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Page 3 / 34 Introduction
Motivation

• Consider a 60 year old individual who faces systematic mortality risk:
1. Currently expected to die with probability of 0.7% next year (mortality rate).

How uncertain is this appraisal? What are the chances that the rate is 0.65%
or 0.75%?

⇒ Risk in mortality rates

2. Currently expected to live 25.1 more years. How uncertain is this number?
What are the chances that it changes to 23.7 or 24.5 next year?

⇒ Risk in mortality projections

• While the two questions are related, and the distinction does not matter in
theory, it is relevant for the econometrical/statistical approach
• For personal financial planning/household finance, insurers’ liability risk

evaluation, and government/public economics, question 2 may be more
suitable
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Motivation

!! ! !!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!! "!!"!!"!
!
!

!

"#$%! !!!!! &! ! ! '! ! ! ! !!!!!(! ! ! ! ! ! !!!!!()'!

• Current stochastic mortality models focus on stochastically forecasting
mortality rates (question 1)

→ red in graphic
• This essay considers the risk in mortality projections (question 2)
→ blue in graphic
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Comparison with Interest Rate Models/Yiled Curve Models

• Analogy in the motivation:
I Want to forecast yield curve p(T + 1, τ) based on p(t , τ), 0 ≤ t ≤ T (similar

to question 2)
I Know p(t , τ) = EQ

t [exp(−
∫ t+τ

t rs ds)], so (theoretically) modeling risk in rt

should be sufficient (similar to question 1)
I But to identify reasonable specification, we also need to consider

cross-sectional data (persistence vs. transience of errors, etc.)

• But there are key differences:
I Age: additional dimension

? How does age enter into model equation?
? What are appropriate models?

I Data
? Age/term panels
? Where do we get "mortality forecasts"?

I Risk adjustments (P vs. Q) and consequences
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Literature Review: Mortality

Large literature with various methods on mortality forecasting:
• Lee-Carter approach (Lee and Carter (JASA, 1992)):

log m(t , x) = β
(1)
x + β

(2)
x κ

(2)
t

• CBD-Perks model (Cairns et al. (JRI, 2006)):

logit q(t , x) = κ
(1)
t + κ

(2)
2 (x − x̄)

• P-splines method (Currie et al. (Statistical Modeling, 2004)):
non-parametric model

All these methodologies...
... rely on past mortality data to project the mortality experience in some

optimal sense
... pay little attention on the uncertainty (error estimates) associated with the

projections
... may fail to identify the transiency of different random sources
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Literature Review: Term Structure Models

• Factor models
I Factor analysis: Litterman and Scheinkman (Journal of Fixed Income,

1991), Rebonato (Interest Rate Option Models, 1998)...
I VaR models: Fama and Bliss (AER, 1987), Diebold and Li (JEconometrics,

2006), Duffee (JFin, 2002)...

• Forward rate models
I HJM model: Heath et al. (Econometrica, 1992), Filipović (Lecture Notes in

Mathematics, 2004)...
I In the case of mortality: Cairns et al. (ASTIN Bull., 2006), Barbarin (IME,

2008), Bauer et al. (IME, 2010), Bauer et al. (2011)...

• Finite-dimensional realizations/Affine term structure models
I FDR: Björk and Gombani (FinStoch, 1999), Björk and Svensson

(MathFinanc, 2001)...
I Affine Models: Duffie and Kan (MathFinanc, 1996), Duffie et al.

(Econometrica, 2000), Piazzesi (Handbook of Financial Econometrics,
2010)...

• Improvement of Cross-sectional constraints
I Joslin et al. (RFS, 2011), Duffee (2011)...
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Preview of Results

• Confidence intervals for life expectancies in one year for a now 20 year
old female (USA)
• Comparison with conventional mortality forecasting approach –

Lee-Carter
I Generally underestimate the risk in mortality projections

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections



Page 9 / 34
Factor Analysis of Mortality Forecasts

1 Introduction

2 Factor Analysis of Mortality Forecasts
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Data and Projection Methods
Factor Analysis
Simple Factor Models

3 Forward Mortality Factor Models

4 A Non-negative Model Variant

5 Application

6 Conclusion
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Factor Analysis of Mortality Forecasts

Forward Force of Mortality Framework

Forward survival probabilities: {τpx (t)|(τ, x) ∈ C}

Forward force of mortality (easier to model/work with):

µt (τ, x) = − ∂

∂τ
log{τpx (t)}

Consider time-homogeneous, Gaussian models

dµt = (A µt + Λ) dt + Σ dWt

• A = ( ∂
∂τ −

∂
∂x ) (infinitesimal generator of a strongly continuous

semigroup)

• Wt : d-dimensional Brownian motion
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Factor Analysis of Mortality Forecasts

Forward Force of Mortality Framework
Define

Fl (tj , tj+1, (τ, x)) = − log


τ+l px (tj+1)

τ+l+tj+1−tj
px−tj+1+tj

(tj )

τ px (tj+1)

τ+tj+1−tj
px−tj+1+tj

(tj )


= − log

{
τ+lpx (tj+1)

τpx (tj+1)

/
τ+l+tj+1−tj px−tj+1+tj (tj )

τ+tj+1−tj px−tj+1+tj (tj )

}
• l : time lag, tj+1 − tj = ∆
→ Measures the log change of the l-year marginal survival probability

!!!!!!!"# # # # # # # # # # # # # !"$!$"# # # !"$!$"$%# #

#

#

!
!
!

! ! ! !"$"## # # # # # # # # # !"$!$"# # # !"$!$"$%!
!
!
!
!

!
!

! !!!!!!!!"# # # # # # ############!# # # # # # ######%!
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Factor Analysis of Mortality Forecasts

Forward Force of Mortality Framework

Proposition I

If tj+1 − tj = ∆, the vectors

F̄l (tj , tj+1) =

(
ω(τ, x)×

Fl (tj , tj+1, (τ, x))√
tj+1 − tj

)
(τ,x)∈C̃

=

(
ω(τ1, x1)×

Fl (tj , tj+1, (τ1, x1))√
tj+1 − tj

, . . . , ω(τK , xK )×
Fl (tj , tj+1, (τK , xK ))√

tj+1 − tj

)
,

j = 1,2, . . . ,N − 1 are i.i.d. Gaussian distributed.

(the weights ω(τ, x) allow for different weighting of future – e.g. p(t , τ))
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Factor Analysis of Mortality Forecasts

Data and Projection Methods

"True" Mortality forecasts from market place or insurance prices→ not
available or at least not abundant/noisy...
Raw data: (deterministic) mortality forecasts generated from rolling windows
of past mortality experience
• Regions: England/Wales (ENW), France (FRA), Japan (JPN), United

States (USA), and West Germany (FRG)
• Genders: male and female
• Years: 1956-2006
⇒ 22 projections (each using mortality experience of past 30 years)

• Methods:
Lee-Carter
I Weighted-least-squares algorithm
I Ages: 0-95

CBD-Perks
I Basic model w/o cohort effect
I Ages: 25-95

P-splines
I Fixing the degree of freedom (df ) at 20
I Ages: 25-95

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Factor Analysis of Mortality Forecasts

Factor Analysis

With ∆ = tj+1 − tj = 1, F̄l (tj , tj+1) are i.i.d. Gaussian
⇒ F̄l (tj , tj+1) = a + bZj + εj

• a ∈ RK , b ∈ RK×d , factors Zj ∈ Rd with E(Zj ) = 0 and Cov(Zj ) = Id×d

Estimates of a, b, and the number of factors, d , from principal component
analysis:

• Decompose empirical covariance matrix of F̄l (tj , tj+1): Σ̂

Σ̂ = U × diag{λ1, . . . , λK } × U′ =
K∑
ν=1

λν uν u′ν

≈
d∑
ν=1

λν uν u′ν = Cov

( d∑
ν=1

uν
√
λν × Zν,j

)
• Determine the value of d

I
∑d

ν=1 λν∑K
ν=1 λν

≥ ξ

• Investigate the shape of the factors

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Factor Analysis of Mortality Forecasts

PCA Results: The Lee-Carter Approach

Country Factor Female Population Male Population
Value Percentage Value Percentage

United States
λ1 4.50× 10−2 93.13% 7.51× 10−2 84.29%
λ2 1.80× 10−3 3.70% 8.30× 10−3 9.26%
λ3 6.15× 10−4 1.27% 2.60× 10−3 2.91%
λ4 4.79× 10−4 - 1.91× 10−3 -
λ5 2.29× 10−4 - 8.57× 10−4 -
λ6 2.07× 10−4 - 4.22× 10−4 -

• First factor (PC1) dominates the rest
• Higher volatility for male population

I Higher absolute value
I Lower weight of first principle component

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Factor Analysis of Mortality Forecasts

Surfaces of Eigenvectors: ENW/Lee-Carter

(a) female, PC1 (b) female, PC2

(c) male, PC1 (d) male, PC2

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Factor Analysis of Mortality Forecasts

Summary

• Very similar shapes exhibited across different
countries/genders/forecasting methods (at least for the first factor)

⇒ PC1
I Systematic, increasing in age/term
I Forward forces of mortality for high ages in the far future more volatile than

in the near future

→ slope factor

⇒ PC2
I Male (consistently over time decreasing influence, even generate inverse

relationship)
I Female (sometimes similar, sometimes rather unsystematic)

→ twist factor

• d = 1 for female population; d = 2 for male population (Lee-Carter)

• d = 1 for both genders (CBD & P-spline)
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Factor Analysis of Mortality Forecasts

Simple Factor Models

Simple factor models from the factor analysis

• Yν(j) 4= (uν
√
λν)T F̄l = (uν

√
λν)TE[F̄l ] + λνZν,j , ν = 1, . . . ,d

• Regression equation of F̄l (tj , tj+1) on Yν(j) (similar to Diebold and Li,
(JEconometrics, 2006)):

F̄l (tj , tj+1) = E
[
F̄l (tj , tj+1)

]
+

d∑
ν=1

uν√
λν

[Yν(j)− (uν
√
λν)TE[F̄l (tj , tj+1)]] + εj

4
= m̃ +

d∑
ν=1

s̃ν × Yν(j) + εj

• Simple, easy-to-estimate mortality forecasting methodologies

I Simulate Yν(N) ∼ N(µs
Y ,ν , σ

s
Y ,ν) with (µs

Y ,ν , σ
s
Y ,ν) as sample mean and

standard error of Yν(j), j = 1, . . . ,N − 1

I Forecast: F̄l (tN , tN+1) = m̃ +
∑d
ν=1 s̃ν × Yν(N) together w/ known τpx (tN)

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Forward Mortality Factor Models

1 Introduction

2 Factor Analysis of Mortality Forecasts

3 Forward Mortality Factor Models
Self-consistency Condition
Maximum Likelihood Estimation
Should the Self-consistency Condition be Imposed?

4 A Non-negative Model Variant

5 Application

6 Conclusion
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Forward Mortality Factor Models

Self-consistency Condition

• Martingale property of
(

exp
{
−
∫ t

0 µs(0, x0 + s) ds
}

T−tpx0+t (t)
)

t≥0
:

Et

[
exp

{
−
∫ T

0 µs(0, x0 + s) ds
}]

= exp
{
−
∫ t

0 µs(0, x0 + s) ds
}

T−tpx0+t (t)

⇒ Drift condition (Cor. 3.1 in Bauer et al. (2011)):

α(τ, x) = σ(τ, x)×
∫ τ

0
σ′(s, x) ds

• Bauer et al. (2011): µt allows for a Gaussian finite-dimensional
realization (FDR) iff

σ(τ, x) = C(x + τ)× exp{Mτ} × N

⇒ µt (τ, x) = µ0(τ + t , x − t) +
∫ t

0 α(τ + t − s, x − t + s) ds

+C(x + τ) exp {M τ}
∫ t

0
exp {M (t − s)} N dWs︸ ︷︷ ︸

=Zt (state process)

• Proposition II: Possible to consider each factor separately

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Forward Mortality Factor Models

Analysis of C(x), M, and N

• Fl (τ, x)
d
= E[Fl (τ, x)] +

∫ τ+1

τ

C(x + v) eMv dv︸ ︷︷ ︸
=O(τ,x)

×
∫ ∆

0
eM(∆−s) N dWs︸ ︷︷ ︸

=Z∆

• uν
√
λν ≈ (Oν(τi , xi ))1≤i≤K × exp{Mν(tj+1 − tj )}Nν

• Estimate Cν(x), Mν , and Nν via two-step identification:

1. Estimate M and N w/o functional assumptions on C(x)
? Rely on examples from interest rate modeling to find convenient shapes, in

particular Björk and Gombani (FinStoch, 1999)

2. Functional assumptions for C(x)

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Forward Mortality Factor Models

The Slope Factor: U.S. Data

σ1(τ, x) = k
exp(c(x + τ) + d)

(1 + exp(c(x + τ) + d))
(a + τ) exp(−bτ)

(e) female, Lee-Carter (f) female, CBD (g) female, P-spline

(h) male, Lee-Carter (i) male, CBD (j) male, P-spline

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Forward Mortality Factor Models

The Twist Factor: Male/Lee-Carter

σ2(τ, x) =

(
k1

exp(c1(x + τ) + d1)

1 + exp(c1(x + τ) + d1)
− k2

exp(c2(x + τ) + d2)

1 + exp(c2(x + τ) + d2)

)
exp{M2τ}N2

(k) ENW (l) FRA (m) JPN

(n) USA (o) FRG

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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Forward Mortality Factor Models

Maximum Likelihood Estimation

From matching {C,M,N} to u
√
λ we can estimate parameter values, however

• Only consider the variance part of F̄ (tj , tj+1) while neglecting the moment:
E(F̄ (tj , tj+1))

⇒ Need to consider the self-consistency condition:

α(τ, x) = σ(τ, x)×
∫ τ

0
σ′(s, x) ds

• In addition, allow for non-systematic deviations
I F̄ obs(tj , tj+1) = F̄ mod (tj , tj+1) + εj
I εj ∼ N(0, α · diag{Σ}), j = 1, . . . ,N − 1
I α the weight (in the PCA) of all eigenvalues not considered in our model

⇒ F̄ obs(tj , tj+1) ∼ N(µ̄, Σ̃ = Σ + α · diag{Σ})
F Maximum likelihood estimation

Daniel Bauer Coherent Modeling of the Risk in Mortality Projections
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E(F̄ (tj , tj+1))

⇒ Need to consider the self-consistency condition:

α(τ, x) = σ(τ, x)×
∫ τ

0
σ′(s, x) ds

• In addition, allow for non-systematic deviations
I F̄ obs(tj , tj+1) = F̄ mod (tj , tj+1) + εj
I εj ∼ N(0, α · diag{Σ}), j = 1, . . . ,N − 1
I α the weight (in the PCA) of all eigenvalues not considered in our model

⇒ F̄ obs(tj , tj+1) ∼ N(µ̄, Σ̃ = Σ + α · diag{Σ})
F Maximum likelihood estimation
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Should the Self-consistency Condition be Imposed?

Debate on the necessity of imposing cross-sectional constraints:
• Unlike term structure modeling, increase efficiency of estimates ("P = Q")
• BUT: Models not satisfying cross-sectional constraints should produce

similar forecasts. In particular, imposing cross-sectional constraints
should not invalidate estimates in their absence (Duffee (2011))

⇒ Test self-consistency of forecasting approaches
Able to compare estimates for µY and σY in three cases:

1. Directly calculated as the sample mean and standard error from the data
set: (µs

Y , σ
s
Y )

2. Estimated based on the specific functional assumption on σ(τ, x) but
without the self-consistency condition in place: (µu

Y , σ
u
Y )

3. Estimated via the MLE from the previous subsection under the specific
functional assumption on σ(τ, x) with the self-consistency condition in
place: (µc

Y , σ
c
Y )
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Forward Mortality Factor Models

Should the Self-consistency Condition be Imposed?

Methodology µs
Y σs

Y µu
Y σu

Y µc
Y σc

Y

Lee-Carter 0.0157 0.0235 0.0156 0.0235 0.0170 0.0282
(0.0047, 0.0266) (0.0184, 0.0347)

CBD-Perks 0.0016 0.0204 0.0016 0.0204 0.0043 0.1418
(−0.0079, 0.0111) (0.0160, 0.0302)

P-splines −0.0249 0.1698 −0.0249 0.1698 −0.0575 0.9968
(−0.1041, 0.0543) (0.1331, 0.2512)

• (µu
Y , σ

u
Y ) and (µs

Y , σ
s
Y ) are very close→ indicates good parametric fit

• (µc
Y , σ

c
Y ) are only close to the (µs

Y , σ
s
Y ) for the Lee-Carter method

• For the other forecasting approaches, σc
Y considerably exceeds the upper

bound of the corresponding confidence interval

• Endorse the use of the Lee-Carter method for producing (deterministic)
mortality forecasts
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A Non-negative Model Variant

Framework

Based on our specific one-factor assumption, the spot force of mortality is

µt (0, x) = µ0(t , x − t) +

∫ t

0
α(t − s, x − t + s) ds + f (x)× Z (2)

t

= µ0(t , x − t) +

∫ t

0
α(t − s, x − t + s) ds − ξ2f (x) + f (x)× (Z (2)

t + ξ2︸ ︷︷ ︸
Z̃ (2)

t

)

dZ̃t = d

(
Z (1)

t
Z̃ (2)

t

)
=

{(
2ξ1b + ξ2b2

−ξ1

)
+

(
−2b −b2

1 0

)
Z̃t

}
dt +

(
1− ab

a

)
dWt

since µt (0, x) only depends on Z̃ (2)
t , we thus change Z̃ (2)

t to a square-root
process (analogy: Vasicek model to CIR model)

dZ̃t =

{(
2ξ1b + ξ2b2

−ξ1

)
+

(
−2b −b2

1 0

)
Z̃t

}
dt +

 (1− ab)

√
Z̃ (2)

t

a
√

Z̃ (2)
t

 dWt

Preserves affine structure⇒ Calibration w/ generalized Kalman filter
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Application

Confidence Intervals for Future LE: USA Female (After 1 yr)

(p) age 20 (q) age 30 (r) age 40

(s) age 50 (t) age 60 (u) age 70
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Application

Confidence Intervals for Future LE: USA Female (After 1 yr)

(v) age 20 (w) age 40

(x) age 50 (y) age 70
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Conclusion

• Having appropriate estimates for the risk in mortality projections is
important

• Common approach may not be suitable to appraise risk within medium or
long-term projections

• We provide a parsimonious and tractable alternative

⇒ Mortality Surface Models / Mortality Term Structure Models

• Applications in the life insurance context: "Applications of Forward
Mortality Factor Models in Life Insurance Practice", Geneva Papers,
2011, 36: 567-594.

Future Work

• Multiple populations
• Application in household finance: Annuitization decision in portfolio

context/influence of systematic mortality risk
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Contact

Nan Zhu & Daniel Bauer
nzhu1@student.gsu.edu &

dbauer@gsu.edu
Georgia State University

https://sites.google.com/site/nanzhugsu/
& www.rmi.gsu.edu

Thank you!
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