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Abstract

In order to capitalize on their promise of high-bandwidth, ultra-low power operation,

future nanophotonic devices will have to contend with quantum and coherent effects

inherent to the small-volume, few-photon limit. The theoretical development of

general, systematic frameworks for describing quantum feedback networks enables

us to leverage established optical technologies, from single and multi-atom cavity

quantum electrodynamics to ultrafast multimode optics, as an essential test bed

for establishing direct contact between coherent-feedback control theory and first

generation nanophotonic circuits.

For interesting regimes for photonic logic, we want to work where switching en-

ergies become on the order of attojoules. Within atomic cavity QED systems, this

regime occurs where the number of atoms within the typical cavity is on the order of

1-10. In this regime, each atom is a quantum emitter and must be treated with a full

quantum model. As the atom number is increased, a mean field theory can be applied

and the dynamics can be modeled using the optical Bloch equations. Full quantum

modelling of systems with the atom number > 10 are not tractable computationally

and a simpler semi-classical model does not fully capture the dynamics correctly.

Thus we must investigate an intermediate regime where it may not be necessary to

iv



keep track of all quantum degrees of freedom and treat them semi-classically. I will

present experimental data showing the effects of coherent feedback on a test cavity

QED system alongside switching dynamics and other non-linear behavior in a few

atom regime. Studying experimental data to help formulate new models will greatly

help in the push towards practical optical non-linear systems for ultra low power

photonic logic.
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Chapter 1

Introduction

1.1 Highlights from current computing technolo-

gies

This thesis explores a new way of approaching the topic of computing, a new

paradigm which proposes the use of quantum mechanics in regards to devices and

networks [1]. To see why this topic is of interest to us, we need to look back at how

we got to the current level of computing technology and its future outlook. Current

technologies which are used for classical computation are primarily based upon silicon

semiconductor devices. The building block of this technology, the transistor, can be

traced back to the work of John Bardeen, Walter Brattain, and William Shockley

at Bell Labs in 1947 [2]. There has definitely been vast amounts of technological

advances as it relates to the design and materials used for the transistor but the

basic building block has remained fairly constant. We have been able to squeeze

a lot out of this technology, as observed and stated by Intel co-founder Gordon

Moore [3]. He noticed that since the 1960s, there has been an exponential growth in

1



CHAPTER 1. INTRODUCTION 2

silicon based computer chips with the number of transistors doubling approximately

every two years. This observation came to be known as Moore’s Law and has driven

technological advancement to this day.

Figure 1.1: Moore’s Law depicting exponential growth of silicon technology over the
past four decades.

As shown in Figure 1.1, the trend predicted by Moore’s law has lasted for over

four decades [4]. However, we are at a crossroads. The current Silicon Roadmap,

which outlines the advancements and guidelines for things such as feature size shrink,

is set to end in 2020 [5]. With continual feature size reduction, we have approached

a point where the distance scales of interest enter the regime of quantum mechanics.

The roadmap has transistors with 5nm feature size set for 2020; at that feature

size transistors will experience quantum tunnelling through their logic gates. This
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poses quite the problem. How do we go about continuing these advancements of our

computing technologies at an exponential rate? There is only so much we can do to

play around with the design of silicon based transistors before we have squeezed all

the possible computational potential out of the technology.

1.2 Looking towards a new approach

In order to continue on the exponential growth in computer technology that we

have all grown accustomed to, we will have to shift away from the traditional

paradigm and looks towards an approach completely different. Electronic devices

have dominated this space, providing easy to design and manufacture devices but

as previously discussed, are running into technical hurdles which will halt the

progression of technology [6].

Photonic devices seem to be fitting for the void which electronic devices will

leave. In applications where there are a vast amounts of interconnections between

sub-components, nanophotonic architectures are very appealing with lower power,

ultrafast operation. This approach is not entirely new. Photonic components

are starting to be introduced into hybrid electronic/photonic circuits [7]. Optical

interconnects between cores on a chip is hot research area. As of right now, a

significant amount of energy is lost solely due to the distribution of a clock signal on

an electronic chip and also the high bandwidth communication between individual

cores in a multi-core processor. In this situation, photonic interconnections can

provide a significant boost in performance without significant overhaul to the

computing architecture.
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Thinking more forward, what if we can replace the actual electronic building

block which makes up today’s computing technology? Photonic circuits give

us access to regimes where interesting dynamics can be achieved at very low

energy levels [8]. However, we quickly run into the hard fact that these devices

are no longer classical devices but operate in a manner such that the quantum

mechanical behavior of the internal workings becomes very important. Additionally,

these quantum systems cannot be thought of the like the systems you study in

undergraduate quantum mechanics. All those systems are closed as they can be

represented by a wavefunction and evolution dictated by the internal Hamilto-

nian and the Schrödinger Equation. The quantum systems which come up in

real life situations and the ones that are of interest to us are open quantum sys-

tems [9]. These systems are constantly interacting with the surrounding environment.

From a device perspective, individual photonic devices do not provide the

robustness needed to make practical devices. Inherent quantum noise can be

significant when operating at such low energy scales and thus behavior cannot be

predicted. But we are not out of luck as this situation closely resembles the problem

of control in classical engineering. You may have taken a class in control systems

while studying engineering and know that systems put into the real world never act

as you may predict. They are constantly being affected by outside influences which

cannot be predicted beforehand. To overcome such issues, the idea of networks

and feedback control exist. Such schemes are crucial to the design of systems and

technologies that our modern society is built upon. Classical feedback control works

by monitoring the state of the system of interest by measuring one or more of its
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outputs and in turn applying feedback back to the system through actuators to

control the system to some set point. The simplest example of feedback control

that you may experience in your everyday life is your home thermostat. It works by

measuring the temperature in the room and applies heating and cooling accordingly

to keep the temperature at the set point.

Getting back to quantum devices, we can adopt the same concepts from classical

control theory and apply them to quantum networks thus making new quantum

devices which provide much more robust behavior in comparison to open loop

systems. Measurement based feedback schemes, which classical controls systems are

based upon, have been studied in quantum networks and have shown to provide

effective results in control of such systems. However, as you may already suspect,

performing a measurement on a quantum system disturbs the quantum state of

the system, causing it to lose its quantum coherence, in turn introducing unwanted

noise to the system [10]. Another more effective approach does exist, the idea of

coherent feedback control. In such a scheme, the signals from a quantum system are

coherently processed by another quantum system; you never convert the signal from

the quantum system to an electrical signal, process it classically and feed it back.

The entire feedback process is done passively. In such a scheme is where the true

interest lies, allowing us to access the sought after low energy regimes.

At the heart of the photonic quantum devices of interest lies an optical nonlinearity

[11]. The actual specifics of the optical system are not so strict. As long as you have

an optical system which have been shown to exhibit some form of optical nonlinearity

when interacting with an optical field, you can get interesting dynamics which in some



CHAPTER 1. INTRODUCTION 6

cases can be used for computing applications. Recent experiments with atomic cavity

quantum electrodynamic (QED) systems [12][13][14][15], nitrogen vacancy centers

[16], quantum dots, and intrinsic material nonlinearity have all shown to exhibit

interesting behaviors which occur at very low energy scales. What they all show is

that there is a very intriguing opportunity to exploit these dynamics for application

in photonic signal processing. We will focus on a system where the nonlinearity comes

from the dipole interaction of an alkali atom and cavity enhanced electric field. This

type of system is the bread and butter of the MabuchiLab and we have extensive

experience working with such setups.

1.3 Cavity nonlinear optics

The cavity QED system provides us with an excellent test bed to study various

interesting low energy nonlinear optical behaviors [17]. With the microscopic

sizes and electric field enhancement of the high finesse optical resonators, we are

able to see interesting nonlinear dynamics in a system of a single atom and few

photons. Previous experiments have explored regimes of both dispersive [18][19] and

absorptive bistability [13][15][20], leading to dynamics which could be used a basis

for classical information processing devices. When trying to explore the space of

quantum networks, atomic quantum optical system provide us the best platform to

try first principles experiments due to exhibiting extremely strong nonlinearities at

ultra low probe energy scales. In addition, this space has been well studied [12] and

we are able to perform experiments with parameters are the much more controllable

in comparison to other nonlinear device platforms.
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By utilizing the rich nonlinear dynamics observed in and individual cavity QED

system, we will attempt to explore the role of coherent feedback as it pertains to

giving us control over the system which we did not have before. In addition, by

having the flexibility of a cavity QED system, we can explore dynamics over various

energy regimes, looking at systems where the energy scales are more representative

of practical devices, and also how to approach describing such interactions as they

move away from feasible full quantum simulations but yet still cannot be fully

captured by semiclassical models.

In Chapter 2 of this thesis, we will explore some of the theoretical background

of cavity QED systems and also quantum networking. This will allow us to see the

nonlinear dynamics that are possible at near single photon energy levels. Chapter

3 will give a broad overview of the experimental apparatus used to perform the

experiments. Using this optical setup, we will discuss in Chapter 4 the measurements

that were taken of this cavity QED system and the results from the experiments.



Chapter 2

Background

In this chapter we will introduce the quantum model for the cavity QED system.

Building upon that we will discuss previous work done within the lab in regards to

the canonical cavity QED system and results. Lastly we will introduce the idea of

quantum networks and how we can go about modelling such systems. The system of

interest for this thesis will be an example of how we can take simple cavity QED sys-

tems and build upon the results of previous work to manipulate them using networks

and feedback to open up new dynamical regimes.

2.1 Cavity QED model

Our system of interest is actually quite simple and elegant. We have a two-level atom

that is coupled to a cavity mode within an optical resonator and driven by a probe

field. Figure 2.1 depicts a cartoon graphic of our system of interest. At the heart of

this system is the interaction of the two-level atom and the cavity mode. Since the

optical resonators used in these systems are of small mode volume and of high finesse

F (or alternatively high quality factor Q), we can ensure that even single quanta

8
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of cavity excitation will have large effects on the atom and that this interaction is

long lived. Modelling this interaction, we can approximate it using a simple dipole

Hamiltonian where d̂ is the atomic dipole operator and Ê is the electric field operator:

Ĥint ∝ d̂ · Ê (2.1)

Figure 2.1: Illustration of two-level system coupled to cavity mode within driven
optical resonator. Atom and cavity are coupled at a rate g with dissipation out of
the system via the spontaneous emission rate 2γ⊥ and the cavity field decay rate κ.

For a single photon, we use the electric field magnitude

E0 =

√
~ω

2ε0Vm
(2.2)

where ω is the optical frequency and Vm being the cavity mode volume. Using this,

we can see that the maximum interaction strength between the atom and cavity mode

is given by:

Ĥint = d

√
~ω

2ε0Vm
(2.3)

From this we get our first cavity QED parameter g0 defined as:

g0 ≡
dE0

~
= d

√
ω

2~ε0Vm
(2.4)
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This is called the atom-field coupling constant, which is the rate at which the cavity

mode and the atom are coherently exchanging energy. The remaining two cavity

QED parameters come into play in the dissipation mechanisms of the system. The

first mechanism is the spontaneous emission of the atom into free space, occurring

at a rate γ‖ = 2γ⊥. The second loss mechanism is the escape of photons out of the

cavity mode through the mirrors and other absorptive means, occurring at the total

cavity energy decay rate 2κ. Using just these three parameters, (g0, κ, γ⊥), you are

able to fully specify your cavity QED system.

In previous sections, we have talked about how we need a strong nonlinear

integration between atom and cavity mode in order to see interesting dynamics

in the low energy or quantum regime. Quantitatively we can specify this strong

coupling regime in the limit where g0 � κ, γ⊥. In this case, the rate at which the

coherent energy exchange between the atom and cavity mode is much larger than

any of the loss channels, leading to the strong quantum behavior. You can read the

thesis of Michael Armen [14] for a more comprehensive discussion on the topic of

qualitatively inferring the influence of the atom onto the cavity mode.

Looking at this system in a more quantitative way, we use the driven Jaynes-

Cummings Hamiltonian which models quantum mechanical behavior of this system.

We have an optical cavity, with resonant frequency ωc, a two-level system (an atom

in our case) with its ground state |g〉 and excited state |e〉 separated by frequency

ωa. The cavity system and two-level system are then coupled to each other, with the

atom-field coupling rate g0. Lastly, the system is driven by a probe field of frequency

ωp with amplitude E . Putting this all together, we get the JC Hamiltonian:
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Ĥ = ωcâ
†â+ ωaσ̂

†σ̂ + ig0(â†σ̂ − âσ̂†) + iE(e−iωptâ† − eiωptâ) (2.5)

We have used the notation with ~ = 1 and will continue to do so throughout the rest

of the thesis. The optical field operator is â and atomic lower operator is σ̂ = |g〉 〈e|

In order to simplify this equation a bit, we will transform it into a rotating frame

to remove the time dependence on the driving term. This can be accomplished using

the transformation for the state:

T̂ = e−iωptâ†âe−iωptσ̂†σ̂ (2.6)

We can now evolve our transformed state under the new Hamiltonian

Ĥ → T̂ †ĤT̂ + i
∂T̂ †

∂t
T̂ ≡ Ĥ (2.7)

Apply this to our original Hamiltonian, we get the new transformed Hamiltonian Ĥ

as

Ĥ = ĤJC + Ĥd = Θâ†â+ ∆σ̂†σ̂ + ig0(â†σ̂ − âσ̂†) + iE(â† − â) (2.8)

Here, the first two terms are the transformed undriven JC Hamiltonian and the last

term is the modified time independent drive term. In addition, we have Θ = ωc − ωp

as the cavity-probe detuning and ∆ = ωa − ωd as the atom-probe detuning. For a

more rigorous and complete overview of this transformation, please refer to the thesis

work of Michael Armen [14].
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2.1.1 Adding in dissipation

We have a description for our quantum system but this is not yet complete. As

previously discussed, quantum systems that we encounter in the lab do not evolve

freely in a closed environment under Schrodinger’s equation. We have open quantum

systems which are inherently coupled to their environment. In our specific system,

we have multiple loss channels which must be taken into account in order to get the

full picture. We utilize the master equation (or Lindblad equation) to study the non-

unitary evolution of the joint atom-cavity density operator ρ̂. In our specific case of

two loss channels of decay out of the cavity mirrors (κ) and spontaneous emission out

to free space (γ⊥), we get the following equation:

˙̂ρ = −i[Ĥ, ρ̂] + κ(2âρ̂â† − â†âρ̂− ρ̂â†â) + γ⊥(2σ̂ρ̂σ̂† − σ̂†σ̂ρ̂− ρ̂σ̂†σ̂) (2.9)

where Ĥ is our Hamiltonian in the rotating frame.

2.1.2 Semiclassical equation of motion

In practice, it is actually quite difficult to do full master equation quantum simulations

of systems of even moderate complexity. The size of the problem grows exponentially

and you can really only look at a handful of simple cases. We must turn to an

approximate method of analyzing systems in which the full quantum mechanical

description is not tractable computationally. We can compute operator expectation

values using:

d〈Ô〉
dt

= 〈Ô ˙̂ρ〉 (2.10)
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Using equation 2.10 and the master equation from equation 2.9, we get the following

equations of motion of the operator expectation values:

dâ

dt
= −(κ+ iΘ)〈â〉+ g0〈σ̂〉+ E

dσ̂

dt
= −(γ⊥ + i∆)〈σ̂〉+ g0〈âσ̂z〉

dσ̂z
dt

= −2γ⊥(〈σ̂z〉+ 1)− 2g0(〈â†σ̂〉+ 〈σ̂†â〉)

(2.11)

where σ̂z = [σ̂†, σ̂] = |e〉 〈e| − |g〉 〈g| is the the Pauli-z operator, a measure of the

difference of the atomic population. Equation 2.11 is traditionally referred to as the

Maxwell-Bloch Equations (MBE). These three coupled equations are already looking

promising in terms of computation. However if you haven’t already noticed, there is

one wrinkle. Some of the terms within the equations are dual-operator expectation

values, e.g., 〈âσ̂z〉. We are not totally out of luck, we can make some approximations

in special circumstances and get away without introducing significant errors. If we

factor all three of the dual-operator expectation value terms, e.g., 〈âσ̂z〉 → 〈â〉〈σ̂z〉,

our set of couple equations now become easily solvable. But before quickly moving

onto solving the MBE, let’s take a step back and analyze what approximation we

really made. By approximating the dual-operator exception value terms by factoring

the individual terms, we are essentially inferring that atom-field correlations are not

of any significant effect. In cases where there is not much coherent energy exchange

(g0 � κ, γ⊥) relative to the loss mechanisms or in the case of the bad cavity limit

(κ � g0 � γ⊥), we can get away with making such an approximation. Thus it is

obvious that in the strong coupling regime of cavity QED (g0 � κ, γ⊥), the solution

obtained from the master equation (2.9) and the MBE (2.11) will not match.
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To make it easier to work with the MBE, the equations are commonly normalized

such that z ≡ 〈â〉, v ≡ 2〈σ̂〉, m ≡ 〈σ̂z〉. These substitutions lead to equation 2.11

becoming:

ż = −κ(1 + iθ)z + (g0/2)v + E

v̇ = −γ⊥(1 + iΛ)v + 2g0zm

ṁ = −2γ⊥(m+ 1)− 2g0(z∗v + v∗z)

(2.12)

with θ = Θ/κ and Λ = ∆/γ⊥. Bear with me, we will now go even one step further to

get the equations in a more computationally practical form. We will make a change

of variables:

z →
√
n0x, v →

√
2p, m→ −D (2.13)

where n0 = γ2
⊥/(2g

2
0). Additionally we will scale the time such that

t→ t
′
/γ⊥ (2.14)

This leads us to the dimensionless MBE:

ẋ = −k[(1 + iθ)x+ 2Cp− y]

ṗ = −(1 + iΛ)p+ xD

Ḋ = −2[D − 1 + (x∗p+ p∗x)/2]

(2.15)

were we have k = κ/γ⊥, C = g2
0/(2κγ⊥), and y = E/(κ√n0).
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Looking at analysing these set of equations, we can easily compute the steady-state

solutions. We result in the simple set of solutions in such a case:

y = xss

√[
1 +

2C

1 + Λ2 + |xss|2

]2

+

[
θ − 2CΛ

1 + Λ2 + |xss|2

]2

pss =
(1− iΛ)xss

1 + Λ2 + |xss|2
(2.16)

Dss =
1 + Λ2

1 + Λ2 + |xss|2

2.1.2.1 Many atom MBE

If our system contains more than one two-level atom, we can easily extend our equa-

tions to adjust for the situation. When we have N non-interacting atoms all coupled

to a cavity-mode, we can write the overall Hamiltonian in the rotating frame as:

Ĥ = Θâ†â+
N∑
j=1

∆σ̂†j σ̂j +
N∑
j=1

igj(â
†σ̂j − âσ̂†j) + iE(â† − â) (2.17)

Applying the same methods as done previously to obtain the semiclassical equations

of motion. If we assume that each atom has a different coupling strength such that

gj = cj · g0 (j = 1, 2, 3, ..., N) (2.18)

The normalized multi-atom MBE become
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ẋ = −k[(1 + iθ)x+ 2
N∑
j=1

cjC0pj − y]

ṗj = −(1 + iΛ)pj + cjxDj

Ḋj = −2[Dj − 1 + cj(x
∗p+ p∗x)/2]

(2.19)

And similarly the steady-state solutions to the equations become

y = xss

√√√√√
1 +

N∑
j=1

2c2
jC0

1 + Λ2 + c2
j |xss|2

2

+

θ − N∑
j=1

2c2
jC0Λ

1 + Λ2 + c2
j |xss|2

2

pjss =
(1− iΛ)cjxss

1 + Λ2 + c2
j |xss|2

(2.20)

Dss =
1 + Λ2

1 + Λ2 + c2
j |xss|2

2.1.3 Examples of nonlinear dynamics in cavity QED systems

Now that we have the quantum and semiclassical equation for both the single atom

and multi atom cases, lets explore the types of dynamics we get from the solutions.

The most correct thing to do would be a full quantum master equation simulation for

every case but as previously stated, such a task is not feasible with the computational

power we currently have. For a system which consists of N atoms and a truncated

fock basis of size M, our combined state space is of size M · 2N and density matrix

of size M2 · 22N . It is clear how solving a full quantum model of an arbitrary sized

system can get out of hand. We don’t have the necessary computer power and also

RAM size available to simulate any system that is larger than a couple of atoms.
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We will look at two distinct examples: first a strongly coupled single atom and

then a large ensemble of weakly coupled atoms. One interesting thing to look at

is how the dynamics are different even though the effective linearity in the system

is the same. In Equation 2.15 we introduced the constant C = g2
0/(2κγ⊥), called

the cooperativity. This constant includes all the relevant cavity QED parameters

into one metric thus giving us a sense of how strong the nonlinear response of the

system will be. In the case where you have N atoms all coupled to the cavity mode

with equal atom-cavity coupling constant g′, we can write the total cooperativity

as C ′ = Ng′2/(2κγ⊥). When you have g′ = g0/
√
N , the effective nonlinearity of

the system, and if we were to just use the semiclassical model for both systems, we

would get the exact same solution. However in reality, the quantum solution for

the strongly coupled case will not match the semiclassical and thus give different

dynamics.

2.1.3.1 Quantum model

So to start off, let’s say we have a cavity QED system parametrized by

(g0, κ, γ⊥) = (10, 1, 2.6) MHz. Be careful that all the frequencies used within

the quantum optical equations are angular frequencies, so remember to always

multiply by 2π. We are definitely in the strong coupling regime in this situation

since g0 � κ, γ⊥ and thus quantum effects are very important. We must use the

master equation to solve for the steady state behavior of such a system with constant

drive probe amplitude. The quantum optics simulation in this case was done using

the Python package QuTiP [21]. After solving for the steady state density matrix,

we can visualize the result by plotting the Q function quasi-probability distribution.
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The Q functions are a good tool to visualize the quantum state of a quantum optical

system.

Looking at the result of the simulation in Figure 2.2, we have quite an interesting

looking distribution. For this simulation, we drove the system with probe amplitude

E =
√

20.2κ and all the detunings set to zero (Θ = ∆ = 0). If we had no atom

within the cavity, we would just have a 2D gaussian distribution centered around

|α〉 = E/(κ + iΘ). Our solution is much more interesting than a boring simple

gaussian, we have strong bimodal behaviour here. Even with a constant drive two

stable states exist, let’s call them the low state and the high state. Without any

noise, this system would work perfectly as a binary switch, allowing you to jump

between two states with small perturbations of the drive field. But we do not live in

a perfect world. The high state lives at approximately an intracavity photon number

of ≈ 9. With such a low photon cavity mode, quantum fluctuations are on the same

order and will cause the system to spontaneously switch.

If we look at a quantum trajectory simulation, we can get a sense of single shot

time dependent dynamics of our system. Figure 2.3 clearly shows that with the

constant drive to the system we do not get a stable output of Re[α] = (â† + â)/2.

The system is jumping back and forth between two distinct stable states due to the

spontaneous switching brought upon by quantum fluctuations.

2.1.3.2 Semiclassical model

Now, let’s take the exact same model we looked at just now and try to analyze it

using the semiclassical MBE. We already argued that since it is in the strong coupling
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Figure 2.2: Q function of a single atom cavity QED system exhibiting strong bistable
response. Our system parameters are (g0, κ, γ⊥) = (10, 1, 2.6)MHz and (E/k,Θ,∆) =
(
√

20.2κ, 0, 0)
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Figure 2.3: Quantum trajectory simulation showing spontaneous switching between
two states.

regime, the solution from the MBE will not be correct.

By looking at Figure 2.4, what we notice is that the MBE do predict a bistable

response but the drive at which this bistable response occurs is incorrect. The MBE

show that the system exhibits bistable response when approximately driven such

that 5.5 < (E/κ)2 < 14. From the master equation simulation, our system showed

bistability when (E/κ)2 = 20.25. This is just one example where the quantum model

and semiclassical model do not agree. As you get into the regime of a few atoms, the

difference becomes much more apparent until you start converging back together in

a many weakly coupled atom system.

Let’s say we have atom number Natom = 2500. All the atoms are coupled with

the exact same coupling constant g′ = 10/
√

2500 = 0.2MHz. We scaled the coupling

constant of each atom according such that the total cooperativity still remains

constant at C = 19.2. Since the cooperativity is the same between the single atom

and the many atom case, the behavior of the nonlinear response will be identical.

Figure 2.5 shows the response and it looks identical to the curves in Figure 2.4

except for the fact that the energy levels which the interesting response occurs at is
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Figure 2.4: MBE simulation of a single strongly coupled atom. Green trace shows the
empty cavity response of the system and the blue trace shows the nonlinear response
with the atom present.
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significantly higher in this many atom case.

Figure 2.5: MBE simulation of a 2500 weakly coupled atoms. Each atom’s coupling
strength is 50 times less as compared to the single atom case. We see the same
qualitative behaviour but it occurs at a completely different energy regime. Green
trace shows the empty cavity response of the system and the blue trace shows the
nonlinear response with the atom present.

One question that really troubled me in the beginning of my grad school career

was intuitively why does an atom cause a hysteretic response of the input/output

like we have seen in our simulations. The atom can be thought of as a dipole and

that dipole emits radiation when it transitions from an exited to ground state. Lets
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say this dipole lives within an optical cavity. When you start probing the cavity

with an input field, the dipole is absorbing the radiation and the field it re-radiates

is 180◦ out of phase from your probe. This cancelling effect never lets the field build

up within the cavity and thus suppressing the response. However, since the atom is a

saturable absorber, at some point when you keep increasing the drive it just cannot

cancel out the field and you have a runaway effect where the intracavity field quickly

builds up due to the positive feedback effect of the cavity. Now when you bring the

drive back down from a high state to zero, your cavity already has a large field built

up inside thus making the atom saturated. Since even small probe levels equal to a

large intracavity field, this response stays the same until you get low enough where

the atom is no longer saturated and can start its cancelling effect, thus suppressing

the field once again. This is the intuition as to why bistability and hysteric behavior

can be seen when you have a saturable absorber with an optical cavity [11].

We have now looked at cases of absorptive bistability as it related to systems of a

single strongly coupled atom and also systems where you have many weakly coupled

atoms. You may wonder why we are so interested in such a response. A system

such as this can easily be used as a binary switch, a basic building block of classical

information processing devices. If the energy scales at which this switch is occurring

is lower or comparable to our modern day electronics, it becomes of great interest

for ultra lower power schemes. From a practical standpoint, it will be very difficult

to construct system which contain single quantum emitters. What we might want to

look at is the regime where say you have a handful of atoms, most of them coupled

weakly to the cavity mode and a few coupled strongly. The overall nonlinearity is

still large and you see dynamics at a low power regime. You can also translate such a
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system to the solid state devices where you will always have some weak background

effect superimposed on top of your strong quantum emitter. Modelling such systems

still pose a challenge. It would be near impossible to do a master equation simulation

for say 20 atoms but the atom number and energy scales are still low enough such

that a semi-classical description will not fully capture the dynamics. This regime,

call it the mesoscopic regime, is of great research interest to us.

2.2 Quantum Networks

Single devices may exhibit interesting behaviour but the true power lies in the ability

to combine a large number of these devices in a network to achieve a much richer and

complex response. It might seem like a daunting task to look at complicated networks

and think about how to write down a mathematical model to analyze them. Luckily,

there have been recent advancements in the field of quantum networks which provide

us with powerful tools to approach this exact problem.

2.2.1 SLH formalism

In the Quantum Stochastic Differential Equation (QSDE) framework [9][22], indi-

vidual open quantum system can be parametrized using a triplet (S,L, Ĥ). The

scattering matrix S encompasses the direct scattering of input signals to output sig-

nals. The coupling vector L shows how each external field couples to the integral

degrees of freedom of the system. The Hamiltonian H governs the internal dynamics

of system. From this parameter set, we can for example directly obtain the Lindblad

master equation for our system.
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Figure 2.6: An individual quantum network component showing how each term of
the parametrization fits into the overall system.

ρ̇(t) = Lρ = −i[H, ρ] +
∑
k

[
LkρL

†
k −

1

2
{L†kLk, ρ}

]
(2.21)

Now let’s say we have two systems and for each we know their parametrization and

mathematical model. If we were to combine the two together in some sort of network

configuration, how does the overall system now look? This is exactly what the Gough-

James algebra rules [23][24]of the SLH formalism allows us to do. There are three

basic circuit operations for networks: concatenation, series connection, and feedback

(Figure 2.7)

Figure 2.7: Basic network operations in the SLH formalism. First shows concatena-
tion. The second is a series product. The third is a feedback operation.

For each of these operations, there is a systematic approach to how to get a combined
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(S,L, Ĥ) triplet for the overall system. I will leave the messy details out and refer

you to look them up in the thesis work of Nikolas Tezak [25].

2.2.1.1 Quantum hardware description language

To automate this modelling process, Nikolas Tezak in our lab has developed a suite of

software tools to easily describe and simulate complex quantum networks. The quan-

tum hardware description language [26] is analogous to the classical VHSIC Hardware

Description Language (VHDL) which is extensively used to describe complex digital

circuits. We can define individual components and how the inputs and outputs con-

nect together and QHDL will come back with overall models for your system. This is

a very powerful tool as it allows engineers and designers to know focus on topologies

and architecture using quantum circuits rather than the nitty-gritty quantum physics

of each individual element.

2.2.2 Examples of networks in quantum optics

So far we have discussed the properties and dynamics of single quantum optical

systems. By applying the methodologies discussed in the previous section about

quantum networks, we can now work our way towards looking at interesting complex

quantum devices that can be used to perform simple information processing tasks.

The first example [27] we will discuss is an absorptive bistability system in which

quantum noise leads to unwanted fluctuations of the bistable state when driven with

a constant probe. The system by itself consists of a kerr nonlinear material which

provides the necessary optical nonlinearity to see bistable behavior. When driven
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with a constant probe such that two stable states exist for the intracavity field, in

absence of any quantum fluctuations we should measure a stable output depending

on which side we approached the bistable regime. However, as seen in Figure 2.8,

the intracavity field shows clear spontaneous switching.

Figure 2.8: Trajectory simulation showing absorptive bistable behavior of the intra-
cavity photon number in kerr nonlinear cavity. [27]

We have this quantum device which exhibits desirable dynamics at very low

energy levels but is hampered by these pesky quantum fluctuations making it not

robust enough for practical use. This is a situation where application of a quantum

network or feedback control will allow us to stabilize the dynamics. Figure 2.9 shows

the ring cavity system being wrapped in a feedback network. Two types of feedback

are shown to show why complicated nonlinear controllers are required to achieve the

sought after control result.

The left setup is taking the output of the system, processing it through a static

phase shift, and feeding it back in. The setup on the right does the same but also

adds an additional nonlinear phase shift which is dependent on the field amplitude
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Figure 2.9: Feedback configurations for bistable kerr nonlinear cavity. The static
controller does not have the ability to stabilize this system from unwanted quantum
fluctuations which cause the state to jump. The nonlinear dynamic controller has the
phase of the reflected signal that depends on incident power and thus can be used to
stabilize such a system. [27]

reflecting off the second controller cavity. You can easily see how the system on the

left will work in what we are trying to achieve. In order to stabilize the spontaneous

switching, we will need to stabilize both the high photon number and low photon

number state at the exact same time. However, each of two states require the

feedback beam to interfere differently at the feedback mirror, constructively for the

high state and destructively for the low state. That is why a static controller will

never achieve the control goal. With the nonlinear controller, Figure 2.10 shows

how the rate of the spontaneous switching at constant probe is greatly reduced in

comparison to the open loop case.

Another example of a quantum network, one that more closely resembles an ex-

isting classical component, is the all optical nand latch [28]. In this setup (Figure
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Figure 2.10: Trajectory simulation showing absorptive bistable behavior of the intra-
cavity photon number in stabilized kerr nonlinear cavity. The rate of spontaneous
jumping is greatly reduced compared to open loop system. [27]

2.11), we network two components together to construct a one bit memory system.

Each of those components is a boolean nand gate. By taking the output of each of

the nand gates and feeding them back into the input of the other, we can create a

feedback loop which allows us to save a specific output state without having to hold

that value at the input. To me, this example is very exciting. If we can construct

single boolean gate type devices using an all optical system, that opens up limitless

possibilities since all types of boolean algebra operation can be performed by net-

working nand gates. Obviously to make anything super interesting, we are talking

about networking thousands of these devices. Nevertheless it is a start in the right

direction.

2.2.3 Self feedback of single cavity system

The quantum optical system of interest for us is a simple Fabry–Pérot cavity setup

with atoms coupled to the cavity mode. We have discussed in great detail the

methods of modelling such a system and some of the expected dynamics we can



CHAPTER 2. BACKGROUND 30

Figure 2.11: All optical nand latch composed of two photonic nand gates in a network
configuration. [28]
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observe in various parameter regimes. To extend this system with a simple network,

we will look at a self-feedback setup as depicted in Figure 2.12.

Figure 2.12: Schematic of self-feedback implementation with a Fabry–Pérot cavity.
Feedback is applied to the input mirror of the cavity. The feedback phase is statically
set via electronic control.

If we want to manually go about writing a model that describes this system, the

math will get quite messy. Luckily we have methods and tools available for exactly

this. We use the SLH formalism to extract out equations of motion without much

effort. Let’s set up our system by first considering only the input port of the cavity.

The circuit schematic for such a configuration looks as follows:

Figure 2.13: Circuit schematic of self-feedback implementation with a single port
Fabry–Pérot cavity.

Our system is one that has multiple input and two outputs (you never use some of
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the inputs or outputs but there is always an equal number). You can inject probe

beams at each port of the beamsplitter before the cavity. Also, a beam can leave

our system by escaping back out of the first cavity mirror and also transmitting

in reverse through the beamsplitter. For simplification, we model the reverse pass

through the beamsplitter with a second beamsplitter element but both have the

exact same properties. With the application of feedback, we connect the beam path

back into the input mode of the cavity.

Now that we have our feedback mechanism described, we can go ahead and add

in the second mirror of the cavity system, the Hamiltonian Ĥ describing the internal

dynamics and the input probe beam. Using the SLH formalism and the Gough-James

algebra, we can obtain the overall SLH description. For comparison, we will first write

down the SLH model of a simple cavity system with no feedback




1 0 0

0 1 0

0 0 1

 ,


α +
√
κafockjc1

√
κafockjc1

√
γσ

tlsjc1
g,e

 ,−iα
2

√
κa†fockjc1

+
i
√
κ

2
αafockjc1

+ ∆Πtlsjc1
e

+Θa†fockjc1
afockjc1

+ iga†fockjc1
σtlsjc1

g,e − igafockjc1
σtlsjc1

e,g



(2.22)

With a feedback network in place, even one as simple as self-feedback, the equation

becomes significantly more complicated. Our SLH model for the feedback setup is
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Using this complex SLH description of our system, we will go about obtaining the

Heisenberg equation of motion for the cavity field

If we compare this large equation to the equation of motion for a simple cavity with

no feedback, we can extract out effective loss, detuning, and drive terms.

ȧfock = −
(
iΘ +

κ1

2
+
κ2

2

)
afock (2.23)

Comparing the equations with 2.23, we pull out:

The effective cavity decay rate

κeff = −−κ1e
iφ sin4 (θ) + κ1e

iφ − κ2e
2iφ sin2 (θ) + κ2e

iφ sin4 (θ) + κ2e
iφ − κ2 sin2 (θ)

e2iφ sin2 (θ)− eiφ sin4 (θ)− eiφ + sin2 (θ)
(2.24)
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The effective cavity-probe detuning

Θeff =
0.5i

e2iφ sin2 (θ)− eiφ sin4 (θ)− eiφ + sin2 (θ)

(
−2iΘe2iφ sin2 (θ) + 2iΘeiφ sin4 (θ)

+2iΘeiφ − 2iΘ sin2 (θ)− κ1

8
e2iφ cos (4θ) +

κ1

8
e2iφ +

κ1

8
cos (4θ)− κ1

8

)
(2.25)

The effective driving

εeff/ε = −
√
κ1

(
4eiφ cos (θ)− cos (θ) + cos (3θ)

)
4
(
eiφ sin2 (θ)− 1

) (
eiφ − sin2 (θ)

) (2.26)

Let’s not dwell too much on the complexity of these equations. What we want

to get out of all of this is the quantitative dependence of the effects of the feedback

phase. Plotting the effective decay rate of the cavity and output rate from the second

cavity mirror, we can see that the feedback has profound affects on the behavior of

the system and differs tremendously from the no feedback case. A quick correlation

we see is that we can map the feedback phase points of φfb = 0 and φfb = π to when

the measured output of the cavity system is at maximum or minimum. Within our

experiment setup, we will explore these characteristics of such a system to verify the

control of cavity QED parameters with the application of self-feedback.
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Figure 2.14: Cavity output and effective decay rate as a function of feedback phase
in self-feedback configuration. The green trace in each of the plots is the nominal no
feedback value for each quantity. Both the output and effective decay rate oscillate
with respect to the feedback phase.
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Experimental Setup

In this chapter, we go over the complex tabletop optical setup that was used

to perform the experiments. The apparatus can be broken up into three parts:

laser system setup, the cavity, and atom preparation and delivery. A cloud of

atoms, cesium in our case, is trapped above a Fabry–Pérot cavity with a vacuum

chamber by the use of laser cooling and trapping. These atoms are released and

fall through the opening of the optical resonator, interacting with a probe as they

travel through the cavity mode. A complex laser system in conjunction with a

slew of analog electronic are used for the generation of the various laser beams

required to lock and probe the system. Measurement on the system is performed

using an optical heterodyne setup, allowing us to get near shot noise limited detection.

A vast majority of the optical, mechanical, and electronics setup was from the

thesis works of Michael Armen (Mike) [14] and Joseph Kerckhoff (Joe) [29]. The

setup has been moved between various cities and buildings and was in the process of

being revived in a new building as I was joining the group. I was tasked with bringing

36
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the entire system back to life and making the necessary modifications needed for my

specific experiments.

3.1 Laser system setup

At the core of this experimental setup is a complex and dense optics table. My first

reaction when I saw such a system was, ”how in the world will I ever be able to figure

out what every single component does?” The task seems daunting but constantly

working with such systems, you quickly learn that they are constructed in a way to

be very modular, and debugging them is not as hard as it first seems. Here is my

optics setup, as seen in Figures 3.1 and 3.2.

Figure 3.1: This picture illustrates the complexity and density of optics setups for
cavity QED systems.
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Figure 3.2: This picture illustrates the vacuum chamber and input optics setup.

For completeness, we will now cover the individual optical and electronic compo-

nents of the setup. The schematic diagram in Figure 3.3 is the same one found in

Joe’s thesis [29]. Majority of the components remained the same and I was tasked

to re-set this up according to this configuration.

The main laser that drives our laser system setup is the fancy Toptica DL Pro

which operates at a wavelength of 852nm. It does have a small amount of tunability

around that wavelength but we will be using it to probe a very narrow atomic

transition in the wavelength range. The beam from the diode laser is first double

passed through an acousto-optical modulator (AOM) which shifts the frequency

by −253MHz (AOM1 in Figure 3.3). The shifted beam is not put through a

transfer cavity. This transfer cavity (TC) is a large mechanically stable 25cm long

tabletop cavity. The DL Pro’s is locked to the transfer cavity by the use of a



CHAPTER 3. EXPERIMENTAL SETUP 39

Figure 3.3: Schematic diagram of the major optical and electrical computer in the
cavity QED setup.



CHAPTER 3. EXPERIMENTAL SETUP 40

Pound–Drever–Hall (PHD) technique [30] on the reflected signal, such that the

frequency shifted beam is resonant with the TC. The DL Pro has both a fast current

feedback port and a slower piezo feedback port. We utilize both in a two-branch

servo to lock the laser to the TC. In addition, we send the raw beam from the DL

Pro to a cesium cell in a saturated absorption setup. This scheme allows us to lock

our TC such that the nominal output frequency of the DL Pro is the frequency of

the cesium F = 4→ F ′ = 5 D2 atomic transition.

With our master laser locked, we will use the extremely narrow frequency output

beam from the TC to seed an homemade injection locked diode laser. Doing so will

provide us with an extremely stable high power source to use in various places within

the experimental setup. The output of this slave laser is used for three applications

within the experiment: the probe to the science cavity, the local oscillator (LO)

beam for our heterodyne measurement setup, and also a seed to produce the beams

for the magneto-optical trap.

The component for the probe beam is further frequency shifted by double passing

it through another modulator (AOM3) to impart on it an additional frequency shift

of −506MHz, for the total red shift of 759MHz. The shifted probe is then sent

through a fiber electro-optical modulator (EOM1) to add sidebands to the light.

With a tunability range of up to around 1GHz, we have the significant flexibility in

selecting the final probe frequency by setting the EOM frequency.

The component for the LO beam is also again frequency shifted by double passing

it through AOM2. However it is blue shifted to bring the frequency back close to the
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atomic transition frequency since all of our experiments will be performed in that

range. This AOM provides us the flexibility to adjust the LO frequency to match

the probe even in situations where the probe beam is detuned from the atomic

transition. The LO was setup such that the power available for detection was 2mW.

For the laser cooling and trapping part of the setup, we take a small component

of output of the slave laser and send it into a homemade tapered amplifier (TA) to

generate the beams. Before seeding the TA, the light is double passed through an

AOM to bring the frequency back close to the atomic transition frequency since the

output of the slave laser was red detuned by 253MHz. The amount of light available

for the seed is 30mW. The TA used in the setup is quite old and probably running

on its last legs. With a lot of effort, we are able to get out just over a 100 mW. That

beam is further passed through components, one being another AOM. This static

AOM serves a dual purpose by covering the remaining frequency shift in order to

get the beam at the appropriate frequency for tapping but also as a fast electronic

shutter. The resulting beam is then fiber coupled to the other side of the table to be

used in the experiment. Originally, a 2 to 6 fiber splitter was used to combine the

trapping beams with the repumper beam (more on this later) and distribute them

to the 6 necessary beams needed to form the MOT. However, due to the splitter

malfunction, we changed it such that we used 3 beams, one for each axis, and retro

reflected them on themselves to achieve the same result.

Now that we have finished covering the 852nm light, we will shift focus to the

825nm laser beam which is used to lock the science cavity in our experiment. This

beam is generated using a titanium-sapphire (Ti:S) commercial laser system. The
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TiS laser is frequency locked to the TC as well but in the opposite direction. This

allows for TiS laser to exactly follow the Toptica DL Pro. Getting the frequency for

the TiS just right so that a resonant mode exists in both the science cavity and TC

is a bit tricky but there is a lot of flexibility with the wavelength tuning mechanism

available to you. In terms of locking the science cavity with this beam, it needs to

be resonant with the cavity at the same as the 852nm beam (or close). In order to

achieve this flexibility, the locking beam is sent through a fiber EOM to put sidebands

on it. These sidebands are adjusted to set the resonant frequency of the cavity. The

cavity coatings are also very high reflectors at 825nm, allowing for a sharp resonance.

Actual locking of the science cavity is done via a transmission PDH.

3.2 Atom preparation and delivery

At room temperature, a gas of cesium atoms would be whizzing by at speeds over

200m/s. It would be impossible to controllably get such atoms into a tiny optical

resonator to perform experiments. Delivery of the atoms is actually quite controlled.

First we start up by forming a magneto optical trap of the cesium atoms about 1 cm

above the cavity. In order to even think about laser cooling atoms, we need them to

be in an ultra high vacuum environment of about 10−7 torr. Traditionally six beams

are required to form a MOT but we used only three and retro reflected them onto

themselves to get two counter propagating beams for each of the axises. The beams

were blown up to have a diameter of around 1cm and also 15mW of power. We form

a quadrapole trap centered at the location of trapping interest with the use of an

anti-Helmholtz coil and various smaller Helmholtz coils. The technique for trapping

the atoms was quite straight forward; we did not try to do anything more fancy than
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a MOT [31][32].

The atoms were sourced via a getter that was located a ways away from the

cavity. The output from the getter is directional and you can build up pretty large

background pressures with this thing. In the beginning when I could not create

a MOT for the life of me, I ran the getter on the highest current setting. This

eventually did allow me to find a weak MOT signal and tune from there but it

also led to the quick degradation of the cavity. Since the opening of our cavity is

large relative to previous cavity QED experiments, we are more susceptible to the

background cesium pressure. Over time, cesium atoms stick onto the mirror coatings

introducing an additional loss and thus lowering the finesse. When this occurred

in my case, I was able to save the cavity by sonicating the mirrors with the high

reflector surface facing toward a solution a mild citric acid.

In our vacuum chamber, the geometry of the physical chamber restricts how low

you can get the beams to cross over the cavity. The best you can do is around 10-12

mm above the cavity. It would have been nice to get the atoms closer so that they

have slower speeds as they propagate through the cavity mode.

3.3 The cavity

The last key component to our cavity QED setup is the high finesse Fabry–Pérot

cavity. It is constructed using two spherical high reflectivity mirrors (both with

radius of curvature R) which are separated by length l. This leads to a fundamental

TEM00 Gaussian mode with waist
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w2
0 =

z0λ

π
(3.1)

where z0 is the Rayleigh range of the Gaussian beam. For a symmetric optical cavity,

we have

z0 =
l

2

√
2
|R|
l
− 1 (3.2)

w2
0 =

λl

2π

√
2
|R|
l
− 1 (3.3)

Now for our specific setup, the cavity mirrors are separated by 300µm and have a

10cm radius of curvature. At a wavelength of 852nm, we get a mode with Gaussian

waist of 32.4µm and free spectral range FSR = 500GHz. We are also interested in

calculating the mode volume for our cavity mode since we will need it in determining

the coupling coefficient. For the TEM00 mode in a cavity of length l, the mode

volume is

Vm =
π

4
w2

0l (3.4)

We can now compute the atom-field coupling strength from

g0 = d

√
ω

2~ε0Vm
(3.5)

where d is the dipole moment of the atomic transition. We can go ahead and

calculate this out for our cavity, giving us a value of g0 = 13.2MHz. We are well on

our way to parameterizing our science cavity.
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The last thing we need to determine is the cavity decay rate which can be cal-

culated by measuring the cavity linewidth. Measurement of the linewidth is straight

forward as it can be done by fitting a Lorentzian function to a frequency swept signal

of the cavity transmission or by measuring the cavity decay rate using a ringdown

measurement. We can also go about estimating this by first calculating the expected

finesse of the cavity. The mirrors used in the formation of the cavity are a λ/4 di-

electric stack on a 10cm radius of curvature polish glass surface. These mirrors were

custom ordered from Advanced Thin Film (ATF). It is only coating developments

of the past two decades that have allowed us to achieve mirror surfaces with such

high reflectivities. The mirror coatings are specified to have 8ppm transmission at

852nm and a absorption/scattering loss of 2ppm. We can calculate the finesse of such

a cavity using

F =
2π

Ltot
=

2π

(T1 + A1) + (T2 + A2)
(3.6)

where Ltot is the total round trip loss within the cavity. This gives us a calculated

finesse of F = 314, 000. Using the finesse and the FSR, we can calculate the linewidth

using

F =
FSR

δf
(3.7)

With this expression we get a cavity linewidth of δf = 1.6MHz and a cavity de-

cay rate κ = δf/2 = 0.8MHz. Lastly, with the fixed spontaneous emission rate

of the cesium atom, we now have all our cavity QED parameters (g0, κ, γ⊥) =

(13.2, 0.8, 2.6) MHz.
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3.3.1 Construction of cavity

The cavity which I used for these experiments is a modified version of Joe’s cavity

from this thesis work [29]. Each mirror is formed from a 5cm diameter cylinder to

a bullet shape with the high reflector side of the mirror having a diameter of 2cm.

This is done because if you wanted to form a cavity on the order of 10µm, you

would not be able to get the mirrors physically that close if they had a diameter

of 5cm. Due to the curvature of the mirror surface, the outer edges limit the

minimum mirror separation. Since the cavity modes will have beam waits on the

order of 10’s of microns, it is unnecessary to have mirrors this large. The mirrors

are each mounted within aluminum rings. The ring diameter is slightly larger than

the mirror’s at the point of contact. This was originally done because the mirrors

were not glued into the rings but rather held by three 15mil thick strips of RTV655

places symmetrically around the the ring. In Mike’s original experiment, the mirrors

were glued into their mounts. This glue caused strain within the mirror substrates

which propagated to the inside cavity surface. Since you can never perfectly glue

the mirror symmetrically around the ring holder, this strain will be uneven. This

uneven strain in a high finesse cavity causes significant birefringence. Joe tried to

solve this problem by not gluing the mirrors but holding them with friction using

rubber strips. The birefringence problem was solved but mechanically stabilizing the

length of the science cavity became a nightmare.

When modifying Joe’s cavity, I did attempt to use the RTV strip method at first.

I experienced far too much mechanical noise and ended up just gluing the mirrors

to the ring. Since I wasn’t perfect in my gluing technique, significant birefringence

returned to the cavity. Continuing with the construction of the cavity, the aluminum
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rings are glued down to in a half-pipe shaped slot. Each of these mirror mounts

were subsequently glued to a double stack shear mode piezoelectric plate. The piezo

stacks where then glued down with conductive epoxy to a H shaped aluminum block

sized approximately 5cm by 2cm. Figure 3.4 shows a mechanical drawing and picture

of this cavity mount setup.

Figure 3.4: Schematic and picture of mount used in the construction of the Fabry-
Perot cavity for the experiment.

This cavity mount was ultimately placed upon a multi-stage vibration isolation

stack within the vacuum chamber. Doing so decouples the cavity from any mechan-

ical vibrations that creep into the system through the optical table and the vacuum

chamber. You can refer to Mike’s thesis work [14] for a more detailed description of

the isolation stack that he built and I just used.
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Figure 3.5: Picture of cavity within the vacuum chamber taken from a side angle
viewport.

3.4 Self-feedback setup

The self-feedback component of the setup was entirely new and was the first time we

attempted to apply any sort of feedback mechanism to a cavity QED system. We

had the choice of a few ways of implementing this feedback; we could take the light

from either the input or output mirror and also feedback it back into either mirror

as well. Due to ease of setup, it was decided to apply feedback by collecting the

reflected signal at the input mirror of the cavity and feedback it back into the same

mirror with a controllable phase shift. The setup is quite similar to the network

scheme discussed in Section 2.2.2. If you take the left configuration in Figure 2.9

but send the feedback beam back into the same port you collected it from, you get

the topology we implemented in the lab. Schematically, the method of feedback

implementation is shown in Figure 2.12.
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For successful implementation of self-feedback in this setup, we need to achieve

two things. Firstly, we need to define a reflection path which allows the reflected

probe beam from the cavity to be routed to an area where it can be manipulated and

put back into the input cavity mode. Secondly, that path that the reflected probe

traverses needs to be stabilized by a different axillary beam which does not interfere

in any way with the delicate feedback mechanism.

3.4.1 Feedback path and control

Finding an optimal way to apply the feedback was a bit challenging. As discussed

earlier in Section 3.3, we have a cavity which experiences an appreciable amount of

birefringence. Due to this, we cannot use circular polarized light and the polarization

optics tricks that allow for the easy separation of co-linear beams. Stuck with the

use of linearly polarized light, we had to be more creative with the feedback scheme

and the use of a beamsplitter at the input in Figure 2.12 now probably makes more

sense. Figure 3.6 shows an overhead shot of the input optics table with the input

probe beam and feedback overlaid on top.

The first component the probe beam interacts with is a beamsplitter, though it

is not your ordinary beamsplitter. A dichroic beamsplitter (Semrock LPD01-830) is

used (it will become more apparent later on as to why) to provide a 80:20 power split

of our 852nm probe by adjusting the angle of incidence. Right off the bat we throw

away 80% of our probe beam. Since most of our experiment will occur with very

weak probes, we are not starving for power and can afford to do this. However, now

on the reflected signal, we can capture 80% of the light for our feedback scheme. You
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Figure 3.6: Overhead view of the input optical table showing an overlay of how the
optical probe beam traverse the feedback path.

may wonder why I did not push that value up more to capture as much feedback light

as possible? If you think about it, the way the feedback path is to be implemented

you can form an external cavity with the input mirror of the science cavity and

bottom mirror of the feedback path. Having a lossy beamsplitter allows us to avoid

this while still providing enough feedback light to achieve the desired results.

The beam then propagates through the standard set of lenses and waveplates,

gets reflected back on itself and comes back to the beamsplitter. Now we pick off

80% of the reflected signal to be processed in our feedback path. Within the feedback

path, the beam is first passed through another dichroic beamsplitter (Semrock

LPD01-830) but at an angle such that practically 100% of the 852nm probe light

gets transmitted. The purpose of this dichroic is to filter out any of the locking



CHAPTER 3. EXPERIMENTAL SETUP 51

825nm beam from the feedback path. The beam then travels through a liquid

crystal variable waveplate (Thorlabs LCC1113-B). This is a pretty neat little optic,

allowing the control of the optical birefringence between the two axis by varying

the amplitude of a AC square wave. Having such a control will prove very useful

for our experiment. Lastly, the beam travels through a lens and gets focused down

to a small mirror which is mounted on a piezo stack. This piezoelectric actuator

will give us the ability to lock the overall feedback phase to any arbitrary phase of

our choosing. The beam is reflected from this mirror and travels back through the

described beam path into the cavity mode.

3.4.2 Feedback pathlength lock

In order to stabilize the beam path discussed above, we must use a separate locking

beam which is off resonance to all the frequencies of interest and also the opposite

polarization compared to the probe beam. To generate such a beam, we utilize one of

our homemade external cavity diode lasers. This diode laser is frequency stabilization

to the repumping F = 3→ F ′ = 4 D2 transition using a cesium saturated absorption

setup. Since we will be needing to cancel out the DC component of the interference

fringe of this beam interfering with itself, the intensity of the beam must not drift as

it travels through various fiber lines to the input optics table. We utilize an intensity

servo that uses an acousto-optic modulator before the final fiber to stabilize the beam

intensity at the point of interest (component 1 in Figure 3.7). This lock beaming

is injected into the input optics table via the same fiber EOM as the science cavity

locking beam. This path is set up to be S-polarized light which is combined with

the P-polarized probe beam on a polarizing beamsplitter (component 2 in Figure 3.7).
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Figure 3.7: Overhead view of the input optical table showing an overlay of how the
locking beam traverse the feedback path. Component 1 is the photodetector used
for the intensity servo. Component 2 is the photodetector where the error signal is
generated for the pathlength lock.

Now that the locking beam is co-linear with the probe beam, we will see how it

traverses the optics along the way. The first dichroic beamsplitter sends a portion of

the locking beam to a photodetector which will be used to monitor the interference

pattern when we self interfere the locking beam onto itself. The portion of the locking

beam which transmits through the dichroic will traverse the exact same path length

which the probe beam travels. On its third time at the dichroic beamsplitter, the

transmitted portion is sent to the same photodetector we referred to earlier. At this

photodetector we have two beams interfering with each other where their pathlength

difference is exactly the feedback path we are attempting to lock. You will notice

that just before the detector there is a linear polarizer. Its purpose is to filter out any
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of the probe beam which makes it to this area since it will impart large DC signals

on the photodetector. Now there is a very large DC component to this signal from

the interference and we must zero that out using the servo electronics before we can

move forward. What remains is a very small fringe signal which oscillates with the

pathlength fluctuations of our feedback path. Using a standard PI servo controller,

we use the fringe signal from the photodetector as our error signal and lock this path-

length by feeding back to the piezo on the tiny mirror at the end of the feedback path.

You may be wondering how all these components come together to provide us

with the locking and control we require. Our pathlength of interest is now locked

such that the two portions of the locking beam are 90◦ out of phase. But for our

experiment we really don’t care about the phase difference of the locking beam, we

are concerned only about the phase difference of our probe beam. This is where

the liquid crystal variable waveplate comes into play. Remember that our probe

beam and locking beam are two orthogonal polarizations. We set up our variable

waveplate such that the slow and fast axis of the waveplate aligns with the s and

p polarizations of the light. Now as we adjust the birefringence via the electronic

control, the relative phase difference on the locking beam will remain at 90◦ since

this change is slow enough for the servo to always maintain its lock. However we are

continuously changing the relative phase difference between the two polarizations

and therefore giving us full range of continuous tuning of the phase in the feedback

path for the probe beam. In practice, the servo lock is very finicky and much care

must be taken not to disturb the optical table.
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When performing experiments, we did not map our electronic control of the feed-

back phase to the absolute phase. We were however able to easily set the system to

a few fixed phase points. If we measure the output of the cavity with feedback in

place, the output power will oscillate in correlation with the pathlength fluctuations

of the feedback. To lock the feedback phase of the probe beam to φfb = 0, we vary

our control knob until we maximize the measured output. In this condition, the first

incident probe beam and the reflected feedback probe beam constructively interfere,

in essence increasing the effective drive of the cavity. Conversely, to lock the feedback

phase of the probe beam to φfb = π, we vary our control knob until we minimize the

measured output. In this condition, the first incident probe beam and the reflected

feedback probe beam destructively interfere, in essence decreasing the effective drive

of the cavity.

3.5 Heterodyne measurement setup

The measurement setup for our experiment is very important to the quality of our

measurements and thus we will spend some time going over the basics. From the

cavity, the output light is routed to a 50:50 beamsplitter element where it is combined

with the local oscillator beam. Each of the two output ports of the beamsplitter

now have parts of both beams co-linear. These combined beams are put onto a

high speed photodetector where they are detected. This interferometric method of

detection is quite powerful, allowing us to measure extremely weak optical signals

since the measurement is shot noise limited (or near). Figure 3.8

Let’s work out some simple expressions for out detected signals. The operators for
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Figure 3.8: Schematic of the interferometric homodyne/heterodyne detection system.

the two fields incident on the photodetectors

ĉ =
â+ b̂√

2
(3.8)

d̂ =
â− b̂√

2
(3.9)

where â is the output field from the cavity b̂ is the local oscillator beam. The combined

signals are then subtracted in the balanced photodetector to product an output signal

î = ĉ†ĉ− d̂†d̂

= â†b̂+ b̂†â
(3.10)

If we substitute for the local oscillator the expression for a coherent state such that

b̂ = |β|eiθ, we get
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î = |β|(eiθâ† + e−iθâ) (3.11)

The large amplitude of the local oscillator acts as a gain term, allowing us

to overcome all electronic noise with the measurement setup and only be limited

by intrinsic sources. Now, for the heterodyne measurement, the local oscillator is

slightly detuned from the signal we are measuring. This causes an interference fringe

at the output of the balanced detector which oscillates at the detuning frequency.

We can use the oscillating feature to sweep the entire phase space, in turn measuring

two orthogonal quadratures of the output field quasi-simultaneously. Our in lab

measurement setup is shown in Figure 3.9. We take out the output of the balanced

detector and send it through a 0◦ RF splitter. Each of those two outputs are then

mixed down using a RF mixer where the local oscillator signal is a RF signal at the

heterodyne detuning frequency. By having the two LO signals differ by 90◦ in phase,

we are able to measure two orthogonal quadratures.

If we apply a sine and cosine transform to Equation 3.11, we get

î = |β|(eiθâ† + e−iθâ)
(eiωH t + e−iωH t)

2

=
|β|
2

(ei2ωH tâ† + e−i2ωH tâ+ â† + â)

(3.12)

î = |β|(eiθâ† + e−iθâ)
(eiωH t − e−iωH t)

2i

=
|β|
2i

(ei2ωH tâ† − e−i2ωH tâ− â† + â)

(3.13)
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Figure 3.9: Schematic of the interferometric homodyne/heterodyne detection system.

Low pass filtering both of these signals we obtain the two quadratures

x̂ =
|β|
2

(â† + â)

ŷ =
i|β|
2

(â† − â)

(3.14)

3.5.1 Calibration of output measurements

In order to analyze the signal we measured, we first must have calibrated output

measurement schemes that allow us to work out to high accuracy the power of the

output beam. For quick diagnostics, we have a Hamamatsu APD available at the

flip of a mirror. It can be used down to nW power levels. In order to calibrate its

response, we compared the measured output voltage to the power measured from a

calibrated Thorlabs power meter. Since the response of the APD is highly linear, we

can expect that responsively measurements made at higher optical power levels will



CHAPTER 3. EXPERIMENTAL SETUP 58

still hold true at lower levels. With the noise floor zeroed out, the APD responds

such that

VAPD = 5× 108 · Ps (3.15)

where VAPD is the output voltage measured from the APD detector and Ps is the

optical power of the signal of interest.

We also have to characterize the response of the total heterodyne detection setup.

That first begins by determining the responsivity of the balanced detector. By know-

ing the incident power levels of both the signal and LO beams as well as their overlap

efficiency, we should be able to extract the response. The overlap efficiency, or ho-

modyne efficiency ηH , is a metric of how well the modes of the optical output signal

and LO overlap at the photodetector. To calculate it, we interfere in one arm of the

heterodyne setup equal power signal and LO beams. This gives us a DC signal with

a AC wiggle from the time varying relative phase. Since the measured voltage from

the photodetector is proportional to ηH , by just measuring the max and min of the

interference signal, we get

ηH =
Imax − Imin
Imax + Imin

(3.16)

Doing this for our setup, we find that the homodyne efficiency is ≈ 0.8. This is quite

good. It took a lot of effort to get the efficiency this high. Since the output optics

table is very cramped and in an awkward place, it was hard to really get in there to

manipulate the optics to maximize this. I used a beam profiling camera to ensure

that the LO beam and the cavity output signal beam matched as well as possible
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over the entire distance of the interferometer.

Now with the homodyne efficiency ηH in hand, we can measure the responsivity

of the balanced detector. By looking at the peak-to-peak voltages of the AC signals

produced, it was calculated that the responsivity C = 3.2× 104 V/W .

We take out heterodyne signal, which in our experiment has a frequency detuning

of 25MHz, and put it through RF electronics to mix it with a sine and cosine LO

signals. The output of the RF mixers are low pass filtered at 5MHz. By measuring

all the input-output relations of the signals as they propagate through the RF cir-

cuitry, we can get an overall expression which relates the output optical signal to the

measured amplitude quadrature heterodyne with 50Ω input coupling

VH,50Ω = 2.769× 103 ·
√
Ps (3.17)



Chapter 4

Measurements and Results

4.1 Cavity parameter control with coherent feed-

back

With our self-feedback configuration in place and electronics setup to lock the system

and give us control, we are able to begin measurements system dynamics and how

they are affected by the feedback. Like we predicted in Section 2.2.3, the output

power oscillated around the nominal output with the application of feedback. We

used measure to set the feedback phase to the two extreme cases in order to perform

the experiments.

The first and easiest thing to measure is the cavity linewidth. If you remember

from Figure 2.14, the cavity linewidth strongly depends on the feedback phase of the

network. The overall linewidth can be either greater or smaller than the nominal no

feedback linewidth. Like previously discussed, depending on if the feedback signal is

constructively or destructively interfering with the probe beam, the input mirror’s

60
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effective transmission is altered. This is also what gives rise to the phase dependant

effective drive.

In order to measure the linewidth, cavity ringdown measurements were performed

on the system. Since the probe beam generated as a sideband by the fiber EOM

it travels through, we had the ability to rapidly modulate the probe on and off

using an RF switch. This RF switch was driven by a square wave driven at 10kHz,

allowing enough time for the cavity intensity to build up and also dissipate. Due to

the microscopic size of the cavity, the cavity relaxation time is on the order of 100ns

even though the finesse is very high. In order to actually measure this accurately,

we used a high speed photodetector on the output. By looking at the output with a

modulated input beam, we can fit an exponential decay to the cavity response once

the input is turned off, thus giving us a measure of the linewidth. This measurement

was done in three instances: with no feedback, with feedback and φfb = 0, and with

feedback and φfb = π. Table 4.1 shows our measured results.

The measured linewidth of the cavity in the no feedback configuration was not

quite as narrow as the theoretical value of δf = 1.6MHz. Using our measured

linewidth value, we have a measured finesse F = 222, 000. As we talked about

previously, the quality of the cavity degrades as it is exposed to ambient cesium gas

in the vacuum chamber.

Feedback Phase φfb Cavity Linewidth (MHz)
No feedback 2.25± 0.08

0 2.86± 0.09
π 1.83± 0.20

Table 4.1: Cavity linewidth at various feedback phase settings
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We were able to directly control the linewidth of our cavity QED system over a

large range with the application of feedback. Having such a knob in experiments can

be quite useful as it allows you to explore various parameter regimes of cavity QED

without having to alter the mechanical design of the cavity.

4.2 Atom cloud dynamics

We have talked about how we generate and control the atom cloud previously in

Section 3.2. However since our method of delivering the atoms is to drop them and

let them fall under the influence of gravity through the narrow cavity, we can get

wildly different results drop to drop.

4.2.1 Using transmission data to back infer atom cloud dis-

tribution

How can we go about determining the number of atoms with the cavity mode at some

time and also their distribution? Let’s go back to the semi-classical description for

a multi-atom system and take a closer look at the equation. In the situation of no

detuning, Equation 2.1.2.1 reduces to

|y| = |xss|

1 +
N∑
j=1

2c2
jC0

1 + c2
j |xss|2

 (4.1)

Now let’s assume we are in a regime well above the nonlinear response such that the

atoms are mostly saturated. The term in the denominator can thus be simplified as

follows
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|y| ≈ |xss|

1 +
N∑
j=1

2c2
jC0

c2
j |xss|2


≈ |xss|

1 +
2C0

|xss|2
N∑
j=1

�
�c2
j

�
�c2
j


≈ |xss|

(
1 +

2C0N

|xss|2

)
(4.2)

Visually, we are working in a regime where the response is only a small dip from the

empty cavity response, as shown in Figure 4.1.

Ok, let’s take our new approximation and try to back calculate the number of

atoms using transmission data. Just note that the MBE description is approximate

and in certain situations does not match the actual result. This method is just to

give us an approximation as a starting point. Figure 4.2 is a capture amplitude

quadrature heterodyne signal which shows a dip in the transmitted signal due to the

cloud passing through the cavity mode. This dip is quite small since we are far away

from the nonlinear response region.

Using the approximation is Equation 4.2, we back calculate the atom number

corresponding to this response. Figure 4.3 gives us that result. What we get is that

we are in regime where there are only a handful of atoms entering the cavity mode at

a time or effectively contributing to the response. This 15-20 atom regime is perfect

if we want to study the so called mesoscopic regime.

As a check, we can do a Monte Carlo simulation of an atom cloud thermally
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Figure 4.1: Amplitude quadrature heterodyne signal with constant probe as atom
cloud drops through cavity mode. The red curve depicts the empty cavity response
and the blue curve is the measured heterodyne signal.
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Figure 4.2: Amplitude quadrature heterodyne signal with constant probe as atom
cloud drops through cavity mode. The red curve depicts the empty cavity response
and the blue curve is the measured heterodyne signal.
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Figure 4.3: Inferred atom number over time as cloud drops through cavity mode.
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expanding and falling under gravity. We set up a simulation where we have a cloud

of 5 × 105 atoms positioned 13mm above the cavity mode. The cloud is cooled to a

temperature of 25µK. The cavity parameters are the same as the ones used in the

experiments. Figure 4.4 shows that even in simulations we get an approximate atom

number in the range of 15-20 in the cavity mode. In the simulation we actually count

the number of atoms within the cavity mode as we propagate them in time. What

we count as in the cavity is any atom within two Gaussian waists of the cavity axis.

Figure 4.4: Simulated atom number within cavity mode as cloud falls.
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4.3 Real time amplitude bistability

With our system, we looked at atom dynamics and approximate distribution

within the cavity mode. Even though we cannot obtain the theoretical maximum

atom-cavity coupling, due to the polarization of the input light but also the motion

of atoms through the cavity mode, we still have a situation where the nonlinear

response is strong enough to see interesting behavior in a regime of low energy probe.

To start, we find the lowest probe level needed to not have the atom interaction

cause the cavity to dark. What I mean by that is that the nonlinearity is so strong

that the intracavity cavity field in practically brought to zero. Find that minimum

level, we now have a range of input amplitudes to sweep over such that we make

sure the system can go through its entire hysteretic behavior. Since the time it takes

an atom to traverse through the cavity mode is on the order of ≈ 100µs, we need

to make sure that we are sweeping our probe fast enough that we get a handful

of periods of the response in that time. Since we are assuming that the atom is

momentarily stationary within the while we are probing, our sweep is required to be

fast. Therefore, we decide to with a sweeping frequency of 100kHz. This gives us

about 10 periods while the atom travels through the cavity mode. We use a RF in

reverse to impart the 100kHz modulation on top of the RF signal that drives the

EOM that generates the probe beam. The shape of the modulate is sawtooth, giving

us linear sweep of the cavity input field.

With one quadrature of the heterodyne measurement locked to zero, the other

signal provides us with the measure of the amplitude quadrature. This signal is

recorded via the DAQ at a rate of 200MHz over a large 20µs window, with the atom
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drop approximately located in the middle of that time window. A large acquisition

window gives enough wiggle room to make sure we capture everything.

Figure 4.5: Captured amplitude quadrature signal showing the output of cavity QED
experiencing real-time bistability. The red curve is a guide that shows the empty
cavity response and also the input drive field. The blue curve is the output field
which atoms are present in the cavity.

The raw output signal, as shown in Figure 4.5, shows very clear signs of hysteretic

behavior. As we are sweeping our probe from low to high, you can see the intracavity

field being suppressed to a point where it suddenly jumps to a high level. Going in

reverse, the cavity field follows the input, with the nominal loss due to absorption,



CHAPTER 4. MEASUREMENTS AND RESULTS 70

to a point where it suddenly falls to a low state. The drive levels where these sud-

den jumps occur are not equal, as can be seen by the asymmetrical shape of the curves.

Let’s now take this data and try to plot input/output behavior of this system.

First it is key to find a region in the captured dataset where strong nonlinear

response occurs and where that response is fairly constant over a few periods.

Since the atom delivery mechanism is so sporadic, it can be difficult to find good

datasets. The first set of experiments are done with no feedback in place. We take

the raw data and find the best few sweeps. Plotting the input/output behavior

of the system in this region, we get the response as shown in Figure 4.6. The

red curves are for sweeps from 0 drive to the maximum and conversely the blue

curves are for sweeps from high drive to 0. The light shaded curves are the actual

data traces from the real-time bistability. For this plot, we took six consecutive

periods and plotted them on one plot. The dark red and blue traces are the

averages of those six up/down sweeps. The bistability is clear and prominent in

this system. Pay attention to the input drive values that this behavior is occurring at.

Next, we used our self-feedback scheme to control the cavity QED parameters

to see if it has affects on the dynamics of the system. We set the feedback phase

such that φfb = 0. Again we sweep over a range such that we fully go through the

hysteretic region. Figure 4.7 shows the input/output behavior of this system. This

time, we were only able to find three consecutive periods to plot. Once again, the

bistability is prominent however it now is occurring at a lower input drive field in

comparison to the no feedback case.
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Figure 4.6: Real-time input/output relation of cavity QED system experience bistable
response with no feedback.
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Figure 4.7: Real-time input/output relation of cavity QED system experience bistable
response with feedback φfb = 0.
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Lastly, we set the feedback phase such that φfb = π. Again we sweep over

a range such that we fully go through the hysteretic region. Figure 4.8 shows

the input/output behavior of this system. This time, we were able to find

four consecutive periods to plot. Once again, the bistability is prominent however

it now is occurring at a higher input drive field in comparison to the no feedback case.

In the three cases, we were able to collect very good data depicting real-time

amplitude bistability. Such data is difficult to collect in this energy regime and thus

is not a commonly done experiment. The feedback definitely has significant effects

on the dynamics of the system by shifting the bistability region along the input drive

axis and also affecting the width of the hysteretic response.
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Figure 4.8: Real-time input/output relation of cavity QED system experience bistable
response with feedback φfb = π.
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Conclusions

Over the course of this thesis, we have explored the space of cavity quantum

electrodynamics (QED). We have looked at specific examples of nonlinear behavior

in these cavity QED systems and also the potential of forming quantum networks

with such systems. These systems show nonlinear behavior which is quite intriguing

from an information processing standpoint. We can observe simple switching

mechanism in cavity QED based devices that occurs in the ultra low power regime.

Tools and techniques exist to model such systems, allowing us to build complicated

architectures of these photonic computing units.

The practical regime of interest to us lies somewhere between one that can be

easily described and simulated quantum mechanically and one which can be fully

explained using the simple semi-classical Maxwell-Bloch equations. This mesoscopic

regime does not have a well developed theory and the jury is still out on how to

approach such a parameter regime.

75
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Additionally, we studied the case of a simple self-feedback network applied to

a Fabry-Perot optical cavity. The use of coherent feedback gave us the ability to

electronically control various cavity QED parameters of the system without having

to physically alter anything. This is a powerful tool, opening up many possibilities

and ways you approach such systems.

I did spend a majority of my grad school career in the lab building up and

debugging the optical setup. Cavity QED systems are notorious for being extremely

complicated and difficult to run. A large number of components must all work

together at the same time in order to achieve experimental goals. At the end, I did

however manage to collect interesting data from the system. Looking at absorptive

bistability in the cavity QED system, we observed real time switching of the state in

an energy regime low enough to be interesting. Also, by using the coherent feedback

setup, we were able to see how these dynamics shift as you vary the experimental

parameters.

There still lies a lot of work with respect to the modelling and theory for this

project. The data set collected is a good starting point in the exploration of this

space and gives us some intuition of what exactly is happening in these mesoscopic

cases.
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