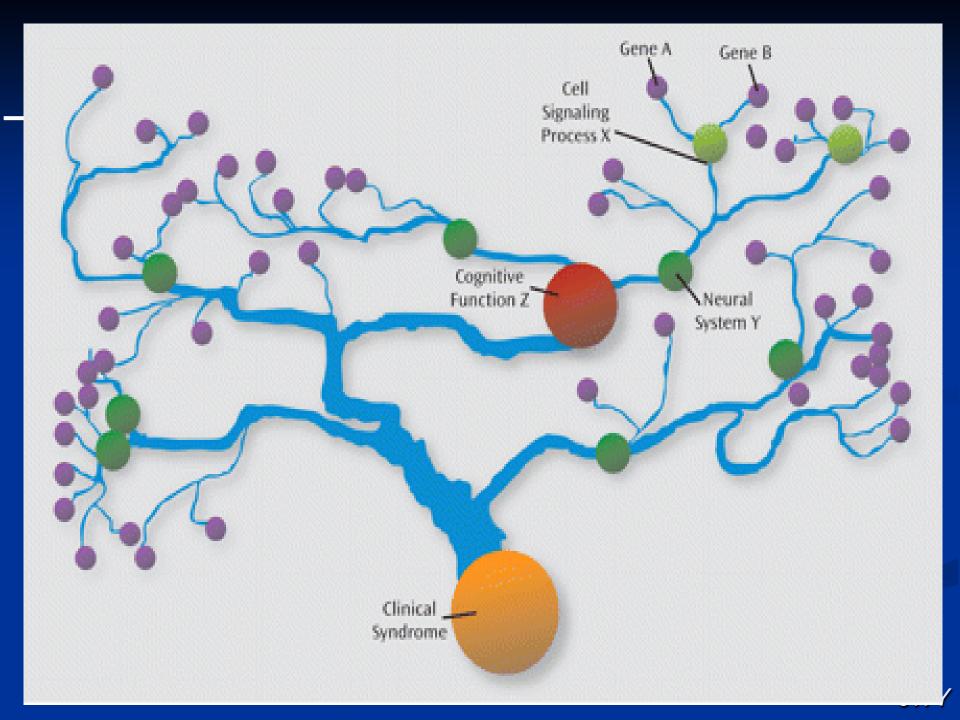

Cognitive assessment in mouse models of disease

Jared W. Young, Ph.D. Department of Psychiatry, University of California, San Diego jaredyoung@ucsd.edu

Schizophrenia: Genetic contribution

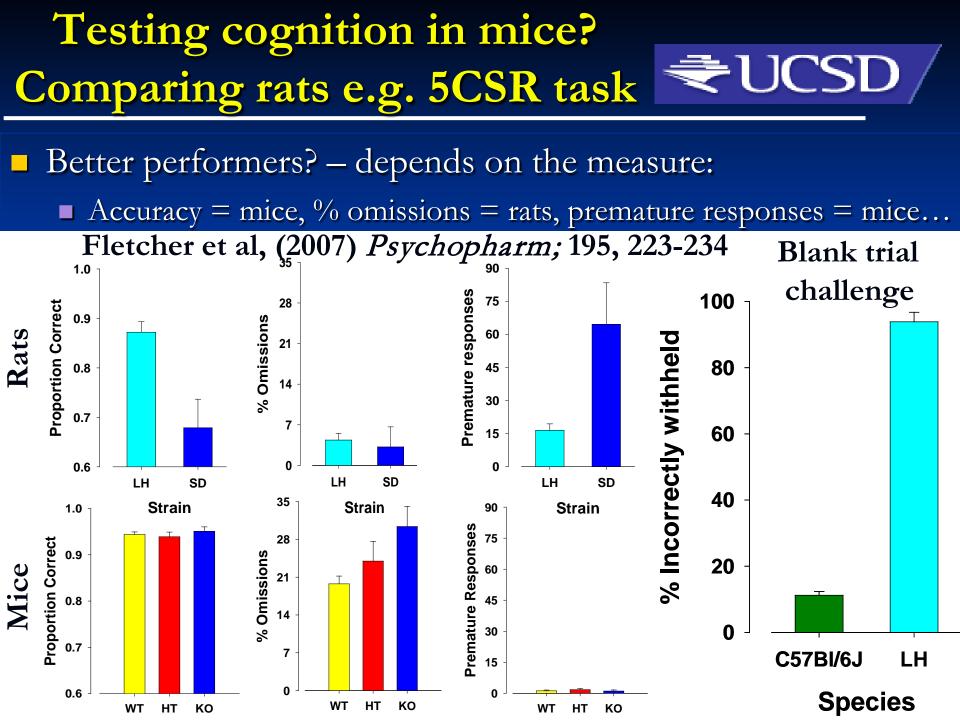
Horrobin postulated that the genes that separates us from chimpanzees, contain those that lead to schizophrenia
True that schizophrenia has a genetic basis:

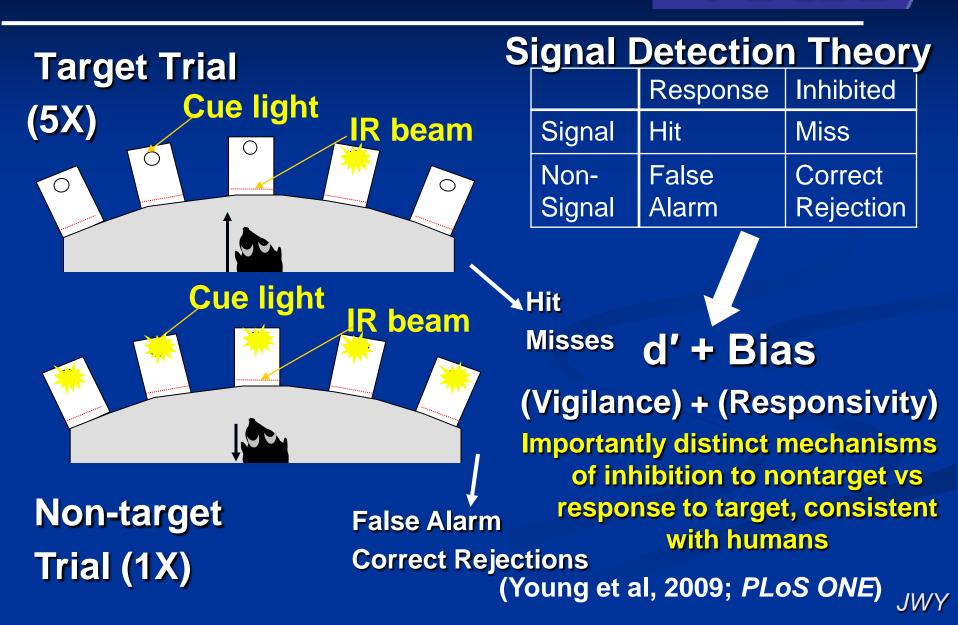
Szgene – Top 20 (see Arguello & Gogos, 2010) ₹UCSD


RANKING BASED ON HUGENET INTERIM GUIDELINES FOR THE ASSESSMENT OF GENETIC ASSOCIATION STUDIES							
#	Gene	Ethnicity	Polymorphism	N minor (Grade)	l ² (Grade)	Bias Reason (Grade)	Overall Grade
1	PGBD1	All	rs13211507	5075 (A)	0 (A)	(A)	А
2	<u>NRGN</u>	All	rs12807809	12620 (A)	0 (A)	(A)	А
3	NOTCH4	All	rs3131296	7829 (A)	19 (A)	(A)	А
4	PDE4B	All	rs910694	2393 (A)	2 (A)	(A)	А
5	TCF4	All	rs9960767	4143 (A)	20 (A)	(A)	А
6	<u>DAOA</u>	Asian	rs778293	3609 (A)	18 (A)	(A)	А
7	TPH1	All	rs1800532	6039 (A)	20 (A)	(A)	А
8	HTR2A	Caucasian	rs6311	4665 (A)	22 (A)	(A)	А
9	RELN	Caucasian	rs7341475	3170 (A)	0 (A)	(A)	А
10	MDGA1	All	rs11759115	1347 (A)	15 (A)	(A)	А
11	CCKAR	All	rs1800857	1326 (A)	0 (A)	(A)	А
12	DRD4	Asian	rs1800955	2881 (A)	0	(A)	А
10		All	rs4532	1089 (A)	0 (A)	(A)	А
14	APOE	Caucasian	APOE_e2/3/4	1118 (A)	0 (A)	(A)	А
45	<u>own 44,444</u>	Caucasian	rs1602565	3973 (A)	46 (B)	(A)	В
16	DISC1	taucasian	rs3737597	102 (B)	0 (A)	(A)	В
17	PLXNA2	Caucasian	rs841865	506 (B)	24 (A)	(A)	В
18	GABRB2	Caucasian	rs6556547	182 (B)	0 (A)	(A)	В
40	4474	Caucasian	rs3803300	506 (B)	40 (B)	(A)	В
20	DRD2	All	rs1801028	901 (B)	19 (A)	(A)	В

Realistic genetic influence

- Heterogeneity of schizophrenia means individual gene effects on the clinical syndrome are small
- Genes are more likely to influence intermediate phenotypes which are theoretically closer to the gene action
- Thus, a single genetic model should not be expected to reproduce the entire clinical syndrome
 Each model may prove fruitful for specific aspects of the disease


(Cannon & Keller, 2006, the water shed model)


NIMH drive for mice with human alleles

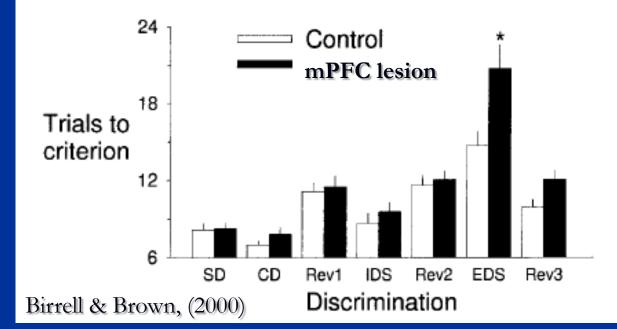
- NIMH issued a RFA in 2007 RFA-MH-08-050
- "Mouse Models Containing Human Alleles" a R21/R33
- Since reissued in 2008 as PAR-08-158
- Funded 5 of 11 with links to schizophrenia:
 - GAD67-ERB4
 - COMT VARIANTS IN SENSORIMOTOR GATING
 - G72/G30 TRANSGENIC MICE
 - DISC1-BOYMAW FUSION TRANSCRIPTS
 - DRD2 SER311CYS POLYMORPHISM

Evolutioneo50268758 task =UCSD

5choice-continuous performance test (5C-CPT)

- Top-down control of attention requiring both <u>response to</u> <u>target</u> and <u>inhibition to non-target</u> stimuli
- If stimulus type is not observed, guessing and responding is a less viable strategy compared to the 5-CSR task
- Utilize a variable ITI (3-7 s), ↓ predictability of the stimulus onset, increasing the 'attentional-load'
- Non-target responses dissociable from premature responses
 - e.g. D4 HT mice & Vitamin D deficient rats ↑ false alarms, no effect on premature (Young et al, 2011; Burne et al, 2011)
- Rats need to be trained on a 2:1 stimulus ratio initially, but can perform a 5:1 once trained – mice train on the 5:1
- Rats are more responsive to their environment, mice are less responsive and more cautious

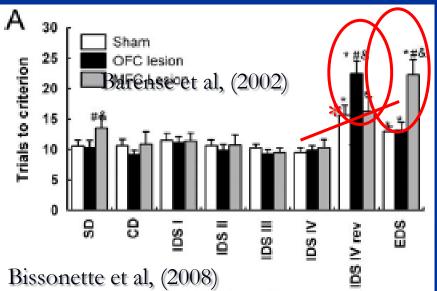
Reactive Rats



Rats compared to mice: Olfactometers Challenge performance by increasing scent similarity: ■ mixing 60% of scent A to 40% of scent B When challenged, mice and rats respond differently: ■ Mice slow their reaction, remain accurate (Abraham et al, 2004; Rinberg et al 2006) Rats react as fast as before but become less accurate (Uchida & Mainen, 2003), if forced to sample longer, accuracy increases Rats are very reactive to stimuli Of course rats can be trained to inhibit e.g. SSRT

Attentional set-shifting task (ASST) in rats

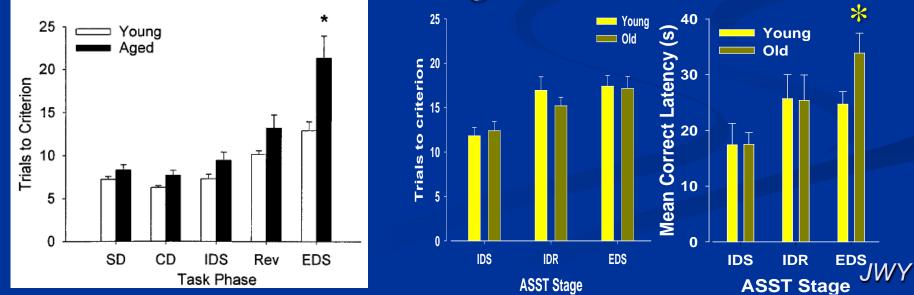
Developed for rats to assess set-shifting (Birrell & Brown, 2000)
Using trial and error search, rat uses stimuli to guide choice of digging in one of two presented bowls:
Odors, digging medium, bowl texture
Originally 7 stages:



ASST in mice

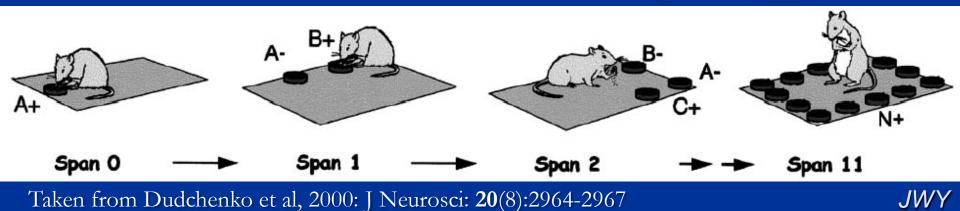
Testing mice in the ASST –difficult to identify a mouse sampling the digging medium vs. digging for the bait!
 We found mice were reticent to dig in a variety of media
 Used different textured platforms leading up to bowls - the latter were scented with different odors (Young et al, 2010)

Similar to cross-maze set-shifting floor covers (Floresco et al)



ASST in mice

Testing mice in the ASST –difficult to identify a mouse sampling the digging medium vs. digging for the bait!
 We found mice were reticent to dig in a variety of media
 Used different textured platforms leading up to bowls - the latter were scented with different odors (Young et al, 2010)


Similar to cross-maze set-shifting floor covers (Floresco et al)

Odor Span Task (OST)

- Developed for rats to assess the effects of hippocampal/nBM lesions on non-spatial memory (Dudchenko et al, 2000; Turchi & Sarter, 2000)
- Simple task utilizing ethologically relevant stimuli
 - Odors are presented in sequential order
 - Required to remember previously sampled odors and only dig in the novel presented odor
 - Used sand in pots for the digging medium

Odor Span Task (OST)

The OST for mice required some adjustment:

- E.g. using bedding instead of sand for ease of digging
- No lip to the table because the mice liked to jump...
- Used velcro to keep bowls in place

OST was useful in identifying effects of genetic mutations:

- Caspase3 over-expression produced an age-independent deficit (Young et al, 2007)
- APPswe TG2576 mouse model of Alzheimer's disease exhibited an age-dependent deficit in performance, coinciding with cholinergic abnormalities (Young et al, 2008)
- α7 nAChR KO mice exhibited poorer performance attentive in nature? (Young et al, 2007)
- Plans to test mice with reduced NR1 expression

Being used again in rats, some pharmacology being worked out
 Nicotinic agonist induced improvement (Rushforth et al, 2010)

Questions for testing in genetic models

What situations require a genetic model & which don't? Assume task performance recruits the same circuits (or biological processes) as rats or re-validate in mice? ■ E.g. ASST – Birrell & Brown, 2000; McAlonan & Brown, 2003; Bissonnette et al 2008 Proper controls for mouse genetic models? • E.g. littermate WT from HT breeding pairs What effect size do we expect in these/any model? Designing experiments to see meaningful drug effects? Main effect of drug? If so then why bother with the disease model? ■ Or a genotype [disease]-dependent effect of drug

Conclusion for Genetic Models

Positives:

• \uparrow in number & sophistication for the human allele

- Are developmental in nature
- Allow for:
 - Genetic + environmental models
 - Drug X gene interaction studies
- Negatives:
 - Cognitive tasks not as well developed cf. rats
 - Most tasks developed in rats first, then implemented in mice
 - Lesion and pharmacological validation required

Thank you for listening

