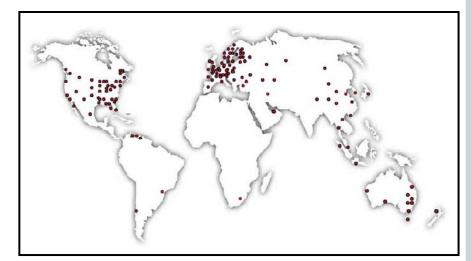

Coke Handling Cranes

From Konecranes

Coking.com Conference

RIO, BRAZIL 2009

Don Paulino Konecranes America, Inc.



Konecranes

Around the World

- Global crane builder with US\$2.5 billion annual sales
- Over 8500 employees in 43 countries
- World's largest manufacturer of process cranes
- World's largest crane service company with over 300,000 cranes under service contract
- Annual production includes:
 - Over 400 process cranes
 - 13,000 industrial cranes and hoists
 - 60,000 motors
 - 5,000 motor controls
 - 4,500 heavy service gearboxes

Konecranes in Brazil

- Konecranes Talhas, Pontes Rolantes e Serviços Ltda is located in Barueri / state of São Paulo.
- Cranes sales, Spare parts sales
- Crane services
 - On calls
 - Inspections
 - Predictive maintenance
- Customers References in Bra
 - Aracruz
 - Metso
 - Voith
 - International Paper
 - Veracell
 - Arcelor Mittal
 - Estaleiro Atlantico Sul
 - Klabin
 - Alstom
 - Siemens Vai
 - ThyssenKrupp
 - Terminal Containers da Paranagua, TCP
 - Wellstream

Contacts of Konecranes Brazil

- Wagner Barbosa, President, +55 11 8558-7686,
- Jarmo Pehkonen, Process cranes sales, +55 11 8201-1716 j
- Marcelo Fernandes, Industrial cranes sales, +55 11 8411-0569,
- Antti Aitasalo, Sales representative, +55 11 9233 8047,
- Alexandre Toledo, Service Supervisor, +55 11 8673-0022,
- Daniel Moura, Technician, +55 11 8673-0055,
- Waldemar Junior, Technician, +55 11 8673-0043,
- Ulysses Codognotto, Administrativa assistant, +55 11 9948-7063,
- EMAIL: firstname.lastname@konecranes.com

User's List

KONECRANES[®]

Lifting Businesses[™]

Ordered	Customer	Project	Qty.	Capacity	Bucket	
2009	Naftogaz India Ltd.	HMEL, Bathinda, India	1	40 MT	20 M. Mech.	
2008	Fluor	TOTAL, Port Arthur, TX	1	44 Ton	25 Yd. Mech.	
2008	Punj Lloyd, Ltd.	Indian Oil Co., Baroda	1	44 MT	25 M. Mech.	
2008	Fluor	Marathon, Detroit, MI	1	30 Ton	17 Yd. Mech.	
2007	Naftogaz India Ltd.	BORL, Bina, India	1	33 MT	15 M. Mech.	
2007	Fluor	Marathon, Garyville, LA	1	30 Ton	17 Yd. Mech.	
2006	Bechtel - France	Reliance India	2	35 MT	20 Yd. Mech.	
2006	Fluor	Tesoro Golden Eagle, CA	1	44 Ton	25 Yd. Mech.	
2006	Foster Wheeler Iberia	BP Spain	1	17 MT	8 M. Mech.	
2005	Bechtel, ConocoPhillips	Borger Refinery, TX	1	30 Ton	17 Yd. Mech.	
2004	ConocoPhillips	Alliance Refinery, LA	1	18 Ton	10.5 Yd. Mech.	
2003	Larsen & Toubro	Indian Oil Co., Panipat	1	44 MT	25 M. Mech.	
2001	Bechtel	Hovensa, St.Croix	1	45 Ton	25 Yd. Mech.	
2000	Foster Wheeler	Sincor, Venezuela	2	25 m-ton	11.5 M. Mech.	
2000	SK Engineering	PEMEX, Madero	2	27 ton	18 Yd. Mech.	
2000	Bechtel	Marathon, Garyville, LA	1	27 Ton	17 Yd. Mech.	
1998	Consorcio Contrina	VEHOP, Venezuela	2	22 m-ton	12.5 Yd. Mech.	
1997	Chiyoda Corp.	Melaka Refinery	1	15 m-ton	8 M. Mech.	
1996	Foster Wheeler	Lyondell Citgo, TX	2	27 ton	18 Yd. Mech.	
1991	Bechtel / Conoco	Billings, MT	1	8 ton	4 Yd. Mech.	
1990	Bechtel	Star - Port Arthur, TX	1	25 ton	17 Yd. Mech.	
1984	Техасо	Anacortes, WA	1	17 Ton	8 Yd. Hyd.	
1983	Fluor	Puget Sound Plant, WA	1	14 ton	8 Yd. Hyd.	
		Total	28		_	

COKER CRANE TYPES

- BRIDGE TYPE WITH FIXED HOPPER
- SINGLE LEG GANTRY TYPE FIXED HOPPER
- SINGLE LEG GANTRY TYPE TRAVELING HOPPER
- SINGLE LEG GANTRY w/CANTILEVER

SAFETY, RELIABILITY, PRODUCTIVITY

BRIDGE TYPE WITH FIXED HOPPER

22 M Ton w/ 12.5 Cu.M. Bucket

30 Short Ton w/17 Cu.Yd. Bucket

SAFETY, RELIABILITY, PRODUCTIVITY

SINGLE LEG GANTRY with FIXED HOPPER & CANTILEVER

44 M Ton w/ 25 Cu.M. Bucket

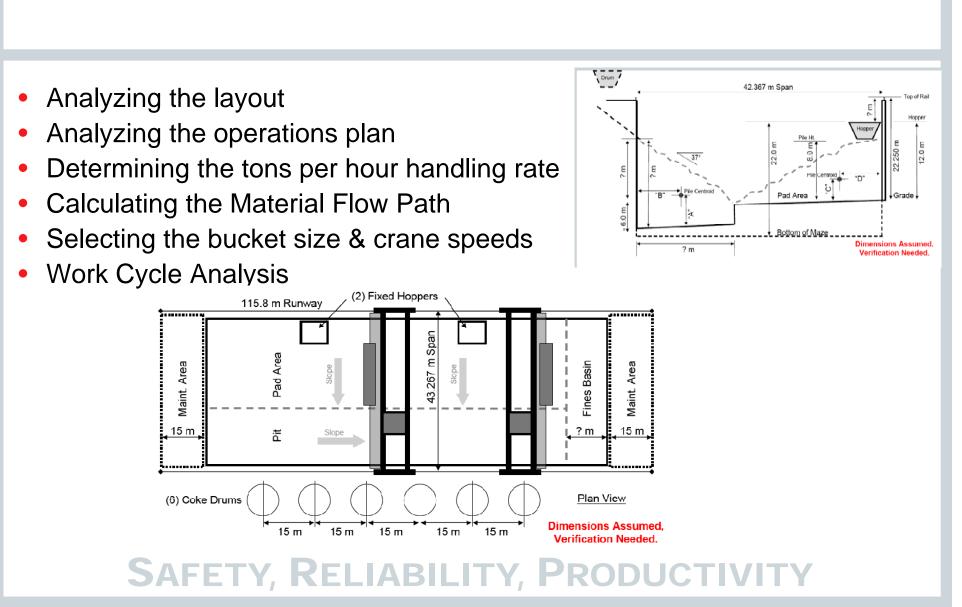
SAFETY, RELIABILITY, PRODUCTIVITY

SINGLE LEG GANTRY with MOTORIZED TRAVELING HOPPER

SAFETY, RELIABILITY, PRODUCTIVITY

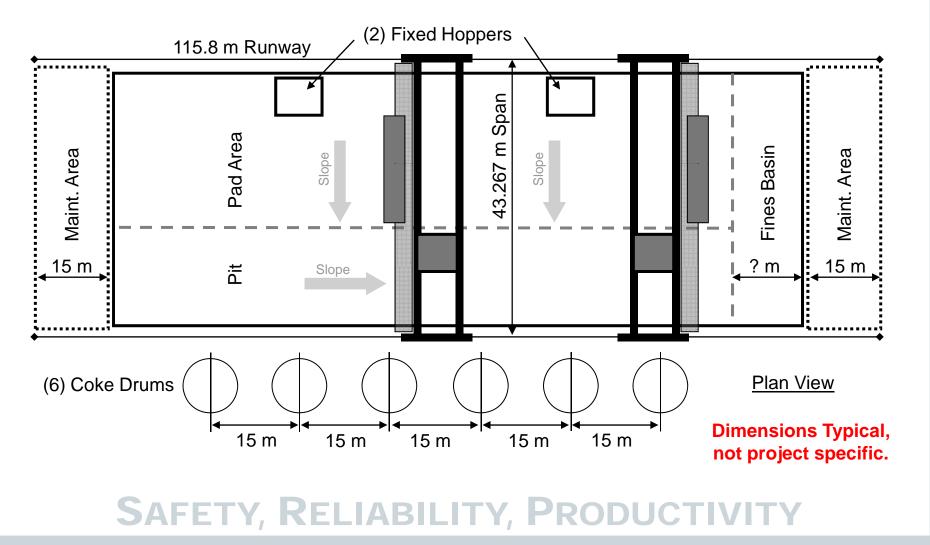
SINGLE LEG GANTRY with ON BOARD HOPPER & CANTILEVER

25 M Ton w/ 11.5 Cu.M. Bucket



SINGLE LEG GANTRY with ON BOARD HOPPER on CANTILEVER. LOADS RAILCARS

27 Short Tons w/ 18 Cu Yd Bucket


DATA ANALYSIS

Coker Cranes From Konecranes 2007 11

KONECRANES[®]

Lifting Businesses

Analysis Pit Layout Plan View (finds long travel dimen)

Coker Cranes From Konecranes 2007 12

KONECRANES[®]

Lifting Businesses

Analysis Pit Layout

KONECRANES®

Elevation View (find trolley and hoist dist)

SAFETY, RELIABILITY, PRODUCTIVITY

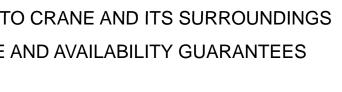
WORK CYCLE CALCULATION

	RK C	. UL	<u> </u>	-76		.~ 1	1014	•			КО	NEC	RA	NES
Deer			227	40	$\left \right $								ifting Bu	linosco
Propo	osal#	KCL	-237	18								L	arung bu	smesse
Date:		###			Version	on:	1							
	LE MOV			ISCH		-	-							
AVER	AGE CA	PACIT	Y		Case	A:	PIT	то но	PPER	DIRECT	LY			
ТҮРІ	CALRE	FINE	RY											
	40 TON	CDAN	E											
		Dic meter mechanical bucket												
				cnar			÷t							
	Pit area	•			45 x 1	10								
	Lifting I	height	(m)		31									
Line									Oper	ating Tim	e(s)			
1													overlapped	
2											ot overlapp	ed	ļ	
3			_						travel	pa	artly overlap closing	hoist.		
4			_						(m)		mach.	mach.	bridge	trollev
6	Action		-			-			()		maon.	maon.	bildge	troncy
7	1	Closir	na the	buck	ket				12.8		12.6			
8	2	Hoisti							12		12.0	12.0		
9	3	Travel	ling to	Pac	d Storag	ge (trolley	')	28					20.3
10	4				d Stora			e)	20				22.0	
11	5			Hop	per Dis	char	ge		0		0.0			
12	6	Weigh								n/a				
13	7	Open									8.8			
14	8				cket to			beam.	0	n/a	0.0		00.0	
15	9				pit (b				20				22.0	00.0
16 17	10 11	Lower		the	pit (tr	olley)		28 12		12.0	12.0		20.3
17				0 / 1	nachine	201			12		45	24	44	41
19		TCUTITI	ng un		vcle ti	-	e) -	86			21	24	44	21
20					i – I									
21		Motor	On-T	ime F	Percent	age		ED %		L	53	28	51	47
22		Hoist	00.00	ood ((mpm)			80	000 *	me(s)=		3.0		
23 24					(mpm)	1		80 110	acc. ti	me(s)=		3.0		
24					npm)			80				7		
25					cubic	mete	ers)	20						
27								721		1			1	1
28								0.85						
29		Load	(tonn	es)				12.3						
30														
31					IBER C					33	cycles/or	ne hour		
32		(80	% op	perator	effi	cienc	y factor)					
33														
34		AVER			NE CA					411	tons / one	hour		
35		(80	% op	perator	effi	cienc	y factor)					
36					ΙĪ									

TYPICAL EXAMPLE OF A WORK CYCLE CALCULATION:

INDICATES 40 TON CRANE WITH 20 CUBIC METER BUCKET WITH SPEEDS SELECTED TO MOVE 411 TONS PER HOUR.

BENEFITS OF LONG TERM OPERATIONS & MAINTENANCE CONTRACTS


•KEY TO HIGHEST LEVELS OF PERFORMANCE AND .RELIABILITY

•FASTER START-UP AND PRODUCTION RAMP-UP

•CRANE AVAILABILITY = 99% +

- •LOWER OPERATING COSTS OVER LONG TERM
- •LESS DAMAGE TO CRANE AND ITS SURROUNDINGS

•PERFORMANCE AND AVAILABILITY GUARANTEES

KONECRANES[®]

Lifting Businesses[™]

Allows refinery management to concentrate human resources on it's core competence!

OPERATIONS & MAINTENANCE CONTRACTS:

(Contract term can be 3 to 5 years with annual reviews)

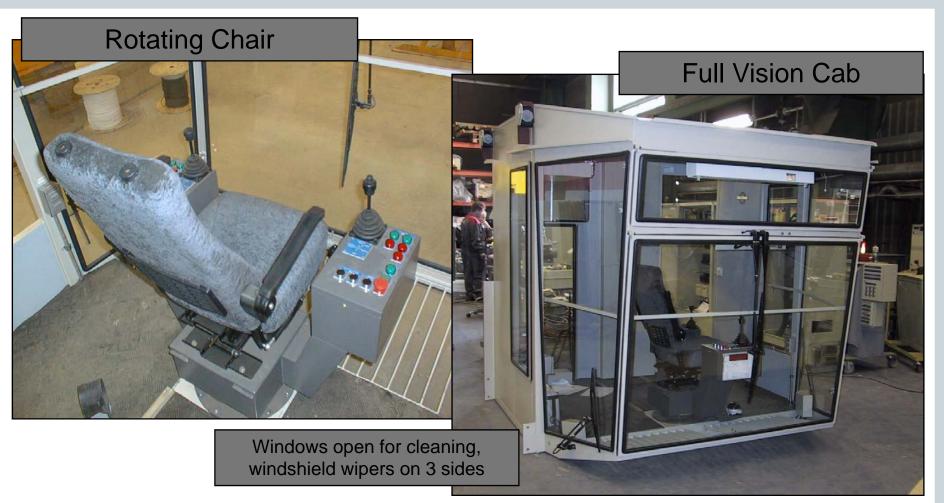
ACCOMPLISHED WITH:

HIGHLY TRAINED AND SKILLED PERSONNEL
CROSS TRAINING OF OPERATORS & TECHNICIANS
DEDICATED PROFESSIONALS WITH EQUIPMENT OWNERSHIP.
SPECIFIC TRAINING ON COKER CRANES
EXPERIENCE WITH THE CRANE SYSTEMS

Principal Issues

Safety

Design for Improved Safety


Konecranes Solutions

- Crane Operator's Environment:
 - Enclosed A/C Cab with HEPA particulate filter
- Purafil chemical filter.
- Enclosed environmentally controlled E-Room
- Filtered air
- Out-of-elements electrical maintenance
- AutOPilot Semi-Automation
- Independent Traveling Cab

Safety

Operator's Cab

SAFETY, RELIABILITY, PRODUCTIVITY

CABIN CHEMICAL FILTER

- Cleans air for Crane Operator
- Great Benefit to Operator's Health
- Stainless Steel Enclosure
- Compact Design for Tight Space
- Make-up Air for Cab Pressure

Safety

Environment

Corrosive Coke Pit

- **Environment:**
- Moisture / Steam
- Corrosive Fumes
- Ignitable Fumes
- Conductive Dust
- Exposed to Rain, Ice, Weather
- Abrasive Coke Dust
- Hazards for Operators

SAFETY, RELIABILITY, PRODUCTIVITY

KONECRANES[®]

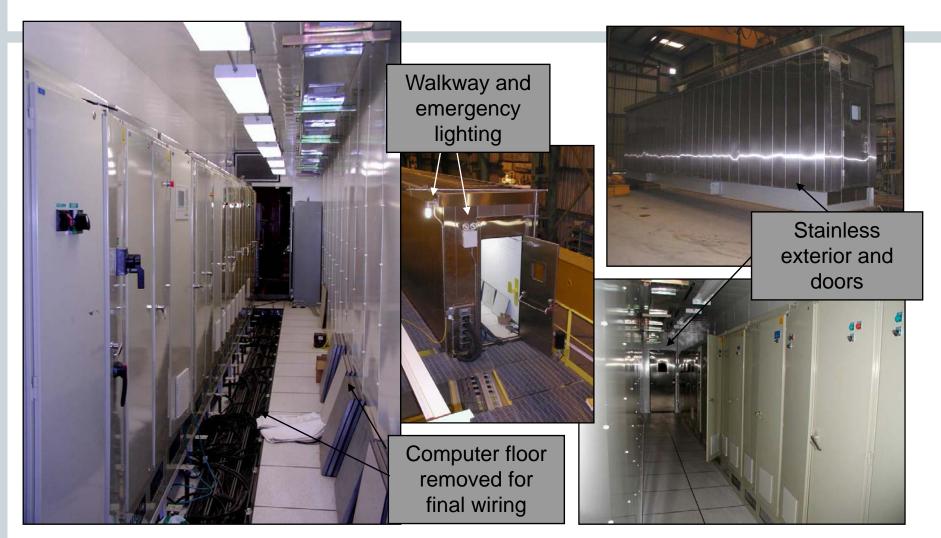
Lifting Businesses

Principal Issues

Reliability

Limited Time Available for Maintenance:

- Short weekly maintenance intervals
- Infrequent turnarounds for major repairs


Konecranes Solutions

Maintenance Reducing Features:

- Control House, Pressurized, with A/C
- Wired-In Spare Inverters
- Regenerative Network Braking
- Platformed Maintenance Access for All Mechanical and Electrical Components
- Inverter Duty Motors
- Improving access to components
- Designing longer lifetimes

Control House

CONTROL HOUSE CHEMICAL FILTRATION

SAFETY, RELIABILITY, PRODUCTIVITY

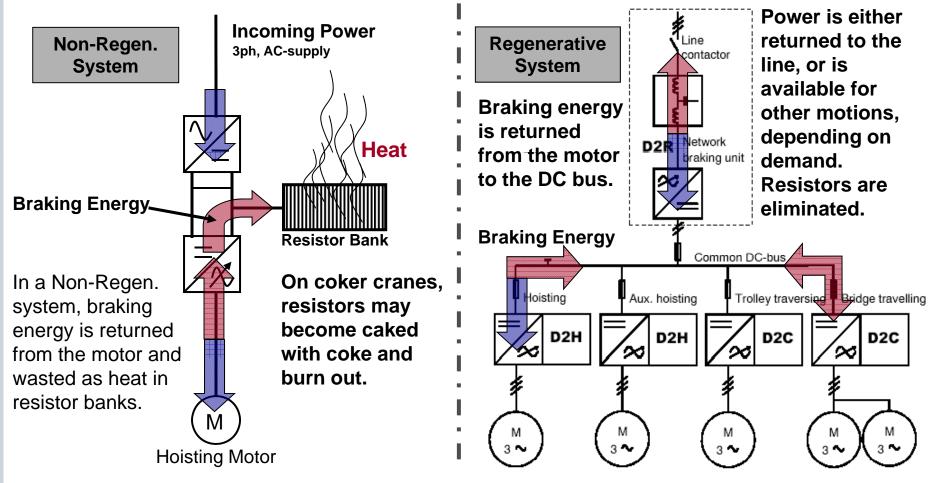
Reliability

KONECRANES® Lifting Businesses*

Resistor Issues

Resistor Bank Problems:

- Coke Dust on Resistors
- Reduced Resistance, Burn-Out
- Damage to Inverter Drives
- Maintenance Time for Cleaning


Konecranes DynAReg

Regenerative Control:

- Eliminates Braking Resistors
- Reduced Risk of Failures
- Reduced Maintenance Time
- Active Front End Cleans Incoming Power, Protecting Drives
- Power Going Back to Grid is Cleaned, Protecting Adjacent Equipment

Konecranes DynAReg Regenerative Control Energy Flow – Regeneration

Hoist Control

DynAGrab Synchonization Controller

Features:

- Load Balancing
- Automatic Sinking & Filling
- Enhanced Speed vs. Load Control
- Fast Stop / Slack Rope Control
- Drum Rotation Synchronization
- Fault Detection
- Jammed Grab Detection
- SAFETY: Overload Protection
- Less Demanding of Operator
- Higher Coke Handling Thru-put

Productivity

Load Control

Damage from Collisions:

- Bucket impacts on hopper
- Bucket impacts on pit wall
- Difficulties in fines basins
- Excessive load spillage

DynAPilot Sway Control

KONECRANES[®]

Lifting Businesses

Sway Dampening / Zone Control:

- Reduced load sway
- Restricted areas (pit walls, hopper)
- Smart Limits / Reduced Creep Areas
- Quicker, safer movements
- Reduced spillage at hopper
- Eliminates lost time caused by load swinging

CMS

Konecranes Data Archiving

- On Board Computer System
- Over 400 data points monitored on a typical coker crane
- Voltage, current, temperature, over/under speed, brake wear, limit switches, etc.
- Reports on status, condition and faults on operator display panel.
- Remote data access option.
- Alert user to potential problems before they are catastrophic
- Analyze data from the manufacturing process
- Real time reporting
- 4-Year Operating History Archive

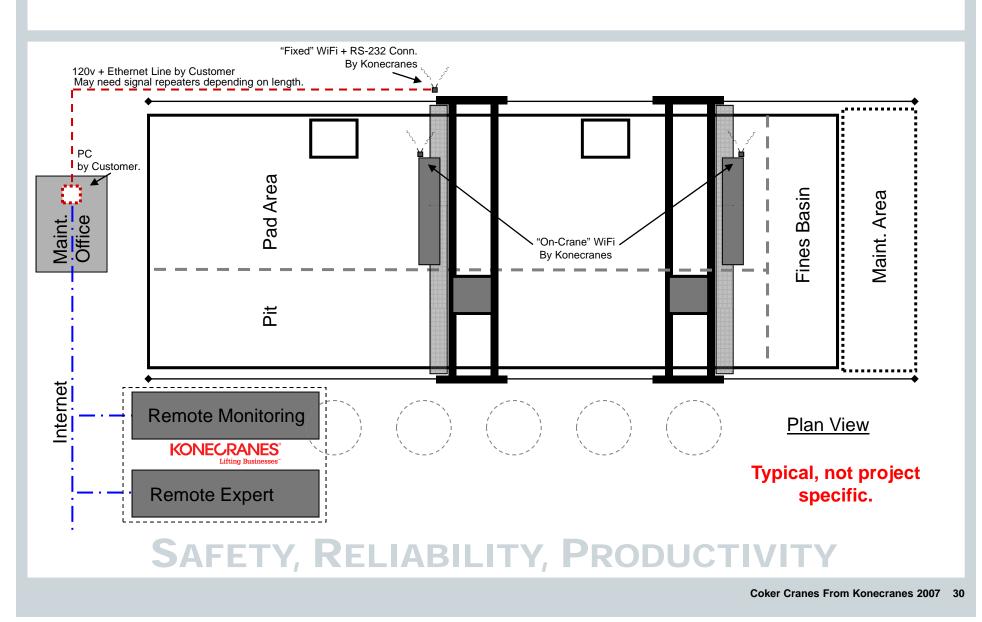
KONECRANES[®]

Lifting Businesses

Maintenance Data Analysis

CMS & Remote Monitoring

- Real time data is available in multiple locations
- Troubleshoot problems <u>before</u> getting on crane
- Remote Expert Assistance
- Diagnose problem off line in clean, safe environment
- Predictive maintenance can adjust maintenance intervals to suit changing crane usage
- Promotes Pro-active vs. Reactive Maintenance
- Remote to Maintenance Office



KONECRANES[®]

Lifting Businesses

CMS-WiFi Diagram Typical Pit Layout

Reliability

Runways

Structure Problems:

- Skewing of Bridge Effects Rail Alignment
- Damage to Rail Attachments
- Misalignment of Beams and Columns
- Wheel and Rail Wear
- Stress on Wheel Bearings and Crane Structure

DynATrak

Konecranes Auto-Steering Control:

KONECRANES

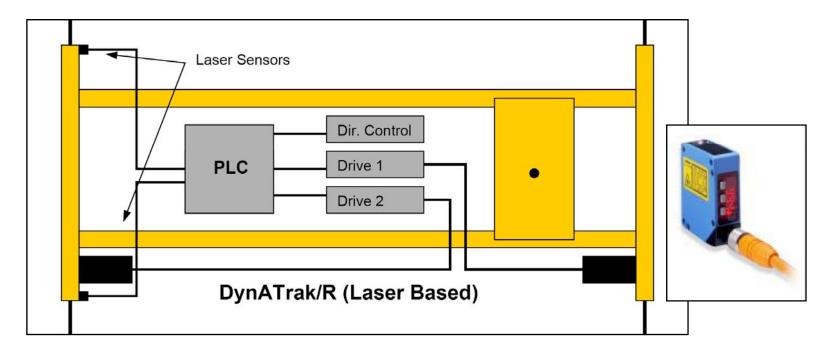
Lifting Businesses

- Harmful Lateral Loads Virtually Eliminated
- Dramatic Reduction in Wheel/Rail Wear
- Reduced Stress on Wheel Bearings
- Reduced Stress to Crane Structure
- Alignment of Runway Preserved
- Improves Safety by Limiting Structural Overloads

DynaTrak (Laser Guided Tracking)

U.S. Patent # 5,866,997

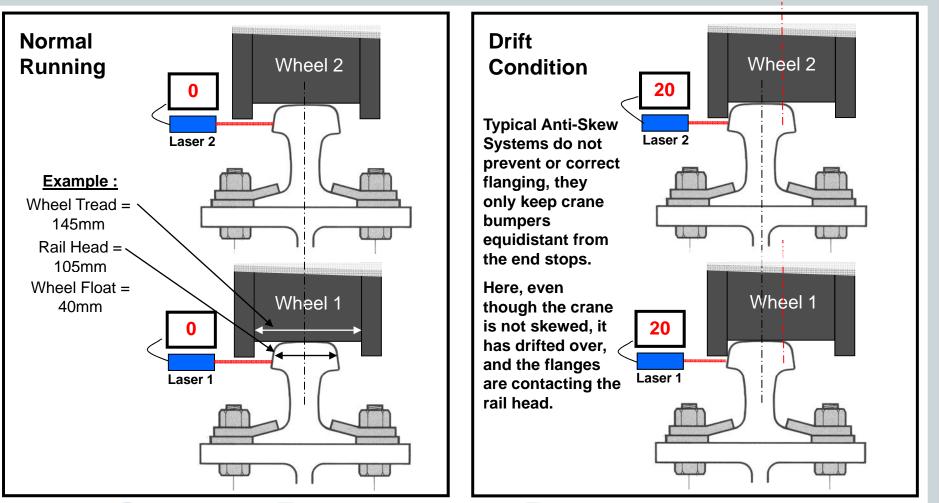
- Automatic Steering
- Centering wheels on rail
- Reduces lateral loads
- Minimizes wheel wear and loads to runway structure.



Konecranes DynATrak

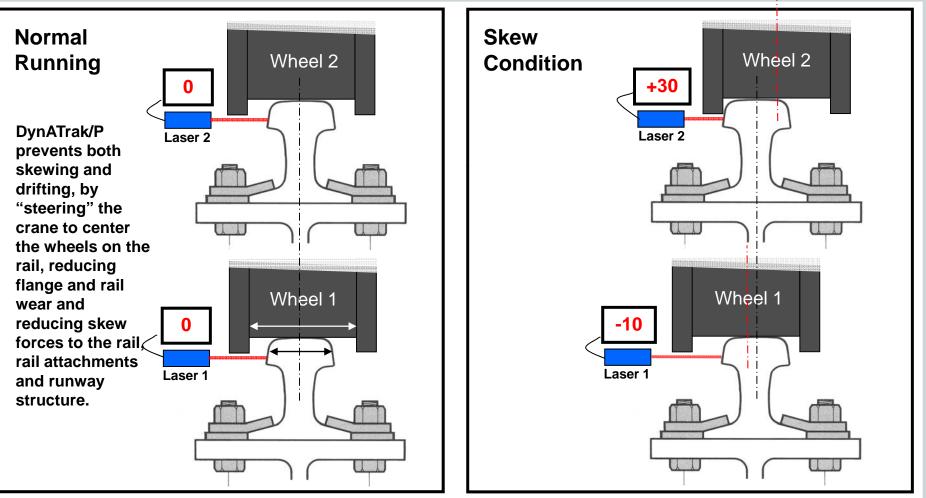
KONECRANES®

U.S. Patent # 5,866,997



- PLC drives bridge via 2 separate inverters
- Laser measurement maintains constant flange-to-railhead distance

Productivity


Other Systems Don't Prevent Flanging

Productivity

KONECRANES® Lifting Businesses

Anti-Flanging and Anti-Skew

OPERATOR SAFETY BACK SAVER SYSTEM

Operator's Normal Posture: Back Bent Over

Operator's view of bucket digging

KONECRANES[®]

Lifting Businesses

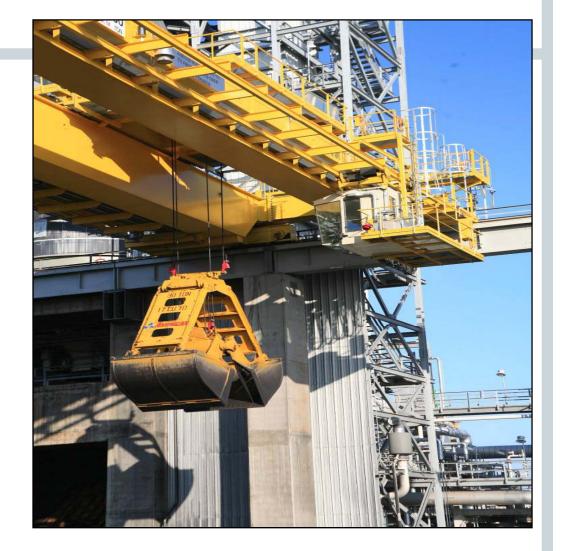
BACK SAVER VISION SYSTEM

LOOK DOWN CAMERA INSIDE CAB

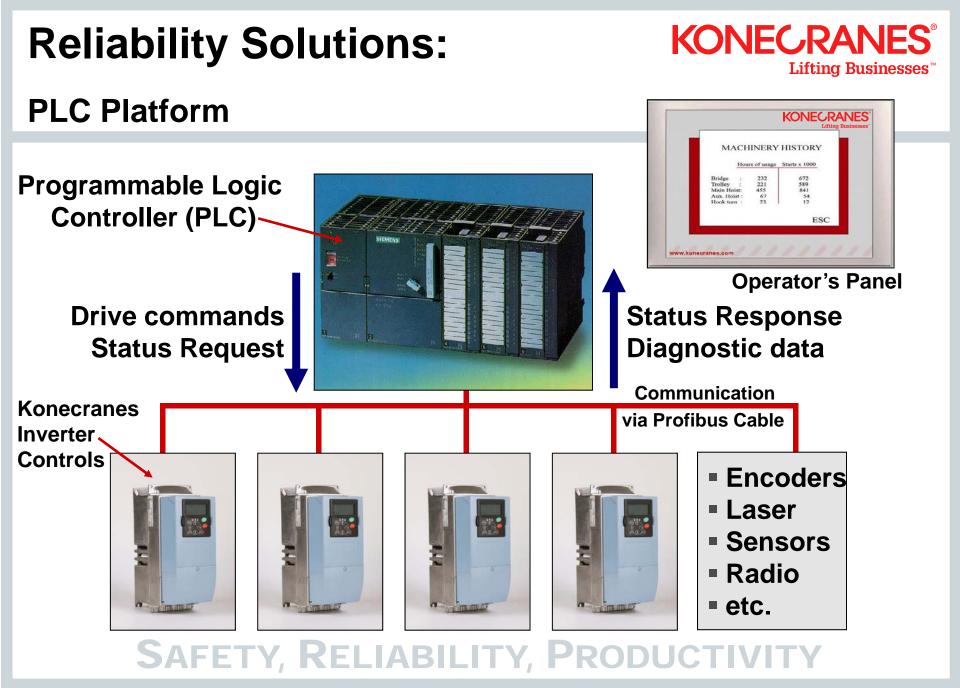
SAFETY, RELIABILITY, PRODUCTIVITY

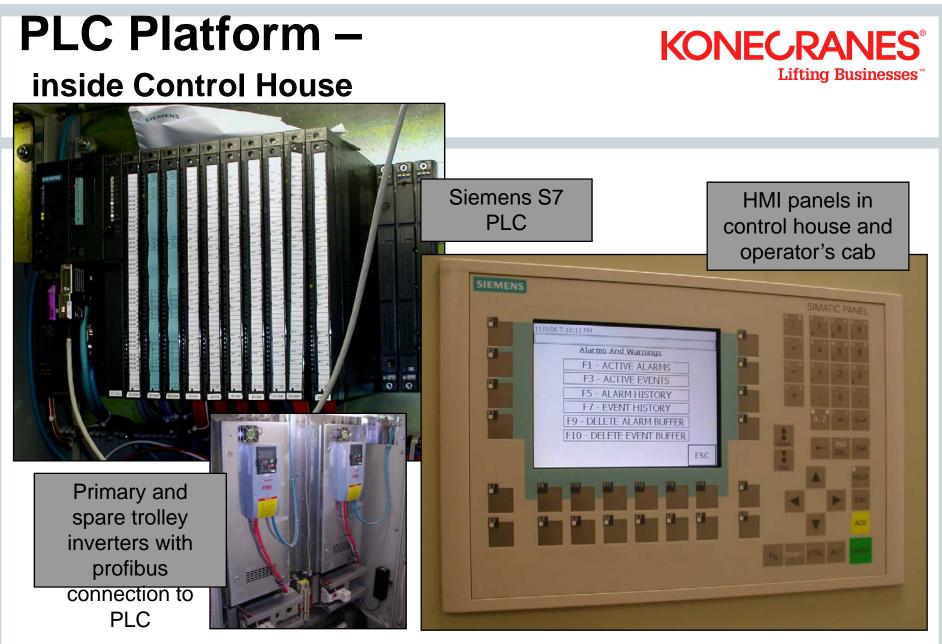
Coker Cranes From Konecranes 2007 37

OPERATOR CAN LOOK AHEAD WITH BACK SUPPORTED AGAINST BACKREST

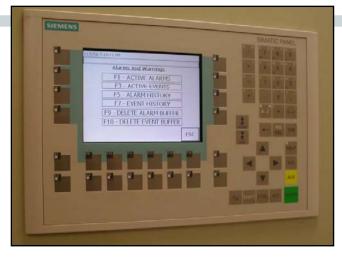

SAFETY, RELIABILITY, PRODUCTIVITY

Coker Cranes From Konecranes 2007 38


Independent Traveling Cab


KONECRANES®

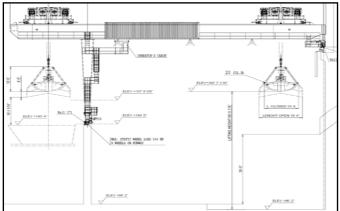
- •Mounted on twinTrack monorail
- Independent traveling
- •Operator selects best location on span
- Increased safety away from vapors.
- •Best line of vision can be selected.
- Increased comfort level
- •Improved operator ride comfort


HMI OPERATOR DISPLAY PANEL

Operator's Cab

KONECRANES®

Inside Control House

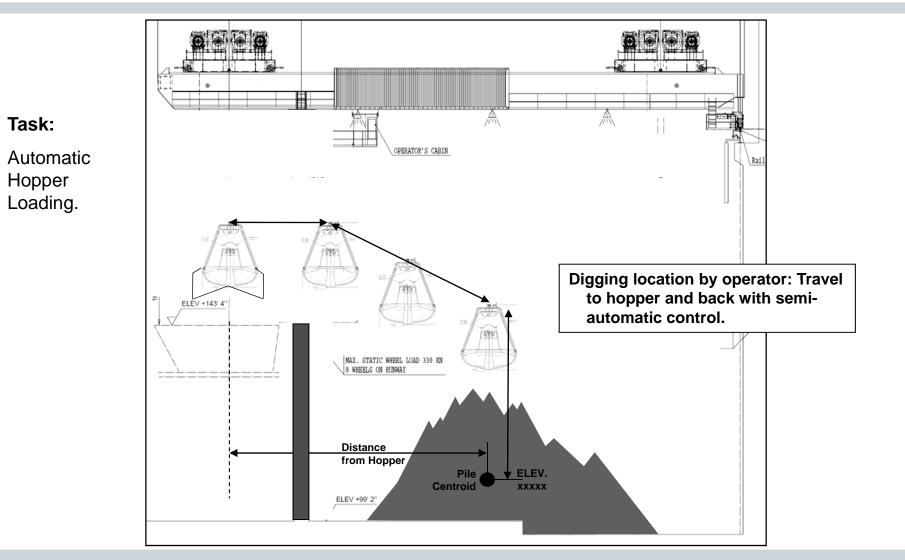

Inside Operator's Cab

AUTOMATION

Semi automatic control

 Semi automation is used by operator for moving the grab automatically from the pit to the hopper and back to the pit. Semi automation start/stop control is done with single push button and indication light in the operators cabin pulpit. If the operator touches joystick controller cycle is interrupted.

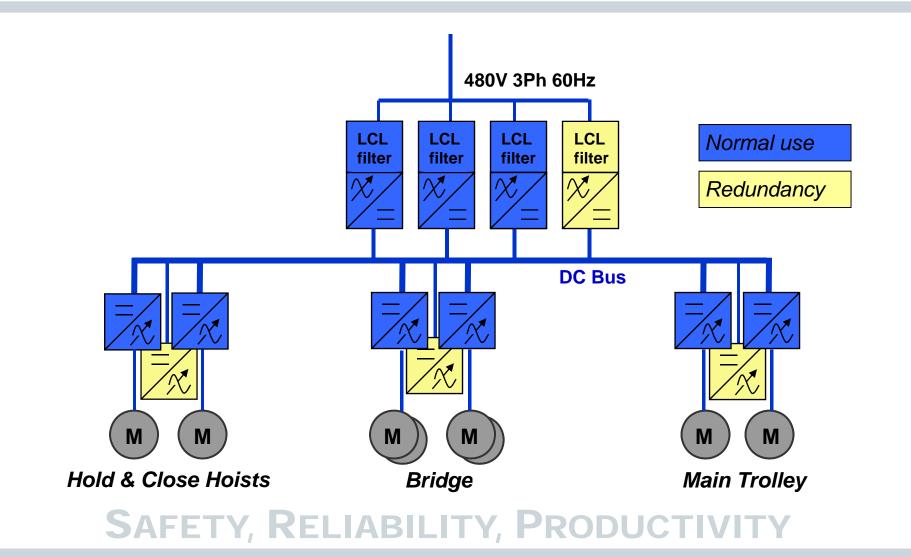
AUTOMATION & SAFETY


DynaPilot antisway control and zone protection

 Dynapilot, electronic anti sway control, enables overlapping movements of all three motions which makes movements smooth. Dynapilot is utilized in protected zone function to create no-go zones to prevent grab hitting pit walls or separation walls.

Automation Semi-automatic Cycle

On Board Spare Inverters

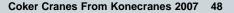

KONECRANES[®]

DynAReg

Redundant Drives and DynAReg Modules

Thank You ! www.konecranes.com

KONECRANES[®]


Lifting Businesses

This presentation and the information contained herein are the exclusive property of Konecranes America, Inc. The contents of this presentation represent non-public, confidential and proprietary trade secrets of Konecranes America, Inc. that may not be reproduced, disclosed to third parties, altered or otherwise employed in any manner whatsoever without the express written consent of Konecranes America, Inc.

Copyright © (2007) Konecranes America, Inc. All rights reserved.

CONTACT INFORMATION: DON PAULINO PH: 239-242-1069 don.paulino@us.konecranes.com

