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Abstract. We introduce a new family of one-player games, involving the

movement of coins from one configuration to another. Moves are restricted

so that a coin can be placed only in a position that is adjacent to at least

two other coins. The goal of this paper is to specify exactly which of these

games are solvable. By introducing the notion of a constant number of extra

coins, we give tight theorems characterizing solvable puzzles on the square

grid and equilateral-triangle grid. These existence results are supplemented

by polynomial-time algorithms for finding a solution.

1. Introduction

Consider a configuration of coins such as the one on the left of Figure 1. The

player is allowed to move any coin to a position that is determined rigidly by

incidences to other coins. In other words, a coin can be moved to any position

adjacent to at least two other coins. The puzzle or 1-player game is to reach

the configuration on the right of Figure 1 by a sequence of such moves. This

particular puzzle is most interesting when each move is restricted to slide a coin

in the plane without overlapping other coins.

Figure 1. Re-arrange the rhombus into the circle using three slides, such that

each coin is slid to a position adjacent to two other coins.

This puzzle is described in Gardner’s Mathematical Games article on Penny

Puzzles [7], in Winning Ways [1], in Tokyo Puzzles [6], in Moscow Puzzles [8],

and in The Penguin Book of Curious and Interesting Puzzles [11]. Langman [9]

shows all 24 ways to solve the puzzle in three moves. Another classic puzzle of
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this sort [2; 6; 7; 11] is shown in Figure 2. A final classic puzzle that originally

motivated our work is shown in Figure 3; its source is unknown. Other related

puzzles are presented by Dudeney [5], Fujimura [6], and Brooke [4].

Figure 2. Turn the pyramid upside-down in three moves, such that each coin is

moved to a position adjacent to two other coins.

Figure 3. Re-arrange the pyramid into a line in seven moves, such that each

coin is moved to a position adjacent to two other coins.

The preceding puzzles always move the centers of coins to vertices of the

equilateral-triangle grid. Another type of puzzle is to move coins on the square

grid, which appears less often in the literature but has significantly more struc-

ture and can be more difficult. The only published example we are aware of is

given by Langman [10], which is also described by Brooke [4], Bolt [3], and Wells

[11]; see Figure 4. The first puzzle (H → O) is solvable on the square grid, and

the second puzzle (O → H) can only be solved by a combination of the two grids.

Figure 4. Re-arrange the H into the O in four moves while staying on the square

grid (and always moving adjacent to two other coins), and return to the H in six

moves using both the equilateral-triangle and square grids.

In this paper we study generalizations of these types of puzzles, in which

coins are moved on some grid to positions adjacent to at least two other coins.

Specifically, we address the basic algorithmic problem: is it possible to solve a

puzzle with given start and finish configurations, and if so, find a sequence of

moves. Surprisingly, we show that this problem has a polynomial-time solution

in many cases. Our goal in this pursuit is to gain a better understanding of

what is possible by these motions, and as a result to design new and interesting

puzzles. For example, one puzzle we have designed is shown in Figure 5. We

recommend the reader try this difficult puzzle before reading Section 5.3.1 which
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shows how to solve it. Figures 6–9 show a few of the other puzzles we have

designed. The last two puzzles involve labeled coins.

Figure 5. A difficult puzzle on the square grid. The optimal solution uses 18

moves, each of which places a coin adjacent to two others.

Figure 6. Another puzzle on the square grid. The optimal solution uses 24

moves, each of which places a coin adjacent to two others.

Figure 7. Another puzzle on the square grid with the same rules.
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Figure 8. A puzzle on the square grid involving labeled coins. Solvable in eleven

moves, each of which places a coin adjacent to two others; see Figure 31.

This paper studies two grids in particular: the equilateral-triangle grid, and

the square grid. It turns out that the triangular grid has a relatively simple
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Figure 9. A puzzle on the equilateral-triangle grid involving labeled coins. Solv-

able in eight moves, each of which places a coin adjacent to two others.

structure, and nearly all puzzles are solvable. An exact, efficient characteriza-

tion of solvable puzzles is presented in Section 3. The square grid has a more

complicated structure, requiring us to introduce the notion of “extra coins” to

give a partial characterization of solvable puzzles. This result is described in

Section 5 after some general tools for analysis are developed in Section 4.

Before we begin, the next section defines a general graph model of the puzzles

under consideration.

2. Model

We begin by defining “token-moving” and “coin-moving” puzzles and related

concepts. The tokens form a finite multiset T . We normally think of tokens as

unlabeled, modeled by all elements of T being equal, but another possibility is to

color tokens into more than one equivalence class (as in Figure 9). A board is any

simple undirected graph G = (P, E), possibly infinite, whose vertices are called

positions. A configuration is a placement of the tokens onto distinct positions

on the board, i.e., a one-to-one mapping C : T → P . We will often associate a

configuration C with its image, that is, the set of positions occupied by tokens.

A move from a configuration C changes the position of a single token t to an

unoccupied position p, resulting in a new configuration. This move is denoted

t 7→ p, and the resulting configuration is denoted C / t 7→ p. We stress that

moves are not required to “slide” the token while avoiding other tokens (like the

puzzle in Figure 1); the token can be picked up and placed in any unoccupied

position.

The configuration space (or game graph) is the directed graph whose vertices

are configurations and whose edges correspond to feasible moves. A typical

token-moving puzzle asks for a sequence of moves to reach one configuration

from another, i.e., for a path between two vertices in the configuration space,

subject to some constraints. A coin-moving puzzle is a geometric instance of a

token-moving puzzle, in which tokens are represented by coins—constant-radius

disks in the plane, and constant-radius hyperballs in general—and the board is

some lattice in the same dimension. If a token-moving or coin-moving puzzle

with source configuration A and destination configuration B is solvable, we say

that A can be re-arranged into B, and that B is reachable from A. This is

equivalent to the existence of a directed path from A to B in the configuration

space.
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This paper addresses the natural question of what puzzles are solvable, subject

to the following constraint on moves which makes the problem interesting. A

move t 7→ p is d-adjacent if the new position p is adjacent to at least d tokens

other than the moved token t. (Throughout, adjacency refers to the board graph

G.) This constraint is particularly meaningful for d-dimensional coin-moving

puzzles, because then a move is easy to “perform exactly” without any underlying

lattice: the new position p is determined rigidly by the d coin adjacencies (sphere

tangencies).

The d-adjacency configuration space is the subgraph of the configuration space

in which moves are restricted to be d-adjacent. Studying connectivity in this

graph is equivalent to studying solvable puzzles; for example, if the graph is

strongly connected, then all puzzles are solvable.

Here we explore solvable puzzles on two boards, the equilateral-triangle grid

and the square grid. Because these puzzles are two-dimensional, in the context

of this paper we call a move valid if it is 2-adjacent, and a position a valid

destination if it is unoccupied and adjacent to at least two occupied positions.

Thus a valid move involves transferring a token from some source position to a

valid destination position. When the context is clear, we will refer to a valid

move just by “move.” A move is reversible if the source position is also a valid

destination.

3. Triangular Grid

This section studies the equilateral-triangle grid, where most puzzles are solv-

able. To state our result, we need a simple definition. Associated with any

configuration is the subgraph of the board induced by the occupied positions. In

particular, a connected component of a configuration is a connected component

in this induced subgraph.

Theorem 1. On the triangular grid with the 2-adjacency restriction and unla-

beled coins, configuration A can be re-arranged into a different configuration B

precisely if A has a valid move, the number of coins in A and B match, and at

least one of four conditions holds:

(i) B contains three coins that are mutually adjacent (a triangle).

(ii) B has a connected component with at least four coins.

(iii) B has a connected component with at least three coins and another connected

component with at least two coins.

(iv) There is a single move from A to B.

The same result holds for labeled coins, except when there are exactly three coins

in the puzzle, in which case the labelings and movements are controlled by the

vertex 3-coloring of the triangular grid.

Furthermore, there is a polynomial-time algorithm to find a re-arrangement

from A to B if one exists. Specifically, let n denote the number of coins and
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d denote the maximum distance between two coins in A or B. Then a solution

with O(nd) moves can be found in O(nd) time.

The rest of this section is devoted to the proof of this theorem. We begin in the

next subsection by proving necessity of the conditions: if a puzzle is solvable,

then one of the conditions holds. Then in the following subsection we prove

sufficiency of the conditions.

3.1. Necessity. Of course, it is necessary for A to have a valid move and for

A and B to have the same number of coins. Necessity of at least one of the four

conditions is also not difficult to show, because Conditions 1–3 are so broad,

encompassing most possibilities for configuration B.

Suppose that a solvable puzzle does not satisfy any of Conditions 1–3, as

in Figure 10. We prove that it must satisfy Condition 4, by considering play

backwards from the goal configuration B. Specifically, a reverse move takes a

coin currently adjacent to at least two others, and moves it to any other location.

Because the puzzle is solvable, some coin in configuration B must be reverse-

movable, i.e., must have at least two coins adjacent to it. Thus, some connected

component of B has at least three coins. Because Condition 2 does not hold,

this connected component has exactly three coins. Because Condition 1 does

not hold, these three coins are not connected in a triangle. Because Condition 3

does not hold, every other component has exactly one coin.

Hence, one component of B is a path of exactly three coins, say c1, c2, c3,

and every other component of B has exactly one coin, as in the left of Figure

10. Certainly at this moment c2 is the only reverse-movable coin. We claim that

after a sequence of reverse moves, c2 will continue to be the only reverse-movable

coin. If we removed c2, then every coin would be adjacent to no others. Thus,

if we reverse move c2 somewhere, then every other coin would be adjacent to at

most one other (c2). Hence, it remains that only c2 can be reverse moved.

c1 c2 c3

c2

Figure 10. Reverse-moving a configuration B that does not satisfy any of

Conditions 1–3.

Therefore, if we can reach A from B via reverse moves, we can do so in a

single reverse move of c2 directly to where it occurs in A. Thus Condition 4

holds, as desired.

3.2. Sufficiency. Next we prove the more difficult direction: provided one of

Conditions 1–3 hold, there is a re-arrangement from A to B. (This fact is obvious

when Condition 4 holds.) All three cases will follow a common outline: we first
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form a triangle (Section 3.2.1), then maneuver this triangle (Section 3.2.2) to

transport all other coins (Section 3.2.3), and finally we place the three triangle

coins appropriately depending on the case (Section 3.2.4).

3.2.1. Getting Started. It is quite simple to make some triangle of coins. By

assumption, there is a valid move from configuration A. The destination of this

move can have two basic forms, as shown in Figure 11. Either the move forms a

triangle, as desired, or the move forms a path of three coins. In the latter case,

if there is not a triangle already with a different triple of coins, a triangle can be

formed by one more move as shown in the right of the figure.

c

c

Figure 11. Two types of valid destinations for a coin c. In the latter case, we

show a move to form a triangle.

This triangle T0 suffices for unlabeled coin puzzles. However, for labeled

coin puzzles, we cannot use just any three coins in the triangle; we need a

particular three, depending on B. For example, if B satisfies Condition 1, then

the coins forming the triangle in B are the coins we would like in the triangle

for maneuvering. To achieve this, we “bootstrap” the triangle T0 formed above,

using this triangle with the incorrect coins to form another triangle with the

correct coins. Specifically, if we desire a triangle using coins t1, t2, and t2, then

we move each coin in the difference {t1, t2, t3}−T0 to be adjacent to appropriate

coins in T0. There are three cases, shown in Figure 12, depending on how many

coins are in the difference. If ever we attempt to move a coin to an already

occupied destination, we first move the coin located at that destination to any

other valid destination.

t1 t2 t2

t3t3 t1 t1

t2 t3

Figure 12. The three cases of building a triangle {t1, t2, t3} out of an existing

triangle, depending on how many coins the two triangles share. From left to

right, zero, one, and two coins of overlap.

3.2.2. Triangle Maneuvering. Consider a triangle of coins t1, t2, and t3. The

possible positions of this triangle on the triangular grid are in one-to-one cor-

respondence with their centers, which are vertices of the dual hexagonal grid.

Moving one coin (say t1) to be adjacent to and on the other side of the others

(t2 and t3) corresponds to moving the center of the triangle to one of the three

neighboring centers on the hexagonal grid. Thus, without any other coins on
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the board, the triangle can be moved to any position by following a path in the

hexagonal grid.

This approach can be modified to apply when there are additional obstacle

coins; see Figure 13 for an example. Conceptually we always move one of the

triangle coins, say ti, in order to move the center of the triangle to an adjacent

vertex of the hexagonal grid. But if the move of ti is impossible because the

destination is already occupied by another coin gi, then in fact we do not make

any move. There will be a triangle in the desired position now, but it will not

consist of the usual three coins (t1, t2, and t3); instead, ti will be replaced by

the “ghost coin” gi. Such a triangle suffices for our purposes of transportation

described in Section 3.2.3. One final detail is how the ghost coins behave: if

we later need to move a ghost coin gi, we instead move the original (unmoved)

coin ti. Thus ghost coins are never moved; only t1, t2, and t3 are moved during

triangle maneuvering (even if coins are labeled).

t1 t2
t3

t2
t3 t1

g3

g2

t3

t1
g3

t2

t1 t2
t3

t2
t3 t1

t2
t3

g3

g2

t1

t3 g3

t2
t1

t1 t2
t3

t2
t3 g2

t1
g3

t2
t1

t3

t2
t3 t1

g3

t1 t2
t3

Figure 13. An example of triangle maneuvering. Dotted arrows denote concep-

tual moves, and solid arrows denote actual moves.

3.2.3. Transportation. Triangle maneuvering makes it easy to transport any

other coin to any desired location. Specifically, suppose we want to move coin

c /∈ {t1, t2, t3} to destination position d. If d is already occupied by another

coin c′, we first move c′ to an arbitrary valid destination; there is at least one

because the triangle can be maneuvered. Now we maneuver the triangle so
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that the (potentially ghost) triangle has two coins adjacent to d, so that the

third coin is not on d, and so that the triangle does not overlap c. This is

easily arranged by examining the location of c and setting the destination of the

triangle appropriately. For example, if c is within distance two of d, then there

are four positions for the triangle that are adjacent to d and do not overlap c;

otherwise, the triangle can be placed in any of the six positions adjacent to d.

Finally, because d is now a valid destination—it is adjacent to two coins in the

triangle—we can move c to d.

t1

d

t2

t1

t3

t2

cd t3

c

Figure 14. Transporting coin c to destination d using triangle {t1, t2, t3}. In

both cases, we choose the location of the triangle so that it does not overlap c.

By the properties of triangle maneuvering, this transportation process even

preserves coin labels: the only actual coins moved are t1, t2, t3, c, and possibly

a coin at d. But any coin at position d must not have already been in its desired

position, because d is c’s desired position. Thus, applying the transportation

process to every coin except t1, t2, and t3 places all coins except these three in

their desired locations.

3.2.4. Finale. Once transportation is complete, it only remains to place the

triangle coins t1, t2, and t3 in their desired locations. By the bootstrapping in

Section 3.2.1, we are able to choose the unplaced coins {t1, t2, t3} however we

like. This property will be exploited differently in the three cases.

Property 1. If there is a triangle in B, then we choose these three coins as the

unplaced coins t1, t2, and t3, and use them to transport all other coins. Then

we maneuver the triangle {t1, t2, t3} exactly where it appears in B. Because all

other coins have been moved to their proper location, in this position the triangle

will not have any ghost coins.

However, it may be that the coins {t1, t2, t3} are labeled incorrectly among

themselves, compared to B. Assuming there are more than three coins in the

puzzle, this problem can be repaired as follows. We maneuver the triangle so

that it does not overlap any other coins but is adjacent to at least one coin c;

for example, there is such a position for the triangle just outside the smallest

enclosing hexagon of the other coins. Refer to Figure 15. Now two coins of the

triangle, say t1 and t2, are adjacent to three other coins each: each other, t3, and

c. Thus we can move t1 to any other valid destination, and then move t2 or t3
to replace it. Afterwards we can move t1 to take the place of t2 or t3, whichever

moved. This procedure swaps t1 and either t2 or t3. By suitable application,
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we can achieve any permutation of {t1, t2, t3}, and thereby achieve the desired

labeling of the triangle.

t1 t3

t1

t2c t2

t3

c

t1

t2t3

c

t3

c

t2

t1

Figure 15. Swapping coins t1 and t2 in a triangle, using an adjacent coin c.

Property 2 but not Property 1. Refer to Figure 16. If there is not a triangle

in B, but there is a connected component of B with at least four coins, then

there is a path in B of length four, (p1, p2, p3, p4). From B we reverse move p2 so

that it is adjacent to p3 and p4. If this position is already occupied by a coin c,

we first reverse move c to any other unoccupied position. Now p2, p3, and p4 are

mutually adjacent, so we have a new destination configuration B ′ with Property

1. As described above, we can re-arrange A into B ′. Then we undo our reverse

moves: move p2 back adjacent to p1 and p3, and move c back adjacent to p3 and

p4. This procedure re-arranges A into B.

p1 p4p3p2

c

p1 p4p3

c

p2c

p1 p4p3p2

Figure 16. Reverse moving a configuration B with Property 2 into a configura-

tion with Property 1.

Property 3 but not Property 1. This case is similar to the previous one;

refer to Figure 17. There must be a path in B of length three, (p1, p2, p3), as well

as a pair of adjacent coins, (q1, q2), in different connected components of B. If

both positions adjacent to both q1 and q2 are already occupied, we first reverse

move one such coin (call it c) to an arbitrary unoccupied position. This frees up

a position adjacent to q1 and q2, to which we reverse move p2. Now {q1, q2, p2}

form a triangle, so Property 1 holds, and we can reach this new configuration B ′

from A. Then we undo our reverse moves: move p2 back adjacent to p1 and p3,

and move c back adjacent to q1 and q2. This procedure re-arranges A into B.

c

p1 p3p2

c

p2

q1 q2p3p1p1 p2

c

q1 q3p3q1 q2

Figure 17. Reverse moving a configuration B with Property 3 into a configura-

tion with Property 1.
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This concludes the proof of Theorem 1.

4. General Tools

In this section we develop some general lemmas about token-moving puzzles.

Although we only use these tools for the square grid, in Section 5, they apply to

arbitrary boards and may be of more general use.

4.1. Picking Up and Dropping Tokens. First we observe that additional

tokens cannot “get in the way”:

Lemma 1. If a token-moving puzzle is solvable, then it remains solvable if we

add an additional token with an unspecified destination, provided tokens are un-

labeled. This result also holds if all moves must be reversible.

Proof. A move can be blocked by an extra token e at position p because p is

occupied and hence an invalid destination. But if ever we encounter such a move

of a token t to position p, we can just ignore the move, and swap the roles of e

and t: treat e as the moved version of t, and treat t as an extra token replacing

e. Thus, any sequence of moves in the original puzzle can be emulated by an

equivalent sequence of moves in the augmented puzzle. We are not introducing

any new moves, only removing existing moves, so all moves remain reversible if

they were originally. �

This proof leads to a technique for emulating a more powerful model for

solving puzzles. In addition to moving coins as in the normal model, we can

conceptually pick up (remove) a token, and later drop (add) it onto any valid

destination. At any moment we can have any number of tokens picked up. While

a token t is conceptually picked up, we emulate any moves to its actual position p

as in the proof of Lemma 1: if we attempt to move another token t′ onto position

p, we instead reverse the roles of t and t′. To drop a token onto a desired position

p, we simply move the actual token to position p if it is not there already.

Of course, this process may permute the tokens. Nonetheless we will find this

approach useful for puzzles with labeled tokens.

One might instead consider the emulation method used implicitly in Section

3.2.2 for triangular maneuvering: move original coins instead of ghost coins. This

approach has the advantage that it preserves the labels of the coins. Unfortu-

nately, the approach makes it difficult to preserve reversibility as in Lemma 1,

and so is insufficient for our purposes here.

4.2. Span. The span of a configuration C is defined recursively as follows.

Let d1, . . . , dm be the set of valid destinations for moves in C. If m = 0, the

span of C is just C itself. Otherwise, it is the span of another configuration C ′,

defined to be C with additional tokens at positions d1, . . . , dm. If this process

never terminates, the span is defined to be the limit, which exists because it is

a countable union of finite sets.
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Figure 18. In this example, the span is the smallest rectangle enclosing the

configuration.

The span of a configuration lists all the positions we could hope to reach, or

more precisely, the positions we could reach if we had an unlimited number of

extra tokens that we could drop. In particular, we have the following:

Lemma 2. If configuration A can be re-arranged into configuration B, then

span A ⊇ B and thus spanA ⊇ span B.

In other words, valid moves can never cause the span of the current config-

uration to increase. Thus the most connected we could hope the configuration

space to be is the converse of Lemma 2: for every pair of configurations with

span A ⊇ spanB, A can be re-arranged into B. In words, we want that every

configuration A can be re-arranged into any configuration B with the same or

smaller span.

We call a configuration span-minimal if the removal of any of its tokens reduces

the span. Span-minimal configurations are essentially the “skeleta” that keep

configurations with the same span reachable. One general property of span-

minimal configurations is the following:

Lemma 3. If a configuration is span-minimal, any move will reduce the span.

Proof. Suppose to the contrary that there is a move t 7→ p that does not reduce

the span of a span-minimal configuration C. In particular, p must be a valid

destination position in the subconfiguration C − t, because t does not count in

the d-adjacency restriction. Hence, adding a new token at position p to the

configuration C − t has no effect on the span of C. But this two-step process

of removing token t and adding a token at position p is equivalent to moving

t to p, so span(C / t 7→ p) = span(C − t). But we assumed that span(C / t 7→

p) = span C, and hence spanC = span(C − t), contradicting that C is span-

minimal. �

Under the 2-adjacency restriction, a chain is a sequence of tokens with the

property that the distance (in the board graph G) between two successive tokens

is at most 2. We will use chains as basic “units” for creating a desired span.

Notice that the notion of span is useless for the already analyzed triangular

grid: provided there is a valid move, the span of any configuration is the entire

grid. Thus, for the triangular grid, a configuration is span-minimal precisely if

it has no valid moves. For the square grid, however, the notion of span and span

minimality is crucial.
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4.3. Extra Tokens. As described in the previous section, we can only re-

arrange configurations into configurations with the same or smaller span. Un-

fortunately, the converse is not true. Indeed, the key problem situations are

span-minimal configurations; by Lemma 3, such configurations immediately lose

span when we try to move them. Hence, any two distinct span-minimal configu-

rations with the same span cannot reach each other. An example on the square

grid is that the two opposite diagonals of a square are unreachable from each

other, as shown in Figure 19.

Figure 19. Subgraph of configuration space reachable from full-span configura-

tions (outlined in bold) with no extra coins.

Thus we explore the notion of extra tokens, a set of tokens whose removal

does not reduce the span of the configuration. Lemma 2 and Figure 19 shows

that we need at least one extra token. In fact, the two opposite diagonals on the

square grid shown in Figure 19 are difficult to reach from each other; as shown in

Figure 20, even one extra token is insufficient. What is surprising is that a small

number of extra tokens seem to be generally sufficient to make the configuration

space strongly connected. We prove this for the square grid in the next section.

5. Square Grid

This section analyzes coin-moving puzzles on the square grid, using the tools

from the previous section. In particular, we show that with just two extra coins,

we can reach essentially every configuration on the square grid with the same or

smaller span. The only restriction is that the extra coins can only be destined

for positions that are adjacent to at least two other coins.

Theorem 2. On the square grid with the 2-adjacency restriction and unlabeled

coins, configuration A can be re-arranged into configuration B if there are coins

e1 and e2 such that span(A − {e1, e2}) ⊇ span(B − {e1, e2}) and each ei is

adjacent to two other coins in B (excluding e1 or e2). Furthermore, there is an

algorithm to find such a re-arranging sequence using O(n3) moves and O(n3)

time, where n is the number of coins.

We prove this theorem by showing that every configuration (in particular, A

and B) can be brought to a canonical configuration with the same span via a
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Figure 20. Subgraph of configuration space reachable from full-span configura-

tions (outlined in bold) with one extra token.

sequence of (mostly) reversible moves. As a consequence, we can move from any

configuration A to any other B by routing through this canonical configuration.

Our proof uses the model of picking up and dropping coins, which can be

emulated as described in Section 4.1. However, we must be careful how we pick

up and drop coins, so that the resulting moves are reversible. For example,

initially we pick up the extra coins e1 and e2, and then drop them temporarily

wherever needed. For re-arranging the source configuration A into the canonical

configuration, this step may not result in reversible moves, but fortunately this is

not necessary in this case. For re-arranging the destination configuration B into

the canonical configuration, however, reversibility is crucial, and is guaranteed

by the condition in the theorem of each ei being adjacent to at least two other

coins.

5.1. Basics. We begin with some preliminary lemmas. A rectangle is the full

collection of coins between two x coordinates and two y coordinates. The half-

perimeter of a rectangle is the number of distinct x coordinates plus the number

of distinct y coordinates over all coins in the rectangle. The distance between

two sets of coins is the minimum distance between two coins from different sets.

Lemma 4. For the square grid, the span of any configuration is a disjoint union

of (finite) rectangles with pairwise distances at least 3.
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Lemma 5. For each rectangle (connected component) of the span, say with

half-perimeter h, there must be at least dh/2e coins within that rectangle in the

configuration.

The following beautiful proof of this lemma has been distributed among sev-

eral people, but its precise origin is unknown. We first heard it from Martin

Farach-Colton, who heard it from Peter Winkler, who heard it from Pete Gabor

Zoltan, who learned of it through the Russian magazine Kvant (around 1985–

1987).

Proof. Consider how the (full) perimeter changes as we compute the span of

the coins within the rectangle. Initially we have n coins, say, so the perimeter

is at most 4n. Each coin that we add while computing the span satisfies the

2-adjacency restriction, so the perimeter never increases. In the end we must

have a rectangle with perimeter 2h. Hence 4n ≥ 2h, i.e., n ≥ h/2, and because

n is integral, n ≥ dh/2e. �

5.2. Canonical Configuration. Observe that a chain has span equal to its

smallest enclosing rectangle. We define an L to be a particular kind of chain,

starting and ending at opposite corners of the rectangular span, and arranged

along two edges of this rectangle, with the property that it has the minimum

number of coins. See Figure 21 for examples. More precisely, if the half-perimeter

of the rectangle (along which the L is arranged) is 2k, then there must be precisely

k coins, every consecutive pair at distance exactly two from each other. And if

the half-perimeter is 2k + 1, then there must be precisely k + 1 coins, every

consecutive pair at distance exactly two from each other, except the last pair

which are distance one from each other. In general, for half-perimeter h, an L

has dh/2e coins.

Figure 21. Examples of L’s.

While L’s can have any orientation, the canonical L is oriented like the letter L,

starting at the top-left corner, continuing past the lower-left corner, and ending

at the bottom-right corner.

Given a configuration, or more precisely, given its span and the number of

coins in each connected component of the span, we define the canonical con-

figuration as follows. Refer to Figure 22 for examples. Within each connected

component (rectangle) of the span, say with half-perimeter h, we arrange the

first dh/2e coins into the canonical L. (Lemma 5 implies that there are at least
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this many coins to place.) Any additional coins are placed one at a time, in the

leftmost bottommost unoccupied position.

1

43

21 1

20 21 22 23 24

191817161514

131211109

876543

2

Figure 22. Examples of the canonical configuration of k coins within a rectan-

gular span. (Left) One coin in addition to the canonical L. (Middle) Four coins

in addition to the canonical L. (Right) All 24 additional coins.

This definition of the canonical configuration is fairly arbitrary, but it has

the useful property that each successive position for an additional coin is a valid

destination, given the previously placed additional coins. This allows us to focus

on forming the canonical L, and then picking up all additional coins and dropping

them in the order shown on the right of Figure 22.

5.3. Canonicalizing Algorithm. The main part of proving Theorem 2 is

to show an algorithm for converting any configuration into the corresponding

canonical configuration, using a sequence of (mostly) reversible moves. We will

apply induction (or, equivalently, recursion) on the number of coins. That is,

we assume that any configuration with fewer coins can be re-arranged into its

canonical configuration.

For now, we assume that there are no extra coins in addition to e1 and e2.

For if there were such a coin, we could immediately pick it up. Then we have a

simpler configuration: it has one fewer coin. Thus we can apply the induction

hypothesis, and re-arrange the remaining coins into their canonical configuration.

Finally we must drop the previously picked-up coin in the appropriate location.

This aspect is somewhat trickier than it may seem: if we are not careful, we may

make an irreversible move. We delay this issue to Section 5.4.

The overall outline of the algorithm is as follows:

(i) Initialize the set of L’s to be one for each coin.

(ii) Until the configuration is canonical:

(i) Pick two L’s whose bounding rectangles are distance at most two from

each other.

(ii) Re-orient the L’s so that the L’s themselves are distance at most three

from each other.

(iii) Merge the two L’s.

Normally, each iteration of Step 2 decreases the number of L’s by one, so the

algorithm would terminate in at most n iterations. However, at any time we
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may find an extra coin in addition to e1 and e2, and pick it up. Fortunately,

this operation can only split one L into at most two L’s. Thus we can charge

the cost of creating an extra L to the event of picking up an extra coin, which

can happen at most n times. Hence, the total number of iterations of Step 2 is

O(n).

In the following two sections, we describe how Steps 2(b) and 2(c) can be

done in O(n2) moves each. These bounds result in a total of O(n3) moves. The

running time of the algorithms will be proportional to the number of moves.

5.3.1. Re-orienting L’s. There are eight possible orientations for an L, depending

at which corner it starts, and whether it hugs the top edge or bottom edge of

the rectangular span. We will only be concerned with four different types of

orientations, depending on whether it looks like the letter L rotated 0, 90◦, 180◦,

or 270◦. In other words, we are not concerned with the parity issue of which

corner might have two adjacent coins.

It is relatively easy to flip an L about a diagonal, using two extra coins. Figure

23 shows how to do this in a constant number of moves for an L consisting of

three coins. Figure 24 shows how to use these subroutines to flip an L of arbitrary

size. Basically, we use the flips of three-coin L’s to “bubble” the kink in the L

up to the top, repeatedly until it is all the way right. The total number of moves

is O(n2), and they can easily be computed in O(n2) time.

Figure 23. Flipping an L consisting of 3 coins. Extra coins are shaded.

The more difficult re-orientation to perform is a rotation of an L by ±90◦.

Perhaps one of the most surprising results of this paper is that this operation

is possible with two extra coins. One way to do it for a square span, shown in

Figure 25, is to convert the L into a diagonal, and then convert more and more

of the diagonal into a rotated L. This is the basis for our “diagonal-flipping”

puzzle in Figure 5.

A simpler way to argue that L’s can be rotated is shown in Figure 26. Assume

without loss of generality that the initial orientation is the canonical L. First we

apply induction to the subconfiguration of all coins except the top-left coin.
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Figure 24. Flipping a general L, using the subroutines in Figure 23.

Figure 25. One method for rotating an L with a square span. Although this

example places the extra coins in the final configuration, this is not necessary.

Thus all rows except the third row contain at most one coin each, assuming

the L consists of at least three rows. Now we apply local operations in 3 × 3

or 3 × 2 rectangles (similar to Figure 23) to move the top-left coin to the far

right. (We cannot perform this left-to-right motion in one step using induction,

because there may be only three rows, and hence all coins may be involved in this
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motion.) Finally we flip the L in the top three rows, as described above, thereby

obtaining the desired result. Again the number of moves and computation time

are both O(n2). Note that the same approach of repeated local operations applies

when the L consists of only two rows.

Figure 26. A general method for rotating an L. The first step is to apply

induction, and the remaining steps apply subroutines similar to Figure 23.

5.3.2. Merging L’s. Consider two L’s L1 and L2 whose bounding rectangles R1

and R2 are distance at most two from each other. Equivalently, consider two L’s

such that span(L1∪L2) has a single connected component. This section describes

how to merge L1 and L2 into a single L. This step is the most complicated part

of the algorithm, not because it is difficult in any one case, but because there

are many cases involved.

First suppose that the rectangles R1 and R2 overlap. We claim that one of

the L’s, say L1, can be re-oriented so that one of its coins is contained in the

other L’s bounding rectangle, R2. This coin is therefore in the span of the L2,

and hence redundant, so as described above we can apply induction and finish

the entire canonicalization process.

To prove the claim, there are three cases; see Figure 27. If a corner of one of

the bounding rectangles, say R1, is in the other bounding rectangle, R2, then we

can re-orient L1 so that one of its end coins is at that corner of R1 and hence in

R2; see Figure 27(a)). Otherwise, we have rectangles that form a kind of “thick

plus sign” (Figure 27(b–c)); we distinguish the two rectangles as according to

whether they form the horizontal stroke or vertical stroke of the plus sign. If the

vertical stroke has width at least two (Figure 27(b)), then that rectangle already

contains a coin of the other L, because that L cannot have two empty columns.

Similarly, if the horizontal stroke has height at least two, then that rectangle

already contains a coin of the other L, because that L cannot have two empty

rows. Finally, if both strokes are of unit thickness, and there is not already a
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coin in their single-position intersection (Figure 27(c)), then we can splice and

redefine the L’s, so that one L is formed by the top half of the vertical stroke and

the left half of the horizontal stroke, and the other L is formed by the bottom

half of the vertical stroke and the right half of the horizontal stroke, and then

we have the first case in which the bounding rectangles share a corner.

Re−interpret Like part (a)

(c)

Redundant coin
Redundant coins

(b)(a)

Re−orient

Figure 27. Merging two L’s with overlapping bounding rectangles (shaded). (a)

The corner of one L is contained in the other L’s bounding rectangle. (b) A

“thick plus sign” in which at least one stroke has thickness more than 1. (c) A

plus sign in which both strokes have thickness 1.

Now suppose that the rectangles R1 and R2 do not overlap. Hence, either they

share no x coordinates or they share no y coordinates. Assume by symmetry

that R1 and R2 share no x coordinates. Assume again by symmetry that R1 is

to the left of R2. A leg is a horizontal or vertical segment/edge of an L. Re-orient

L1 so that its vertical leg is on the right side, and re-orient L2 so that its vertical

leg is on the left side. Now L1 and L2 have distance at most three from each

other; the distance may be as much as three because of parity.

We consider merging L1 with each leg of L2 one at a time. In other words, we

merge L1 with the nearest leg of L2 within distance three of L1, then we merge

the result with the other leg of L2. The second leg can be treated in the same

way as the first leg, by induction. Thus there are two cases: either the first leg

is the horizontal leg of L2, or it is the vertical leg of L2. We first show how the

latter case reduces to the former case.

If the vertical leg of L2 is the first leg, it can have only one coin within the

y range of R1 (by the assumption that extra coins are picked up). We can add

this coin separately, as if it were a short horizontal leg of its own L. This leaves a
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portion of the vertical leg of L2 outside of the y range of R2. Thus what remain

of R1 and R2 do not share any y coordinates, so we can rotate the picture 90

degrees and return to a horizontal problem.

This argument reduces merging two L’s to at most three merges between an

L and a horizontal leg. Still several cases remain, as illustrated in Figure 28.

Case 1 is when the horizontal leg is aligned with a coin in the L. Case 2 is when

they are out of alignment. Case 3 is a special case occurring at the corner of the

L, where the horizontal legs are aligned but distances are higher than in Case

1. The above three cases are subdivided into subcases (a) and (b), depending

on how close the horizontal leg is to the L. Finally, Case 4 is when the L and

horizontal leg do not share x or y coordinates.

By the procedures in Figure 28, in all cases, the merging can be done in O(1)

flips and rotations of L’s, O(1) leapfrogs, and O(n) shuffles. In total, O(n2)

moves are required to merge an L and a horizontal leg, or equivalently to merge

two L’s.

5.4. Final Sweep. Thus far we have shown how to reversibly re-arrange a

configuration (A or B) into the canonical configuration, using two extra coins.

However, during this process, we may have picked up extra coins, and now need

to drop them appropriately. In reality, these coins sit in arbitrary locations

on the board. For re-arranging the source configuration A into the canonical

configuration, the moves need not be reversible, so we can simply drop the extra

coins in the canonical order, as in Figure 22. For re-arranging the destination

configuration B into the canonical configuration, we need to effectively drop

these coins by a sequence of reverse moves.

More directly, starting from the canonical configuration, we need to show how

to distribute the extra coins to arbitrary locations on the board. We can achieve

this effect by making a complete sweep over the board. More precisely, we flip

the L as in Section 5.3.1, which has the effect of passing over every position on

the board with the operations shown in Figure 23. During this process, we will

pass over the extra coins; at this point we treat them as if they were picked up,

applying the emulation in Section 4.1. Then we flip the L back to its original

orientation. On the way back, whenever we apply an operation in Figure 23 and

pass over the desired destination d for one of the extra coins, we move the extra

coin to d while there are at least two adjacent coins from the L. By monotonicity

of the flipping process, this extra coin will not be passed over later by the flip,

so once an extra coin is placed in its desired location, it remains there.

5.5. Reducing Span. Now that we know any configuration can be brought to

the corresponding canonical configuration with a sequence of (mostly) reversible

moves, it follows immediately that any configuration can be re-arranged into any

configuration with the same span. More generally, if we are given configurations

A and B satisfying span A ⊇ span B, we can first pick up all coins in A −

span B, then reversibly re-arrange both configurations into the same canonical
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Case 4.

Case 3a.

Leapfrog subroutine.

Case 1a

Case 3b.

Re-interpret

Rotate

LeapfrogRotate

Case 1a.

Shuffle Shuffle Shuffle Flip

Shuffle subroutine.

Case 2a.

Case 1a

Rotate Leapfrog

Rotate

Case 1a

Case 2b.

Flip Case 1aLeapfrog

Case 1b.

Figure 28. Merging an L and the horizontal leg of a nearby L.

configuration. Putting these two sequence of moves together, we obtain a re-

arrangement from A − spanB to B with some coins missing. Then we simply

drop the previously picked up coins in the appropriate positions to create B.

Note that these moves need not be reversible, because we are only concerned

with the direction from A to B. Indeed, the moves cannot be made reversible,

because the span cannot increase (Lemma 2).

This concludes the proof of Theorem 2.
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5.6. Lower Bound. The bound on the number of moves in Theorem 2 is in

fact tight:

Theorem 3. The “V to diagonal” puzzle in Figure 29 requires Θ(n3) moves to

solve.

Figure 29. Re-arranging the V-shape in the upper left into the diagonal in the

lower right requires repeated rotations of diagonals as in Figure 5 (or repeated

rotations of L’s).

Proof. We claim that re-arranging the V shape into a diagonal effectively requires

repeated “diagonal flipping.” At any time, only one component of coins can be

actively manipulated (drawn with dotted lines in the figure); all other coins

are isolated from movement. Thus we must repeatedly re-arrange the active

component so that it can reach the nearest isolated coin. More specifically, we

must re-arrange the active component into a chain starting at the corner of the

bounding rectangle that is near the isolated coin, and ending at the opposite

corner of the bounding rectangle of the active component. These two corners

alternate for each isolated coin we pick up, and that is the sense in which we must

“flip a diagonal.” It is fairly easy to see that each diagonal flipping of a chain

with k coins takes Ω(k2) time. In total, the puzzle requires Θ(
∑

n

k=1
k2) = Θ(n3)

moves. �

This theorem is the motivation for the puzzle in Figure 7.

5.7. Labeled Coins. We conjecture that Theorem 2 holds even when coins

are labeled, subject to a few constraints. The idea is that permutation of the
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coins is relatively easy once we reach the canonical configuration. Examples of

methods for swapping coins within one L are shown in Figure 30. The top figure

shows how to swap a pair of coins when the canonical configuration is nothing

more than a canonical L. The middle figure shows how to perform the same

swap when there are four additional coins. Note that swapping the corner coin

3 works in exactly the same way; indeed, this method works whenever the coins

to be swapped have two other coins adjacent to them, and there is another valid

destination. The bottom figure shows how to swap one of the end coins, which

is more difficult. This last method begins with moving the bend of the L toward

the end coin, and then works locally on the coins 1, 2, 3.
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Figure 30. Three cases of swapping coins in the canonical configuration. The

coins to be swapped have a thick outline.

One obvious constraint for these methods is that if there are no valid moves,

permutation is impossible. Also, if the bounding rectangle of an L has width or

height 1, then the two end coins of the L cannot be moved. Subject to these

constraints, Figure 30 proves that the coins in a single connected component of

the span, other than the extra coins e1 and e2, can be permuted arbitrarily.

It only remains to show that a coin can be swapped with e1 or e2, which

implies that coins between different connected components of the span can be

swapped. We have not proved this in general yet, but one illustrating example

is the puzzle in Figure 8, whose solution is shown in Figure 31. The idea is

that coins 2 and 4 are e1 and e2, and so we succeed in swapping e2 with coin 3.
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A slight generalization of this approach may complete a solution to the labeled

coins.

2

3 4

2

1

54

1

5

2 2

5

31

5 5

4

4

3

3

44

321

3 3

1

5

2

2

4

1

3

4

5

5

2

4

15

2

3 11 41

3

2 5

5

2

4

1

3

2 5

4

1

3

5

4

1 2

3

Figure 31. Solution to the puzzle in Figure 8.

5.8. Fewer Extra Coins. We have shown that the configuration space is

essentially strongly connected provided there is a pair of extra coins, i.e., the

removal of these two coins does not reduce the span. This section summarizes

what we know about configurations without this property.

If we have a span-minimal configuration with no extra coins, Lemma 3 tells

us that every move decreases the span. With an overhead of a factor of n2, we

can simply try all possible moves, in each case obtaining a configuration with

smaller span, which furthermore must have an extra coin (the moved coin). Now

we only need to recursively check these configurations.

Unfortunately, the situation is trickier with one extra coin. The key difficulty

is that multiple coins could individually be considered extra, but no pair of coins

is extra. In other words, there may be two coins such that removing either one

does not reduce the span, but removing both of them reduces the span. Two

simple examples are shown in Figure 32.

Figure 32. The shaded coins are individually extra, but do not form a pair of

extra coins suitable for Theorem 2.

This difficulty makes “one” extra coin surprisingly powerful. For example,

using one extra coin, an L with odd parity can be flipped, although it cannot be

rotated, and an L with even parity cannot be flipped or rotated. In Figure 33

we exploit this property to make an interesting solvable puzzle initially with no

pair of extra coins; it takes significant work before a pair of extra coins appears.
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Figure 33. A puzzle on the square grid with no initial pair of extra coins.

6. Conclusion

We have begun the study of deciding solvability of coin-moving puzzles and

more generally token-moving puzzles. We gave an exact characterization of solv-

able puzzles with labeled coins on the equilateral-triangle grid. By introducing

the notion of a constant number of extra coins, we have given a tight theorem

characterizing solvable puzzles on the square grid. Specifically, we have shown

that any configuration can be re-arranged into any configuration with the same

or smaller span using two extra coins, and that this is best possible in general.

The number of moves is also best possible in the worst case.

Several open questions remain:

(i) What is the complexity of solving a puzzle using the fewest moves?

(ii) How do our results change if moves are forced to be slides that avoid other

coins? We conjecture that Theorem 1 still holds for unlabeled coins.

(iii) Can we extend our results on the square grid to the hypercube lattice in

any dimension?

(iv) Can we combine Theorems 1 and 2 to deal with a mix of the square and

equilateral-triangle lattice, like the second puzzle in Figure 4?

(v) Can we prove similar results for general graphs?
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