s2);
// Expected value of result: 0.625 = 0x0800

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–170 Targeting DSP56800

_L_mac

Definition Multiply two 16-bit fractional values and add to 32-bit fractional
value, generating a 32-bit result, saturating if necessary.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_mac(Word32 laccum, Word16 sinp1, Word16
sinp2)

Example short s1 = 0xC000;/* - 0.5 */
short s2 = 0x4000;/* 0.5 */
long result, Acc = 0x20000000;/* 0.25 */

result = _L_mac(Acc,s1,s2);
// Expected value of result: 0

_L_msu

Definition Multiply two 16-bit fractional values and subtract this product from
a 32-bit fractional value, saturating if necessary. Generates a 32-bit
result.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_msu(Word32 laccum, Word16 sinp1, Word16
sinp2)

Example short s1 = 0xC000;/* - 0.5 */
short s2 = 0xC000;/* - 0.5 */
long result, Acc = 0;

result = _L_msu(Acc,s1,s2);
// Expected value of result: -0.25

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–171

_L_mult

Definition Multiply two 16-bit fractional values generating a signed 32-bit
fractional result. Saturates only for the case of 0x8000 x 0x8000.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_mult(Word16 sinp1, Word16 sinp2)

Example short s1 = 0x2000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */
long result;

result = _L_mult(s1,s2);
// Expected value of result: 0.625 = 0x08000000

_L_mult_ls

Definition Multiply one 32-bit and one-16-bit fractional value, generating a
signed 32-bit fractional result. Saturates only for the case of
0x80000000 x 0x8000.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_mult_ls(Word32 linp1, Word16 sinp2)

Example long l1 = 0x20000000;/* 0.25 */
short s2 = 0x2000;/* 0.25 */
long result;

result = _L_mult(l1,s2);
// Expected value of result: 0.625 = 0x08000000

Normalization
• __norm_l

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–172 Targeting DSP56800

• __norm_s

__norm_l

Definition Computes the number of left shifts required to normalize a 32-bit
value, returning a 16-bit result. Returns a shift count of 0 for an
input of 0x00000000.

Note Does not actually normalize the value!

This operation is NOT optimal on the DSP56800 because of the case
of returning 0 for an input of 0x00000000.

Prototype Word16 __norm_l(Word32 lsrc)

Example long ll = 0x20000000;/* .25 */
short result;

result = __norm_l(ll);
// Expected value of result: 1

__norm_s

Definition Computes the number of left shifts required to normalize a 16-bit
value, returning a 16-bit result. Returns a shift count of 0 for an
input of 0x0000.

Note Does not actually normalize the value!

This operation is NOT optimal on the DSP56800 because of the case
of returning 0 for an input of 0x0000. See the intrinsic __norm_s
which is more optimal but generates a different value for the case
where the input == 0x0000.

Prototype Word16 __norm_s(Word16 ssrc)

Example short s1 = 0x2000;/* .25 */

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–173

short result;

result = __norm_s(s1);
// Expected value of result: 1

Rounding

__round

__round

Definition Rounds a 32-bit fractional value into a 16-bit result. When an
accumulator is the destination, zeroes out the LSP portion.

Assumptions OMR’s R bit was set to 1 at least 3 cycles before this code, that is, 2’s
complement rounding, not convergent rounding.

OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __round(Word32 lvar1)

 Example long l = 0x12348002;/*if low 16bit = 0xFFFF >
0x8000 then add 1 */
short result;

result = __round(l);
// Expected value of result: 0x1235

Shifting
• __shl

• __shr

• __shr_r

• _L_shl

• _L_shr

• _L_shr_r

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–174 Targeting DSP56800

__shl

 Definition Arithmetic shift of 16-bit value by a specified shift amount. If the
shift count is positive, a left shift is performed. Otherwise, a right
shift is performed. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

Note This operation is not optimal on the DSP56800 because of the
saturation requirements and the bidirectional capability.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __shl(Word16 sval2shft, Word16
s_shftamount)

 Example short result;
short s1 = 0x1234;
short s2= 1;

result = __shl(s1,s2);
// Expected value of result: 0x2468

__shr

 Definition Arithmetic shift of 16-bit value by a specified shift amount. If the
shift count is positive, a right shift is performed. Otherwise, a left
shift is performed. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

Note This operation is not optimal on the DSP56800 because of the
saturation requirements and the bidirectional capability.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __shr(Word16 sval2shft, Word16
s_shftamount)

 Example short result;

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

Targeting DSP56800 DSP–175

short s1 = 0x2468;
short s2= 1;

result = __shr(s1,s2);
// Expected value of result: 0x1234

__shr_r

 Definition Arithmetic shift of 16-bit value by a specified shift amount. If the
shift count is positive, a right shift is performed. Otherwise, a left
shift is performed. If a right shift is performed, then rounding
performed on result. Saturation may occur during a left shift.
When an accumulator is the destination, zeroes out the LSP portion.

Note This operation is not optimal on the DSP56800 because of the
saturation requirements and the bidirectional capability.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word16 __shr_r(Word16 s_val2shft, Word16
s_shftamount)

Example short result;
short s1 = 0x2468;
short s2= 1;

result = __shr(s1,s2);
// Expected value of result: 0x1234

_L_shl

 Definition Arithmetic shift of 32-bit value by a specified shift amount. If the
shift count is positive, a left shift is performed. Otherwise, a right
shift is performed. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

Inl ine Assembly Language and Intrinsic Functions
List of Intrinsic Functions: Definitions and Examples

DSP–176 Targeting DSP56800

Note This operation is not optimal on the DSP56800 because of the
saturation requirements and the bidirectional capability. See the
intrinsic _L_shl or result = shlfts(l, s1); which are more optimal.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_shl(Word32 lval2shft, Word16
s_shftamount)

Example long result, l = 0x12345678;
short s2= 1;

result = _L_shl(l,s2);
// Expected value of result: 0x2468ACF0
result = shlfts(l, s1);
// Expected value of result: 0x91A259E0

_L_shr

 Definition Arithmetic shift of 32-bit value by a specified shift amount. If the
shift count is positive, a right shift is performed. Otherwise, a left
shift is performed. Saturation may occur during a left shift. When an
accumulator is the destination, zeroes out the LSP portion.

Note This operation is not optimal on the DSP56800 because of the
saturation requirements and the bidirectional capability.

Assumptions OMR’s SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_shr(Word32 lval2shft, Word16
s_shftamount)

Example long result, l = 0x24680000;
short s2= 1;

result = _L_shr(l,s2);
// Expected value of result: 0x12340000

Inl ine Assembly Language and Intrinsic Functions
Pipeline Restrictions

Targeting DSP56800 DSP–177

_L_shr_r

Definition Arithmetic shift of 32-bit value by a specified shift amount. If the
shift count is positive, a right shift is performed. Otherwise, a left
shift is performed. If a right shift is performed, then rounding
performed on result. Saturation may occur during a left shift.

 Assumptions OMR's SA bit was set to 1 at least 3 cycles before this code, that is,
saturation on data ALU results enabled.

Prototype Word32 _L_shr_r(Word32 lval2shft, Word16
s_shftamount)

 Example long l1 = 0x41111111;
short s2 = 1;
long result;

result = _L_shr_r(l1,s2);
// Expected value of result: 0x20888889

Pipeline Restrictions
This section gives an overview of how the pipeline restrictions are
handled by the DSP56800 compiler.

The following list contains pipeline restrictions that are detected
and handled. If any of these cases are detected by the compiler’s
inline assembler, the compiler generates a warning and inserts a
NOP instruction to correct the violation of the pipeline restriction.

1. A NORM instruction cannot be immediately followed by an
instruction that accesses X memory using the R0 pointer. The
following example shows a warning is generated:
NORM R0,A
MOVE X:(R0)+,A ;Cannot reference R0 after NORM

2. Any jump, branch, or branch on bit field may not specify the
instruction at LA or LA-1 of a hardware DO loop as their
target addresses.

Inl ine Assembly Language and Intrinsic Functions
Pipeline Restrictions

DSP–178 Targeting DSP56800

DO #7,LABEL
BCC LABEL ;Cannot branch to LA
;instruction
LABEL:

3. Any jump, branch, or branch on bit field instructions may not
be located in the last two locations of a hardware DO loop
(that is, at LA or at LA-1).

DO #7,LABEL
 BCC ULABEL ;Cannot branch in LA
 ;instruction
LABEL:

NOTE A warning will be emitted when pipeline conflicts are detected.

4. If a MOVE instruction changes the value in one of the
address registers (R0–R3), then the contents of the register
are not available for use until the second following
instruction, that is, the instruction immediately following the
MOVE instruction does not use the modified register to
access X memory or update an address. This also applies to
the SP register and M01 register.

MOVE X:(SP-2),R1
MOVE X:(R1)+,A; ; R1 is not available

In addition, it applies if a 16-bit immediate value is moved to the N
register, and the option for Compiler adjusts for delayed load of N
register in the M56800 Processor target settings panel is enabled.

MOVE #3,N
MOVE X:(SP+N),Y0 ; N is not available

5. If a bit-field instruction changes the value in one of the
address registers (R0–R3), then the contents of the register
are not available for use until the second following
instruction that is, the instruction immediately following the
MOVE instruction does not use the modified register to
access X memory or update an address. This applies to the SP
and M01 registers.

BFCLR #1,R1
MOVE X:(R1)+,A; ; R1 is not available

Inl ine Assembly Language and Intrinsic Functions
Pipeline Restrictions

Targeting DSP56800 DSP–179

In addition, it applies to the N register when the Compiler adjusts for
delayed load of N register option in the M56800 Processor target
settings panel is enabled.

BFCLR #1,N
MOVE X:(R0+N),Y0 ;N is not available

6. For the case of nested hardware DO loops, it is required that
there be at least two instructions after the pop of the LA and
LC registers before the instruction at the last address of the
outer loop.

DO #3,OLABEL ; Beginning of outer loop
PUSH LC
PUSH LA
DO X0,ILABEL ; Beginning of inner loop
; (instructions)
REP Y0 ; Skips ASL if y0 = 0
ASL A
; (instructions)
ILABEL: ; End of inner loop
 POP LA
 POP LC
 NOP; 3 instructions required after POP
 NOP; 3 instructions required after POP
 NOP; 3 instructions required after POP
OLABEL: ; End of outer loop

7. If the CLR instruction changes the value in one of the
address registers (R0-R3), then the contents of the register are
not available for use until the second following instruction,
that is, the instruction immediately following the CLR
instruction does not use the modified register to acccess X
memory or update an address. This also applies to the SP
register and the M01 register.

CLR R0
MOVE X:(R0)+,A;Cannot reference R0 after NORM

In addition, it applies if the 16-bit immediate value is moved to the
N register and the option for Compiler adjusts for delayed load of N
register in the M56800 Processor target settings panel is enabled.

clr N
MOVE X:(SP)+N,Y0 ;N is not available

Inl ine Assembly Language and Intrinsic Functions
Pipeline Restrictions

DSP–180 Targeting DSP56800

Targeting DSP56800 DSP–181

8
Debugging

This chapter explains the generic features of the CodeWarrior™
debugger and additional features specific to DSP56800 debugging.

This chapter contains the following sections:

• Target Settings for Debugging

• Command Converter Server

• DSP56800 Menu

• Using DSP56800 Simulator

• Watchpoints and Breakpoints

• Global Variable Watchpoints

• Register Details Window

• Viewing Memory

• Debugging on a Complex Scan Chain

• System-Level Connect

Target Settings for Debugging
This section explains how to control the debugger’s behavior by
modifying the appropriate settings panels.

To properly debug DSP56800 software, you must set certain
preferences in the Target Settings window.

The M56800 Target settings panel, which is described below, is
specific to DSP56800 development. The remaining settings panels
are generic to all build targets. In addition, other settings panels can
affect debugging. Table 8.1 lists these panels.

Debugging
Target Settings for Debugging

DSP–182 Targeting DSP56800

Table 8.1 Settings Panels That Can Affect Debugging

M56800 Target Settings

The M56800 Target settings panel is unique to DSP56800 debugging.
The options available in this panel depend on the communications
protocol you use.

The Protocol menu determines the communications protocol the
debugger uses when downloading your application into memory.
The options available depend on the protocol you are using.

Table 8.2 lists the protocols supported by the CodeWarrior
debugger for DSP56800. Refer to a section for settings specific to
your chosen protocol.

Table 8.2 Debugging Protocols Supported

This panel… Affects this… See…

M56800 Linker Symbolics, linker
warnings

“M56800 Linker,”

M56800 Processor Optimizations “M56800 Processor,”

Debugger
Settings

Debugging options “Debugger Settings”

Debug protocol option Comment
ADS Command Converter Select this option if you are communicating through the JTAG

interface with the UCC. The Target Settings window presents the
options shown in Figure 8.1.

Serial - EVM Select this option if you use the DSP56L811EVM board. The Target
Settings window presents the options shown in Figure 8.2.

Serial - SB56K Select this option if you are using the Domain Technologies SB-56K
Multi-DSP Emulator. The Target Settings window presents the
options shown in Figure 8.3.

Simulator Select this option if you want to use the DSP56800 Simulator. The
Target Settings window presents the options shown in Figure 8.4.

Parallel Port - ADS or EVM Select this option if you are using either the Motorola Parallel Port
Command Converter or a direct parallel port connection. The Target
Settings window presents the options shown in Figure 8.5.

PCI Command Converter Select this option if you are using the PCI Command Converter. The
Target Settings window presents the options shown in Figure 8.6

Debugging
Target Settings for Debugging

Targeting DSP56800 DSP–183

NOTE Refer to section on “Debugger Settings,” for detail description of op-
tions common to all the protocol boards.

ADS Command Converter

Figure 8.1 shows the M56800 Target Settings panel after you select ADS
Command Converter from the Protocol menu.

The ADS Base Address menu lets you select an I/O address for the
ISA card. This address can be 0x100, 0x200, or 0x300, depending
on the address you selected when installing the card.

Ethernet Command Converter Select this option if you are using the Ethernet Command Converter.
The Target Settings window presents the options shown in Figure
8.7

Command Converter Server Select this option if you are using the Command Converter Server.
The Target Settings window presents the options shown in Figure
8.8

Debug protocol option Comment

Debugging
Target Settings for Debugging

DSP–184 Targeting DSP56800

Figure 8.1 M56800 Target Settings Panel - ADS Command Converter

Serial - EVM

Figure 8.2 shows the M56800 Target Settings panel when you select
Serial - EVM from the Protocol menu. This panel provides the same
options when you select Serial - SB56K.

The COM Port menu lets you select the serial port for the DSP568xx
card or the Domain Technologies SB-56K Emulator. This port can be
COM 1, COM 2, COM 3, or COM 4, depending on the port you
selected when installing the hardware.

Debugging
Target Settings for Debugging

Targeting DSP56800 DSP–185

Figure 8.2 M56800 Target Settings Panel - Serial - EVM Connections

Serial - SB56K

Figure 8.3 shows the M56800 Target Settings panel when you select
Serial - SB56K from the Protocol menu. This panel provides the same
options when you select Serial - EVM.

The COM Port menu lets you select the serial port for the DSP568xx
card or the Domain Technologies SB-56K Emulator. This port can be
COM 1, COM 2, COM 3, or COM 4, depending on the port you
selected when installing the hardware.

Debugging
Target Settings for Debugging

DSP–186 Targeting DSP56800

Figure 8.3 M56800 Target Settings Panel - Serial SB - 56K Connections

Simulator

Figure 8.4 shows the M56800 Target Settings panel when you select
Simulator from the Protocol menu.

Figure 8.4 M56800 Target Settings Panel - Simulator

Debugging
Target Settings for Debugging

Targeting DSP56800 DSP–187

Parallel Port - ADS or EVM

Figure 8.5 shows the M56800 Target Settings panel when you select
Parallel Port - ADS or EVM from the Protocol menu.

The Parallel Port menu lets you select the port for the Motorola
Parallel Port Command Converter. This port can be LPT 1, LPT 2,
LPT 3, or LPT 4, depending on the port you selected when installing
the hardware.

Debugging
Target Settings for Debugging

DSP–188 Targeting DSP56800

Figure 8.5 M56800 Target Settings Panel - Parallel Port - ADS or EVM

PCI Command Converter

Figure 8.6 shows the M56800 Target Settings panel when you select
PCI Command Converter from the Protocol menu.

When using the PCI Command Converter, no additional selections
need to be made as the CodeWarrior debugger automatically
detects this device when this protocol is chosen.

Debugging
Target Settings for Debugging

Targeting DSP56800 DSP–189

Figure 8.6 M56800 Target Settings Panel - PCI Command Converter

Ethernet Command Converter

Figure 8.7 shows the M56800 Target Settings panel when you select
Ethernet Command Converter from the Protocol menu.

Once you have Flashed an IP address into the Ethernet Command
Converter, you can specify that address in the IP Address text box.
Any valid local or remote IP address is acceptable.

Debugging
Target Settings for Debugging

DSP–190 Targeting DSP56800

Figure 8.7 M56800 Target Settings Panel - Ethernet Command Converter

Command Converter Server

Figure 8.8 shows the M56800 Target Settings panel when you select
Command Converter Server from the Protocol menu.

Debugging
Target Settings for Debugging

Targeting DSP56800 DSP–191

Figure 8.8 M56800 Target Settings Panel - Command Converter Server

Connect to Remote CCS

Select this checkbox to specify that the CodeWarrior IDE should
connect to a remote command converter server. Otherwise, the IDE
starts the command converter server locally.

• IP Address

Use this text box to specify the IP address where the
command converter server resides when running the
command converter server from a remote location on the
network.

• Port

The port to which the command converter server listens. This
field defaults to port 41475.

If you check the Custom JTAG checkbox, the following options
appear:

Debugging
Command Converter Server

DSP–192 Targeting DSP56800

• JTAG Init. File

A JTAG initialization file specifies the name and order of the
boards you are debugging.

• JTAG Target Core Index

This value specifies the location of your target processor in
the JTAG chain. The first board in the chain has an index
value of 0, the second board has an index value of 1, and so
on.

Command Converter Server
The command converter server (CCS) handles communication
between the CodeWarrior debugger and the target board. An icon
in the status bar indicates the CCS is running. The CCS is
automatically launched by your project when you start a CCS
debug session if you are debugging a target board using a local
machine. However, if you wish to start CCS without launching a
debug session, you may do so by selecting Command Converter Server
from the Protocol text box in the M56800 Target Settings panel.

NOTE Projects are set to debug locally by default. The protocol the debug-
ger uses to communicate with the target board, for example, PCI, is
determined by how you installed the CodeWarrior software. To mod-
ify the protocol, make changes in the Metrowerks Command Con-
verter Server window (Figure 8.11).

Essential Target Settings for Command
Converter Server

Before you can download programs to a target board for debugging,
you must specify the target settings for the command converter
server:

• Local Settings

If you specify that the CodeWarrior IDE start the command
converter server locally, the command converter server uses
the connection port (for example, LPT1) that you specified
when you installed CodeWarrior IDE for DSP56800.

• Remote Settings

Debugging
Command Converter Server

Targeting DSP56800 DSP–193

If you specify that the CodeWarrior IDE start the command
converter server on a remote machine, specify the IP address
of the remote machine on your network.

• Default Settings

By default, the command converter server listens on port
41475. You can specify a different port number in the M56800
Target panel for the debugger to connect to if needed. This is
necessary if the CCS is configured to a port other than 41475.

After you have specified the correct settings for the command
converter server (or verified that the default settings are correct),
you can download programs to a target board for debugging.

The CodeWarrior IDE starts the command converter server at the
appropriate time if you are debugging on a local target.

Before debugging on a board connected to a remote machine,
ensure the following:

• The command converter server is running on the remote host
machine.

• No user is debugging the board connected to the remote host
machine.

Changing the Command Converter Server
Protocol to Parallel Port

If you specified the wrong parallel port for the command converter
server when you installed CodeWarrior IDE for DSP56800, you can
change the port.

Change the parallel port:

1. While the command converter server is running, locate the
command converter server icon on the status bar. Right-click
on the command converter server icon (Figure 8.9):

Figure 8.9 Command Converter Server Icon

A menu appears (Figure 8.10):

Debugging
Command Converter Server

DSP–194 Targeting DSP56800

Figure 8.10 Command Converter Server Menu

2. Select Show console from the menu.

3. The Metrowerks Command Converter Server window appears
(Figure 8.11):

Figure 8.11 Metrowerks Command Converter Server Window

4. On the console command line, type the following command:

delete all

5. Press Enter.

6. Type the following command, substituting the number of the
parallel port to use (for example, 1 for LPT1):

config cc parallel:1

7. Press Enter.

Debugging
Command Converter Server

Targeting DSP56800 DSP–195

Changing the Command Converter Server
Protocol to PCI

To change the command converter server to a PCI Connection:

1. While the command converter server is running, right-click
on the command converter server icon shown in Figure 8.9.

2. From the menu shown Figure 8.10, select Show Console.

3. At the console command line in the Metrowerks Command
Converter Server window shown in Figure 8.11, type the
following command:

delete all

4. Press Enter.

5. Type the following command:

config cc pci

6. Press Enter.

Debugging a Remote Target Board

For debugging a target board connected to a remote machine with
Code Warrior IDE installed, perform the following steps:

1. Connect the target board to the remote machine.

2. Launch the command converter server (CCS) on the remote
machine with the proper protocol configuration using
instructions described in the section Essential Target Settings
for Command Converter Server.

3. In the M56800 Target Settings panel for the debugger, do the
following:

a. Check the Connect to Remote CCS checkbox.

The text boxes for IP Address and Port are now enabled.

b. In the IP Address text box, type the IP address or machine
name if on the network. If you leave the text box for the IP
address blank, it will default to the local host machine.

c. In the Port text box, type the port address. If you leave the
text box blank, the CCS uses the default value.

NOTE The default port number is 41475.

Debugging
DSP56800 Menu

DSP–196 Targeting DSP56800

4. Ensure that the debugger is enabled on your computer.

5. Launch the debugger.

DSP56800 Menu
The DSP56800 menu offers these selections:

Load Default Target

From the menu bar of the Metrowerks CodeWarrior window, select
DSP56800 > Load default target to load the target program without
launching the debugger.

This feature performs the following:

• Retrieves the settings for the default target (as set in the IDE in
the Project menu)

• Connects to the target machine

• Loads the target program from file to the target machine

• Disconnects

This feature is a subset of the debugger launch process. Use Load
Default Target primarily for loading programs into flash ROM to
allow a speedier turn-around time for stand-alone testing.

If the default target is not a DSP56800 target, Code Warrior
generates an error message and aborts the process. While loading,
the software displays a progress bar.

You can abort the load by clicking the Cancel button on the progress
bar. Load Default Target is not available while you are debugging a
DSP56800 target.

Load/Save Memory

From the menu bar of the Metrowerks CodeWarrior window, select
DSP56800 > Load/Save memory to display the Load/Save Memory dialog
(Figure 8.12).

Debugging
DSP56800 Menu

Targeting DSP56800 DSP–197

Figure 8.12 Load/Save Memory Dialog Box

Use this dialog box to load and save memory at a specified location
and size with a user-specified file. You can associate a key binding
with this dialog box for quick access. Press the Tab key to cycle
through the dialog displays, which lets you quickly make changes
without using the mouse.

History Combo Box

The History combo box displays a list of recent loads and saves. If
this is the first time you load or save, the History combo box is
empty. If you load/save more than once, the combo box fills with
the memory address of the start of the load or save and the size of
the fill, to a maximum of ten sessions.

If you enter information for an item that already exists in the history
list, that item moves up to the top of the list. If you perform another
operation, that item appears first.

Radio Buttons

The Load/Save Memory dialog box has two radio buttons for you
to use:

Debugging
DSP56800 Menu

DSP–198 Targeting DSP56800

• Load Memory

• Save Memory

The default is load.

Memory Type Combo Box

The memory types that appear in the Memory Type Combo box are:

• P: Memory (Program Memory)

• X: Memory (Data Memory)

Address Text Field

Use this field to specify the address you want to write the memory
to. If you want your entry to be interpreted as hex, prefix it with 0x;
otherwise, it is interpreted as decimal.

Size Text Field

Use this field to specify the number of words to write to the target. If
you want your entry to be interpreted as hex, prefix it with 0x;
otherwise, it is interpreted as decimal.

Dialog Controls

Cancel, Esc, and OK

In Load and Save operations, all controls are disabled except Cancel
for the duration of the load or save. The status field is updated with
the current progress of the operation. Clicking Cancel halts the
operation, and re-enables the controls on the dialog. Clicking Cancel
again closes the dialog box. Pressing the Esc key is same as clicking
the Cancel button.

With the Load Memory radio button selected, clicking OK reads the
memory from the specified file and writes it to memory until the
end of the file or the size specified is reached. If the file does not
exist, an error message appears.

With the Save Memory radio button selected, clicking OK reads the
memory from the target piece by piece and writes it to the specified
file. The status field is updated with the current progress of the
operation.

Debugging
DSP56800 Menu

Targeting DSP56800 DSP–199

Browse Button

Clicking the Browse button displays an OPENFILENAME or a
SAVEFILENAME dialog, depending on whether you selected the
Load Memory or Save Memory radio button.

Fill Memory

From the menu bar of the Metrowerks CodeWarrior window, select
DSP56800 > Fill memory to display the Fill Memory dialog box (Figure
8.13).

Figure 8.13 Fill Memory Dialog Box

Use this dialog box to fill memory at a specified location and size
with user- specified raw memory data. You can associate a key
binding with this dialog box for quick access. Press the Tab key to
cycle through the dialog display, which lets you quickly make
changes without using the mouse.

History Combo Box

The History combo box displays a list of recent fill operations. If this
is the first time you perform a fill operation, the History combo box is
empty. If you do more than one fill, then the combo box populates
with the memory address of that fill, to a maximum of ten sessions.

Debugging
DSP56800 Menu

DSP–200 Targeting DSP56800

If you enter information for an item that already exists in the history
list, that item moves up to the top of the list. If you do another fill,
then this item is the first one that appears.

Memory Type Combo Box

The memory types that can appear in the Memory Type Combo box
are:

• P:Memory (Program Memory)

• X:Memory (Data Memory)

Address Text Field

Use this field to specify the address you want to write the memory
to. If you want it to be interpreted as hex, prefix it with 0x;
otherwise, it is interpreted as decimal.

Size Text Field

Use this field to specify the number of bytes to write to the target. If
you want it to be interpreted as hex, prefix your entry with 0x;
otherwise, it is interpreted as decimal.

Fill Expression Text Field

Fill writes a set of characters to a location on the target, repeatedly
copying the characters until the user-supplied fill size has been
reached. Size is the total words written, not the number of times to
write the string.

Interpretation of the Fill Expression

The fill string is interpreted differently depending on how it is
entered in the Fill String field. Any words prefixed with 0x is
interpreted as hex bytes. Thus, 0xBE 0xEF would actually write
0xBEEF on the target. Optionally, the string could have been set to
0xBEEF and this would do the same thing. Integers are interpreted
so that the equivalent signed integer is written to the target.

ASCII Strings

ASCII strings can be quoted to have literal interpretation of spaces
inside the quotes. Otherwise, spaces in the string are ignored. Note
that if the ASCII strings are not quoted and they are numbers, it is

Debugging
Using DSP56800 Simulator

Targeting DSP56800 DSP–201

possible to create illegal numbers. If the number is illegal, an error
message is displayed.

Dialog Controls

OK, Cancel, and Esc

Clicking OK writes the memory piece by piece until the target
memory is filled in. The Status field is updated with the current
progress of the operation. When this is in progress, the entire dialog
grays out except the Cancel button, so the user cannot change any
information. Clicking the Cancel button halts the fill operation, and
re-enables the controls on the dialog. Clicking the Cancel button
again closes the dialog. Pressing the Esc key is same as pressing the
Cancel button.

Default Information

The dialog is empty when you first display it. However, if default
information is to appear, ship the text file containing default
information. The dialog loads default information when it first
appears.

Using DSP56800 Simulator
The CodeWarrior IDE for DSP56800E includes the Motorola
DSP56800 Simulator. This software lets you run and debug code on
a simulated DSP56800 architecture without installing any additional
hardware.

The simulator does not simulate interrupts, it only simulates core
instructions. In order to use the simulator, you must select it as your
debugging protocol from the M56800 Target Settings panel (Target
Settings Window).

NOTE The simulator also enables the DSP56800 menu to retrieve the ma-
chine cycle count and machine instruction count when debugging.

Debugging
Using DSP56800 Simulator

DSP–202 Targeting DSP56800

Cycle/Instruction Count

From the menu bar of the Metrowerks CodeWarrior window, select
DSP56800 > Cycle/Instruction count. The following window appears
(Figure 8.14):

Figure 8.14 Simulator Cycle/Instruction Count

NOTE Cycle counting is not accurate while single stepping through source
code in the debugger. It is only accurate while running. Thus, the
cycle counter is more of a profiling tool than an interactive tool.

Press the Reset button to zero out the current machine-cycle and
machine-instruction readings.

Debugging
Watchpoints and Breakpoints

Targeting DSP56800 DSP–203

Memory Map

Figure 8.15 Simulator Memory Map

Watchpoints and Breakpoints
The CodeWarrior DSP56800 debugger allows you to monitor the
status of a watchpoint. Since the OnCE™ port only supports either a
hardware breakpoint or a watchpoint, you cannot have both active
at the same time.

Watchpoints are useful for monitoring memory and processes
where software breakpoints cannot be set, such as in Flash ROM, or
a data or address bus. If the watchpoint status is used as a trace

Program
Memory
Space

X Data
Memory
Space

Interrupt
Vectors

Hole

$FFFF $FFFF

$FFCO

$7F

$0 $0

P: X:

Debugging
Watchpoints and Breakpoints

DSP–204 Targeting DSP56800

counter, it can also be helpful to debug sections of code that do not
have a normal flow or are hung up in infinite loops.

Watchpoints are available regardless of whether you have checked
“Use Hardware Breakpoints.” The watchpoint status window does
not report the status of hardware breakpoints. OnCETM hardware
only supports one hardware breakpoint or watchpoint at a time. If a
watchpoint is in place, you cannot use a breakpoint and vice versa.

The CodeWarrior watchpoint debugger can monitor:

• Program memory addresses

• Data memory addresses

• The value on the Core Global Data Bus

• The value on the Program Address Bus

• Specified number of occurrences

NOTE If you are debugging Flash ROM, enable the Use Hardware break-
points option in the M56800 Target Settings panel. However, you
can use the Watchpoint status window debugging RAM as well.

Opening the Watchpoint Status Window

To select a new watchpoint status:

1. Start a debugging session.

2. From the menu bar of the Metrowerks CodeWarrior
window, select DSP56800 > Watchpoint status.

The Watchpoint Status window appears (Figure 8.16).

NOTE The Watchpoint Status menu item is disabled when you use the Simu-
lator or during a system-level connect.

Debugging
Watchpoints and Breakpoints

Targeting DSP56800 DSP–205

Figure 8.16 Watchpoint Status Window

NOTE When you clear a custom watchpoint, the settings you last used are
now selected instead of the previous default values. These settings
do not carry over from previous debugging sessions.

Breakpoint Unit 1

Breakpoint unit 1 (BPU1) of the watchpoint status window allows
you to monitor address values and access type for any X or P
memory location.

Options for setting BPU1 are in the Breakpoint Unit 1 group box
shown in Figure 8.17 and listed in Table 8.3.

Debugging
Watchpoints and Breakpoints

DSP–206 Targeting DSP56800

Figure 8.17 Breakpoint Unit 1 Options

Table 8.3 Options for Breakpoint Unit 1

NOTE If Breakpoint Unit 2 is disabled (in use by the debugger), then the
occurrence counter is set to 1 as the default.

Setting Value Comment

Bus Execute program
fetch

When a P memory instruction is
executed. Mode defaults to Read.
Useful when only interest is
opcode instructions.

Any P memory
access

Any time a P memory address is
accessed, depending on the value
of Mode. Useful when writing or
reading data from P memory.

X Address Bus 1 Access for all X address values
through XAB1 (internal or
external memory) depending on
the Mode you select.

Value C hexadecimal or
decimal notation

Range: 0x0 to 0xFFFF

Mode Read

Write

Read and Write

Debugging
Watchpoints and Breakpoints

Targeting DSP56800 DSP–207

Breakpoint Unit 2

Breakpoint unit 2 (BPU2) of the watchpoint status window allows
you to monitor values (and their masks) in either the Core Global
Data Bus (CGDB) or Program Address Bus (PAB). When you use
BPU2 in conjunction with BPU1 and the occurrence counter, you
can monitor the status of a watchpoint to a resolution as fine as 1 bit
at single memory location.

Options for setting BPU2 are in the Breakpoint Unit 2 group box are
in Figure 8.18 and listed in Table 8.4.

Figure 8.18 Breakpoint Unit 2 Options

NOTE If you are using Breakpoint Unit 2, ensure that one of the radio but-
tons is set to use Breakpoint 2 in the Sequence group box.

Debugging
Watchpoints and Breakpoints

DSP–208 Targeting DSP56800

Table 8.4 Options for Breakpoint Unit 2

Setting Value Comment

Reserve
Breakpoint
Unit 2 for
Debugger

Enabled Breakpoint unit 2 cannot be
user defined and the
occurrence counter defaults to
1 for BPU1.

Disabled Breakpoint unit 2 is user-
defined and occurrence
counter is available for both
BPU1 and BPU2. Single
stepping, stepping over, and
stepping out of functions
cannot be done when
hardware breakpoints are
enabled.

Bus Core Global
Data Bus
(CGDB)

Data transfer between the data
ALU and X data memory for
one memory access.

Program
Address Bus
(PAB)

19-bit program memory
address bus.

Value The
hexadecimal
value read from
the specified
Bus.

To read full value, set Mask to
0xFFFF.

Mask Mask value in C
hex notation
from 0x0 to
0xFFFF.

Specify a value of 0xFFFF for
full value specified by Value.
Specify other hex value to
exclude bits. For example, if
you wanted to stop at any
value where bit 15 is set, you
would specify 0x8000 in both
the Mask and Value fields

Debugging
Watchpoints and Breakpoints

Targeting DSP56800 DSP–209

Occurrence Counter and Sequence Options

This section explains how the debugger uses the Occurrence Counter
(hardware breakpoint counter) and Sequence Options when halting
the debugger.

Occurrence Counter

The Occurrence Counter uses the OnCE breakpoint counter (OCNTR)
for stopping on the nth iteration of a program loop or when the nth
occurrence of a data memory access occurs. When you specify a
value from 1 to 256 in the Occurrence Counter text box, it sets ONCTR
to that value minus 1. Refer to OnCE Breakpoint Counter (OCNTR) in
the DSP56800 Family Manual for more information.

NOTE Once the Occurrence Counter is decremented and a breakpoint is
reached, the counter is not reset. Hence, the Occurrence Counter re-
mains at one and stops at every specified breakpoint.

Sequence Options

To define the criteria for how often the debugger stops on a
watchpoint, use the Sequence group box (Figure 8.19). The value
you set in the Occurrence Counter text box determines the value of
COUNTER.

Figure 8.19 Sequence Counter Options in the Watchpoint Status Window

Table 8.5 explains the options available in the Sequence group box.

Debugging
Watchpoints and Breakpoints

DSP–210 Targeting DSP56800

Table 8.5 Options for the Occurrence Counter

Setting and Clearing Watchpoint Status

You can set and clear watchpoint only through the Watchpoint Status
window. Use the following commands:
• Set Watchpoint

Enables a watchpoint for the values specified by BPU1 and
BPU2. Hardware breakpoints are not available when a
watchpoint is set.

• Clear Watchpoint

Disables the current watchpoint and returns all values in the
Watchpoint Status window to their default values.

Change of Flow FIFO Dump

From the menu bar of the Metrowerks CodeWarrior window, select
DSP56800 > Change-of-flow FIFO Dump to see the most recent changes

Option Comment

Breakpoint 1 occurs
COUNTER times

If Reserve Breakpoint Unit 2 for
Debugger is enabled, this is the default
options and COUNTER is 1.

Breakpoint 1 or
Breakpoint 2 occurs
COUNTER times

BPU1 and BPU2 work independently. If
you are only interested in using BPU2, set
BPU1 to a value you know will not be
reached during program execution.

Breakpoint 1 and
Breakpoint 2
simultaneously occur
COUNTER times

BPU1 and BPU2 work together. This is
useful for monitoring bit status with a
defined mask.

Breakpoint 2 occurs
once, then Breakpoint
1 occurs COUNTER
times

Useful for monitoring the status of
recursive or nested algorithms.

Breakpoint 2 occurs
COUNTER times,
then Breakpoint 1
occurs once

Useful for monitoring the status of
recursive or nested algorithms

Debugging
Watchpoints and Breakpoints

Targeting DSP56800 DSP–211

in the program flow and a reconstructed program trace (Figure
8.20).

Use this feature to query the FIFO History Buffer, located in the On-
Chip Emulation module of a hardware target. This buffer stores the
eight most recent changes in the program flow. The debugger
retrieves these addresses and attempts to reconstruct a trace of the
program flow. This occurs both when the window is opened and
whenever debugging stops while the window is open.

The Change-of-flow FIFO Dump menu item is enabled when the IDE is
debugging a hardware target and debugging has stopped.

Figure 8.20 Change-of-Flow History Window

Status Line

The status line at the bottom of the window explains the state of the
target as either running or stopped. This alerts the user to the
validity of the data. The data is updated each time the target stops.
The Target running status indicates that the current data was
valid at the most recent debugger halt, but is not currently valid.

Data Display

The data display uses a tree control object. Initially, the tree is
collapsed. The top most tree items are the addresses at which a flow
change occurred, followed by the current Program Counter address.
By double-clicking each top item, the item expands, showing the
program flow between the selected address and the next change-of-

Debugging
Global Variable Watchpoints

DSP–212 Targeting DSP56800

flow address. Each line displays the address and, if available, the
disassembly and function name for that instruction. Double-clicking
an expanded line collapses it.

Trace Reconstruction

There are situations when the trace cannot be reconstructed due to
inconclusive evidence. These situations include occasional returns
from subroutines and returns from interrupts. When an interrupt
occurs immediately after a flow change, the trace cannot always be
reconstructed, due to the fact that the interrupt is not always
apparent. However, most of these problems are solved when
symbolic information is available to the debugger.

The window is modeless and resides in the CodeWarrior IDE
workspace. It can be resized, minimized, and maximized. It can be
closed directly, by standard Windows methods, or indirectly, by
killing the debugger.

Global Variable Watchpoints
You can monitor a single global variable as a watchpoint during a
debugging session. This section explains how to set and clear a
watchpoint.

Setting a watchpoint

1. Set a watchpoint:

a. In the program window, right-click on a variable name.

A menu appears in the program window.

b. Select Set/Clear Watchpoint from the menu (Figure 8.21).

Debugging
Global Variable Watchpoints

Targeting DSP56800 DSP–213

Figure 8.21 Setting a Watchpoint in the Program Window

2. Set watchpoint mode:

a. From the menu bar of the Metrowerks CodeWarrior
window, select Debug > Set/Clear Watchpoint. The DSP568
Watchpoint Mode DIalog box appears (Figure 8.22):

Debugging
Global Variable Watchpoints

DSP–214 Targeting DSP56800

Figure 8.22 DSP568 Watchpoint Mode Dialog

b. Select Read, Write, or Read + Write from the DSP568
Watchpoint Mode dialog box (Figure 8.22).

c. Click OK.

You have now set a global watchpoint.

Clearing a Watchpoint

Use either of the following methods for clearing a watchpoint:

• Right-click the variable name in the program window during
debugging. Select Set/Clear Watchpoint. The watchpoint is cleared.

• Select View > Watchpoints. Right-click the variable name set as a
global watchpoint. The Watchpoints window appears (Figure
8.23). Select the variable in the Description column of the
Watchpoints window. A menu appears. Select Clear Watchpoint.
The watchpoint is cleared.

NOTE Conditions are not enabled for watchpoints.

Figure 8.23 Clearing a Global Watchpoint

Debugging
Register Details Window

Targeting DSP56800 DSP–215

Register Details Window
From the menu bar of Metrowerks CodeWarrior window, select
View > Register Details. The Register Details window (Figure 8.24)
appears.

Figure 8.24 Register Details Window

You can use the Register Details window to view different DSP568xx
registers. The most accurate and up-to-date listing of XML register
descriptions files is in the following path:

\bin\Plugins\support\Registers\Dsp568\Generic

NOTE The Register Details window can show both all-purpose DSP56800
registers as well as memory-mapped registers. You can create your
own register views with XML files.

In the Register Details window, type the name of the register you
want to view in the Description File field to display the applicable
register and its values.

By default, the IDE looks in the following path when searching for a
register description file:

Debugging
Viewing Memory

DSP–216 Targeting DSP56800

bin\Plugins\support\Registers\Dsp568\

Register description files must end with the .xml extension.
Alternatively, you can use the Browse button to locate the register
description files.

Using the Format list box in the Register Details window, you can
change the format in which the CodeWarrior IDE displays the
registers.

Using the Text View list box in the Register Details window, you can
change the text information the CodeWarrior IDE displays.

Viewing Memory

Viewing X: Memory

You can view X memory space values as hexadecimal values with
ASCII equivalents. You can edit theses values at debug time.

On targets that have Flash ROM, you cannot edit those values in the
memory window that reside in Flash memory.

1. To view the memory address range of a variable, select Data >
View Memory from the menu bar of the Metrowerks
CodeWarrior window.

The Memory window appears (Figure 8.25).

Debugging
Viewing Memory

Targeting DSP56800 DSP–217

Figure 8.25 View X:Memory Window

2. Locate the Page list box at the bottom of the View Memory
window. Select X Memory.

3. Enter the memory address in the Display field.

To enter a hexadecimal address use standard C hex notation,
for example, 0x100.

NOTE You also can enter the symbolic name whose value you want to
view by typing its name in the Display field of the Memory window.

The window displays the contents of X: memory.

If you are using the EVM hardware, type the address,
0x2000 in the Display text field and press Enter. You see the
memory starting at that location. This is the DATA section in
the EVM board’s memory. The memory address location for
DATA (and CODE) are set in the Memory Segment and
Sections Segment of the linker command file. Note that you
see both the hexadecimal and ASCII values for X: memory.
The contents of this window are editable as well.

Debugging
Viewing Memory

DSP–218 Targeting DSP56800

Viewing P: Memory

You can view P memory space and edit the opcode hexadecimal
values at debug time.

NOTE On targets that have Flash ROM, you cannot edit those values in the
memory window that reside in Flash memory.

1. To view the memory address range of a variable, select Data >
View Memory from the menu bar of the Metrowerks
CodeWarrior window.

The Memory window appears (Figure 8.25).

2. In the Page list box located at the bottom of the View Memory
window, select P Memory.

3. Enter the memory address in the Display field.

To enter a hexadecimal address use standard C hex notation,
for example: 0x1000.

4. Using the View list box, you have the option to view four
types of P:Memory:

• Raw Data (Figure 8.26).

Figure 8.26 View P:Memory (Raw Data) Window

Debugging
Viewing Memory

Targeting DSP56800 DSP–219

• Disassembly (Figure 8.27).

Figure 8.27 View P:Memory (Disassembly) Window

• Source (Figure 8.28).

Figure 8.28 View P:Memory (Source) Window

Debugging
Debugging on a Complex Scan Chain

DSP–220 Targeting DSP56800

• Mixed (Figure 8.29).

Figure 8.29 View P:Memory (Mixed) Window

 Debugging on a Complex Scan Chain
This section describes the procedure for debugging a chip
connected on a complex JTAG chain.

Setting Up

The general steps for debugging a DSP56800 chip connected on a
complex scan chain are:

1. Set up and connect your JTAG chain of target boards.

2. Write a JTAG initialization file that describes the items on the
JTAG chain.

3. Open a project to debug.

4. In the project you are debugging, select the Custom JTAG
checkbox in the M56800 Target Settings panel.

5. Specify the name of the JTAG initialization file in the JTAG
Init. File text field.

Debugging
Debugging a Loaded Target

Targeting DSP56800 DSP–221

6. Specify the index of the core to debug in the JTAG Target Core
Index text field (the index numbering sequence starts with 0).

7. Select Project > Run.

The IDE downloads the program to the specified core. You
can begin debugging.

JTAG Initialization File

Although you may debug only one single chip at a time, you must
create a JTAG initialization file that specifies the type and order of
all the chips in the chain.

To specify DSP56800 chips, you must specify DSP56800 as the name
of a the chip you are debugging. For example, Listing 8.1 shows a
JTAG initialization file for three 56800 chips in a JTAG chain.

Listing 8.1 Example JTAG Initialization File for DSP56800 Boards

JTAG Initilaization File

Has an index value of 0 in the JTAG chain
DSP56800
Has an index value of 1 in the JTAG chain
DSP56800
Has an index value of 2 in the JTAG chain
DSP56800

NOTE See the sample configuration file in the DSP EABI Support\JTAG
folder.

 Debugging a Loaded Target
If you have already downloaded an application file to hardware,
you can kill the debug process and start over without having to
reset the hardware and download your application again.

Debugging
System-Level Connect

DSP–222 Targeting DSP56800

To debug a loaded target:

1. Disable the Always Reset on Download and Always Load Program
at Debugger Launch options in the M56800 Target Settings panel.

2. Form the menu bar of the Metrowerks CodeWarrior
window, select Project > Debug.

Your application begins at the entry point specified in the
entry point in the M56800 Linker Settings panel without resetting
the hardware.

System-Level Connect
The CodeWarrior IDE DSP56800 debugger lets you connect to a
loaded target board and view system registers and memory. A
system-level connect does not let you view symbolic information
during a connection.

NOTE The following procedure explains how to connect in the context of
developing and debugging code on a target board. However, you
can select the Debug > Connect command anytime you have a project
window open, even if you have not yet downloaded a file to your tar-
get board.

To perform a system-level connect:

1. Select the Project window for the program you downloaded.

2. From the menu bar, select Debug > Connect.

The debugger connects to the board. You can now examine
registers and the contents of memory on the board.

Targeting DSP56800 DSP–223

9
ELF Linker and Command
Language

The CodeWarrior™ Executable and Linking Format (ELF) Linker
makes a program file out of the object files of your project. The
linker also allows you to manipulate code in different ways. You
can define variables during linking, control the link order to the
granularity of a single function, change the alignment, and even
compress code and data segments so that they occupy less space in
the output file.

All of these functions are accessed through commands in the linker
command file (LCF). The linker command file has its own language
complete with keywords, directives, and expressions, that are used
to create the specifications for your output code. The syntax and
structure of the linker command file is similar to that of a
programming language.

This chapter contains the following sections:

• Structure of Linker Command Files

• Linker Command File Syntax

• Linker Command File Keyword Listing

• Sample M56800 Linker Command File

Structure of Linker Command Files
Linker command files contain three main segments:

• Memory Segment

• Closure Blocks

• Sections Segment

ELF Linker and Command Language
Structure of Linker Command Files

DSP–224 Targeting DSP56800

 A command file must contain a memory segment and a sections
segment. Closure segments are optional.

Memory Segment

In the memory segment, available memory is divided into
segments. Listing 9.1 shows a sample memory-segment format.

Listing 9.1 Sample MEMORY Segment

MEMORY {
 segment_1 (RWX): ORIGIN = 0x1000, LENGTH = 0x1000
 segment_2 (RWX): ORIGIN = AFTER(segment_1), LENGTH = 0
 data (RW) : ORIGIN = 0x2000, LENGTH = 0x0000
 #segment_name (RW) : ORIGIN = memory address, LENGTH = segment length
 #and so on...
}

The (RWX) portion consists of ELF access permission flags, read,
write, and execute where:

• ORIGIN represents the start address of the memory segment.

• LENGTH represents the maximum size allowed for the memory
segment.

Memory segments with RWX attributes are placed in to P memory
while RW attributes are placed into X memory.

You can put a segment immediately after the previous one using the
AFTER command.

If you cannot predict how much space a segment will occupy, you
can use the command LENGTH = 0 (unlimited length) and let the
linker figure out the size of the segment.

Closure Blocks

The linker is very good at deadstripping unused code and data.
Sometimes, however, symbols need to be kept in the output file
even if they are never directly referenced. Interrupt handlers, for
example, are usually linked at special addresses, without any
explicit jumps to transfer control to these places.

ELF Linker and Command Language
Structure of Linker Command Files

Targeting DSP56800 DSP–225

Closure blocks provide a way to make symbols immune from
deadstripping. The closure is transitive, meaning that symbols
referenced by the symbol being closed are also forced into closure,
as are any symbols referenced by those symbols, and so on.

NOTE The closure blocks need to be in place before the SECTIONS defini-
tion in the linker command file.

The two types of closure blocks available are:

• Symbol-level

Use FORCE_ACTIVE to include a symbol into the link that
would not be otherwise included. An example is in Listing
9.2.

Listing 9.2 Sample Symbol-level Closure Block

FORCE_ACTIVE {break_handler, interrupt_handler, my_function}

• Section-level

Use KEEP_SECTION when you want to keep a section
(usually a user-defined section) in the link. Listing 9.3 is an
example.

Listing 9.3 Sample Section-level Closure Block

KEEP_SECTION {.interrupt1, .interrupt2}

A variant is REF_INCLUDE. It keeps a section in the link, but
only if the file where it is coming from is referenced. This is
very useful to include version numbers. Listing 9.4 is an
example.

Listing 9.4 Sample Section-level Closure Block With File Dependency

REF_INCLUDE {.version}

ELF Linker and Command Language
Linker Command File Syntax

DSP–226 Targeting DSP56800

Sections Segment

In the Sections segment, you define the contents of memory
segments and any global symbols to be used in the output file.

The format of a typical sections block is in Listing 10.2.

Listing 9.5 Sample SECTIONS Segment

SECTIONS {
 .section_name : #the section name is for your reference
 { #the section name must begin with a '.'
 filename.c (.text) #put the .text section from filename.c
 filename2.c (.text) #then the .text section from filename2.c
 filename.c (.data)
 filename2.c (.data)
 filename.c (.bss)
 filename2.c (.bss)
 . = ALIGN (0x10); #align next section on 16-byte boundary.
 } > segment_1 #this means "map these contents to segment_1"

 .next_section_name:
 {
 more content descriptions
 } > segment_x # end of .next_section_name definition
} # end of the sections block

Linker Command File Syntax
This section explains some practical ways in which to use the
commands of the linker command file to perform common tasks.

Alignment

To align data on a specific byte-boundary, you use the ALIGN and
ALIGNALL commands to bump the location counter to the
preferred boundary. For example, the following fragment uses
ALIGN to bump the location counter to the next 16-byte boundary.
A sample is in Listing 9.6.

ELF Linker and Command Language
Linker Command File Syntax

Targeting DSP56800 DSP–227

Listing 9.6 Sample ALIGN Command Usage

file.c (.text)
. = ALIGN (0x10);
file.c (.data) # aligned on a 16-byte boundary.

You can also align data on a specific byte-boundary with ALIGNALL
as shown in (Listing 10.7).

Listing 9.7 Sample ALIGNALL Command Usage

file.c (.text)
ALIGNALL (0x10); #everything past this point aligned on 16 bytes
file.c (.data)

Arithmetic Operations

Standard C arithmetic and logical operations may be used to define
and use symbols in the linker command file. Table 9.1 shows the
order of precedence for each operator. All operators are left-
associative. To learn more about C operators, refer to the C Compiler
Reference.

Table 9.1 Arithmetic Operators

Precedence Operators

1 (highest) - ˜ !

2 * / %

3 + -

4 >> <<

5 == != > < <=
>=

6 &

7 |

8 &&

9 ||

ELF Linker and Command Language
Linker Command File Syntax

DSP–228 Targeting DSP56800

Comments

Add comments by using the pound character (#) or C++ style
double-slashes (//). C-style comments are not accepted by the LCF
parser. Listing 9.8 shows examples of valid comments.

Listing 9.8 Example Comments

This is a one-line comment
* (.text) // This is a partial-line comment

Deadstrip Prevention

The M56800 linker removes unused code and data from the output
file. This process is called deadstripping. To prevent the linker from
deadstripping unreferenced code and data, use the FORCE_ACTIVE,
KEEP_SECTION, and REF_INCLUDE directives to preserve them
in the output file.

Variables, Expressions and Integral Types

This section explains variables, expressions, and integral types.

Variables and Symbols

All symbol names within a Linker Command File (LCF) start with
the underscore character (_), followed by letters, digits, or
underscore characters. Listing 9.9 shows examples of valid lines for
a command file:

Listing 9.9 Valid Command File Lines

_dec_num = 99999999;
_hex_num_ = 0x9011276;

Variables that are defined within a SECTIONS section can only be
used within a SECTIONS section in a linker command file.

ELF Linker and Command Language
Linker Command File Syntax

Targeting DSP56800 DSP–229

Global Variables

Global variables are accessed in a linker command file with an ‘F’
prepended to the symbol name. This is because the compiler adds
an ‘F’ prefix to externally defined symbols.

Listing 9.10 shows an example of using a global variable in a linker
command file. This example sets the global variable _foot,
declared in C with the extern keyword, to the location of the
address location current counter.

Listing 9.10 Using a Global Variable in the LCF

F_foot = .;

If you use a global symbol in an LCF, as in Listing 9.10, it can be
accessed from C program sources as shown in Listing 9.11.

Listing 9.11 Accessing a Global Symbol From C Program Sources

extern unsigned long _foot;
void main(void) {
 unsigned long i;
 // ...
 i = _foot; // _foot value determined in LCF
 // ...
}

Expressions and Assignments

You can create symbols and assign addresses to those symbols by
using the standard assignment operator. An assignment may only
be used at the start of an expression, and a semicolon is required at
the end of an assignment statement. An example of standard
assignment operator usage is shown in Listing 9.12.

Listing 9.12 Standard Assignment Operator Usage

_symbolicname = some_expression; # Legal
_sym1 + _sym2 = sym3; # ILLEGAL!

ELF Linker and Command Language
Linker Command File Syntax

DSP–230 Targeting DSP56800

When an expression is evaluated and assigned to a variable, it is
given either an absolute or a relocatable type. An absolute
expression type is one in which the symbol contains the value that it
will have in the output file. A relocatable expression is one in which
the value is expressed as a fixed offset from the base of a section.

Integral Types

The syntax for linker command file expressions is very similar to the
syntax of the C programming language. All integer types are long
or unsigned long.

Octal integers (commonly know as base eight integers) are specified
with a leading zero, followed by numeral in the range of zero
through seven. Listing 10.13 shows valid octal patterns you could
put into your linker command file.

Listing 9.13 Sample Octal Patterns

_octal_number = 012;
_octal_number2 = 03245;

Decimal integers are specified as a non-zero numeral, followed by
numerals in the range of zero through nine. To create a negative
integer, use the minus sign (-) in front of the number. Listing 10.14
shows examples of valid decimal integers that you could write into
your linker command file.

Listing 9.14 Sample Decimal Integers

_dec_num = 9999;
_decimalNumber = -1234;

Hexadecimal (base sixteen) integers are specified as 0x or 0X (a zero
with an X), followed by numerals in the range of zero through nine,
and/or characters A through F. Examples of valid hexadecimal
integers you could put in your linker command file appear in
Listing 9.15.

ELF Linker and Command Language
Linker Command File Syntax

Targeting DSP56800 DSP–231

Listing 9.15 Example Hexadecimal Integers

_somenumber = 0x0F21;
_fudgefactorspace = 0XF00D;
_hexonyou = 0xcafe;

File Selection

When defining the contents of a SECTION block, specify the source
files that are contributing to their sections. The standard method of
doing this is to list the files, as shown in Listing 10.16.

In a large project, the list can grow to become very long. For this
reason, use the asterix (*) keyword. The asterix (*) keyword
represents the filenames of every file in your project. Note that since
you have already added the .text sections from the files main.c,
file2.c, and file3.c, the '*' keyword does not addition of the
.text sections from those files again.

Sometimes you may only want to include the files from a particular
file group. The GROUP keyword allows you to specify all the files of
a named file group.

Listing 9.16 Sample file listing

SECTIONS {
 .example_section :
 {
 main.c (.text)
 file2.c (.text)
 file3.c (.text)
 * (.text)
 GROUP(fileGroup1) (.text)
 GROUP(fileGroup1) (.data)
 } > MYSEGMENT
}

Function Selection

The OBJECT keyword allows precise control over how functions are
placed within a section. For example, if the functions pad and foot

ELF Linker and Command Language
Linker Command File Syntax

DSP–232 Targeting DSP56800

are to be placed before anything else in a section, use code like the
example in Listing 10.17.

Listing 9.17 Sample Function Selection Using the Object Keyword

SECTIONS {
 .program_section :
 {
 OBJECT (Fpad, main.c)
 OBJECT (Ffoot, main.c)
 * (.text)
 } > ROOT

NOTE If an object is written once using the Object function selection key-
word, you can prevent the same object from being written again
using the '*' file selection keyword.

ROM to RAM Copying

In embedded programming, it is common to copy a portion of a
program resident in ROM into RAM at runtime. For example,
program variables cannot be accessed until they are copied to RAM.

To indicate data or code that is meant to be copied from ROM to
RAM, the data or code is given two addresses. One address is its
resident location in ROM (defined by the linker command file). The
other is its intended location in RAM (defined in C code where you
do the actual copying).

To create a section with the resident location in ROM and an
intended location in RAM, you define the two addresses in the
linker command file. Use the MEMORY segment to specify the
intended RAM location, and the AT(address) parameter to
specify the resident ROM address.

NOTE This method only works for copying from data ROM to data RAM.

ELF Linker and Command Language
Linker Command File Syntax

Targeting DSP56800 DSP–233

For example, you have a program and you want to copy all your
initialized data into RAM at runtime. Listing 10.18 shows you the
LCF used to set up for writing initialized data to ROM.

NOTE If you want to write initialized data to program ROM, use the WRITE
commands in the LCF. Also, write your own P to X memory copy
routine in assembly to copy data from program ROM to data RAM at
runtime.

Listing 9.18 LCF File to Prepare Data Copy From ROM to RAM

MEMORY {
 .text (RWX) : ORIGIN = 0x8000, LENGTH = 0x0 # code (P)
 .data (RW) : ORIGIN = 0x3000, LENGTH = 0x0 # data (X)-> RAM
}

SECTIONS{

 F__ROM_Address = 0x1000; # ROM Starting Address

 .main_application :
 {
 # .text sections

 *(.text)
 *(.rtlib.text)
 *(.fp_engine.txt)
 *(user.text)
 } > .text

 .data : AT(F__ROM_Address) # Start data at 0x1000 -> ROM
 {
 # .data sections
 F_Begin_Data = .; # Get start location for RAM
 *(.data) # Write data to the section (ROM)
 *(fp_state.data);
 *(rtlib.data);
 F_End_Data = .; # Get end location for RAM

 # .bss sections
 * (rtlib.bss.lo)

ELF Linker and Command Language
Linker Command File Syntax

DSP–234 Targeting DSP56800

 * (.bss)

 } > .data
}

To make the runtime copy the section from ROM to RAM, you need
to know where the data start in ROM (__ROM_Address) and the
size of the block in ROM you want to copy to RAM. In Listing 9.19,
all variables in the data section from ROM to RAM in C code are
copied.

Listing 9.19 ROM to RAM Copy From C After Data-Flash Write

#include <stdio.h>
#include <string.h>

int GlobalFlash = 6;

// From linker command file
extern __Begin_Data, __ROMAddress, __End_Data;

void main(void)
{
 unsigned short a = 0, b = 0, c = 0;
 unsigned long dataLen = 0x0;
 unsigned short __myArray[] = { 0xdead, 0xbeef, 0xcafe };

 // Calculate the data length of the X memory written to Flash
 dataLen = (unsigned long)&__End_Data -
 (unsigned long)&__Begin_Data;

 // Block move from ROM to RAM
 memcpy((unsigned long *)&__Begin_Data,
 (const unsigned long *)&__ROMAddress,
 dataLen);

 a = GlobalFlash;

 return;
}

ELF Linker and Command Language
Linker Command File Syntax

Targeting DSP56800 DSP–235

NOTE For this example to work, you must be writing to Flash with the
CodeWarrior debugger and have your board jumpered to mode 0.

Stack and Heap

To reserve space for the stack and heap, arithmetic operations are
performed to set the values of the symbols used by the runtime.
Listing 9.20 shows a code fragment from a section definition that
illustrates this arithmetic.

You do not need to set up your heap and stack in the linker, as this
is done by the run-time initialization of the MSL.

Listing 9.20 Setting Up Some Heap

 _HEAP_ADDR = .;
 _HEAP_SIZE = 0x2000; // this is the size of the heap
 _HEAP_END = _HEAP_ADDR + _heap_size;
 . = _HEAP_END // reserve the space

The same thing is done for the stack using the ending address of the
heap as the start of the stack (Listing 9.21).

Listing 9.21 Setting Up the Stack

 _stack_size = 0x2000; // this is the size of the stack
 _stack_addr = heap_end + _stack_size;
 . = _stack_addr;

Writing Data Directly to Memory

You can write directly to memory using the WRITEx command in
the linker command file. The WRITEB command writes a byte, the
WRITEH command writes two bytes, and the WRITEW command
writes four bytes. You insert the data at the section’s current
address.

ELF Linker and Command Language
Linker Command File Keyword Listing

DSP–236 Targeting DSP56800

Listing 9.22 Embedding Data Directly Into the Output

.example_data_section :
{
 WRITEB 0x48; // 'H'
 WRITEB 0x69; // 'i'
 WRITEB 0x21; // '!'
}

Linker Command File Keyword Listing
This sections explains the keywords available for use when creating
CodeWarrior IDE for DSP56800E applications with the linker
command file. Valid linker command file functions, keywords,
directives, and commands are described:

• . (location counter)

• ADDR

• ALIGN

• ALIGNALL

• FORCE_ACTIVE

• GROUP

• INCLUDE

• KEEP_SECTION

• MEMORY

• OBJECT

• REF_INCLUDE

• SECTIONS

• SIZEOF

• SIZEOFW

• WRITEB

• WRITEH

• WRITES

• WRITEW

ELF Linker and Command Language
Linker Command File Keyword Listing

Targeting DSP56800 DSP–237

. (location counter)

Definition The period character (.) always maintains the current position of
the output location. Since the period always refers to a location in a
SECTIONS block, it can not be used outside a section definition.

A period may appear anywhere a symbol is allowed. Assigning a
value to period that is greater than its current value causes the
location counter to move, but the location counter can never be
decremented.

This effect can be used to create empty space in an output section. In
the example below, the location counter is moved to a position that
is 0x1000 bytes past the symbol FSTART_.

Example .data :
{
 *(.data)
 *(.bss)
 FSTART_ = .;
 . = FSTART_ + 0x1000;
 __end = .;
} > DATA

ADDR

Definition The ADDR function returns the address of the named section or
memory segment.

Prototype ADDR (sectionName | segmentName)

In the example below, ADDR is used to assign the address of ROOT to
the symbol __rootbasecode.

Example MEMORY{
 ROOT (RWX) : ORIGIN = 0x8000, LENGTH = 0
}

SECTIONS{

ELF Linker and Command Language
Linker Command File Keyword Listing

DSP–238 Targeting DSP56800

 .code :
 {
 __rootbasecode = ADDR(ROOT);
 *(.text);
 } > ROOT
}

ALIGN

Definition The ALIGN function returns the value of the location counter
aligned on a boundary specified by the value of alignValue. The
alignValue must be a power of two.

Prototype ALIGN(alignValue)

Please note that ALIGN does not update the location counter; it only
performs arithmetic. To update the location counter, use an
assignment such as the following:

Example . = ALIGN(0x10); #update location counter to 16
 #byte alignment

ALIGNALL

Definition ALIGNALL is the command version of the ALIGN function. It forces
the minimum alignment for all the objects in the current segment to
the value of alignValue. The alignValue must be a power of
two.

Prototype ALIGNALL(alignValue);

Unlike its counterpart ALIGN, ALIGNALL is an actual command. It
updates the location counter as each object is written to the output.

Example .code :
{
 ALIGNALL(16); // Align code on 16 byte boundary
 * (.init)

ELF Linker and Command Language
Linker Command File Keyword Listing

Targeting DSP56800 DSP–239

 * (.text)

 ALIGNALL(16); //align data on 16 byte boundary
 * (.rodata)
} > .text

FORCE_ACTIVE

Definition The FORCE_ACTIVE directive allows you to specify symbols that
you do not want the linker to deadstrip. You must specify the
symbol(s) you want to keep before you use the SECTIONS keyword.

Prototype FORCE_ACTIVE{ symbol[, symbol] }

GROUP

Definition The GROUP keyword allows you to selectively include files and
sections from certain file groups.

Prototype GROUP (fileGroup) (sectionType)

In the example, all the .bss sections of the files in the file group
named PAD are specified.

 Example GROUP (PAD) (.bss)

INCLUDE

Definition The INCLUDE command allows you to include a binary file in the
output file.

Prototype INCLUDE filename

ELF Linker and Command Language
Linker Command File Keyword Listing

DSP–240 Targeting DSP56800

KEEP_SECTION

Definition The KEEP_SECTION directive allows you to specify sections that
you do not want the linker to deadstrip. You must specify the
section(s) you want to keep before you use the SECTION keyword.

Prototype KEEP_SECTION{ sectionType[, sectionType] }

MEMORY

Definition The MEMORY directive allows you to describe the location and size of
memory segment blocks in the target. This directive specifies the
linker the memory areas to avoid, and the memory areas into which
it links the code and date.

The linker command file may only contain one MEMORY directive.
However, within the confines of the MEMORY directive, you may
define as many memory segments as you wish.

Prototype MEMORY { memory_spec }

The memory_spec is:

segmentName (accessFlags) : ORIGIN = address,
LENGTH = length [,COMPRESS] [> fileName]

segmentName can include alphanumeric characters and
underscore '_' characters.

accessFlags are passed into the output ELF file
(Phdr.p_flags). The accessFlags can be:

• R-read

• W-write

• X-executable (for P memory placement)

address origin is one of the following:

• Memory address

ELF Linker and Command Language
Linker Command File Keyword Listing

Targeting DSP56800 DSP–241

Specify a hex address, such as 0x8000.

• AFTER command

Use the AFTER(name [,name]) command to instruct the
linker to place the memory segment after the specified
segment. In the example below, overlay1 and overlay2
are placed after the code segment. When multiple memory
segments are specified as parameters for AFTER, the highest
memory address is used.

Example MEMORY{
code (RWX) : ORIGIN = 0x8000, LENGTH = 0
overlay1 (RWX) : ORIGIN = AFTER(code), LENGTH = 0
overlay2 (RWX) : ORIGIN = AFTER(code), LENGTH = 0
data (RW) : ORIGIN = 0x1000, LENGTH = 0
}

ORIGIN is the assigned address.

LENGTH is any of the following:

• A value greater than zero.

If you try to put more code and data into a memory segment
greater than your specified length allows, the linker stops
with an error.

• Autolength by specifying zero.

When the length is 0, the linker lets you put as much code
and data into a memory segment as you want.

NOTE There is no overflow checking with autolength. The linker can pro-
duce an unexpected result if you use the autolength feature without
leaving enough free memory space to contain the memory segment.
Using the AFTER keyword to specify origin addresses prevents this.

> fileName is an option to write the segment to a binary file on
disk instead of an ELF program header. The binary file is put in the
same folder as the ELF output file. This option has two variants:

• > fileName

Writes the segment to a new file.

• >> fileName

Appends the segment to an existing file.

ELF Linker and Command Language
Linker Command File Keyword Listing

DSP–242 Targeting DSP56800

OBJECT

Definition The OBJECT keyword allows control over the order in which
functions are placed in the output file.

Prototype OBJECT (function, sourcefile.c)

It is important to note that if an object is written to the outfile using
the OBJECT keyword, the IDE does not allow the same object to be
written again by using either the GROUP keyword or the '*' wildcard
selector.

REF_INCLUDE

Definition The REF_INCLUDE directive allows you to specify sections that you
do not want the linker to deadstrip, but only if they satisfy a certain
condition: the file that contains the section must be referenced. This
is useful if you want to include version information from your
source file components. You must specify the section(s) you want to
keep before you use the SECTIONS keyword.

Prototype REF_INCLUDE{ sectionType [, sectionType]}

SECTIONS

Definition A basic SECTIONS directive has the following form:

Prototype SECTIONS { <section_spec> }

section_spec is one of the following:
 sectionName : [AT (loadAddress)] {contents} >
 segmentName
 sectionName : [AT (loadAddress]] {contents} >>
 segmentName

ELF Linker and Command Language
Linker Command File Keyword Listing

Targeting DSP56800 DSP–243

These statements can:

• assign a value to a symbol.

• describe the placement of an output section, including which
input sections are placed into it.

segmentName is the predefined memory segment into which you
want to put the contents of the section. The two variants are:

Here is an example section definition:

Example SECTIONS {
 .text : {
 F_textSegmentStart = .;
 footpad.c (.text)
 . = ALIGN (0x10);
 padfoot.c (.text)
 F_textSegmentEnd = .;
 }
 .data : { *(.data) }
 .bss : { *(.bss)
 *(COMMON)
 }

sectionName The section name for the output
section. It must start with a period
character. For example,
.mysection.

AT (loadAddress) An optional parameter that specifies
the address of the section. The
default (if not specified) is to make
the load address the same as the
relocation address.

contents Made up of statements.

 > segmentName Places the section contents at the
beginning of the memory segment
segmentName.

>> segmentName Appends the section contents to the
memory segment segmentName.

ELF Linker and Command Language
Linker Command File Keyword Listing

DSP–244 Targeting DSP56800

}

SIZEOF

Definition The SIZEOF function returns the size of the given segment or
section. The return value is the size in bytes.

Prototype SIZEOF(segmentName | sectionName)

SIZEOFW

Definition The SIZEOFW function returns the size of the given segment or
section. The return value is the size in words.

Prototype SIZEOFW(segmentName | sectionName)

WRITEB

Definition The WRITEB command inserts a byte of data at the current address
of a section.

Prototype WRITEB (expression);

expression is any expression that returns a value 0x00 to 0xFF.

WRITEH

Definition The WRITEH command inserts two bytes of data at the current
address of a section.

Prototype WRITEH (expression);

ELF Linker and Command Language
Linker Command File Keyword Listing

Targeting DSP56800 DSP–245

expression is any expression that returns a value 0x0000 to
0xFFFF.

WRITES

Definition The WRITES command is a string of variables with maximum
length of 255 characters.

You can use DATE and TIME in conjunction with the WRITES
command.

DATE returns the current date as C string (must be within
parentheses).

TIME returns the current time as C string (must be within
parentheses).

Prototype WRITES (string);

string is any string within parentheses.

Examples WRITES ("Hello World").
WRITES ("Today is" DATE).
WRITES ("The time is " TIME).

WRITEW

Definition The WRITEW command inserts 4 bytes of data at the current
address of a section.

Prototype WRITEW (expression);

expression is any expression that returns a value 0x00000000 to
0xFFFFFFFF.

ELF Linker and Command Language
Sample M56800 Linker Command File

DSP–246 Targeting DSP56800

Sample M56800 Linker Command File
A sample M56800 linker command file is in Listing 9.23. This is the
typical linker command file.

Listing 9.23 Sample Linker Command File (DSP56824 EVM)

--

Metrowerks, a company of Motorola
sample code

linker command file for DSP56824EVM
using
external pRAM
external xRAM
internal xRAM (for compiler regs)
mode 3
EXT 0

revision history
011020 R4.1 A.H. first version

--

see end of file for additional notes
additional reference: Motorola docs
DSP56F801-7UM.pdf
DSP56824EVMUM.pdf

for this LCF:
interrupt vectors --> external pRAM starting at zero
program code --> external pRAM
constants --> external xRAM
dynamic data --> external xRAM

stack size is set to 0x1000 for external RAM LCF
this is required for hostIO

DSP56824EVM eval board settings:

ELF Linker and Command Language
Sample M56800 Linker Command File

Targeting DSP56800 DSP–247

ON --> jumper JG1 pins 1-2 & 3-4 (enable mode 3 upon exit
from reset)

due to above jumpers, we stay in mode 3 all time for 824

CodeWarrior debugger Target option settings
OFF --> "Use Hardware Breakpoints"

if using DSP56824EVM, JG1 overrides this next option
ON --> "Debugger sets OMR at Launch" option

 # note: with above option on, CW debugger sets OMR as
OMR:
0 --> EX bit (stay in Debug processing state)
1 --> MA bit
1 --> MB bit

about the reserved sections
for this external RAM only LCF:

p_isr -- reserved in external pRAM
memory space reserved for interrupt vectors
interrupt vectors must start at address zero
interrupt vector space size is 0x80

x_compiler_regs -- reserved in internal xRAM 1
The compiler uses page 0 address locations 0x30-0x40
as register variables. See the Target manual for more info.

56824
mode 3 (development)
EX = 0

MEMORY {
 .p_isr_ext_RAM (RWX) : ORIGIN = 0x0000, LENGTH = 0x0080
 .p_external_RAM (RWX) : ORIGIN = 0x0080, LENGTH = 0x0000
 .x_comp_regs_iRAM (RW) : ORIGIN = 0x0030, LENGTH = 0x0010
 .x_internal_RAM_1 (RW) : ORIGIN = 0x0040, LENGTH = 0x07C0
 .x_internal_ROM (R) : ORIGIN = 0x0800, LENGTH = 0x0010
 .x_internal_RAM_2 (RW) : ORIGIN = 0x0040, LENGTH = 0x0010
 .x_reserved (R) : ORIGIN = 0x1600, LENGTH = 0x0A00

ELF Linker and Command Language
Sample M56800 Linker Command File

DSP–248 Targeting DSP56800

 .x_external_RAM (RW) : ORIGIN = 0x2000, LENGTH = 0xDF80
 .x_on_chip_peri_1 (RW) : ORIGIN = 0xFF80, LENGTH = 0x0040
 .x_on_chip_peri_2 (RW) : ORIGIN = 0xFFC0, LENGTH = 0x0040
}

we ensure the interrupt vector section is not deadstripped here

KEEP_SECTION{ isrVector.text }

place all executing code & data in external memory

SECTIONS {
 .interrupt_vectors_for_p_ram :
 {
 * (isrVector.text) # from 56824_vector.asm

 } > .p_isr_ext_RAM

 .executing_code :
 {
 # .text sections

 * (.text)
 * (rtlib.text)
 * (fp_engine.text)
 * (user.text)
 } > .p_external_RAM

 .data :
 {
 # .data sections

 * (.const.data)
 * (fp_state.data)
 * (rtlib.data)
 * (.data)

 # .bss sections

 * (rtlib.bss.lo)
 * (.bss)

ELF Linker and Command Language
Sample M56800 Linker Command File

Targeting DSP56800 DSP–249

 # setup the heap address
 . = ALIGN(4);
 _HEAP_ADDR = .;
 _HEAP_SIZE = 0x00FF;
 _HEAP_END = _HEAP_ADDR + _HEAP_SIZE;
 . = _HEAP_END;

 # setup the stack address
 _min_stack_size = 0x1000;
 _stack_addr = _HEAP_END;
 _stack_end = _stack_addr + _min_stack_size;
 . = _stack_end;

 # export heap and stack runtime to libraries
 F_heap_addr = _HEAP_ADDR;
 F_heap_end = _HEAP_END;
 F_stack_addr = _HEAP_END;

 } > .x_external_RAM
}

additional notes:

about the reserved sections
for this external RAM only LCF:

p_isr -- reserved in external pRAM
memory space reserved for interrupt vectors
interrupt vectors must start at address zero
interrupt vector space size is 0x80

x_compiler_regs -- reserved in internal xRAM
The compiler uses page 0 address locations 0x30-0x40
as register variables. See the Target manual for more info.

notes:
program memory (p memory)
(RWX) read/write/execute for pRAM
(RX) read/execute for flashed pROM

ELF Linker and Command Language
Sample M56800 Linker Command File

DSP–250 Targeting DSP56800

data memory (X memory)
(RW) read/write for xRAM
(R) read for data flashed xROM

LENGTH = next start address - previous
LENGTH = 0x0000 means use all remaining memory

Targeting DSP56800 DSP–251

10
Flash Programming

This chapter covers features of the CodeWarrior™ debugger and
ELF linker command file that allow you to program Flash ROM on
DSP56800 series devices that have this capability. The CodeWarrior
debugger for DSP56800 has Flash drivers for both program (P) and
data (X) memory. When you use the debugger with a flash
configuration file and linker command file, the debugger writes
your code and/or data to Flash ROM.

This chapter contains the following sections:

• Setting up the Debugger for Flash Programming

• Setting up the Linker Command File for Flash Programming

• Preparing the Hardware for Flash Programming

• Flash Programming Tips

• Flash Programming the Reset and Interrupt Vectors

NOTE This chapter assumes that you are familiar with the CodeWarrior de-
bugger and the linker command file format for DSP56800. Familiar-
ize yourself with these topics before programming Flash ROM on
DSP56800 devices.

Setting up the Debugger for Flash Programming
In order for the debugger to download into Flash, the following
options are required in the M56800 Target Settings panel:

• Use Flash Config File

This option must be enabled.

• Always load program at debugger launch

This option must be enabled.

Flash Programming
Setting up the Linker Command File for Flash Programming

DSP–252 Targeting DSP56800

• Debugger sets OMR on launch

This option must be disabled. The debugger does not set
OMR at all when this option is disabled.

Figure 10.1 shows the M56800 Target Settings panel when you use
minimum requirements for Flash programming.

Figure 10.1 M56800 Target Settings Panel for Programming Flash

Setting up the Linker Command File for Flash
Programming

To write to Flash you must properly set up your linker command
file. The CodeWarrior debugger takes the link information from the
MEMORY segments to know whether the intended memory segment
in intended for ROM or RAM. If a MEMORY segment resides in ROM
and the appropriate debugger settings are used, the debugger

Flash Programming
Preparing the Hardware for Flash Programming

Targeting DSP56800 DSP–253

performs a mass erase of the data and/or code ROM region before
writing to ROM.

NOTE Mass erases of Flash ROM regions for X: memory and P: memory
are performed individually. For example, if you only want to flash P:
memory and not X: memory, the debugger does not perform a mass
erase of X: memory. This is determined by the setup in the linker
command file.

Specifying P: Memory

To specify P: (program) memory you must specify your MEMORY
segment attributes as (RWX). For example:

.text (RWX) : ORIGIN = 0x1000, LENGTH = 0x0

specifies that the .text memory segment is intended for P:
memory and starts at 0x1000 in memory. See the section “Memory
Segment” for more information.

Specifying X: Memory

To specify X: (data) memory you must specify your MEMORY
segment attributes as (RW) or (W). For example:

.data (RW) : ORIGIN = 0x1000, LENGTH = 0x0

specifies that the .data memory segment is intended for X:
memory and starts at 0x1000 in memory. See the section “Memory
Segment” for more information.

Preparing the Hardware for Flash Programming
For the CodeWarrior debugger to write to Flash, you must have
your hardware jumpered to mode 0. All EVM provide jumpers to
do this. Refer to hardware manuals for EVM boards.

Flash Programming
Flash Programming Tips

DSP–254 Targeting DSP56800

Flash Programming Tips
If you are programming Flash:

• Ensure your Flash data size fits into Flash memory.

The linker command file specifies where data is written to.
There is no bounds checking for Flash programming.

• The standard library I/O function such as printf uses large
amount of memory and may not fit into flash targets.

• Use the Flash stationery when creating a new project intended
for ROM.

The default stationery contains the Flash configuration file
and debugger settings required to use the Flash programmer.

Flash Programming the Reset and Interrupt
Vectors

 The first four P: (program) memory locations in Flash ROM are
actually "mirrored" from the first four memory locations of Boot
Flash. Therefore, when Flash programming the reset vectors, write
the reset vectors to the beginning of Boot Flash. The interrupt
vectors are located in Program Flash. Write the interrupt vectors
normally, starting at P:0x0004. The Flash targets in the stationery
demonstrate how the source, linker command file, and flash
configuration file look.

NOTE It is important that you use the flash configuration file provided in the
stationery. Using a flash configuration file with extra sections can
lead to multiple erases of the same flash unit resulting in Flash pro-
gramming errors.

Targeting DSP56800 DSP–255

11
Libraries and Runtime
Code

You can use a variety of libraries with the CodeWarrior™ IDE. The
libraries include ANSI-standard libraries for C, runtime libraries,
and other code. This chapter explains how to use these libraries for
DSP56800 development.

With respect to the Metrowerks Standard Library (MSL) for C, this
chapter is an extension of the MSL C Reference. Consult that manual
for general details on the standard libraries and their functions.

This chapter contains the following sections:

• MSL for DSP56800

• Runtime Initialization

MSL for DSP56800
This section explains the Metrowerks Standard Library (MSL)
modified for use with DSP56800. CodeWarrior IDE for DSP56800
includes the source and project files for MSL so that you can modify
the library if necessary.

Using MSL for DSP56800

CodeWarrior IDE for DSP56800 includes a version of the
Metrowerks Standard Library (MSL). The MSL is a C library you
can use in your embedded projects. All of the sources necessary to
build MSL are included in CodeWarrior IDE for DSP56800, along
with the project file and targets for different MSL configurations. If
you already have a version of CodeWarrior IDE installed on your

Libraries and Runtime Code
MSL for DSP56800

DSP–256 Targeting DSP56800

computer, the CodeWarrior installer adds the new files needed for
building versions of MSL for DSP56800.

Do not modify any of the source files that support MSL.

MSL Configurations for DSP56800

There are two DSP56800 MSL libraries available. Both support
standard C calls with optional I/O functionality. One library has a
minimal printf function providing console output using
debugger. The other library has full ANSI/ISO standard I/O
support, including host machine console and file I/O for debugging
sessions. The memory functions malloc() and free() are also
supported for both libraries.

The two provided DPS56800 MSL libraries are:

MSL C 56800.lib

This library provides standard C library support without standard
I/O. A minimal "thin" printf is provided but other stdio is
stripped out in order to maximize performance. The printf sends
characters to the CodeWarrior console window via the debugger.
Use this library for when you need minimal printf support for
debugging and to save space.

MSL C 56800 host I/O.lib

This library adds ANSI/ISO standard I/O support through the
debugger. The standard C library I/O is supported, including
stdio.h, sdderr.h, and stdin.h. Use this library when you
want to perform stdio calls, including CodeWarrior console
stdout/stdin, and host machine file I/O, for debugging.

Host File Location

Files are created with fopen on the host machine as shown in Table
11.1.

Libraries and Runtime Code
MSL for DSP56800

Targeting DSP56800 DSP–257

Table 11.1 Host File Creation Location

Binary and Text Files

Stdio call fopen can open files as text or binary, depending on the
open mode. For DSP56800 host I/O file operations, subsequent
stdio calls treat the file as text or binary depending on how the file
was originally opened with fopen.

NOTE You must decide whether to open the file as text or binary.

Binary and text files are handled differently because DSP56800 char
(character) is 16-bits and x86 host char is 8-bits.

• Text file I/O operations are 1-to-2 mapping.

• Binary file I/O operations are 1-to-1 mapping.

Files are created with fopen on the host machine as shown in Table
11.2.

Table 11.2 Host File Creation Location

Text File I/O

DSP56800 host I/O does 16-bit to 8-bit mapping for host text files.
The host text file is handled as 8-bit elements with conversion to 16-
bit elements on the target side.

For example, if you open the host file with the fopen mode "w", the
file opens as new text file or a truncated existing text file of the file

fopen filename parameter host creation location

filename with no path target project file folder

full path location of full path

file opened as host elements target elements

text 8-bit 16-bit

binary 16-bit 16-bit

Libraries and Runtime Code
MSL for DSP56800

DSP–258 Targeting DSP56800

name. When fwrite is called, the host file writes the DSP56800
buffer of 16-elements the host file as 8-bit elements.

Binary File I/O

DSP56800 host I/O does 16-bit to 16-bit mapping for binary files.
The host binary file is handled as 16-bit elements.

Allocating Stacks and Heaps for the DSP56800

Stationery linker command files (LCF) define heap, stack, and BSS
locations. LCFs are specific to each target board. When you use
M56800 stationery to create a new project, CodeWarrior
automatically adds the LCF to the new project.

See “ELF Linker and Command Language,” for general LCF
information. See each specific target LCF in Stationery for specific
LCF information.

Definitions

Stack

The stack is a last-in-first-out (LIFO) data structure. Items are
pushed on the stack and popped off the stack. The most recently
added item is on top of the stack. Previously added items are under
the top, the oldest item at the bottom. The "top" of the stack may be
in low memory or high memory, depending on stack design and
use. M56800 uses a 16-bit-wide stack.

Heap

Heap is an area of memory reserved for temporary dynamic
memory allocation and access. MSL uses this space to provide heap
operations such as malloc. M56800 does not have an operating
system (OS), but MSL effectively synthesizes some OS services such
as heap operations.

BSS

BSS is memory space reserved for uninitialized data. The compiler
will put all uninitialized data here. The stationery init code zeroes
this area at startup. See the M56824 init (startup) code example
code in this chapter for general information and the stationery init
code files for specific target implementation details.

Libraries and Runtime Code
MSL for DSP56800

Targeting DSP56800 DSP–259

NOTE Instead of accessing the original Stationery files themselves (in the
Stationery folder), create a new project using Stationery (see “Creat-
ing a Project”) which will make copies of the specific target board
files such as the LCF.

Variables defined by Stationery Linker Command Files

Each Stationery LCF defines variables which are used by runtime
code and MSL. You can see how the values for these variables are
calculated by examining any of the Stationery LCFs.

See Table 11.3 for the variables defined in each Stationery LCF.

Table 11.3 LCF Variables and Address

Additional Information and Specific Target Implementation
Details

See each Stationery specific target board LCF for additional
comments and implementation details. Perform a search for the
variable name for quick access.

Depending on the target, implementation will be different between
LCFs. For example, for targets using Host I/O, considerably more
heap size is allocated in the LCF.

Variables Address

_stack_addr The start address of the stack

_heap_size The size of the heap

_heap_addr The start address of the heap

_heap_end The end address of the heap

_bss_start Start address of memory reserved for
uninitialized variables

_bss_end End address of BSS

Libraries and Runtime Code
Runtime Initialization

DSP–260 Targeting DSP56800

Runtime Initialization
The default init function is the bootstrap or glue code that sets up
the DSP56800 environment before your code executes. This function
is in the init file for each board-specific stationery project. The
routines defined in the init file performs other tasks such as
clearing the hardware stack, creating an interrupt table, and
retrieving the stack start and exception handler addresses.

The default code in the init function also sets the addressing mode
in the modifier register (M01) to 0xFFFF.

The final task performed by the init function is to call the main()
function.

The starting point for a program is set in the Entry Point field in the
M56800 Linker Settings panel.

When creating a project from R5.0 stationery, the init code is
specific to the DSP56800 board. See the startup folder in the new
project folder for the init code.

Listing 11.1 Sample Initialization File (DSP56824EVM)

/*
 56824_init.c
 sample code
 Metrowerks, Inc., a company of Motorola
 */

#include "56824_init.h"

asm void init_M56824_()
{
 bfset #_32bit_compares,omr // debugger will override this
 // if debugger option is on
 move #-1,x0
 move x0,m01 // set the m register to linear addressing

 move hws,la // clear the hardware stack
 move hws,la

Libraries and Runtime Code
Runtime Initialization

Targeting DSP56800 DSP–261

// init registers

 move #0,r1
 move r1,x:IPR
 move r1,x:TCR01
 move r1,x:TCR2
 move r1,x:SCR2
 move r1,x:SPCR0
 move r1,x:SPCR1
 move r1,x:COPCTL

// copy interrupt table to address 0

 move #$80,r2 // internal interrupt size 0x80
 move #M56824_intVec,r3 // address originally loaded
 move #0,r1 // destination address
 do r2,enddoA
 move p:(r3)+,x0
 move x0,p:(r1)+
enddoA:

// initialize compiler environment

CALLMAIN:

 // setup stack
 move #_stack_addr,r0// get stack start address
 nop
 move r0,x:<mr15 // set frame pointer to main stack top
 move r0,sp // set stack pointer too
 move #0,r1
 move r1,x:(r0)

// PLL (phase-locked loop) init for 824

 move #$0180,X:PCR1 // configure
 move #$0260,X:PCR0 // set Feedback Divider to 1/20

 // wait for PLL lock
 move #$FFFF,y0 // an amount in keeping with data sheet
 move y0,lc

Libraries and Runtime Code
Runtime Initialization

DSP–262 Targeting DSP56800

 do lc,delay_for_pll
 nop
delay_for_pll:
 // that should be enough time
 // for PLL stablization
 bfset #$4000,X:PCR1 // now enable PLL for Phi Clock

// setup exception handler and interrupt levels

 move M56824_int_Addr,r1 // exception handler address
 pushr 1 // establish exception handler
 bfset #$0100,sr // enable all levels of interrupts
 bfclr #$0200,sr // allow IPL 0 interrupts

// call main()

 move #M56824_argc,y0 // pass parameters to main()
 move #M56824_argv,r2
 move #M56824_arge,r3
 jsr main // call the users program
 jsr fflush
 debug
 rts

The startup folder includes the following:

• Stack setup

• PLL setup

• Exception handler and interrupt setup

• BSS zeroing

• Static initialization

• Jump to main

NOTE The original general-purpose runtime init code (FSTART)
remains in the M56800 support library to provide compatibility for
older projects. The MSL runtime project is: CodeWarrior\56800
Support\msl\MSL_C\DSP_56800\Project\
MSL C 56800.mcp

See project group runtime: init, file FSTART.c.

Targeting DSP56800 DSP–263

12
Troubleshooting

This chapter explains common problems encountered when using
the CodeWarrior™ IDE for DSP56800, and their possible solutions.

Troubleshooting Tips
This chapter contains the following sections:

• The Debugger Crashes or Freezes When Stepping Through a
REP Statement

• “Can’t Locate Program Entry On Start” or “Fstart.c Undefined”

• When Opening a Recent Project, the CodeWarrior IDE Asks If
My Target Needs To Be Rebuilt

• "Timing values not found in FLASH configuration file. Please
upgrade your configuration file. On-chip timing values will be
used which may result in programming errors"

• IDE Closes Immediately After Opening

• Errors When Assigning Physical Addresses With The Org
Directive

• The Debugger Reports a Plug-in Error

• Windows Reports a Failed Service Startup

• No Communication With The Target Board

• Downloading Code to DSP Hardware Fails

• The CodeWarrior IDE Crashes When Running My Code

• The Debugger Acts Strangely

• Problems With Notebook Computers

If you are having trouble with CodeWarrior IDE for DSP56800E and
this section does not help you, e-mail technical support at:
support@metrowerks.com

Troubleshooting
Troubleshooting Tips

DSP–264 Targeting DSP56800

The Debugger Crashes or Freezes When
Stepping Through a REP Statement

Due to the nature of DSP56800 instruction pipeline, do not set a
breakpoint on a REP statement in the debugger. Doing so may cause
the REP instruction to enter an infinite loop and freeze or crash the
IDE.

“Can’t Locate Program Entry On Start” or
“Fstart.c Undefined”

By default, the CodeWarrior stationery defines the entry point of
program execution as FSTART_. The entry point is edited in the
project target settings by selecting Edit > M56800 Settings from the
menu bar of the Metrowerks CodeWarrior window and then
M56800 Linker from the Target Settings panel. If the entry point is
changed and not updated in the sources, linker errors are generated
for undefined sources.

The FSTART.c program is defined in the MSL and may also
generate errors if the CodeWarrior IDE cannot find the MSL path
due to access path errors within a DSP56800 project.

When Opening a Recent Project, the
CodeWarrior IDE Asks If My Target Needs To
Be Rebuilt

If you open a recent project file and then select Project > Debug from
the menu bar of the Metrowerks CodeWarrior window, the dialog
box shown in Figure 12.1 appears:

Troubleshooting
Troubleshooting Tips

Targeting DSP56800 DSP–265

Figure 12.1 Rebuild Alert

This dialog box informs you that the software determines if your
object code needs to be rebuilt. If you have made no changes since
the last build, the CodeWarrior IDE does not change your object file
when you select the Build option.

"Timing values not found in FLASH
configuration file. Please upgrade your
configuration file. On-chip timing values will be
used which may result in programming errors"

This indicates you have an old flash configuration file that does not
include timing information. If you continue to use this file, it could
result in programming errors and a shorter life for the flash
memory.

To upgrade your flash configuration file, replace the existing flash
configuration file with the flash configuration file from the
appropriate stationery.

The stationery is located in the following directory:

CodeWarrior\Stationery\DSP56800 EABI

Locate the directory for the DSP568xxEVM processor you are using.
The flash configuration file is located in the config directory.

IDE Closes Immediately After Opening

There may be a conflict with another version of the CodeWarrior
IDE on your system. Running the regservers.bat file in the

Troubleshooting
Troubleshooting Tips

DSP–266 Targeting DSP56800

Metrowerks/Bin directory usually resolves this problem when
there are different versions of the CodeWarrior IDE installed on the
same computer.

Errors When Assigning Physical Addresses
With The Org Directive

You cannot use the ORG directive with the CodeWarrior IDE
DSP56800 assembler to specify physical addresses for program (P:)
and data (X:) memory.

The Debugger Reports a Plug-in Error

When the CodeWarrior IDE debugger reports a plug-in error, a
dialog box appears that reads “Embedded DSP Plug-in Error. Can’t
connect to board.” If you see this dialog box, check the following:

• Verify that the hardware cards are installed and seated properly.

• Verify that all of the cables are connected properly.

• Verify that power is being supplied to the DSP hardware.

Windows Reports a Failed Service Startup

When the Windows Service Control Manager reports a failed
service startup, the message box shown in Figure 12.2 appears:

Figure 12.2 Service Control Manager Message Box

If you see the above message box, check the following:

• Ensure that you have not selected a conflicting address for use
with the DSP hardware. The Resources Manager can help you
determine whether or not there is a conflict.

Troubleshooting
Troubleshooting Tips

Targeting DSP56800 DSP–267

• Check input/output addresses according to the operating
system you are using:

Windows 95 and Windows 98

1. To access the Resources Manager, open the Control Panel
and click the Device Manager tab.

2. Click Properties to display the Computer Properties window.

3. Click the View Resources tab in the Computer Properties
window.

4. Click the Input/Output radio button to view all active input/
output addresses.

Windows NT

1. To access the Resources Manager, select Start > Programs >
Administrative Tools > Windows NT Diagnostics.

2. Click the Resources tab in the Windows NT Diagnostics
window.

3. Click I/O Port at the bottom of the tab to view all currently
active input/output addresses.

No Communication With The Target Board

If you are unable to establish communication with the target DSP
hardware, check the following:

• Verify that the hardware boards are properly connected to the
computer. Follow the installation instructions in “Getting
Started”.

• If you are using the Motorola ADS hardware with the ISA bus
interface, ensure that you select the correct I/O address for the
ISA card. If you have another device attempting to use this
address, you must reconfigure that device to use another
address or disable that device.

• Verify that all the hardware boards have power:

– A green LED lights up on both the ADS and EVM boards.

– A red LED and a yellow LED illuminate on the Domain
Technologies SB-56K Emulator.

• Verify that all target settings are correct.

Troubleshooting
Troubleshooting Tips

DSP–268 Targeting DSP56800

Downloading Code to DSP Hardware Fails

If you are unable to download code to the target DSP hardware,
verify that the communications to the target hardware are working
correctly.

The CodeWarrior IDE Crashes When Running
My Code

Use one of the samples provided with CodeWarrior IDE for
DSP56800 to verify that your system is working correctly.

The Debugger Acts Strangely

Sometimes DSP hardware can become corrupted and unusable,
even after a soft reset. If the debugger has problems executing code,
you might have to perform a hard reset of the DSP hardware.

To reset the EVM board, follow these steps:

1. Disconnect the power cable from the board.

2. Wait at least 5 seconds.

3. Reconnect the power supply to the EVM board. This
reconnection step resets the board and clear its RAM.

To reset the ADS board, follow these steps:

1. Disconnect the power cable from the ADS board.

2. Wait at least 5 seconds.

3. Reconnect the power supply to the ADS board. This
reconnection step resets the board and clear its RAM.

Problems With Notebook Computers

If you experience any problems downloading using the parallel port
interface while using a notebook computer, ensure that the parallel
port is set in bidirectional mode.

On Dell Latitudes, the ECP setting in CMOS has not emitted enough
voltage through the parallel port. Increasing the ECP value may
solve this problem.

Troubleshooting
Troubleshooting Tips

Targeting DSP56800 DSP–269

How to make Parallel Port Command Converter
work on Windows® 2000 Machines

If you encounter problems connecting to your Windows® 2000
machine using the parallel port command converter, check the
following settings:

1. Verify LPT Port number matches the parallel port:

a. Launch CCS.

b. Select File > Configure.

c. Ensure that the LPT port is set to parallel port and correct
LPT number.

d. Click Save.

2. Verify “Enable legacy Plug and Play” is enabled for the
parallel port:

a. Access the Device Manager.

b. Access the LPT port settings window.

c. Click the Properties button.

d. In the Properties window, click the Enable Legacy Plug and
Play box.

3. Verify the parallel port is set for “fast bi-directional transfer”:

a. Access the BIOS settings.

b. Set the parallel port for fast bi-directional transfers (EEP
or ECP) instead of just bi-directional.

Troubleshooting
Troubleshooting Tips

DSP–270 Targeting DSP56800

Targeting DSP56800 DSP–271

A
Porting Issues

This chapter explains issues relating to successfully porting code to
the most current version of the CodeWarrior™ IDE for Motorola
DSP56800. This chapter lists issues related to successfully porting
sources from the Suite56TM toolset and differences that occur
between the CodeWarrior IDE and the Suite56 tools.

This chapter contains the following sections:

• Converting the DSP56800 3.x and 4.x Projects to 5.x Projects

• Porting DSP56811 to DSP56824 Projects

• Using XDEF and XREF Directives

• Using the ORG Directive

Converting the DSP56800 3.x and 4.x Projects to
5.x Projects

When you open older projects in the CodeWarrior IDE, the IDE
automatically prompts you to convert your existing project (Figure
12.3). Your old project will be backed up if you need to access that
project file at a later time. The CodeWarrior IDE cannot open older
projects if you do not convert them.

Porting Issues
Porting Motorola 56824EVM projects to the CodeWarrior IDE

DSP–272 Targeting DSP56800

Figure 12.3 Project Conversion Dialog

Porting Motorola 56824EVM projects to the
CodeWarrior IDE

Porting projects for DSP56800 processors created with the Motorola
DSP56800 Suite56 toolset to the CodeWarrior assembler is based on
the Motorola syntax. Virtually all your code is usable with little
modification. However, porting Motorola applications to the
CodeWarrior assembler require some manual intervention. To port
a CodeWarrior IDE project from the Motorola Suite56:

1. Create a new project from the project stationary in the
CodeWarrior IDE for your target board.

2. Convert Motorola bootstrap assembly source and interrupt
tables to the CodeWarrior IDE.

3. Add your new files to the new CodeWarrior project.

4. Call your assembly startup function from main().

5. Modify your linker command file.

A sample assembly source program is given below that was ported
from the DSP56824 Suite56 tools to the CodeWarrior IDE that has
detail information.

A simple one file assembly program written with the Motorola
DSP56824EVM toolset is shown in listing Listing 12.1 This simple
program blinks the PB8 LED on the 56824EVM board at a rate of 1
Hz. The same program, shown in Listing 12.2, was ported to the
CodeWarrior IDE.

Porting Issues
Porting Motorola 56824EVM projects to the CodeWarrior IDE

Targeting DSP56800 DSP–273

Listing 12.1 Motorola Suite56 Assembly Sources

; Program Name: SimpleLed.asm

; Equates for DSP56824 core
;===
ipr equ $fffb ; Interrupt priority register
bcr equ $fff9 ; Bus control register

pcr1 equ $fff3 ; PLL control register 1
pcr0 equ $fff2 ; PLL contel register 0

pbd equ $ffec ; Port B data register
pbddr equ $ffeb ; Port B data direction register
pbint equ $ffea ; Port B Interrupt register
;==
; PARAMETERS
;==
PLL_MUL equ 19 ; PLL Feedback Multiplier
Red equ $0100 ; Port B bit 8 is Red Led
;==
; Memory Space Setup
;==
 org p:$e000 ; warm boot
 jmp Start

 org p:$0000 ; Location p:$0 to p:$ff are set to nop
 dup 256
 nop
 endm

 org p:$0000 ; start of program
 jmp Start
;==
; MAIN
;==
 org p:$0100 ; Starting location of this program
Start

 move #$40,sp ; Set stack pointer to first
 ;location after page 0

Porting Issues
Porting Motorola 56824EVM projects to the CodeWarrior IDE

DSP–274 Targeting DSP56800

 move #$0000,x:bcr ;Initialize BCR for zero wait states
 ; Configure PLL feedback divider
 move #(PLL_MUL-1)<<5,x:pcr0 ;3.6864 MHz * 19 = 70.042MHz
 ; Enable PLL using oscillator clock 4ac8
 move #$4208,x:pcr1 ; Enable P
 move #$1fff,lc
 move #$0000,x:pbd ; Led off
 bfset #$0700,x:pbddr ; Port b 8,9,10 output for Red,
 ; Yellow and Green Leds
 move #$0800,x:ipr ; Enable Timer interrupts
 bfset #$0100,sr ; Enable all level of interrupts
 bfclr #$0200,sr

;==
; this will make the Red Led blink using normal delays
Blink ;
 jsr Wait ;
 jsr Wait ;
 bfchg #Red,x:pbd ; blink Red Led

 jmp Blink ;
;==
; Wait
Wait
 move #$1fff,a0
 move #$03ff,y0
Up1 move #$ffff,x0
Up2 nop
 nop
 rep a0
 nop
 decw x0
 bgt Up2

 nop
 decw y0
 bgt Up1

 nop
 rts

Porting Issues
Porting Motorola 56824EVM projects to the CodeWarrior IDE

Targeting DSP56800 DSP–275

The following assembly source (Listing 12.2) was ported to the
CodeWarrior IDE to be called from C. Note that the only difference
between these files is in the memory space setup. The CodeWarrior
IDE does not allow you to specify memory space and location
counter addresses with the ORG directive. Memory space setup
must be done within a linker command file.

Listing 12.2 Converted Assembly Sources for the CodeWarrior IDE

; Program Name: SimpleLed.asm
SECTION user

; Equates for DSP56824 core
;===
ipr equ $fffb ; Interrupt priority register
bcr equ $fff9 ; Bus control register

pcr1 equ $fff3 ; PLL control register 1
pcr0 equ $fff2 ; PLL contel register 0

pbd equ $ffec ; Port B data register
pbddr equ $ffeb ; Port B data direction register
pbint equ $ffea ; Port B Interrupt register
;==
; PARAMETERS
;==
PLL_MUL equ 19 ; PLL Feedback Multiplier
Red equ $0100 ; Port B bit 8 is Red Led
;==

;==
; Memory Space Setup
;==

org p:
GLOBAL FStart

NewInstx0
jmp FStart

;==
FStart
 move #$40,sp ; Set stack pointer to first

; location after page 0
 move #$0000,x:bcr ;Initialize BCR for zero wait states

Porting Issues
Porting Motorola 56824EVM projects to the CodeWarrior IDE

DSP–276 Targeting DSP56800

 ; Configure PLL feedback divider
 move #(PLL_MUL-1)<<5,x:pcr0 ;3.6864 MHz * 19 = 70.042MHz
 ; Enable PLL using oscillator clock 4ac8
 move #$4208,x:pcr1 ; Enable PLL
 move #$1fff,lc

 move #$0000,x:pbd ; Led off
 bfset #$0700,x:pbddr ; Port b 8,9,10 output for Red,

; Yellow and Green Leds
 move #$0800,x:ipr ; Enable Timer interrupts
 bfset #$0100,sr ; Enable all level of interrupts
 bfclr #$0200,sr

;==
; this will make the Red Led blink using normal delays
Blink
 jsr Wait
 jsr Wait
 bfchg #Red,x:pbd ; blink Red Led

 jmp Blink
;==
; Wait
Wait
 move #$1fff,a0
 move #$03ff,y0
Up1 move #$ffff,x0
Up2 nop
 nop
 rep a0
 nop
 decw x0
 bgt Up2

 nop
 decw y0
 bgt Up1
 nop

rts
ENDSEC
END

Porting Issues
Porting DSP56811 to DSP56824 Projects

Targeting DSP56800 DSP–277

Now, create a new target project, add the sources, and modify your
main function. Your main function looks like the one in Listing 12.3
and retrieves your assembly program’s F_START function (Listing
12.2). The default linker command file in the project stationery is
used for this example.

Listing 12.3 Calling an Assembly Program from main

int main(void){
Start();
return 0;

}

Porting DSP56811 to DSP56824 Projects
Refer to the following document for issues relating to porting
DSP56811 designs to DSP56824 designs:

 Converting DSP56L811-Based Designs to the DSP56824. October 1,
1998. Motorola, Inc.

Using XDEF and XREF Directives
The XDEF and XREF directives are not used with the CodeWarrior
assembler. Use the GLOBAL directive to make symbols visible
outside of a section.

Using the ORG Directive
Memory space and location counters cannot be updated with the
ORG directive. You must use the linker command file to specify
exact memory addresses rather than in the assembler. For example,
if you declare:

ORG P:$0020
SECTION myISR_20
rti
ENDSEC
SECTION myISR_30

Porting Issues
Using the ORG Directive

DSP–278 Targeting DSP56800

jsr foot
rti
ENDSEC

You would need to change your ORG directive to:

ORG P:

and your linker command file would be changed as follows:

MEMORY {
 .text (RWX) : ORIGIN = 0x1000, LENGTH = 0x0
 .data (RW) : ORIGIN = 0x2000, LENGTH = 0x0
 .text2(RWX) : ORIGIN = 0x20, LENGHT = 0x0
}

SECTIONS {
 .location_specific_code :
 {
 . = 0x20;
 *(myISR_20.text)
 . = 0x30;
 *(myISR_30.text)
 } > .text2

 .main_application :
 {
 *(.text)
 *(.rtlib.text)
 *(fp_engine.text)
 *(user.text)
 } > .text

 .main_application_data :
 {
 *(.data)
 *(fp_state.data)
 *(rtlib.data)
 *(rtlib.bss.lo)
 *(.bss)
 } > .data

Targeting DSP56800 DSP–279

Index

A
about, CodeWarrior IDE 9
__abs 157
Access Paths panel 78
access permission flags 224, 240
__add 159
Add Files command 59
adding assembly language 149
addr 237
ADS Base Address pop-up menu 183
ADS Command Converter protocol 182
after 241
align 238
alignall 238
alignment 226
Allocating Memory and Heaps for DSP56800 258
Allow DO Instructions option 108
Allow Rep Instructions checkbox 108
Always load program at debugger launch

checkbox 127
Application option, of Project Type pop-up

menu 92
asm keyword 148
assembler, stand-alone 42
assembly language 147

create output option 108
statements, adding 149

AT keyword for ROM location 232
Auto-clear previous breakpoint on new breakpoint

release 128

B
back-end compiler See compiler
bool size 130
bootstrap code 260
breakpoints 64
Bring Up To Date command 44
Build Extras panel 82
build system, depicted 45
build targets

setting in project 54
build targets, defined 10

C
C/C++ Language panel 93
C/C++ Warnings panel 98
calling assembly functions from C code 151
calling conventions for DSP 133
Case Insensitive Identifiers checkbox 102
changing 145
changing PCI connection, command converter

server 195
char size 130
code

compiling 58
deadstripping unused 145
editing 59
navigation 63

code and data storage for DSP 134
CodeWarrior

comparison to command line 43
compiler architecture 45–46
compiler, described 42
components 41
debugger, described 42
debugging for DSP 181
development process 43–46
getting started 13
IDE, about 9
IDE, described 41
installing 16
introduction 9
linker, described 42
stand-alone assembler

described 42
target settings 71
tools, listed 41
troubleshooting 263
tutorial 47, 47–69
using the debugger 59
using the IDE 47

CodeWarrior IDE
about 9
available tools 10
documentation, described 9
introduction 9

Command Converter Server 195
changing PCI connection 195

Index

DSP–280 Targeting DSP56800

changing the parallel port 193
target settings 192

command converter server
icon 193

command line and CodeWarrior compared 43
commands

Add Files 59
Bring Up To Date 44
Compile 44
Enable Debugger 46
M56800 Settings 60
Make 46
Preprocess 46
Run 68

comments for linker command file 228
communications with target board, problems 267
Compile command 44
compiler

architecture 45–46
back-end for DSP 129
build system, depicted 45
described 42
intermediate representation (IR) 45
plug-in modules, explained 46
support for inline assembly 147
See also C Compilers Reference

compiling 44
code 58
See also IDE User Guide

compress 241
Connect menu item 222
Constant Data Section 143
converting CodeWarrior projects 271
converting Suite56 to CodeWarrior

56824EVM projects 272–277
core tools, tutorial 47–69
Create Assembly Output checkbox 108
creating labels for DSP56800E Assembly 150
Custom Keywords settings panel 116

D
data, deadstripping unused 145
deadstripping

prevention 224, 228
deadstripping unused code and data 145
debug information, generating 57
debugger

described 42
DSP56800 menu 196
Kill command 69
M56800 Target Settings 182
preferences 181
problems with behavior 268
setting preferences 60
setting up for Flash programming 251
toolbar 63
using 59
See IDE User Guide

Debugging
Register Disassembly Window 215–216
Remote Target Board 195

debugging 46
connecting to a loaded target 220, 221
per file 57
projects 62
target settings 181
watchpoint status 203–214
without symbolics 222
See also IDE User Guide

Debugging a loaded target 220, 221
defining an inline assembly function 149
definition

BSS 258
heap 258
stack 258

development tools 41
Directive

XDEF 277
Disable Deadstripping checkbox 114
Disassemble Exception Tables checkbox 106
__div 166
__div_ls 167
DO instructions, allowing 108
Domain Technologies SB-56K

installing 22, 26
double size 131
downloading code, problems 268
DSP

code and data storage 134
installing hardware 19
linker 145

DSP hardware
system requirements 14

DSP56800
calling conventions 132

Index

Targeting DSP56800 DSP–281

fixed-point formats 131
floating-point formats 131
integer formats 130
stack frame 133

DSP56800 menu 196
DSP56800 Simulator, using 201
DWARF Info checkbox 112

E
editing

code 44
project contents 59
source files 59
See also IDE User Guide

editor, of IDE 59
Ehternet Command Converter protocol 183
ELF Disassembler settings panel 103–105

Disassemble Exception Tables checkbox 106
Show Addresses and Object Code

checkbox 105
Show Code Modules checkbox 105
Show Comments checkbox 106
Show Data Modules checkbox 106
Show Debug Info checkbox 106
Show Headers checkbox 104
Show Relocations checkbox 105
Show Source Code checkbox 105
Show Symbol Table checkbox 104
Use Extended Mnemonics checkbox 105
Verbose Info checkbox 104

Enable Debugger command 46
enabling the debugger 57
Entry Point field 116

FSTART 116
expressions, in LCF 230
__extract_h 165
__extract_l 165

F
F 229
failed service startup in Windows 266
Faster Execution Speed option, Global

Optimizations panel 110
File Mappings panel 86
fixed type 131
fixed__ 131
161

__fixed2long 161
__fixed2short 162
fixed-point formats, for DSP 56800 131

fixed 131
long fixed 131
short fixed 131

fixed-point formats, for DSP 56800short fixed 131
flash configuration file format 127
Flash ROM

debugger configuration 251
initializing variables in P or X memory 232
programming tips 251–254
ROM to RAM copy 232–235

float size 131
floating-point formats, for DSP 56800 131
Force Active Symbols edit box 116
force_active 225, 228, 239
format, flash configuration file 127
fractional arithmetic 155

equation for converting 155
FSTART 116

troubleshooting entry point 264
fstart 260

G
Generate ELF Symbol Table checkbox 114
Generate Link Map checkbox 112
Generate Listing File checkbox 102
Generate Symbolic Info checkbox 112
generating debug info 57
GLOBAL directive 277
GLOBAL directive, assembly function

definitions 152
Global Optimizations 109–110

faster execution speed option 110
optimizing for space or speed 110
smaller code size option 111

global variable watchpoints 212–214
global variables

linker command file 229
group 231, 239

H
hardware breakpoints

enabling in debugger settings 128
watchpoints 203–214

Index

DSP–282 Targeting DSP56800

heap size 235
host, defined 9

I
icon, command converter server 193
IDE

described 41
using 47

implied fractional value 155
include 239
inline assembler

for DSP 147–164
inline assembly

defining functions 149
function-level 148
instructions 148
statement-level 148
syntax 147

installing
CodeWarrior 16
DSP hardware 16
SB-56K Emulator 22, 26

Instruction Scheduling checkbox 107
int size 130
__int2fixed 162
integer formats, for DSP56800 130
integral types, in LCF 228
intrinsic functions

absolute/negate 157
__abs 157
_L_negate 158
__negate 158

addition/subtraction 158
__add 159
_L_add 160
_L_sub 160
__sub 159

control 160
__stop 161

conversion 161
__fixed2int 161
__fixed2long 161
__fixed2short 162
__int2fixed 162
__labs 162
__long2fixed 163
__short2fixed 163

copy 163

__memcpy 163
__strcpy 164

deposit/extract 164
__extract_h 165
__extract_l 165
_L_deposit_h 165
_L_deposit_l 166

division 166
__div 166
__div_ls 167

multiplication/MAC 167
_L_mac 170
_L_msu 170
_L_mult 171
__mac_r 167
__msu_r 168
__mult 169
__mult_r 169

normalization 171
__norm_l 172
__ norm_s 172

rounding 173
__round 173

shifting 173
_L_shl 175
_L_shr 176
_L_shr_r 177
__shl 174
__shr 174
__shr_r 175

multiplication/MAC
L mult_ls 171

introduction
to CodeWarrior 9

introduction to the CodeWarrior IDE 9

K
keep_section 225, 228, 240
Kill command 69

L
_L_add 160
_L_deposit_h 165
_L_deposit_l 166
_L_mac 170
_L_msu 170
_L_mult 171

Index

Targeting DSP56800 DSP–283

_L_mult_ls 171
_L_negate 158
_L_shl 175
_L_shr 176
_L_shr_r 177
labels, M56800 assembly 150
__labs 162
LCF. See linker command files
libraries

MSL for DSP 255
support for DSP 255
using MSL 255

Library option, of Project Type pop-up menu 92
license key 17
linear addressing 260
link order 145
linker

described 42
for DSP 145
link order 145
See alsolinker command files
settings 111–115

linker command files 223
access permission flags 224, 240
addr 237
after 241
align 238
alignall 238
alignment 226
arithmetic operations 227
comments 228
compress 241
deadstripping prevention 228
expressions 230
file selection 231
force_active 239
function selection 231
group 231, 239
heap size 235
include 239
integral types 228
keep_section 240
memory 224, 240–241
memory attributes for X

and P
memory 224

object 231, 242
ref_include 242

sections 226, 242
sizeof 244
stack size 235
symbols 228
variables 228
writeb 244
writeh 244, 245
writew 245
writing data 235

Linker pop-up menu 76
linking 46

See also IDE User Guide
List Unused Objects checkbox 113
local variables, displaying 68
long double size 131
long fixed type 132
long size 130
__long2fixed 163
longfixed__ 132
_L_sub 160

M
M01 260
M56800 Assembler settings panel 101–103

Case Insensitive Identifiers checkbox 102
Generate Listing File checkbox 102
Prefix File 103

M56800 Linker
Disable Deadstripping checkbox 114
Force Active Symbols edit box 116
Generate ELF Symbol Table checkbox 114
Generate Symbolic Info checkbox 112
List Unused Objects checkbox 113
Show Transitive Closure checkbox 113–114
Store Full Path Names checkbox 112

M56800 Linker option, in Linker pop-up menu 76
M56800 Linker settings panel 111–115

and debugging settings panels 182
Entry Point field 116
Generate DWARF Info 112
Generate Link Map checkbox 112
Max Record Length field 115
S-Record EOL Character pop-up menu 115
Suppress Warning Messages checkbox 114

M56800 Processor settings panel 106–108
Allow DO Instructions 108
Allow Rep Instructions checkbox 108

Index

DSP–284 Targeting DSP56800

and debugging settings panels 182
Create Assembly Output checkbox 108
Instruction Scheduling checkbox 107
Make Strings Read-Only checkbox 108

M56800 Settings command 60
M56800 Target Settings 56, 60, 182

Always load program at debugger launch
option 127

Use Flash Config File option 125
Use hardware breakpoints option 128

M56800 Target Settings panel 123, 182
M56800 Target settings panel

Output File Name 92
Project Type 92

M56800 Target settings panels 91
__mac_r 167
Make command 46
Make Strings Read-Only checkbox 108
makefiles 43
__memcpy 163
memory 240–241
memory space setup

ORG directive 275
memory window

X memory 216
Metrowerks Standard Library (MSL)

for DSP 255
using 255

modifier register 260
modulo addressing 260
Motorola Documentation 11
__msu_r 168
__mult 169
__mult_r 169

N
navigating code 63
__negate 158
New Project window 51
New window 49
None option

in Post-Linker pop-up menu 76
in Pre-Linker pop-up menu 76

non-volatile registers 134
__norm_l 172
__norm_s 172

number formats, for DSP 129, 132

O
OBJECT 231
object 231, 242
optimizing

for DSP 135
page 0 register assignment 134
register coloring 134
space or speed 110

ORG 275
ORG directive 152

memory space location 152
Output Directory field 76

P
page 0 register assignment 134

non-volatile registers 134
volatile registers 134

Parallel Port - ADS or EVM protocol 182
Parallel Port pop-up menu 187, 188, 190, 191
PCI Command Converter protocol 182, 183
platform target, defined 9
plug-in error 266
pointer size 131
porting issues 271
Post-Linker option 76
Pragma Directives

pragma interrupt 139
pragma optimization 142

pragma optimization 142
Prefix File 103
Prefix File field 103
Pre-Linker pop-up menu 76
Preprocess command 46
preprocessing 46

See also IDE User Guide
project stationery 48, 51
Project Type pop-up menu 92
Project window 52
projects

build targets 10
debugging 62
defined 9
editing contents of 59
platform target 9

Index

Targeting DSP56800 DSP–285

stationery 48, 51
targets, defined 9

Protocol pop-up menu 182
protocol, selecting

CCS 183
Ethernet 183
Parallel Port - ADS or EVM 182
PCI 182
Serial-EVM 182
Serial-SB-56K 182
Simulator 182
UCC 182

protocols, setting 61

R
rebuild alert 264
REF_INCLUDE 228
ref_include 225, 228, 242
references

Motorola Documentation 11
register coloring optimization 134
register description files and XML 215
Register Disassembly Window 215–216

Format drop down 216
locating register description files 216
Text View drop down 216

registers
display contents 65, 66, 67, 216, 218
function parameters 132
special-purpose 65, 66, 67, 216, 218
stack pointer 133

regservers.bat 265
rep instruction

problems in debugger 264
REP instructions, allowing 108
requirements See system requirements 13
requirements, system 13
rodata section 143
ROM to RAM copy 232–235
__round 173
Run command, debugger 68
runtime

ROM to RAM copy 234
runtime initialization 260
Runtime Settings panel 84

S
Sample Initialization File 260
Save Project Entries Using Relative Paths

checkbox 78
SB-56K Emulator, installing 22, 26
SECTION mapping, in assembly language 152
sections 226, 242
segment location specifier 243
Serial - EVM protocol 182
Serial - SB56K protocol 182
setting

a build target 76
breakpoints 64
debugger preferences 60

settings panels
Access Paths 78
Build Extras 82
C/C++ Language 93
C/C++ Warnings 98
Custom Keywords 116
ELF Disassembler 103–105
File Mappings 86
Global Optimizations 109–110
M56800 Assembler 101–103
M56800 Linker 111–115, 182
M56800 Processor 106–108, 182
M56800 Target 91
M56800 Target Settings 123, 182
Runtime Settings 84

Settings window 54
__shl 174
short double size 131
short fixed type 132
short size 130
__short2fixed 163
Show Addresses and Object Code checkbox 105
Show Code Modules checkbox 105
Show Comments checkbox 106
Show Data Modules checkbox 106
Show Debug Info checkbox 106
Show Headers checkbox 104
Show Relocations checkbox 105
Show Source Code checkbox 105
Show Symbol Table checkbox 104
Show Transitive Closure checkbox 113–114
__shr 174

Index

DSP–286 Targeting DSP56800

__shr_r 175
signed char size 130
simulator

using 201
Simulator protocol 182
sizeof 244
Smaller Code Size option, Global Optimizations

panel 111
source files

editing 59
special-purpose registers 65, 66, 67, 216, 218
S-record 115
S-Record EOL Character pop-up menu 115
S-Record, Max Record Length field 115
stack frame, for DSP56800 133
stack pointer register 133
stack size 235
stand-alone assembler See Assembler Guide
stand-alone assembler, described 42
statement-level inline assembly 148
__stop 161
storage of code and data for DSP 134
Store Full Path Names checkbox 112
__strcpy 164
__sub 159
Suite56 toolset 271
support

web page 46
Suppress Warning Messages checkbox 114
symbols, in LCF 228
syntax, inline assembly language 147
system requirements 13

for DSP hardware 14
Windows 13

system-level connect 222

T
Target Name field 75
Target Settings panel 75–78

Linker 76
Output Directory field 76
Post-Linker 76
Pre-Linker 76
Save Project Entries Using Relative Paths

checkbox 78
Target Name 75

Target Settings panels
Access Paths 78
Build Extras 82
C/C++ Language 93
C/C++ Warnings 98
Custom Keywords 116
File Mappings 86
Global Optimizations 109–110
M56800 Linker 111–115
M56800 Processor 106–108
M56800 Target Settings 123
M56800 Target settings 91
Runtime Settings 84

Target Settings window 54
target settings, and debugging panels 181
target, defined 9
Troubleshooting

Parallel Port Converter on Windows 2000 269
troubleshooting 263–268

communications with target board 267
downloading code 268
entry point errors 264
FSTART 264
ORG and memory addresses 266
plug-in error 266
rebuild alert 264
rep instruction and breakpoints 264

tutorial, core tools 47–69

U
unsigned char size 130
unsigned int size 130
unsigned long size 130
unsigned short size 130
unused code and data, deadstripping 145
Use Extended Mnemonics checkbox 105
Use Flash Config File checkbox 125
Use hardware breakpoints checkbox 128
using

DSP56800 Simulator 201
the CodeWarrior debugger 59
the CodeWarrior IDE 47

using comments in M56800E assembly 150

V
variables, displaying locals 68
variables, in LCF 228

Index

Targeting DSP56800 DSP–287

Variables, Stationery Linker Command Files 259
Verbose Info checkbox 104
viewing memory

Register Disassembly Window 215–216
X memory 216

volatile registers 134
page 0 register assignment 134

W
watchpoint status 203–214
watchpoints

clearing 214
global variable watchpoints 212–214

web site 11
Windows

failed service startup error 266
system requirements 13

writeb 235, 244
writeh 235, 244, 245
writew 235, 245

X
X memory

displaying 216
XDEF directive 277
xMAP 112
XML and register description files 215
XREF directive 277

Index

DSP–288 Targeting DSP56800

CWDSP56800TM/D
REV: 5
02/2002

	Introduction
	The CodeWarrior IDE and Its Documentation
	New In This Release
	References

	Getting Started
	System Requirements
	DSP56800 Hardware Requirements

	Installing the CodeWarrior IDE for DSP56800
	Installing the CodeWarrior IDE
	What Gets Installed

	Installing DSP56800 Hardware
	Using Parallel Port
	Connecting the Parallel Port Cable to DSP568xxEVM Board
	Connecting the Parallel Port Cable to Suite56™ Parallel Port Command Converter Module and DSP568x...

	Installing the PCI Command Converter
	Installing the PCI Command Converter
	Procedure for Manual Installation of PCI Command Converter Drivers
	Connecting the PCI Command Converter to the DSP568xxEVM Board

	Installing the Ethernet Command Converter
	Configuring Network Settings for Ethernet Command Converter
	Connecting the Ethernet Command Converter to the DSP568xxEVM Board

	Installing ADS UCC with ISA Bus Interface
	Install the Universal Command Converter and ISA Bus
	Connect ADS UCC and ISA Bus to DSP568xxEVM Board

	Using Serial Port to connect DSP568L811 Board
	Connecting the Serial Port Cable to DSP568L811EVM Board

	Using the Domain Technologies SB-56K
	Connect the Domain Technologies SB-56K

	Development Tools
	Tools Overview
	CodeWarrior IDE
	CodeWarrior Compiler for DSP56800
	CodeWarrior Assembler for DSP56800
	CodeWarrior Linker for DSP56800
	CodeWarrior Debugger for DSP56800

	The Development Process
	Project Files versus Makefiles
	Editing Code
	Compiling
	CodeWarrior Compiler Architecture

	Linking
	Debugging
	Viewing Preprocessor Output

	Tutorial
	CodeWarrior IDE for DSP56800 Tutorial
	Creating a Project
	Editing the Contents of a Project

	Working with the Debugger
	References

	Target Settings
	Target
	Target Settings Overview
	Displaying Target Settings Panel Window
	Changing Target Settings
	Exporting and Importing Panel Options to XML Files
	Exporting Panel Options to XML File

	Restoring Target Settings
	Target Settings
	Target Name
	Linker
	Pre-Linker
	Post-Linker
	Output Directory
	Save Project Entries Using Relative Paths

	Access Paths
	User Paths
	System Paths
	Always Search User Paths
	Add Default
	Host Flags
	Add Access Path
	Change Access Path
	Remove Access Path

	Build Extras
	Extras
	Use External Debugger

	Runtime Settings
	Host Application for Libraries & Code Services
	General Settings
	Environment Settings

	File Mappings
	Mapping Info

	Source Trees
	Source Trees List
	Source Tree Info

	M56800 Target
	Project Type
	Output File Name

	Language
	C/C++ Language
	C/C++ Warnings
	M56800 Assembler
	Case Sensitive Identifiers
	Generate Listing File
	Detects pipeline errors for delays to N register loads
	Prefix File

	Code Generation
	ELF Disassembler
	Information on ELF Files
	Show Code Modules
	Show Data Modules
	Show Debug Info

	M56800 Processor
	Peephole Optimization
	Instruction Scheduling
	Allow REP Instructions
	Allow DO Instructions
	Make Strings ReadOnly
	Create Assembly Output
	Compiler Emits 32-bit CMP
	Compiler adjusts for delayed load of N-registers
	Write const data to .rodata section

	Global Optimizations
	Optimizing for Space or Speed
	Faster Execution Speed
	Smaller Code Size

	Linker
	M56800 Linker
	Generate Symbolic Info
	Generate Link Map
	Disable Deadstripping
	Generate ELF Symbol Table
	Suppress Warning Messages
	Generate S-Record File
	Entry Point
	Force Active Symbols

	Editor
	Custom Keywords Panel
	Keyword Set
	Color Dialog Box
	Custom Keywords Dialog Box

	Debugger
	Other Executables Panel
	Debugger Settings
	Location of Relocated Libraries and Code Resources
	Stop on application launch
	Other Settings

	M56800 Target Settings
	Protocol
	Always Reset on Download
	Use Flash Config File
	Debugger sets OMR on launch
	Always Load Program at Debugger Launch
	Use Hardware Breakpoints
	Auto-clear previous breakpoint on new breakpoint request

	C for DSP56800
	General Notes on C
	Number Formats
	DSP56800 Integer Formats
	DSP56800 Floating-Point Formats
	DSP56800 Fixed-Point Formats

	Calling Conventions, Stack Frames
	Calling Conventions
	Stack Frame

	Code and Data Storage
	Optimizing Code
	Page 0 Register Assignment
	Register Coloring
	Array Optimizations
	Multiply and Accumulate (MAC) Optimizations

	Pragma Directives
	Description of Pragma Interrupt
	Pragma Optimization
	Constant Data Section

	Linker Issues
	Deadstripping Unused Code and Data
	Link Order

	Inline Assembly Language and Intrinsic Functions
	Working With DSP56800 Inline Assembly Language
	Inline Assembly Language Syntax for DSP56800
	Function-level Inline Assembly Language

	Adding Assembly Language to C Source Code
	Assembly Language Quick Guide
	Creating Labels for M56800 Assembly
	Using Comments in M56800 Assembly

	Calling Assembly Language Functions from C Code
	Calling Inline Assembly Language Functions
	Calling Pure Assembly Language Functions

	Calling Functions from Assembly Language
	Intrinsic Functions for DSP56800
	An Overview of Intrinsic Functions
	Fractional Arithmetic
	Macros Used with Intrinsics

	List of Intrinsic Functions: Definitions and Examples
	Absolute/Negate
	__abs
	__negate
	_L_negate
	Addition/Subtraction
	__add
	__sub
	_L_add
	_L_sub
	Control
	__stop
	Conversion
	__fixed2int
	__fixed2long
	__fixed2short
	__int2fixed
	__labs
	__long2fixed
	__short2fixed
	Copy
	__memcpy
	__strcpy
	Deposit/ Extract
	__extract_h
	__extract_l
	_L_deposit_h
	_L_deposit_I
	Division
	__div
	__div_ls
	Multiplication/ MAC
	__mac_r
	__msu_r
	__mult
	__mult_r
	_L_mac
	_L_msu
	_L_mult
	_L_mult_ls
	Normalization
	__norm_l
	__norm_s
	Rounding
	__round
	Shifting
	__shl
	__shr
	__shr_r
	_L_shl
	_L_shr
	_L_shr_r

	Pipeline Restrictions

	Debugging
	Target Settings for Debugging
	M56800 Target Settings
	ADS Command Converter
	Serial - EVM
	Serial - SB56K
	Simulator
	Parallel Port - ADS or EVM
	PCI Command Converter
	Ethernet Command Converter
	Command Converter Server

	Command Converter Server
	Essential Target Settings for Command Converter Server
	Changing the Command Converter Server Protocol to Parallel Port
	Changing the Command Converter Server Protocol to PCI

	DSP56800 Menu
	Load Default Target
	Load/Save Memory
	History Combo Box
	Radio Buttons
	Memory Type Combo Box
	Address Text Field
	Size Text Field
	Dialog Controls

	Fill Memory
	History Combo Box
	Memory Type Combo Box
	Address Text Field
	Size Text Field
	Fill Expression Text Field
	Dialog Controls

	Using DSP56800 Simulator
	Cycle/Instruction Count
	Memory Map

	Watchpoints and Breakpoints
	Opening the Watchpoint Status Window
	Occurrence Counter and Sequence Options
	Sequence Options
	Setting and Clearing Watchpoint Status
	Change of Flow FIFO Dump

	Global Variable Watchpoints
	Setting a watchpoint
	Clearing a Watchpoint

	Register Details Window
	Viewing Memory
	Viewing X: Memory
	Viewing P: Memory

	Debugging on a Complex Scan Chain
	Setting Up
	JTAG Initialization File

	Debugging a Loaded Target
	System-Level Connect

	ELF Linker and Command Language
	Structure of Linker Command Files
	Memory Segment
	Closure Blocks
	Sections Segment

	Linker Command File Syntax
	Alignment
	Arithmetic Operations
	Comments
	Deadstrip Prevention
	Variables, Expressions and Integral Types
	Variables and Symbols
	Global Variables
	Expressions and Assignments
	Integral Types

	File Selection
	Function Selection
	ROM to RAM Copying
	Stack and Heap
	Writing Data Directly to Memory

	Linker Command File Keyword Listing
	. (location counter)
	ADDR
	ALIGN
	ALIGNALL
	FORCE_ACTIVE
	GROUP
	INCLUDE
	KEEP_SECTION
	MEMORY
	OBJECT
	REF_INCLUDE
	SECTIONS
	SIZEOF
	SIZEOFW
	WRITEB
	WRITEH
	WRITES
	WRITEW

	Sample M56800 Linker Command File

	Flash Programming
	Setting up the Debugger for Flash Programming
	Setting up the Linker Command File for Flash Programming
	Specifying P: Memory
	Specifying X: Memory

	Preparing the Hardware for Flash Programming
	Flash Programming Tips
	Flash Programming the Reset and Interrupt Vectors

	Libraries and Runtime Code
	MSL for DSP56800
	Using MSL for DSP56800
	MSL Configurations for DSP56800

	Allocating Stacks and Heaps for the DSP56800
	Definitions
	Variables defined by Stationery Linker Command Files
	Additional Information and Specific Target Implementation Details

	Runtime Initialization

	Troubleshooting
	Troubleshooting Tips
	The Debugger Crashes or Freezes When Stepping Through a REP Statement
	“Can’t Locate Program Entry On Start” or “Fstart.c Undefined”
	When Opening a Recent Project, the CodeWarrior IDE Asks If My Target Needs To Be Rebuilt
	"Timing values not found in FLASH configuration file. Please upgrade your configuration file. On-...
	IDE Closes Immediately After Opening
	Errors When Assigning Physical Addresses With The Org Directive
	The Debugger Reports a Plug-in Error
	Windows Reports a Failed Service Startup
	No Communication With The Target Board
	Downloading Code to DSP Hardware Fails
	The CodeWarrior IDE Crashes When Running My Code
	The Debugger Acts Strangely
	Problems With Notebook Computers
	How to make Parallel Port Command Converter work on Windows® 2000 Machines

	Porting Issues
	Converting the DSP56800 3.x and 4.x Projects to 5.x Projects
	Porting Motorola 56824EVM projects to the CodeWarrior IDE
	Porting DSP56811 to DSP56824 Projects
	Using XDEF and XREF Directives
	Using the ORG Directive

	Index

