
ÉCOLE DE TECHNOLOGIE SUPÉRIEURE
UNIVERSITÉ DU QUÉBEC

MEMORANDUM PRESENTED TO
L’ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR
A MASTER’S DEGREE IN ELECTRICAL ENGINEERING

M. Eng.

BY
Éric THIBODEAU

PROFILING AND OPTIMIZING K-MEANS ALGORITHMS IN A BEOWULF CLUSTER
ENVIRONMENT

MONTREAL, DECEMBER 21 2009

c© Copyright 2009 reserved by Éric Thibodeau

PRESENTATION OF THE JURY

THIS MEMORANDUM HAS BEEN EVALUATED

BY THE FOLLOWING BOARD OF EXAMINERS

M. Tony Wong, Memorandum Supervisor
Département de génie de la production automatisée à l’École de technologie supérieure

M. Roberet Sabourin, Memorandum Co-supervisor
Département de génie de la production automatisée à l’École de technologie supérieure

M. Guy Gauthier, President of the Board of Examiners
Département de génie de la production automatisée à l’École de technologie supérieure

M. Eric Granger
Département de génie de la production automatisée à l’École de technologie supérieure

THIS MEMORANDUM WAS PRESENTED AND DEFENDED BEFORE A BOARD OF

EXAMINERS AND PUBLIC

ON NOVEMBER 24 2009

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE

PROFILAGE ET OPTIMISATION DE L’ALGORITHME DU K-MEANS DANS UN
ENVIRONMENT DE GRAPE DE CALCUL DE TYPE BEOWULF

Éric Thibodeau

RÉSUMÉ

L’objectif du mémoire est l’étude approfondie d’environnements d’exécution parallèles, de
style Beowulf et SMP. Des modèles théoriques sont mis en plan à l’aide de données empiriques
issus de suites d’outils de micro-étalonnage populaires et personnalisés. Les données recueillies
sont ensuite utilisées pour valider l’applicabilité de techniques classiques d’optimisation. Ces
dernières sont confirmées en modifiant une implantation parallèle de type maître-esclave du K-
means, guidé par la suite d’outils de profilage et de traçage TAU (Tuning and Analysis Utilities).
Une nouvelle implantation parallèle du K-means, utilisant le paradigme des îlots, est élaborée
pour pallier aux problèmes de communications. De plus, certaines limitations intrinsèques des
librairies de communications et de calcul mathématique sont identifiées.

Notre étude révèle que le modèle classique définissant la performance parallèle d’un pro-
gramme, opposant calculs et communications, n’est que peut adéquat pour refléter la réalité.

Mots-clés : Informatique, ingénérie des systèmes, génie électronique et électrique, intelligence
artificielle

PROFILAGE ET OPTIMISATION DE L’ALGORITHME DU K-MEANS DANS UN
ENVIRONMENT DE GRAPE DE CALCUL DE TYPE BEOWULF

Éric Thibodeau

RÉSUMÉ

L’algorithme d’agglomération statistique K-means sert à classer des bases de données non
libellées en K groupes. Faisant partie de la fonction d’évaluation d’un Algorithme Écolution-
naire (AE), l’optimisation de ce dernier est devenu un point d’intérêt. Malgré les multiples
approches proposées pour son optimisation et sa parallélisation, très peu de recherche s’est at-
tardée aux questions entourant la performance et l’efficacité parallèle des implantations. Dans
la plupart des cas, les descriptions entourant l’environnement d’exécution demeurent opaques
et la présentation précise de profiles d’exécution est souvent absente.

Nous pallions à ces lacunes en présentant une description détaillée de deux environnements,
le grappes de calcul Beowulf et les machines parallèles de type Symmertric Multi-Processors
(SMP). Une combinaison de modèles théoriques et empirique sert ensuite d’étalon dans la
mesure de performance du K-means dans ces environnements. Étant la nécessité d’une exper-
tise pluridisciplinaire, une utilisation détaillée de la suite d’outils Tuning and Analysis Utilities
(TAU) est présentée pour simplifier la tâche du profilage de code parallèle. Couplée aux comp-
teurs haute précisions fournies par l’interface Performance Application Programming Interface
(PAPI), nous présentons une approche «grey box »ayant permis de muter une implémentation
parallèle maître-esclave du K-means vers une version hautement efficace utilisant le paradigme
d’îlots de calculs. Les optimisations sont guidées grâce à l’utilisation des modèles théoriques
et empiriques que nous avons obtenus.

Notre travail révèle que l’optimisation de programmes parallèles relève de bien plus qu’un
équilibre entre calcul et communications. Nous révélons les impacts négatifs de l’utilisation de
bibliothèques de fonctions mathématiques ainsi que de certaines versions des bibliothèques de
communications. Un profile d’exécution de haute précisions a permis d’établir que la représen-
tation et le pré-traitement des données peuvent s’avérer être plus coûteux que le calcul et les
communications combinés.

PROFILING AND OPTIMIZING K-MEANS ALGORITHMS IN A BEOWULF
CLUSTER ENVIRONMENT

Éric Thibodeau

ABSTRACT

The K-means algorithm is a well known statistical agglomeration algorithm used to sort a
database of unlabeled items into K groups. As part of the fitness function of an Evolutionary
Algorithm (EA), the optimization of the K-means algorithm has become a point of great in-
terest. Although many approaches have been proposed for its parallelization and optimization,
very few address the question of scalability and efficiency. In most cases, the description of the
execution environment remains opaque and precise profiles of the program are mostly absent.
Performance and efficiency issues are quickly relegated to communication issues.

We address these deficiencies by presenting a detailed description of two parallel environments,
the Beowulf style clusters and the Symmetric Multi-Processors (SMP) parallel machines. A
mixture of theoretical and empirical models were used to characterize these environments and
set baseline expectations pertaining to the K-means algorithm. Due to the necessity of a mul-
tidisciplinary expertise, a detailed use of Tuning and Analysis Utilities (TAU) is provided to
ease the parallel performance profiling task. Coupled with the high precision counter inter-
face provided by Performance Application Programming Interface (PAPI), we present a grey
box method by which a parallel master-slave implementation of the K-means is evolved into a
highly efficient island version of itself. Communications and computational optimization were
guided by prior theoretical and empirical models of the parallel execution environment.

Our work has revealed that there is much more to parallel processing than the simple balance
between computation and communications. We have brought forth the negative impact of
using mathematical libraries for specific problems and identified performance issues specific to
some versions of the same series of Message Passing Inerface (MPI) libraries. High precision
profiling has shown that data representation and processing can be a more significant source of
scalability bottleneck than computation and communications put together.

TABLE OF CONTENT

Page

INTRODUCTION.. 1

CHAPTER 1 HARDWARE CHARACTERIZATION .. 4
1.1 Basic Computer Architecture... 5

1.1.1 The Control Unit and Arithmetic Logic Unit 5
1.2 Caching in on The Main Memory ... 6

1.2.1 Accessing The Main Memory .. 7
1.2.2 Cache Size and Contention .. 11
1.2.3 Processor Performance ... 16

1.3 Communications... 17
1.3.1 Bandwidth ... 18
1.3.2 Latency ... 19
1.3.3 The HyperTransport Interconnect.. 23
1.3.4 Benchmarking Network Communications ... 24
1.3.5 Theoretical and Empirical Model .. 27

1.4 Input/Output and Storage.. 28
1.4.1 Local Versus Remote Storage... 29

1.5 Discussions ... 30

CHAPTER 2 THE PROFILING TOOLS .. 32
2.1 Black, Grey and White Box... 33
2.2 Sequential Profiling: Use Of gprof ... 34
2.3 The Itch Of Measuring Time ... 36

2.3.1 PAPI: Time To Scratch Below The Surface 36
2.4 Tuning and Analysis Utilities (TAU) ... 39

2.4.1 Configuring TAU... 40
2.5 Profiling the Source Code ... 41

2.5.1 Automatic Code Insertions .. 42
2.5.2 Semi-Automatic Code Insertions... 42

2.6 Executing the Profiled Code .. 43
2.6.1 Selecting The Profile Depth ... 44
2.6.2 Selecting The Desired PAPI Events ... 44
2.6.3 Controlling The Data Flow .. 45
2.6.4 Storing The Data ... 45

2.7 Paraprof and PerfExplorer: The Profiling Graphical User Interfaces 46
2.7.1 The Paraprof Profile Viewer... 47
2.7.2 The PerfExplorer Performance Analyzer .. 51
2.7.3 Application Speedup .. 52

III

2.7.4 Application Parallel Efficiency ... 55
2.7.5 Runtime Breakdown .. 56
2.7.6 Views.. 57

2.8 Discussions ... 60

CHAPTER 3 CASE STUDY: PARALLEL K-MEANS ALGORITHM ANALYSIS 61
3.1 The Sequential k-means Algorithm ... 62

3.1.1 Empirical Evaluation of the Algorithm ... 62
3.2 The Parallel K-Means Algorithm.. 66

3.2.1 First, Divide: The Segmentation Strategies.. 66
3.2.1.1 Strided Segmentation .. 66
3.2.1.2 Blocked Segmentation .. 67
3.2.1.3 Hardware Considerations: Load Balancing 67
3.2.1.4 Hardware Considerations: Physical Limitations 68

3.2.2 Then Tell Everyone: Communications ... 69
3.3 And Conquer: Master-Slave Model... 69

3.3.1 Master-Slave Communications ... 70
3.3.2 Master-Slave Empirical Modelization .. 73

3.4 Or, Invade: Synchronous Island Model .. 79
3.4.1 Optimizing the code ... 82
3.4.2 Island Communications .. 83

3.4.2.1 Overlapping Communications and Computation 83
3.4.2.2 Less Talk, More Work... 85

3.5 Optimization of Input/Output (I/O) Routines... 87
3.6 Computational Optimizations: Coding for High Performance Computing (HPC) .. 88

3.6.1 Compiler Directives ... 89
3.6.2 Mathematical Libraries Versus Code.. 89
3.6.3 Using Single Instruction Multiple Data... 90
3.6.4 Loop Optimizations ... 91
3.6.5 Basic Linear Algebra Subroutines (BLAS) Libraries 96
3.6.6 Comparing All Approaches ... 99

3.7 Looking at the Global Picture ... 101
3.8 Discussions .. 105

CONCLUSION .. 106

APPENDIX I THE GNU C Compiler (GCC) .. 111

APPENDIX II COLLECTION OF COMMANDS ... 116

APPENDIX III MACHINE DESCRIPTIONS... 117

APPENDIX IV SOURCE CODE ... 125

IV

BIBLIOGRAPHY ... 141

LIST OF TABLES

Page

Table 2.1 Black, Grey and White Box definitions. 33

Table 2.2 Black, Grey and White Box capabilities for the presented tools. 60

Table 3.1 Per bottleneck optimization recommendations. Prior profiling to
identify the applicability of these approaches is primordial.109

Table III.1 Thinkbig Node Specifications .118

Table III.2 Thinkbig Software Specifications .118

Table III.3 H2 Node Specifications. .121

Table III.4 H2 Software Specifications .122

Table III.5 SMP machine hardware specifications .124

Table III.6 SMP machine software specifications .124

LIST OF FIGURES

Page

Figure 1 An illustration view of the multiple elements and disciplines
involved in parallel processing. Each quadrant represents a field of
research with each underlying component being a specialization.
The crossing of quadrants signify its multidisciplinarity and the
overlapping emphasizes integration complexity. 2

Figure 1.1 Multi-processor memory access strategies for both Advanced
Micro Devices (AMD) and Intel processors. AMD possesses Non
Uniform Memory Access (NUMA) characteristics while Intel’s
implementation is essentially Uniform Memory Access (UMA). 9

Figure 1.2 These schematizations of the AMD Opteron Dual Core processors
(800 series) and the Intel Core 2 Duo processors illustrates how the
two core variants access Dynamic RAM (DRAM). In both cases,
the Memory Management Unit (MMU) possesses dual channel
connectivity to DRAM for link bandwidth aggregation. 10

Figure 1.3 Cache memory behavior on an Intel Q6600 (4 cores). Execution
time characteristics are illustrated in (a). Cache usage zones are
identified in (b). 14

Figure 1.4 Cache memory behavior on AMD Opteron 800 series based
processors using 14 cores of a SUN SunFire x4600. Execution time
characteristics are illustrated in (a). Execution zones are identified
in (b). 15

Figure 1.5 Execution time comparison between Intel’s Q6600 and AMD’s
Opteron 885 processors. The concurrent process count is in
parenthesis. The raw computing power of the Q6600 outperforms
the Opteron 885 for four processes. The case of 14 concurrent
processes is presented to demonstrate the proportionally small
impact of their simultaneous execution. 17

Figure 1.6 LAM-MPI outperforms OpenMPI for any
TCP/IP communications. The non-linearity are noted around the
Maximum Transmission Unit (MTU) barriers of 1500bytes. 20

Figure 1.7 The round trip communication times using MPI libraries
surrounding the start up times in (a) and the MTU in (b). Since

VII

these are round trip figures, all values have to be halved when
considering asymmetric communication patterns. 21

Figure 1.8 The communications latency is affected by the Central Processing
Unit (CPU) frequency and network topology. Higher frequency
clearly renders lower latency and the addition of a hop between
two hosts (denoted as Cross-Switch) adds significant delays. 22

Figure 1.9 Comparing OpenMPI versions 1.1 and 1.2 on HyperTransport
by varying the message size passed to the mpptest micro-
benchmark. The 1.1 implementations had performance issues
characterized by a sudden jump in communication times around
packet sizes of 1000bytes. 24

Figure 1.10 The Tyan VX50 interconnection strategy for 8 processors using
HyperTransport (HT). This twisted ladder topology provides for
an average 1.5 hop between processors and their farthest memory pages. . . . 25

Figure 1.11 MPI call types and their impact on the communication
times. Synchronous (sync) communications outperform both
asynchronous (async) and persistant ones as the processor is
dedicated to performing the communication task in that specific
case. 26

Figure 1.12 Comparing the general theoretical communications model with
empirical values for a 100BaseT Ethernet network. Results from
netpipe are slightly higher than mpptest, indicating there
might be additional overhead to his test suite. The theoretical value
bases its ts on results from mpptest, thus biasing it to be closer
to that tool’s results. An arrow is inserted at 188bytes as a point of
reference for a vector of 47 floats, a unit which comes in handy in
our case study.. 28

Figure 1.13 An example of proportional breakdown of each task’s contribution
to the execution time for the Parallel Vector Quantization (PVQ)
implemented using a textual database (described in Chapter 3)
and traversing its entirety at initiation. The loading of the data
is performed by the load_samples() function and represents a
significant portion of the total execution time. 29

Figure 2.1 Output listing from gprof -brief -p vq. The columns
describe the following metric for each function (each line): % time
is the proportion of total execution time, cumulative seconds is the
inclusive execution time, self seconds is the exclusive time, calls

VIII

is the total count. Self and total s/call are for the inclusive and
exclusive time per call. Finally, the last column holds the function name. . . 35

Figure 2.2 The annotated source code as per the use of gprof -A vq. Only
the two most called functions form the source code are presented. 36

Figure 2.3 The program call graph. This call graph draws the execution
path of this simple program. Each box represents a function and
the arrows indicate the call sequence. The percentages indicate
the inclusive, or cumulative, time as one walks down the graph.
Exclusive times are indicated in parenthesis. 37

Figure 2.4 A sample use of gprof2dot to generate a dot file to be
interpreted by Graphviz. The information is generated by gprof,
then piped into gprof2dot.py, which itself pipes into the dot
interpreter to generate the call-graph.pdf file. 37

Figure 2.5 The PAPI implementation scheme. Adapted from [10] to include
the software components, in parenthesis, relevant to each layer
used in our implementation. 38

Figure 2.6 Automated general configuration of TAU using the installtau script. . . 40

Figure 2.7 Manual configuration of specific features (lines 4 and 5) using
TAU’s ./configure script. 41

Figure 2.8 Example of TAU profiling options that were compiled at
installation time. Following the Makefile.tau- filename
prefix are the options selected at compilation time. 41

Figure 2.9 Selective profiling using Eclipse and
TAU’s selective instrumentation interface. The df() function is
selected and specific type of profile pattern is applied to it. The
modules then automatically generates a tau.selective file to
be passed to the wrapper script. 43

Figure 2.10 A sample script that sets up the environment for multiple runs of profiling.. 44

Figure 2.11 Both Graphical User Interfaces (GUIs) possess a main window
from which the data set(s) to be analyzed is selected. The selection
is performed in the left pane where trials are presented in the form
of a tree structure. The latter depends on how the data was imported
using Performance Data Management Framework (PerfDMF). We
see in (a) that paraprof has an additional branch, which is used

IX

for the current folder’s data and that (b) possesses an additional
leaf named view. 46

Figure 2.12 A normalized profile view of all processes including the global
mean and the standard deviation (Std. Dev.) of each
functions. In this case the metric is the time proportion as per
GET_TIME_OF_DAY. Each color represents a specific function
and its length is proportional to the total execution time on that
specific node. 47

Figure 2.13 Individual functions and group of functions can be selected to focus
the displayed statistics. Here, the TAU_USER group is selected
in the Group Legend pane (bottom left), which highlights the
relevant functions in the main window (right). Note that we have
de-selected the stacked bar presentation for the main window to
present an alternative to the normalized stacked bars from Figure
2.12 . 48

Figure 2.14 An alternate representation of the data in 3 Dimensional (3D). This
view provides a more intuitive view of the data through a landscape
representation or a series of bars (as shown). The bar height and
color intensity can relate to any of the collected PAPI metric or one
of the derived metrics created by the user. 49

Figure 2.15 paraprof has the ability to display the call graph if the program
was profiled with the -PROFILECALLPATH option turned on. By
default the box width is proportional to the inclusive times and the
box color is selected according to the exclusive runtime of a given
function. Both programs are the same but it is clear that the call
path from the master node in (a) is different from one of the slave
nodes in (b). 50

Figure 2.16 An example of an analysis sequence in paraprof. From top
left, circling counter-clockwise, is the sequence from paraprof
manager window, through the bar charts, the call graph and then to
the source code. 51

Figure 2.17 The top line shows the ideal speedup, based on the experimental
data right below it, which starts with tbase = t1 (1 processor) up to
the timing for p = 16 processors. The bottom line seems to have
poor speedup as it is far from the ideal line (also drawn). For this
curve, the baseline time tbase is based on the execution with p = 5
processes. This induces a distortion in the speedup representation
as the two series have a different reference for tbase. 53

X

Figure 2.18 A closer look of the experiment having a baseline time tbase with
5 processors demonstrates that it actually exerts ideal speedup
according to perfexplorer’s guideline. 54

Figure 2.19 The speedup of each event is drawn independently to isolate the
functions that do not scale well. Functions that fall off the ideal
speedup reference line are the most probable barriers to scalability. 55

Figure 2.20 Relative efficiency is not affected by the baseline’s processor count
p. The most efficient implementation (top line), averaging at 1,
was originally presented as having comparatively poor speedup in
Figure 2.17 . 56

Figure 2.21 Relative efficiency by event can help identify functions with poor
scalability. The ideal is to remain close to 1 as processor count grows. 57

Figure 2.22 Comparing three representation of the same profile run using
relative efficiency in (b), relative speedup in (a) and a runtime
breakdown graph in (c). The intuitive display from the
runtime breakdown eases the identification of functions becoming
problematic as processors are added. Simply put, a widening cone
such as the second predominant layer from the top, is indicative of
a growing bottleneck. A tightening cone, on the other hand, means
that the function looses proportional importance in the overall
execution time. Parallel or constant area are signs of linear (ideal)
speedup of a function. 58

Figure 2.23 The use of perfexplorer views help
consolidating experimental data for a better analytical perspective.
All 15 experiments are presented in (a) whereas an averaged view
is presented in (b). 59

Figure 3.1 Profiling and execution of the sequential k-means algorithm using
TAU. The program is then started by specifying the reference
database and the number of samples to load from the database.
Here we load 1% of the entire database. The [snip] tags indicate
output truncation. 63

Figure 3.2 Each graphic is a window from paraprof, used to present
a specific view of the sequential k-means profile. The call
graph in (a) clearly shows that the execution time is mostly
attributable to centroid_def(). The stacked bargraph in
(b), and its deconstructed version in (c), also indicates this
proportional importance. The call counts from (d) help identify

XI

potential partitioning areas as well as its grain. (e) is useful
for identifying highly cohesive functions (many short calls), thus
potential communication bottlenecks. 65

Figure 3.3 Database segmentation strategies: TOP- Strided segmentation (fine
grained) is used by the master-slave algorithm where each element
of the database is assigned to one ω worker node in a round-
robin fashion. BOTTOM- Block segmentation approach (coarse
grained), assigns equal consecutive chunks of the database to each
worker as per |DB|/ω with the remainder assigned to the last worker. 68

Figure 3.4 A typical master-slave topology. All communications originate and
terminate on the master. The nodes do not communicate between
each other. 70

Figure 3.5 The workers send their partial results to the master . 72

Figure 3.6 The master updates the workers with the new values . 72

Figure 3.7 Master-Slave Message Sequence Chart (MSC) for the inter-
iteration communications. All communications are point to point
and must be performed by all nodes.. 74

Figure 3.8 The 3D view of the master-slave communications MPI_Recv()
and computation cycles df() for all nodes. The master node (node
0) spends most of its time waiting for the results from the ωorker
nodes. Columns are colored according to time per call for the function. 76

Figure 3.9 Average time spent by all nodes in each function. Each calls are
sorted by order of contribution importance. Calls under 0.008
seconds aren’t shown for clarity. Braces indicate the source file and
line numbers, bracket information specify which call parameters
were used and function call paths are indicated using ’=>’. 77

Figure 3.10 Correlation analysis for ω = [2, 24]. Each function’s time
contribution is drawn as the worker count grows. The correlation
coefficient r, indicates the correlation between the addition of
nodes and the execution time of the function. 78

Figure 3.11 Runtime breakdown for ω = [2, 24]. Each function’s proportional
importance for the total execution time is depicted by its surface
coverage as nodes are added to the computation. A perfectly
scalable function would be represented by a constant surface area
whereas a growing surface is indicative of poor scaling. 79

XII

Figure 3.12 A typical island topology. Communications originate and
terminate between each node. This model implies a fully
connected network where all nodes can see eachother (typical
Ethernet configuration). The number of actual communications
varies depending on the MPI implementation of the global communicators. 80

Figure 3.13 The three collective calls used to communicate and perform an
element by element summation of all three intermediate variables. 83

Figure 3.14 Island MSC for the inter-iteration communications. Although
drawn as sequential, collective communications can overlap within
the same call to MPI_Allreduce but must complete within the
same call (equivalent to a communication barrier). These barriers
are depicted by the horizontal dotted lines. They must also be
performed by all nodes.. 84

Figure 3.15 Average communication times for both approaches. Master-slave
communications are presented in (a) while the only communication
for the island model is in (b). 85

Figure 3.16 A single collective call performs the exchange and summation
of all intermediate values. The variable c_sum is supersized to
include C, m and dist, hence the communication size of K ∗ T +
K + 1. Each variable simply points to its specific region within c_sum. . . . 86

Figure 3.17 Simplified Island MSC for the inter-iteration communications.
A single collective call from each node communicates all
intermediate values and performs their sum at the same time. 86

Figure 3.18 Comparing hand coded squared function (a×a) to the use of pow()
on Intel Q6600 . The metric used in all cases is the exclusive mean
per-call values of the fucntion. In all figures ((a) to (e)), the top
bar (in blue) uses the explicit definition while the red bar below
uses the library call to pow(a,2). All the presented metrics point
to the expanded version as being more efficient by consuming less
total time (a), cycles (b), issuing less instructions (c) (total) and
even less floating point (d) and vector instructions (e). 90

Figure 3.19 On the left, the original loop. On the right, the fourfold unrolled
version of this same loop. 92

Figure 3.20 Pre-assembly output from GCC for an Athlon XP processor for
df(). On the left, the code is compiled with explicit use of Single
Instruction Multiple Data (SIMD) directives such as -mfpmath=
sse -msse -m3dnow. On the right, the addition of -ffast-

XIII

math has triggered unrolling of loop as well as additional use of
the SIMD capabilities, generating more efficiently vectorized code.. 94

Figure 3.21 Execution time comparison between using -O3 (top bars in blue),
adding -ffast-math (middle bars in red), and also addinf -
funroll-all-loops (bottom bars in green). The (a) is for
the execution time on Athlon XP processors where we can see
that df() does not seem to benefit from -funroll-all-loops
but does perform better with about 6% in time gain with only -
ffast-math. (b) is on Intel Q6600 where very little differences
are noted between the three approaches.. 95

Figure 3.22 The df() function using BLAS. On the left, the original loop. On
the right, the BLAS version of this same loop. The operations on
the right are aligned with the ones they (mostly) replace on the left. 96

Figure 3.23 The Level 1 BLAS libraraies (top blue bars and line) perform
poorly in all cases compared to the code optimized with -ffast-
math. This is reflected in all aspects of the computation whether
it being time (a), CPU cycles (b), instructions (c) or even floating
point operations ((d) and (e)). Further investigation by varying the
vector size has proven this to always be the case as demonstrated
in (f) . 98

Figure 3.24 Comparing all approaches Athlon XP (a) and Intel Q6600 (c). In
both cases, BLAS (purple) and pow() (light blue) are the worst
performing. A direct correlation is made between performance and
Level 2 (L2) cache misses (b) for the Athlon XP . In the case of
the Intel Q6600 , the same clear cut correlation, requires that we
go down to the Level 1 (L1) cache (d). .100

Figure 3.25 Total execution times on both clusters. The Headless cluster
(a), based on Athlon XP hardware, lends a distinct advantage
to the use of -ffast-math. On the H2 cluster (b), based on
Intel Q6600 hardware, most options overlap leading to no clear
“winner”, barring the use of GOTO BLAS and pow. .102

Figure 3.26 The runrime breakdown for the best optimized options on both
clusters. In (a) most of the execution time on the H2 cluster is
spent in MPI libraries. We see this is not the case in (b) for the
headless cluster where most of the time is spent in computation.104

Figure 3.27 A deceptively simple diagram depicting the iterative optimization
process of a program. The multiple entry points recall that

XIV

a change in any one of the elements from Figure 1 are
susceptible to provoking a new optimization pass. The ultimate
convergence being that there is no more possible improvements
given a stabilized environment, and one can then get on with life.108

Figure I.1 disabled in the -O2 level but enabled in -O3. As specified in the
manpage for GCC, the -O2 optimization level leaves out options
that can grow the code size. This is to be considered if excessive
instruction cache misses are found during the profiling of the application. .112

Figure I.2 The df(), distance function, Euclidean computation function
from the k-means implementation.. .114

Figure I.3 Part of our Makefile used to generate and use GCC’s profilie
guided optimizations on Athlon XP hardware. The application
is built calling make mpi, which will automatically generate the
application, a profiling version, run a single execution and the
compile a profile-guided version from the results of the previous
run. .115

Figure II.1 Profiling and execution of the sequential k-means algorithm using
TAU. The program is then started by specifying the reference
database and the number of samples to load from the database.116

Figure III.1 Thinkbig Beowulf cluster topology .118

Figure III.2 The Hard Disk Drive (HDD)’s Zoned Constant Angular Velocity
graph for 16 nodes of the Thinkbig cluster. These performance
profiles illustrate well the heterogenety of the HDDs performance.
The 40 and 80 G Byte HDDs start off with the same performance
whereas the 20 G byte models are more than twice as slow..119

Figure III.3 Output listing of all PAPI events as per papi_avail -a for the
Athlon XP processors. .120

Figure III.4 Output listing of all PAPI events as per papi_avail -a for the
Intel Q6600 processor. .123

LIST OF SYMBOLS

BW node
I/O Node Input/Output Bandwidth

BW server
I/O Server I/O Bandwidth

BWuseful Useful Band Width

c Number of cores in a given processor

C Table of k centroids

cx One of the k centroids from C

DB Data Base of vector elements

|DB| Data Base cardinality

DBωj Element j from ω’s Local Data Base

d Vector dimension

dist Distance

Ecomp Execution’s comparative efficiency

Ep Parallell Efficiency

Erel
p Relative Parallell Execution Efficiency

HDDnode
I/O Hard Disk Drive Input/Output Bandwidth

HDREthernet Ethernet Header Size

HDRTCP/IP TCP/IP Header Size

k Number of centroids used for the k-means algorythm

L Message Lenght (Payload)

Lmax Maximum length

Lshort Shortest Pacquet Size

xt A vector element from DB, the Data Base

mk Element counter for centroid k

XVI

mk
ω Element counter for centroid k on node ω

MTUsize Maximum Transmission Unit size

n Number of hosts

Niter Number of iterations

ω Number of worker nodes

p Number of processes

pbase Number of processes for base line excution

Sp Speedup using p processes

t1 Time for single execution thread

tavg Average time

tbase Base Line Execution Time

tbyte Time to send a single byte

tcomm Total Communication Time

tcomp|| Computation part of t||

tcon.avg Average time of running concurrent threads

texec Execution Time

tf‖·‖ Time to compute a single Euclidean norm

tlat Latency Time

tload Loading Time

tnavg Average time for end execution threads

t|| Parallel Execution Time

tseq Sequential Execution Time

tsingle Time for a single thread

ts Setup Time

tstart Start time

tstop Stop time

ACRONYMS

3D 3 Dimensional

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices

API Application Programming Interface

bps bits per second

Bps bytes per second

BLAS Basic Linear Algebra Subroutines

CFD Compitational Fluid Dynamics

CMP Chip MultiProcessors

CPU Central Processing Unit

CPI Clock Per Instruction

CUDA Compute Unified Device Architecture

DMA Direct Memory Access

DRAM Dynamic RAM

EA Evolutionary Algorithm

CFD Computational Fluid Dynamics

FLOPS FLoating point OPertaions per Second

GA Genetic Algorithm

GCC GNU C Compiler

GigE Gigabit Ethernet

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

GUI Graphical User Interface

XVIII

GNU GNU is Not Unix

HPC High Performance Computing

HPCC HPC Challenge

HDD Hard Disk Drive

HMM Hidden Markov Model

HT HyperTransport

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction-Level Parallelism

I/O Input/Output

Inf Infinity

IP Internet Protocol

ISO International Standards Organization

L1 Level 1

L2 Level 2

L3 Level 3

LLVM Low Level Virtual Machine

MIMD Multiple Instruction Multiple Data

MMU Memory Management Unit

MPI Message Passing Inerface

MSC Message Sequence Chart

MTU Maximum Transmission Unit

NaN Not a Number

NIC Network Interfafce Card

NFS Networked File System

UMA Uniform Memory Access

XIX

NUMA Non Uniform Memory Access

NFS Network File System

OpenCL Open Computing Language

OS Operating System

PAPI Performance Application Programming Interface

PerfDMF Performance Data Management Framework

PDT Program Database Toolkit

PtP Point to Point

PXE Pre eXecution Environment

PDT Program Database Toolkit

PVQ Parallel Vector Quantization

QPI Quick Path Interconnect

RAM Random Access Memory

RAID Redundant Array of Inexpensive Disks

SATA Serial Advanced Technology Attachment

SIMD Single Instruction Multiple Data

SPMD Single Program Multiple Data

SMP Symmetric Multi-Processors

SRI System Request Interface

SSE Streaming SIMD Extension

TAU Tuning and Analysis Utilities

TCP Transmission Control Protocol

ZCAV Zoned Constant Angular Velocity

INTRODUCTION

It is a well known fact that parallel processing is a multidisciplinary field of research where the

computing infrastructure encompasses most of the electrical, software and telecommunication

fields of engineering. And this is only for its implementation, to which we must add the dis-

ciplines proper to the environment being used, themselves covering a wide range of interests

from Computational Fluid Dynamics (CFD) modeling (think weather forecasting) to biochem-

ical engineering passing through genetics research. The intertwining complexity is amplified

when one considers the Beowulf approach of High Performance Computing (HPC) where a

wide range of configurations and heterogeneity of the hardware tends to transform traditional

computational models into a complex mish mash of exceptions. If we also consider the widely

varying computation characteristics of the code to be executed in such environments, ranging

from embarrassingly parallel to highly cohesive (computation versus communications bound),

the answer to Which clustering solution is the best? can simply not exist without intricate

knowledge of the program and the underlying environment upon which the execution is to be

performed.

To illustrate these intricacies, Figure 1 presents an overlapping view of the typical hardware

and software components involved in the HPC parallel processing context. In this figure, we

have also separated the domains of interaction whether it be hardware versus software or user

versus system. The quadrants generated by this subdivision can each be interpreted as a field

of specialization which can be further subdivided by the components from which they are

composed.

Taking all these facts into account, one cannot claim the existence of a universal solution,

hardware or software, which can be applied to all cases. Profiling of any computational task

and/or of the underlying hardware is therefore a requirement for the attainment of performance

maximization given a specific environment.

2

Even with such precise knowledge of the software, estimating its performance on different

hardware can prove to be a daunting task which will tend to lead to false conclusions implying

that the exercise of profiling is a task to be re-iterated each time new hardware is encountered.

Kernel (O.S.)

CPU

PA
P
I

MMU

RAM

L1/L2

Hardware

Software

Compilers

H
P
C

 L
ib

s.

BUS

HDD

NIC

Profiler

C
o
d
in

g

M
P
I
Li

b
ra

ry

OpenMP

H
a
rd

w
a
re

S
o
ft
w
a
re

UserSystem

Figure 1 : An illustration view of the multiple elements and disciplines involved in paral-
lel processing. Each quadrant represents a field of research with each underlying compo-
nent being a specialization. The crossing of quadrants signify its multidisciplinarity and
the overlapping emphasizes integration complexity.

Problem Statement

Research in the area of machine learning algorithms (including Evolutionary Algorithms (EAs))

is known to be computationally intensive and has been a growing user of parallel processing

approaches to enhance its capabilities.

As an accepted fact, most of the processing payload resides in the fitness evaluation functions

where a proposed solution is weighed. In the realm of EAs, the acceleration of this computation

step can either lead to a faster or a better solution for a given problem. Fitness evaluators are

problem-specific and cannot be generalized, which is why we concentrate on such a given

3

fitness evaluator, the K-Means statistical classifier, as was implemented in [44], Section 3,

Foreground-Background Feature Extraction (FBFE) Module.

Given the nature of the K-Means algorithm, the most classic means of determining execution

performance, the total run time, is of little use in itself. This is due to the fact that this itera-

tive process terminates based on a convergence threshold, which is in turn affected by random

initialization values and the number of participating nodes. In the case of a parallel implemen-

tation, it requires that other metrics than total execution time be used to gauge its performance

such as scalability and efficiency. With the added complexity of a parallel execution environ-

ment, specialized tools are required to provide a concise view of the program’s behavior and

evolution. As algorithmic and/or code optimization techniques are applied, one must ascertain

that the latter lead to an improvement and not a scalability bottleneck.

All these constraints, added to the aforementioned HPC parallel processing paradigms, require

that a unified approach be used to guide implementers as to where efforts should be deployed

to enhance performance. It is common that, in university research, the implementers (graduate

students) have a short time to learn all aspects of their project, programming environment and

the code base they will most probably be using and modifying. These three aspects tend to

mutate, implying that the performance analysis infrastructure used has to be adaptive, flexible,

and most importantly, relatively simple of use.

To demonstrate how this can be accomplished, we start by describing technically and empir-

ically the hardware characteristics in Chapter 1. We then present the techniques and tools by

which we probe the software being executed on this hardware in Chapter 2. A case study

is then presented in Chapter 3, where we fuse the tools from Chapter 2 and the architectural

knowledge from Chapter 1 which brings us to recommendations and future outlooks in the

conclusion.

CHAPTER 1

HARDWARE CHARACTERIZATION

Although it may seem trivial or paradoxical to possess knowledge about a program to be exe-

cuted in a given HPC environment 1, it is a key component to guide the proper profiling of any

hardware platform. Ignoring the application domain can result in misguided concerns about a

component that ends up being trivial for the targeted application. For example, concentrating

on network fabric performance when, in fact, an application is memory or computationally

bound, rather than communications bound, can turn out to be a waste of effort and resources.

This fact is actually alleviated by the classic Beowulf rhetorical question :

What hardware should I use to build a cluster?

to which the non answer usually follows as :

It depends.

HPC coding requires intimate knowledge of the target hardware architecture as the imple-

mented strategies depend on their characteristics. Starting from a superficial perspective, if the

available hardware is in the form of an Symmetric Multi-Processors (SMP) machine, one would

probably concentrate on applying approaches where communication costs can be neglected and

where memory might be plentyfull. At the other end of the spectrum, the infrastructure might

be composed of a mass of heterogeneous computers with varying specifications, interconnected

using relatively slow links but possessing ample local storage. Digging deeper, one might find

out that the second model proves to be more effective since each node would happen to have

faster, less contentious memory access and demonstrate the ability to tap advantageous aggre-

gated Input/Output (I/O) bandwidth thanks to local storage.

Obtaining knowledge of the target hardware architecture is a non trivial balance between the-

oretical models and supporting empirical data. The collection of such data is usually accom-

plished via micro-benchmarks and cluster gaging utilities [35]. Unfortunately, these remain

1. Which comes first, the software or the hardware, and is the profile on hardware X still applicable to hardware
Y?

5

either too problem specific or too general to be of true value. For this reason, we will concen-

trate on characterizing the available hardware assuming some a priori knowledge of a problem

to be optimized (in occurrence, the K-means algorithm detailed in Chapter 3), which exhibit

vectorial computation features coupled with considerable data traversal and, in its parallel im-

plementation, adds communications at each iteration 2.

We now present some of the basic concepts pertaining to computer architecture and commu-

nications fabrics. These elements will be useful when attempting to describe some of the

characteristics and results of software profiling as presented in Chapter 2 and 3.

1.1 Basic Computer Architecture

Today’s common computers are still loosely based on the what is commonly known as the Von

Neumann architecture [23, 50] which means that they are essentially comprised of (at least)

one of each of the following elements:

1) A control unit (for decoding the instructions and managing data flow);

2) An Arithmetic Logic Unit (ALU);

3) Main memory (such as Random Access Memory (RAM) more often referred to as Dynamic

RAM (DRAM));

4) An Input/Output unit managed by the control unit.

1.1.1 The Control Unit and Arithmetic Logic Unit

The control unit and ALU are probably what characterizes a Central Processing Unit (CPU)

core the most from the point of view of a compiler. It is in these components that mnemonics 3

are defined to mock up the instruction set and internal structure of a CPU. For the average

user, these differences usually don’t mean much but can have a significant impact in scientific

computing.

2. The problems studied are embarrassingly parallel data mining applications which are typically memory
bound.

3. Menmonics are the short textual words representing operations a CPU can execute (op-codes). They are
the building blocs of the assembly language from which binary code (programs) are created.

6

For example, Advanced Micro Devices (AMD) has implemented a class of mnemonics which

they have named 3DNow*
4. On their side, Intel has added their own class of mnemonics

known as the Streaming SIMD Extension (SSE), which they have named SSE* and SSSE* 5.

In all cases, they are an implementation of Instruction-Level Parallelism (ILP), where perfor-

mance enhancement is accomplished by applying a single instruction to multiple data elements

loaded into independent registers of a given CPU core. This approach to low level parallelism is

by definition known as Single Instruction Multiple Data (SIMD). The intent is that CPU cores

would exhibit enhanced performance when dealing with vector intensive applications typical

of multimedia and scientific computing. Nonetheless, proper use of these directives remains a

daunting task for the compilers [15], which can benefit from some hints by the programmer,

as we will see in Section 3.6.3.

One must not confuse the SIMD extensions with the advent of Chip MultiProcessors (CMP),

which are part of yet another class of parallel architecture known as Multiple Instruction Mul-

tiple Data (MIMD). In this case, each processing stream (or program) is executing indepen-

dently, implying a complete decoupling of instruction and data flow. The use of MIMD pro-

gramming happens at the application level and does not exclude SIMD, the latter being imple-

mented in each computing core. The only implication is that the program execution streams

are independent in the case of MIMD and require explicit synchronization mechanisms. An

automated implementation of such MIMD approach on CMP and SMP machines is the use of

the OpenMP 6 compiler directives.

1.2 Caching in on The Main Memory

It is a well known fact that the DRAM performance curve is substantially inferior to the pro-

cessor’s speed evolution over the past decades [23], p.289. To compensate for this bottle-

neck, processors are built with on-chip caches 7 which help in speeding up memory access by

4. We use the * as a globing character to include all subsequent classes.
5. AMD now also supports the SSE* and SSSE* class of mnemonics. Note that the extra S means “Supple-

mental“.
6. OpenMP is a specification which compilers are free to implement. For details, please visit http://

openmp.org/.
7. Instruction and data caches can either be separate or common, depending on the hardware implementation.

http://openmp.org/
http://openmp.org/

7

prefetching data and instructions. The size and speed of these caches is dictated by its proxim-

ity to the processor core(s), which in turn is guided by transistor count limitations for a given

physical space, heat dissipation and, of course, production costs [23]. This leads to the hierar-

chical memory layout of most computers where the processor’s access to memory is a growing

succession of caches, known as levels, who’s efficiency is characterized by the ratio of hits and

misses to each of these levels. These cache levels are organized starting from the Level 1 (L1)

cache, characterized by its high speed but relatively small size 8. Then follows the Level 2 (L2)

cache, slower than the L1 cache but many times larger, it currently ranges from a few hundred

kilobytes to a few megabytes. Now becoming more common, the Level 3 (L3) cache is larger

than L2 (two to four times), and is mostly used for CMPs as a shared memory space between

multiple processors [52, 6]. The last and slowest link down the memory hierarchy being the

DRAM memory modules 9 with their ample capacity of a few gigabytes but with comparatively

slow access time and bandwidth.

1.2.1 Accessing The Main Memory

The L1/L2, Memory Management Unit (MMU) and RAM blocks of Figure 1 are a gross rep-

resentation of the actual processor to memory architecture now present in modern computers.

The model becomes more complex as caches, processors and cores are added to a system. One

constant remains, the Memory Management Unit (MMU), which plays a critical role in com-

puter performance as it manages the data flow between the main memory and the processor

and is reputed as the bottleneck of any modern system. The two major computer processor

manufacturers, AMD and Intel, have diverged in this respect during the past years when com-

paring AMD’s Athlon/Opteron and Intel’s Pentium/Core 2 processors. AMD has opted for a

Non Uniform Memory Access (NUMA) approach where each physical processor integrates its

own MMU and possesses a local memory bank. Although the local memory of each processor

is globally accessible, accessing it comes at a varying (Non Uniform) cost depending on the

8. Current processors generally posses an L1 cache close or below 128Kbytes
9. Note that we could push the memory hierarchy down into virtual memory, residing on Hard Disk Drive

(HDD), but we won’t address this case as it is an aberration to HPC and must be treated as an element that must
not be used in such a context given HDDs are many orders of magnitude slower than RAM.

8

path required for Memory Access (hence NUMA). We illustrate this in Figure 1.1 (a) where a

processor accessing its local memory has a direct path (depicted by Path 1) and accessing an-

other processor’s memory bank requires a more elaborate, thus longer, path (Path 2). Intel has

typically kept the MMU as an external device, which implies a uniform access to the memory

banks 10 as illustrated by Figure 1.1 (b).

Figure 1.2 (a) is a schematization of a typical AMD Opteron series of processor. It possesses an

on chip MMU where the System Request Interface (SRI) interconnects multiple cores through

the Crossbar (internal processor communications fabric). The Crossbar then selects between

the MMU for local memory requests, or the HT link if the requested memory address is on

a remote processor. This implies that access to local memory (going through the MMU) is

uniformly shared by all cores of a single processor unit. Intel’s approach implemented in the

Core 2 series processors is depicted by Figure 1.2 (b) where we can see that L2 cache is shared

and that the MMU resides on an external chip (usually called the North Bridge).

In the case of AMD’s implementation, access to memory physically connected to another pro-

cessor requires the use of the HT link [32, 28] and is typically NUMA in nature. In Figure 1.1

(a), Path 1 illustrates the local core’s direct path to memory going through the SRI/Crossbar

and MMU. Access to remote memory is illustrated by Path 2 where a request has to traverse

the HT link as well as both processor’s SRI/Crossbar logic, which adds latency and transfer

delays. As processors are added to the system, more of these hops can occur, depending on

the interconnection strategy used [28]. For Intel type CMP systems, the MMU is an external

device and is dependant upon the motherboard implementer to select the interconnection strat-

egy. Generally, these consist in using a single fast bus for I/O, inter-processors and memory

(through a single MMU), as illustrated by Figure 1.1 (b).

The direct implications of the differing memory subsystems is that, apart from external hard-

ware required to link Intel’s processors, they must share the memory bandwidth evenly across

processors and devices whereas AMD’s processors each have their own local memory banks.

10. Although this will no longer be true with their Core i7 series, where they have opted to integrate the MMU
into the processor die.

9

core0

AMD 800 Series Processor Block

MMU

core1

SRI/Crossbar

HT HT HT

DRAM

core0

AMD 800 Series Processor Block

MMU

core1

SRI/Crossbar

HT HT HT

Path 1 Path 2

MMU
External I/O Chip (North Bridge)

DRAM

DRAM

core0

Intel Q6600 Processor Block

core1 core2 core3 core0

Intel Q6600 Processor Block

core1 core2 core3

DRAM DRAM

Single Path
to DRAM

Processor, I/O and RAM BUS (shared)

To I/O

DRAM

RAM and I/O

(a) Multi-processor implementations of the Opteron processors possess UMA characteristics where local cores
access memory uniformly as seen by Path 1. Access to remote memory (physically attached to another
processor) requires passing through the HT link and two controller stacks as demonstrated through Path 2,
which is NUMA by definition.

core0

AMD 800 Series Processor Block

MMU

core1

SRI/Crossbar

HT HT HT

DRAM

core0

AMD 800 Series Processor Block

MMU

core1

SRI/Crossbar

HT HT HT

Path 1 Path 2

MMU
External I/O Chip (North Bridge)

DRAM

DRAM

core0

Intel Q6600 Processor Block

core1 core2 core3 core0

Intel Q6600 Processor Block

core1 core2 core3

DRAM DRAM

Single Path
to DRAM

Processor, I/O and RAM BUS (shared)

To I/O

DRAM

RAM and I/O

(b) Intel’s processors don’t implement the MMU. Most CMP strategies available on the market implement it as a
single chip (north bridge) which is accessed through a shared bus topology connecting all processors through
which inter-processor communications, I/O and memory traffic is subject to contention.

Figure 1.1 : Multi-processor memory access strategies for both AMD and Intel proces-
sors. AMD possesses NUMA characteristics while Intel’s implementation is essentially
UMA.

10

core0

L1 64k Instr. 64k Data

L2 1MB Data/Instr.

AMD 800 Series Processor Block

MMU

core1

64k Instr. 64k Data

SRI/Crossbar

HT HT HT

1MB Data/Instr.

Dual Channel Memory Access

DRAM

core0

Intel Core 2 Series Processor Block

core1

External I/O Chip (North Bridge)

2MB Data/Instr.

Dual Channel Memory Access

DRAM

32k Instr. 32k Data 32k Instr. 32k DataL1

L2

MMU

(a) AMD implement independent L1 and L2 caches
stacked over the SRI and crossbar, which interface
with the MMU and HT link.

core0

L1 64k Instr. 64k Data

L2 1MB Data/Instr.

AMD 800 Series Processor Block

MMU

core1

64k Instr. 64k Data

SRI/Crossbar

HT HT HT

1MB Data/Instr.

Dual Channel Memory Access

DRAM

core0

Intel Q6600 Processor Block

External I/O Chip (North Bridge)

2MB Data/Instr.

Dual Channel Memory Access

DRAM

32k
Inst.

32k
DataL1

L2

MMU

core1

32k
Inst.

32k
Data

core2

2MB Data/Instr.

32k
Inst.

32k
Data

core3

32k
Inst.

32k
Data

(b) Intel implement a larger shared L2 cache and
DRAM access is accomplished via an external MMU
(usually implemented in a chip called the North
Bridge).

Figure 1.2 : These schematizations of the AMD Opteron Dual Core processors (800
series) and the Intel Core 2 Duo processors illustrates how the two core variants access
DRAM. In both cases, the MMU possesses dual channel connectivity to DRAM for link
bandwidth aggregation.

This implies that Intel’s memory access is bound to memory bandwidth and bus contention as

I/O traffic and processors are added to the system. In theory, AMD’s on-chip MMU leverages

its processors as the ideal candidates for embarrassingly parallel applications where aggregate

memory bandwidth across multiple processors (not just multiple cores) is more important than

single-threaded memory access.

11

1.2.2 Cache Size and Contention

Working at the processor’s clock speed or a fraction of it, these caches are orders of magnitude

faster than DRAM. Fetching and synchronization of the data between the caches and the

main memory is managed by the processor’s logic through different mechanisms which rely

on easily predictable or repetitive (strided) data access patterns [31], p.300. The efficiency

of these prefetching mechanisms is one of the most critical components for closing the gap

between computation and data access.

Modern processors are now being built to contain many cores and possess a growing amount of

L1 and L2 caches and some times L3 caches are added as the inter-core communications layer

[6]. Depending on the strategy adopted by the manufacturer, the L1 and L2 caches can either

be unique to each core or shared. Independent caches per core mimics SMP architecture where

each processor is essentially monolithic and virtually interconnected with a high speed bus.

This also implies that each core is constrained to only possessing a fraction of the cache that it

otherwise would be possible to implement as a global cache. This strategy can be beneficial for

independent data flows but could hamper performance when problem sizes are considerable or

when data is locally shared amongst multiple concurrent threads.

As a reciprocal to this approach, Intel has implemented a large shared inter-core L2 cache

strategy for it’s Core 2 processors. This approach has the advantage of a large cache for single

threads but shared cache for concurrent threads. Figure 1.2 compares both of these strategies

where AMD’s Dual Core Opteron 800 class of processors assign independent L2 caches and

Intel’s Core 2 Quad processor is composed of four cores with L2 caches organized in core

pairs.

To demonstrate the different cache issues with concurrent and independent processes running

on a CMP, was programmed Algorithm 1 in C. This Euclidean computation kernel is derived

from our case study presented in Chapter 3. For our demonstration, we vary the vector dimen-

sion d between 128Kbytes and 2Mbytes per process in order to saturate the L2 caches when as

many processes as cores are started (four processes for a quad-core CMP). Note that we kept

12

the problem size boundaries identical across experiments (not a function of the processor’s

cache size) to ease the comparison. We then compute the concurrent execution’s comparative

efficiency Ecomp, which we define to be:

Ecomp =
tsingle

tcon.avg

(1.1)

with tsingle being the time for a single thread of execution on a given processor and tcon.avg

the average time of running concurrent threads 11 on that same system. This result is useful in

identifying the interaction zones for concurrent execution of independent programs on a CMP.

1: Set d to maximum vector dimension (‖X‖)
2: Set REPS to maximum repetitions
3: Initialization of vectors X and Y for Euclidean computation.
4: for all i = 1 to d do
5: Set tstart = gettimeofday()
6: repeat

7: Compute Euclidean norm such as dist =
i∑

j=1

(‖xj − yj‖)

8: until Computation has been executed REPS times
9: Set tstop = gettimeofday()

10: Compute average time as tavg = (tstop − tstart)/REPS
11: end for

Algorithm 1: Memory contention test algorithm.

Our results for the Intel Q6600 processor are presented in Figure 1.3 . Execution times are

presented in Figure 1.3 (a) where we observe performance degradation due to execution con-

currency. The cause for the degradation is attributable to the zones identified in Figure 1.3

(b) which correspond to cache usage zones. Performance degradation begins when the vectors

X and Y both reach sizes of about 760kbytes per process are reached. With four concurrent

processes, this brings the total to about 6Mbytes. This induces cache conflicts as the total cache

capacity is 4Mbytes for all threads. The processor is forced to move parts of working data out

of cache for one or all of the executing processes. Cache capacity issues are then reached at

11. The number of threads is equal to the number of available cores on the system.

13

2Mbyte vectors, which is concurrent with the processor’s 4Mbyte cache as both vectors for a

single thread fill up the cache, leaving no space for the three other threads. At this point, each

thread is executed at about 30% efficiency (close to four times slower). These results clearly

demonstrate the importance of cache size for the execution time of large memory bound kernels

as well as concurrency issues that may arise within multi-core processors.

The same observations are applied to an Opteron based SunFire X4600 machine 12 and pre-

sented in Figure 1.4 . Here we can see the significance of the NUMA architecture through the

fact that the relative efficiency never gets even close to 1/14 (0.07), which would be expected

if all fourteen processes had to share a single path to the DRAM. Since each CMP have a

direct path to local memory, the contention effect is limited to local processor and is not glob-

ally cumulative. This implies that this architectural approach is more scalable, as long as each

problem is local to each processor and fits within the local DRAM banks.

12. Refer to Appendix III, section 3.

14

10 us

100 us

1 ms

10 ms

131 k 262 k 524 k 1 M 2 M

Lo
g(

tim
e

(s
ec

))

Log(vector Size (Bytes))

t4 (avg.)
t1

(a) Average concurrent execution time of 4 processes (t4(avg.)) versus the vector size. Divergence starts
around 1Mbytes problem size per process and is linearized around 2Mbytes. Our comparison baseline
is t1, the time for a single process.

10 us

100 us

1 ms

10 ms

131 k 262 k 524 k 1 M 2 M
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e
E

ffi
ci

en
cy

t1
t4(avg.)

In cache cache conflicts

cache capacityt1/t4 (avg.)

Log(Vector Size (Bytes))

Lo
g(

T
im

e
(s

ec
))

(b) An overlaid version of Figure (a), the execution’s relative efficiency, computed as t1/t4(avg), is used to identify
different cache usage zones. Presented are: in cache, cache conflicts and cache capacity (saturation).

Figure 1.3 : Cache memory behavior on an Intel Q6600 (4 cores). Execution time char-
acteristics are illustrated in (a). Cache usage zones are identified in (b).

15

10 us

100 us

1 ms

10 ms

100 ms

131 k 262 k 524 k 1 M 2 M

Lo
g(

Ti
m

e
(s

ec
))

Log(Vector Size (Bytes))

t1
t14 (avg.)

(a) Average concurrent execution time of 14 processes (t14(avg.)) is affected as the problem size grows.
Divergence starts around 128Kbytes problem size per process and is linearized around 1Mbytes. Our
comparison baseline is t1, the time for a single process.

10 us

100 us

1 ms

10 ms

100 ms

131 k 262 k 524 k 1 M 2 M
0

0.2

0.4

0.6

0.8

1

1.2

1.4

R
el

at
iv

e
E

ffi
ci

en
cy

t1
t14(avg.)

In cache
cache conflicts

cache capacity

t1/t14 (avg.)

Log(Vector Size (Bytes))

Lo
g(

T
im

e
(s

ec
))

(b) The execution’s relative efficiency curve is used to identify different cache usage zones. The green zone
denotes optimal cache usage whereas red indicates conflicts are occurring. Values beyond cache conflicts fall
into cache capacity issues (saturation).

Figure 1.4 : Cache memory behavior on AMD Opteron 800 series based processors using
14 cores of a SUN SunFire x4600. Execution time characteristics are illustrated in (a).
Execution zones are identified in (b).

16

1.2.3 Processor Performance

There is no such thing as a best processor but rather a best match between a software problem

and a hardware solution. The test case we have presented in this section uses a wide range of

values and executes a single mathematical kernel, which is not representative of the entire pro-

gram process 13. Nonetheless, this isolation tactic and the use of aberrant cases (unconvention-

ally large vectors compared to typical problem sizes) is of use to defining bound within which

we can expect severe performance deterioration as well as scalability bottlenecks (concurrent

execution performance degradation). Even if the figures indicate better scalability for a given

platform, raw processing time will always prime over technical features and prowess. To this

effect, Figure 1.5 compares the average execution time of concurrently executing 4 instances

of Algorithm 1. The comparison is performed between Intel’s Q6600 and AMD’s Opteron 885

processors (on a SunFire x4600). With this current representation, Intel’s Q6600 comes out as

the best choice, even though its architecture is more susceptible to memory bottleneck issues.

Additionally, the execution of 14 processes is included in the graph to emphasize the slight

increase in execution time compared to 4 processes. It is important to note that, the 4 processes

launched on the SunFireX4600 were not bound to CPUs. This means that each processes were

assigned an independent processor and therefore benefited from full, non-contended access to

the DRAM 14. We must also note that the concurrent executions do not incur any inter-process

communications, another aspect which we address in the following section.

13. Actually, each test is the result of the execution of the entire program, the point is that this program is
useless in itself, typical of a microbenchmark.

14. Processor affinity, to force process to CPU assignments, was not available on the hardware at the time of
writing.

17

10 us

100 us

1 ms

10 ms

100 ms

131 k 262 k 524 k 1 M 2 M

Lo
g(

Ti
m

e
(s

ec
))

Log(Vector Size (Bytes))

Q6600 (4)
8xOpteron 885 (4)

8xOpteron 885 (14)

Figure 1.5 : Execution time comparison between Intel’s Q6600 and AMD’s Opteron
885 processors. The concurrent process count is in parenthesis. The raw computing
power of the Q6600 outperforms the Opteron 885 for four processes. The case of 14
concurrent processes is presented to demonstrate the proportionally small impact of their
simultaneous execution.

1.3 Communications

We have shown that raw processing power has to be coupled with an efficient mechanism for

accessing the data that resides in RAM. The typical problem sizes, as addressed in Chapter 3,

overcome the memory and processing capabilities of a single processor system. This introduces

the problem of segmentation, thus parallel processing, which imply multiple processors and

communications. Independent of the hardware nature of the latter, two principal characteristics,

latency and bandwidth, come into play. This section aims at characterizing these two critical

components as well as weighting their importance to our usage context, which are:

1) A network of computers forming a Beowulf style cluster interconnected using Ethernet

based network fabric;

2) A monolithic SMP machine using HT as network fabric.

18

We start with the Beowulf approach to parallel computing to define bandwidth and latency. We

then apply these two properties on HT based SMP systems.

1.3.1 Bandwidth

Bandwidth traditionally represents a bit count transferred over a unit of time, which is usually

the second as denoted by bits per second (bps). This is the predominant feature of most fabrics,

hence names such as 10/100/1000 BaseT Ethenet, where the later is the name of the standard

describing the physical medium. Taking 100 BaseT Ethernet as an example, its bandwidth is

said to be 100Mbps wire speed or at the wire. This is because the figures given are for the raw

bit transfer rates, ignoring all of Ethernet’s protocol overhead, such as the headers which sums

up to 38bytes 15. Another feature of the Ethernet protocol is the Maximum Transmission Unit

(MTU), which is the maximum payload allowed per packet. Historically, the MTU has been

hard-limited to 1500bytes by the underlying hardware 16 which simply followed the Ethernet

standard 17. This upper bound to the size of each packet has a direct bearing on the efficiency of

the communications as shown by Eq. (1.2), where BWuseful is the available bandwidth which

is a ratio between the useful payload over the total bytes transmitted per packet. The total

bytes transmitted is the sum of the MTU and the Ethernet headers (again, 38bytes). The useful

payload is computed using MTUsize, the MTU, from which we substract HDRTCP/IP , the

TCP/IP headers.

BWuseful =
MTUsize −HDRTCP/IP

MTUsize +HDREthernet

(1.2)

Taking into account the aforementioned values, the equation renders an available bandwidth of

about 95%. The transfer rate in bytes of a 100 BaseT network becomes 100/8×0.95 = 11.88M

bytes per second (Bps) 18

With Gigabit Ethernet (GigE), 9kbyte MTU called Jumbo Frames were introduced to address

the overhead issue and has now become common. Other than bringing the available bandwidth

15. We don’t use VLANs (RFC802.1q), otherwise, this figure would be 40bytes.
16. Such as switch fabric, buffer limitation and Network Interfafce Card (NIC) implementations.
17. As described by RFC894.
18. This is a raw value, meaning that from this bandwidth one must also substract library overhead.

19

up to 99%, it has the effect of reducing the framing overhead of large data transfers. Unfortu-

nately, this has no impact on small communications, where latency dominates. Which brings

us to the following topic.

1.3.2 Latency

Latency is the delay imposed by hardware and software before establishing a link and actually

starting the communication stream. For this reason, it is often modeled as if sending a 0byte

packet. This overhead is very important for short communications. We define short communi-

cations as packets who’s length (Lmax) renders a transmission time less than the link’s latency

(tlat). This value is simply obtained by multiplying the latency with the useful bandwidth, as

in Eq. (1.3).

Lmax = tlat ×BWuseful (1.3)

For example, if the latency for a 100 BaseT connection is of about tlat = 23µseconds, given the

theoretically useful bandwidth BWuseful = 11.88M Bps, we get Lshort ≈ 273.24bytes. This is

one way of actually weighting the latency’s cost on the communications.

These values were obtained thanks to empirical experimentation using a microbenchmark such

as mpptest [22]. The reason why empirical data is more valuable than theoretical ones

is made obvious in figures 1.6 and 1.7 where significant performance differences exist

between Message Passing Inerface (MPI) communication library implementations across the

communication spectrum.

20

 0

 100

 200

 300

 400

 500

 600

 0 1500 3000

tim
e

(u
s)

Size (bytes)

2 Node Synchronous Round Trip Communication Performance: LAM-MPI Vs OpenMPI

OpenMPI
LAM-MPI

Figure 1.6 : LAM-MPI outperforms OpenMPI for any TCP/IP communications. The
non-linearity are noted around the MTU barriers of 1500bytes.

21

 45

 50

 55

 60

 65

 70

 75

 80

 0 20 40 60 80 100

tim
e

(u
s)

Size (bytes)

TCP/IP 0 byte Synchronous Startup Timing: LAM-MPI Vs OpenMPI

OpenMPI
LAM-MPI

(a) The setup latency differs depending on the communications library implementation. Here we compare LAM-
MPI with OpenMPI.

 290

 300

 310

 320

 330

 340

 350

 360

 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800

tim
e

(u
s)

Size (bytes)

TCP/IP 1500 byte Synchronous MTU Barrier: LAM-MPI Vs OpenMPI

OpenMPI
LAM-MPI

(b) The 1500byte MTU barrier adds a 10µsecond delay due to communication re-initiation.

Figure 1.7 : The round trip communication times using MPI libraries surrounding the
start up times in (a) and the MTU in (b). Since these are round trip figures, all values
have to be halved when considering asymmetric communication patterns.

22

Computation and characterization of the latency is far less straight forward than bandwidth

since it is a transitory state which is highly dependant on many characteristics external to the

NIC such as processor, bus and memory speeds as well as network topology. We demonstrate

these facts in Figure 1.8 , where processor speed as well as inter-connection topology (the

addition of a hop between two nodes) all have a significant impact on the latency of the com-

munications. A faster CPU renders lower latencies, which can very well be explained by its

ability to service hardware interrupts more quickly. The addition of hops, through the addition

of network switches between nodes, have non-negligible impact as well.

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 20 40 60 80 100

tim
e

(u
s)

Size (bytes)

TCP/IP 0 byte Startup Timing (latency)

1.8GHz
2.0GHz

1.8-2GHz
Cross-Switch

Figure 1.8 : The communications latency is affected by the CPU frequency and network
topology. Higher frequency clearly renders lower latency and the addition of a hop be-
tween two hosts (denoted as Cross-Switch) adds significant delays.

23

1.3.3 The HyperTransport Interconnect

The HyperTransport link is the result of the HyperTransport Technology Consortium 19 which

is formed by a group of more than 40 companies active in the computer industry. This fact, and

the fact that the standard is open and accessible to all, might explain its currently wide adop-

tion across the industry. Although it is not uniquely destined to be used as an inter-processor

communication backbone [47], we will concentrate on this specific use for communications.

Of a totally different nature when compared to Ethernet, they present a relatively high speed 20

and low latency [47] path between processors. Although this approach doesn’t require un-

derlying communications libraries such as MPI, the libraries are still often used since they

present a portable interface to a program’s parallelization. For this reason, we still consider

the libraries as part of the performance assessment of this fabric. The same latency and band-

width paradigm apply to HT, even though the figures are orders of magnitude apart. Again, the

choice of the underlying communications library can have a significant impact on the applica-

tion’s communication performance as is illustrated by Figure 1.9 , where performance varied

greatly between versions 1.1 and 1.2 of OpenMPI’s implementation of the MPI.

It is also important to note that topological considerations must still be addressed, especially

when frequent communications are expected between computing nodes or processors. Proper

to NUMA architectures, processor affinity (associating a process to a given processor or core)

and data locality become issues when HPC is concerned. In Figure 1.1 (a) from section 1.2.1,

we illustrated that the access to remote memory required passing through the HT link, another

processor’s Crossbar and MMU. Now consider Figure 1.10 , the physical layout of a Tyan

V X50 machine, where a process residing on CPU0 accessing memory on CPU7 would have to

perform, at best, 3 hops. This twisted ladder configuration is one of many possible connection

strategies [28, 32] that can result in differing hop counts. It is the variance in these hops that

charaterize the NUMA architecture.

19. www.hypertransport.org
20. Between 12.8GBps and 51.2GBps, depending on the implemented version of the standard.

www.hypertransport.org

24

 0

 2

 4

 6

 8

 10

 12

 14

 0 500 1000 1500 2000 2500 3000 3500 4000

tim
e

(u
s)

Size (bytes)

2 Node Round Trip Communication Performance for OpenMPI 1.1 Vs 1.2 on HyperTransport

OpenMPI 1.1
OpenMPI 1.2

Figure 1.9 : Comparing OpenMPI versions 1.1 and 1.2 on HyperTransport by varying
the message size passed to the mpptest micro-benchmark. The 1.1 implementations
had performance issues characterized by a sudden jump in communication times around
packet sizes of 1000bytes.

1.3.4 Benchmarking Network Communications

This section’s performance assessment were obtained using mpptest [22], which uses the

local MPI implementation for it’s inter-process communications. Through our experimenta-

tion, we have confirmed that OpenMPI’s ancestor, LAM-MPI, possesses better overall TCP/IP

performance as seen in Figure 1.6 . This is a known issue and is due to OpenMPI’s team con-

centrating on high bandwidth, low latency interconnects such as HT, Infinipath, Myrinet and

others. This strategy also explains the improvements seen in Figure 1.9 where performance

leaps were observed between the 1.1 and 1.2 release of OpenMPI running on HT links of a

Tyan V X50.

We also note that, contrary to normal intuition, asynchronous (non-blocking) communications

are actually slower than synchronous (blocking) communications in all cases of the mpptest

25

CPU7 CPU6

CPU5 CPU4

CPU3 CPU2

CPU1 CPU0

HT

HT

HT

HT

HT HT

HT HT

HT HT

Figure 1.10 : The Tyan VX50 interconnection strategy for 8 processors using HT. This
twisted ladder topology provides for an average 1.5 hop between processors and their
farthest memory pages.

26

micro-benchmark. This is illustrated by Figure 1.11 where the fastest communications are of

the synchronous type, followed by the persistent type (lagging behind by a few µseconds) and,

finally, with almost 10 µseconds delay added are the asynchronous communications. This is

due to the fact that the MPI libraries are only active when being called and executed actively by

a program. The only way to guarantee this is during a synchronous call, where the execution

path is linearized and forces the communications to complete before any other task is engaged.

This implies that, barring the use of an explicit helper thread to keep the libraries alive, syn-

chronous communications will remain faster than their asynchronous counterparts, even with

the presence of CMPs.

 45

 50

 55

 60

 65

 70

 75

 0 20 40 60 80 100

tim
e

(u
s)

Size (bytes)

TCP/IP 0 byte Startup Timing 2GHz

sync
async

persistant

Figure 1.11 : MPI call types and their impact on the communication times. Synchronous
(sync) communications outperform both asynchronous (async) and persistant ones as the
processor is dedicated to performing the communication task in that specific case.

27

1.3.5 Theoretical and Empirical Model

Communication modeling is dependant upon logical and topological distributions. Nonethe-

less, Eq. (1.4) can be viewed as a generalized equation of Point to Point (PtP) communica-

tions 21 where tcomm is the total communication time which is ts, the setup time (or latency),

added to the cost per byte tbyte times the message length L (payload).

tcomm = ts + tbyte × L (1.4)

To verify the validity of this generalization, we present Figure 1.12 , with which we are able

to demonstrate that the theoretical model is adequate for packet sizes between 1 and 64 bytes

and packets beyond 16 kbytes. The discrepancy between 64 and 16 kbytes can be explained

with the non-linearity introduced by Ethernet’s MTU, as they were presented in Figure 1.7

. The value of ts ≈ 53µs is from mpptest, hence closeness of the initial theoretical values

and this tool’s results. Note that there is no theoretical definition for ts, being ideally 0. We

use tbyte = 1byte
11.88Mbyte/s

≈ 84ηs, where 11.88Mbyte/s is the useful bandwidth as described

in section 1.3.1. An arrow is inserted at 188Bytes, the payload for sending a single vector of

dimension d = 47 floats, a size which comes in handy in our case study in Chapter 3.

Although not all shown here, these results were cross-validated using popular microbench-

marks included in the HPC Challenge (HPCC) suite [35], the mpptest [22] and netpipe

[53] applications.

21. These are the simplest and most common form of communications used.

28

10 us

100 us

1 ms

10 ms

1 4 16 64 256 1 k 4 k 16 k

Lo
g(

Ti
m

e
(s

ec
))

Log(Payload Size (Bytes))

tsetup + tbyte*L
mpptest
netpipe

Figure 1.12 : Comparing the general theoretical communications model with empirical
values for a 100BaseT Ethernet network. Results from netpipe are slightly higher than
mpptest, indicating there might be additional overhead to his test suite. The theoretical
value bases its ts on results from mpptest, thus biasing it to be closer to that tool’s
results. An arrow is inserted at 188bytes as a point of reference for a vector of 47 floats, a
unit which comes in handy in our case study.

1.4 Input/Output and Storage

Discussions concerning I/O and storage strategies are usually relegated to a transitory state of

a program and judged as being non-essential or non-contributing to an application’s overall

performance given its single occurrence either at loading or termination of a given program.

This type of assumption only remains true if tload � texec, the loading time is significantly

less than the total execution time. We investigate this assumption in Figure 1.13 where each

function’s time contribution is represented as a percentage of the total runtime. This stacked

representation clearly illustrates each function’s proportional shift as the number of processors

augments for this parallelized algorithm. Bringing our attention to the loading function load_

samples(), which accounts for less than 10% of the runtime for two nodes, we see that

29

it grows to a proportion beyond 40% when executed on 24 nodes. This is far from being

negligible and brings about the importance of considering an application in its entirety when

dealing with performance.

Figure 1.13 : An example of proportional breakdown of each task’s contribution to the
execution time for the PVQ implemented using a textual database (described in Chap-
ter 3) and traversing its entirety at initiation. The loading of the data is performed by the
load_samples() function and represents a significant portion of the total execution
time.

1.4.1 Local Versus Remote Storage

In the context of Beowulf clusters [42], it is common to have nodes booted off a network share

such as Network File System (NFS) as well as having the user’s work directory mapped across

the nodes through the same means. Given the usage simplicity provided by this approach,

one might wonder if it remains relevant to use local storage used as scratch space. With local

storage, a single path is drawn from I/O to RAM and the bottleneck resides in the slowest

element, the HDD. This means the local bandwith BW node
I/O can be expressed as being equal

30

to the HDD’s bandwith (BW node
I/O = HDDnode

I/O) 22. In the case of an SMP machine, since

we are dealing with a single task running at a given time, we can express this bandwith as a

fraction of itself over the number of cores, thus rendering BW node
I/O = HDDnode

I/O /c, where c

is the number of cores. Noting that the available bandwith is shared among n hosts such that

Eq. (1.2) becomes BWuseful/n, local scratch space remains beneficial as long as BW node
I/O >

BWuseful/n or the remote server’s own local bandwidth BW node
I/O > BW server

I/O /n, which must

also be shared among all nodes.

1.5 Discussions

In this chapter, we have confirmed that processor caches are critical performance enhancing

components used to mend the gap between processing speed and data access latency. Two of

the cache’s performance paradigms, contention and capacity, have been empirically identified

and zoned for two common CMP processors, Intel’s Q6600 and AMD’s Opteron 885. Com-

munication considerations were then brought up by our exploration of the available fabrics,

notable the commodity 100 BaseT Ethernet and the high bandwidth, low latency HT. Issues

with the underlying communications library, notably OpenMPI’s implementation of the MPI

standard were identified. More specifically, we demonstrated that the legacy LAM-MPI imple-

mentation of the Transmission Control Protocol (TCP)/Internet Protocol (IP) stack outperforms

the one from OpenMPI on Ethernet based fabric. On the other hand, OpenMPI has concen-

trated their efforts on high speed fabrics, for which we have noticed marked improvements on

their use of the HT links with considerable performance enhancements. The comparison of a

theoretical model based on initial empirical data was shown to be adequate with slight diver-

gences surrounding non-linearities imposed by hardware limitations such as the MTU. Data

access and format issues were also brought up with an example of application scalability being

hampered due to storage format. Furthermore, simple rule of thumbs were established to jus-

tify the use of local scratch space. Finally, the following recommendations can be made when

applying this chapter’s theory to our class of problem implemented using MPI:

22. We include all configurations of Redundant Array of Inexpensive Diskss (RAIDs) (and their redundan-
cy/bandwidth enhancements) as part of the definition of HDDs for the sake of simplicity.

31

Processor selection:

– Problem size (or segmentation) must consider the processor’s cache size or risk incurring

significant performance loss;

– Memory access time remains important for performance in the case of memory bound pro-

cessing, which is our case;

– When compared, it has been established that a larger cache with faster memory access is

preferable for memory bound problems.

Communications fabric selection: The HT fabric is more efficient than Ethernet based solu-

tions. Nonetheless, the cost of HT based SMP remains high compared to an equivalent Beowulf

based cluster using commodity Ethernet fabrics such as GigE. The fact that CMP processors

are now commonly available also emphasizes this cost factor since we are now seeing the emer-

gence of clusters of SMPs. Since our application is rather memory bound than communication

bound, we retain no benefits to the low latency brought by HT.

Data storage and location: Local data storage for scratch space comes out as a definite neces-

sity as communications fabrics are rapidly overwhelmed by the amount of data to be trans-

ferred. And when it’s not the communications fabric, the server’s I/O path becomes an issue.

CHAPTER 2

THE PROFILING TOOLS

Although there are myriads of system based tools such as dstat (display of global system

activity), top (per process statistics), and even some that are specialized for cluster monitoring

such as cacti 1 (cluster wide equivalent of dstat), these can only convey an opaque view

of the system usage. Fine grained specifics such as which function is using up all the processor

or which system call is taking an abnormally long time to complete cannot be presented by

such tools. This is where profiling comes in to automate the identification of functions and the

collection of their execution statistics.

Profiling provides the contribution of a block code to some execution metric of a program.

These metrics vary from call counts, time, and many other hardware accessible counters as will

be presented with the use of Performance Application Programming Interface (PAPI). Profiles

are meant only to convey a global statistical view of the total execution time. Even though a call

graph [21] may be generated to interconnect code blocs of an overall execution, the sequence

in which they are called in time cannot be reconstructed. This is because call graphs are based

on aggregated profile data which is compiled in a post processing phase, after the program

has been executed and has exited. Therefore, time measurements and call graphs collected by

profiles do not permit a chronological reconstruction of events (function call sequence). This

type of information is from the realm of program traces which we do not cover as they are more

appropriate for code coverage analisys as well as time-sensitive troubleshooting (deadlocks in

concurrent accesses and communications).

Given the many profiling tools available, we will concentrate on the ones freely available 2

since our main interest is their usage and not their comparison.

1. http://www.cacti.net/
2. This also excludes tools which are free to try during short periods such as a month or so.

http://www.cacti.net/

33

The following chapter is organized as follows, we start by defining our use of the terms Black,

Grey and White Box profiling, then briefly describe the context in which the tools are used

(program and relevant parameters). Following are the tools themselves, starting with gprof,

the classic GNU is Not Unix (GNU) profiling utility, where we identify its limitations in the

context of parallel HPC. The Tuning and Analysis Utilities (TAU) suite is finally presented as

a much more elaborate and appropriate alternative, applicable to the complex environment of

parallel processing.

2.1 Black, Grey and White Box

In the realm of software engineering, the terms Black Box [40] and White Box [17] refer

mostly to code coverage and reliability with the intention of identifying faults, failures and

unexpected behaviors.

We adapt these terms for our specific usage to describe the conext in which the performance

profiling is to be performed as well as its impact on the resulting program. These definitions

are presented in Table 2.1 below.

Term Description Impact on the program Impact on the source code
Black Box The source code is unknown

and only the compiled pro-
gram (binary) is available.

None Not applicable

White Box The source code is known
and the profiling is per-
formed with explicit tooling,
by the programmer, of the
source code prior to compi-
lation.

Some performance loss
due to inserted profiling
code.

The source code is tooled and the
programmer is responsible for en-
suring such tools can be switched
off. It is also implied that the right
functions are being profiled (a priori
identification of the bottlenecks).

Grey Box The source code is known
but the profiling isn’t ex-
plicitly performed within the
original code. An external
mechanism is used to add
profiling code to the end pro-
gram.

If the profiling is not
performed selectively,
significant performance
loss is to be expected
(all functions suffer
from the profiling
overhead).

None, the tools insert the profiling
mechanisms in an intermediate step
of the compilation.

Table 2.1: Black, Grey and White Box definitions.

34

As we present each tool, we will identify its capabilities as well as its use with regards to these

different “Box” approaches to profiling.

Throughout this chapter, we will (ab)use the same program (PVQ) that is described and thor-

oughly analyzed in Chapter 3. The input and output parameters for the program execution

are irrelevant in most figures that will be presented. In most cases, these parameters are

nonessential and are merely set as such to provoke aberrant cases with the intent of provid-

ing visual material from a real program in its execution context. The input parameters of the

algorithm, generally listed in the legend, can therefore be ignored as they were explicitly set

to demonstrate specific use cases, caveats or aberrations. Most titles will include the label

GET_TIME_OF_DAY, which is the generic label to indicate the displayed metric is time.

2.2 Sequential Profiling: Use Of gprof

The gprof [21] utility is a companion to the GNU C Compiler (GCC) for profiling sequential

applications. A quick way of obtaining a profile when using the GCC is by enabling the

-pg -g3 directives where -pg enables profiling and -g3 enables code symbols for the code

annotation feature. When profiling, no optimizations higher than -O2 should be enabled,

otherwise the generated profile will be incomplete and back referencing to the code will not

work. For example, the command gprof --brief -p vq, where vq is the application

name, can then be used to extract the profile information. This information is contained in the

output file, gmon.out, generated after a sample run of the application has been performed 3.

The resulting output is presented in Figure 2.1 with the following columns:

1) %: The time proportion of time spent in that function (percent of total execution time);

2) cumulative seconds: The time for executing this function while including the child function

calls;

3) self seconds: The time for executing this function while excluding the child function calls;

4) calls: The total call count;

5) self s/call: The time (in seconds) per call while including the child function calls;

3. Profiling does have a non negligible impact on code performance and is generally not suitable for long runs.

35

6) self s/call: The time (in seconds) per call while excluding the child function calls;

7) name: The name of the function in question.

It is clear that df is the predominant function in the program both in time and call counts 4. The

source code of the functions can also be tagged with their call count using gprof -A vq.

Figure 2.2 contains the two most called functions for our example program.

gprof Output

1 eric@fourrier ~/1_Files/1_ETS/1_Maitrise/Code/K-Means.old $ gprof --brief -p vq
2 Flat profile:
3
4 Each sample counts as 0.01 seconds.
5 % cumulative self self total
6 time seconds seconds calls s/call s/call name
7 95.94 192.84 192.84 3781843968 0.00 0.00 df
8 3.35 199.57 6.72 14772828 0.00 0.00 centroid_def
9 0.53 200.64 1.07 1 1.07 1.07 load_samples

10 0.47 201.58 0.94 1 0.94 200.51 vq
11 0.00 201.58 0.00 6 0.00 0.00 average_distortion
12 0.00 201.58 0.00 6 0.00 0.00 mean_vector
13 0.00 201.58 0.00 1 0.00 0.00 centroid_init
14 0.00 201.58 0.00 1 0.00 0.00 save_centroids
15 0.00 201.58 0.00 1 0.00 0.00 show_centroids

Figure 2.1 : Output listing from gprof -brief -p vq. The columns describe the
following metric for each function (each line): % time is the proportion of total execution
time, cumulative seconds is the inclusive execution time, self seconds is the exclusive time,
calls is the total count. Self and total s/call are for the inclusive and exclusive time per
call. Finally, the last column holds the function name.

A visual call graph [21] can be generated from the profile as demonstrated in Figure 2.3 .

This is not a feature from gprof but the result of calling the sequence of code in Figure

2.4 where a python script, gprof2dot.py 5, translates the output from gprof into the

Graphviz 6 dot file format. This call graph draws the execution path of this simple program.

Each box represents a function and the arrows indicate the call sequence. The percentages

indicate the inclusive, or cumulative, time as one walks down the graph. Exclusive times are

indicated in parenthesis.

4. How such observations are to be addressed is the subject of Chapter 3.6, suffice to say that this function is
a potential bottleneck or hot spot

5. http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
6. http://www.graphviz.org/

http://code.google.com/p/jrfonseca/wiki/Gprof2Dot
http://www.graphviz.org/

36

df and centroid_def functions

1 /* distance function - Euclidian Distance */
2 float df(float *v1, float *v2)
3 3781843968 -> {
4 int i;
5 float dist, sum;
6
7 sum=0.;
8 for(i=0; i<T; i++)
9 sum=sum+(v1[i]-v2[i])*(v1[i]-v2[i]);

10
11 dist= (float) sqrt((double) sum);
12 return dist;
13 }
14
15 /* classification of a sample taking into account each centroid */
16 int centroid_def(int pos, float *d)
17 14772828 -> {
18 int i,index;
19 float mdist, dist;
20
21 mdist=99999.;
22 for(i=0;i<NC;i++) {
23 dist=df(centroids[i].feat,samples[pos].feat);
24 if (dist < mdist) {mdist=dist; index=i;};
25 }
26
27 *d=mdist;
28 return index;
29 }

Figure 2.2 : The annotated source code as per the use of gprof -A vq. Only the two
most called functions form the source code are presented.

2.3 The Itch Of Measuring Time

Although time is the most popular and intuitive metric, others such as Clock Per Instruction

(CPI), FLoating point OPertaions per Second (FLOPS), cache hits and misses can also reveal

pertinent information about a program’s efficiency. The measurement of time is a non-trivial

task when precision is essential [51, 18]. Although it is more critical in the case of tracing

where real-time event sequences are reconstructed [36, 8], it also applies to the quality of the

information gathered for application profiling [10]. This information has historically depended

on software counters provided by system calls such as gettimeofday() for which the pre-

cision varies greatly depending on the Operating System (OS)’s implementation [51, 18]. We

address this issue in the following section.

2.3.1 PAPI: Time To Scratch Below The Surface

Given the time measurement variance due to systemic perturbations [48, 41] as well as other

factors such as cluster heterogeneity, one must question whether it is valid to base performance

assessments solely on time. The other metrics we mentioned earlier, such as CPI, FLOPS and

37

main
100.00%
(0.00%)

vq
99.47%
(0.47%)
1

99.47%
1

load_samples
0.53%
(0.53%)
1

0.53%
1

centroid_def
99.00%
(3.33%)
14772828

99.00%
14772828

df
95.67%
(95.67%)
3781843968

95.67%
3781843968

Figure 2.3 : The program call graph. This call graph draws the execution path of this
simple program. Each box represents a function and the arrows indicate the call se-
quence. The percentages indicate the inclusive, or cumulative, time as one walks down
the graph. Exclusive times are indicated in parenthesis.

Dot File Generation
gprof vq | gprof2dot.py | dot -Tpdf -o call-graph.pdf

Figure 2.4 : A sample use of gprof2dot to generate a dot file to be interpreted by
Graphviz. The information is generated by gprof, then piped into gprof2dot.py,
which itself pipes into the dot interpreter to generate the call-graph.pdf file.

all, are reputed as being generally more precise and useful [55]. They rely on the imple-

mentation of hardware counters 7 within a given processor or other peripheral such as sensors

[11]. Accessing these metrics requires patching of the Linux kernel and software Application

7. Not to be confused with hardware interrupts.

38

Programming Interfaces (APIs), such as PAPI [3, 9, 10, 38]. Figure 2.5 is an adaptation of

[10] which depicts the different software layers at which PAPI intervenes. We have added the

explicit names of the support tools required by PAPI in parenthesis.

PAPI Low Level
PAPI
High Level

Multiplex Overflow

Timer Interrupt

PAPI Machine Dependant Substrate

Kernel Extension
(perfmon or perfctr)

Operating System
(Linux)

Performance Counter Hardware
(CPU)

Applications Measurement and Timing (TAU)

P
o
rt

ab
le

 R
eg

io
n

Figure 2.5 : The PAPI implementation scheme. Adapted from [10] to include the software
components, in parenthesis, relevant to each layer used in our implementation.

Not all metrics can be counted nor are there as many counters as there are countable items

[55]. For example, a processors being used may support only four simultaneous counters even

though it is capable of probing well above 40 different events. A listing of such events, when

PAPI is installed, is available for each machine in Appendix III. This is one of the limiting

factors when selecting the desired statistic for collection. One must also note that some of

these metrics are derived. These imply additional computation to be performed by the PAPI

low level abstraction layer. The command papi_avail -e <Name_of_PAPI_event>

can be used to display the metrics from which an event is derived. This adds to overhead to the

profiling process [12, 55], which is detrimental to the quality of the resulting information. It is

therefore suggested that non-derived metrics be chosen as to minimize their probing impact and

that the derived metrics be computed as part of a post-processing mechanism. Such a feature

39

is well supported in the Tuning and Analysis Utilities, as we will demonstrate shortly. Lastly,

since PAPI is an API, this means that one either has to insert tracing functions into their source

code or use profiling tools with ability to use PAPI [33, 37], which inevitably brings us to the

following section where we explore such tools that automate the tracing insertion process.

2.4 Tuning and Analysis Utilities (TAU)

We have demonstrated that using gprof is somewhat trivial but there are many drawbacks to

this tool in our context. Firstly It only collects timewise and call count statistics. Secondly,

and most importantly, it is not meant to be used in the context of parallel processing where

one wants to keep track of all processes running on remote computers. This limitation renders

gprof practically unusable. Also, we have presented PAPI, which provides an API for access-

ing the hardware counters present in modern processors. Unfortunately, this tool is not meant

to automatically insert extra profiling and/or tracing functions into source code, such a burden

being left to the programmer. Up until now, we have treated each tool individually and there is

a clear need to consolidate these into a unified infrastructure to alleviate and make good use of

each of their features.

"Everything should be made as simple as possible, but not simpler."
– Albert Einstein

This quote from Albert Einstein is shared with the TAU [46, 1] development team as the pro-

filing and tracing of parallel processing application is a daunting task. Even more so when

one adds the requirements of supporting multiple programing languages, compilers, hardware

platforms and, above all, scalability [27]. But as we will demonstrate, the benefits of TAU’s

complex infrastructure is greatly outweighed by its features. Once the relevant features and

components have been identified, its use provides simple yet powerful interfaces for both pro-

filing and analyzing the collected data. Given this context, we will concentrate on using TAU’s

features which apply to our use, notably, the profiling of C and C++ code, generated by GCC

40

with the ability to collect specific metrics thanks to availability of PAPI 8 and TAU’s ability to

use them [37].

2.4.1 Configuring TAU

TAU’s features and the way it will probe a given program is selected when compiling TAU.

For this reason, one usually generates multiple profiling and tracing configurations ranging

from the simple and superficial profile à la gprof to more complex and elaborate probing

configurations for trace and call-path reconstruction. There are essentially two categories for

TAU’s compilation options. The first category specifies which libraries, compiler and/or sup-

port applications (such as PAPI) will be used by the application to be profiled. The second

category of options describe the type of profiling (measurements) to be performed 9. Figure

2.6 is an example of how one would call upon the installtau script to automatically gen-

erate a general set of profiling configurations. Note that global options, such as enabling MPI

profiling with -mpi on line 3, still have to be specified. In Figure 2.7 , lines 4 and 5 are

examples of options describing the type of profiling to be performed. For example, the op-

tion MULTIPLECOUNTERS combined with PAPI’s installation path (line 2), will result in a

profiling configuration that will support he use of multiple PAPI counters.

TAU Automatic Configuration
1 ./installtau -prefix=$HOME/TAU/TAU -exec-prefix=‘uname -m‘ \
2 -papi=$HOME/TAU/PAPI/‘uname -m‘ \
3 -mpi -pdt=$HOME/TAU/PDT/ \
4 && make -j4 install

Figure 2.6 : Automated general configuration of TAU using the installtau script.

The resulting libraries are named according to these flags as a mechanism of identification. Fig-

ure 2.8 presents a listing of the available configurations, each identified by their stub Makefile

8. Not applicable on all hardware platforms, refer to Appendix III.
9. As of version 2.18.1 of the TAU suite, the measurement infrastructure is being rewritten to make these

options run-time selectable, therefore reducing the number of configuration stubs required.

41

TAU Manual Configuration
1 ./configure -prefix=$HOME/TAU/TAU -exec-prefix=‘uname -m‘ \
2 -papi=$HOME/TAU/PAPI/‘uname -m‘ \
3 -mpi -pdt=$HOME/TAU/PDT/ \
4 -PROFILECALLPATH -PROFILEPARAM \
5 -DEPTHLIMIT -MULTIPLECOUNTERS \
6 && make -j4 install

Figure 2.7 : Manual configuration of specific features (lines 4 and 5) using TAU’s
./configure script.

names formatted as Makefile.tau-<options> where <options> relates to the afore-

mentioned options. A specific configuration is selected by setting the environment variable

TAU_MAKEFILE with the path to one of the stubs. The user then compiles his application

using the wrapper script 10 instead of his usual compiler. Or, if the project has a Makefile,

one includes the desired stub file and changes the compiler variable (typically CC or CXX) with

TAU’s wrapper script such that the compiler line becomes CXX=$(TAU_CXX).

Available (compiled) TAU configurations

1 eric@h2 ~/TAU/TAU/x86_64/lib $ ls -1 Makefile.tau-*
2 Makefile.tau-callpath-mpi-compensate-pdt
3 Makefile.tau-callpath-mpi-pdt
4 Makefile.tau-depthlimit-mpi-pdt
5 Makefile.tau-mpi-compensate-pdt
6 Makefile.tau-mpi-pdt
7 Makefile.tau-mpi-pdt-trace
8 Makefile.tau-multiplecounters-mpi-papi-pdt
9 Makefile.tau-multiplecounters-mpi-papi-pdt-trace

10 Makefile.tau-multiplecounters-papi-pdt
11 Makefile.tau-multiplecounters-papi-pthread-pdt
12 Makefile.tau-param-depthlimit-multiplecounters-mpi-papi-pdt
13 Makefile.tau-param-mpi-pdt
14 Makefile.tau-pdt
15 Makefile.tau-phase-multiplecounters-mpi-papi-compensate-pdt
16 Makefile.tau-phase-multiplecounters-mpi-papi-pdt
17 Makefile.tau-pthread-pdt

Figure 2.8 : Example of TAU profiling options that were compiled at installation time.
Following the Makefile.tau- filename prefix are the options selected at compilation
time.

2.5 Profiling the Source Code

Profiling of the source code can be done in one of three ways:

10. Typically, tau_cc.sh replaces gcc for C and tau_cxx.sh replaces g++ for C++

42

1) Automatically insert extra profiling functions using TAU’s integration of Program Database

Toolkit (PDT) [34];

2) Semi-automatically insert traces using a Graphical User Interface (GUI) editor such as

Eclipse with the TAU integration modules [49];

3) Manually insert function calls to keep track of called events as well as the time spent in

these events.

We will demonstrate the use of the first two approaches and leave manual integration of ac-

cessing TAU’s APIs for other advanced projects such as auto-adaptive parallel codes [29]. In

both cases, the original source code remains intact.

2.5.1 Automatic Code Insertions

If TAU is configured with the -pdt option, it is possible to let the wrapper scripts insert trac-

ing code automatically. This approach is as simple as compiling the code normally with the

exception of changing the compiler name and having the TAU_MAKEFILE environment vari-

able set. Using this approach, the entire program will be profiled and, if the selected profiling

configuration includes options such as -mpi, these function calls will be uniquely identified.

This approach is probably the best one to use when performing initial profiling of an unknown

code base (peering into the black box).

2.5.2 Semi-Automatic Code Insertions

It is possible to perform selective profiling of an application while preserving the integrity of

the source code. This is accomplished via a selection file which is passed onto the wrapper

script as an option. The simplest way 11 to accomplish this is to use TAU’s Eclipse 12 modules

[49] for selective profiling. Figure 2.9 is an example usage where we select a function (df())

for profiling. Two types of user-defined events can be selected, start/stop events and atomic

events. The first one defines a type of counter that collects metrics at the entry and exit of the

11. From the user’s point of view. The administrator has to go through the installation of multiple Eclipse
modules to get such features working correctly.

12. http://www.eclipse.org/

http://www.eclipse.org/

43

selected region while the latter counts the occurrences of the selected region. Atomic events

are tagged as user events in the generated profile and can help keep track of program dynamics

such as iteration counts.

Figure 2.9 : Selective profiling using Eclipse and TAU’s selective instrumentation inter-
face. The df() function is selected and specific type of profile pattern is applied to it.
The modules then automatically generates a tau.selective file to be passed to the
wrapper script.

2.6 Executing the Profiled Code

In the case of parallel and distributed environments, the collection of profile information re-

quires more attention that simply executing the program and running the profile viewer. Al-

though doing just that will provide a valid profile with TAU, unexpected disaffects such as ex-

cessively long runtimes can be experienced depending on the selected profiling options. This is

the case for options such as TRACE and CALLPATH where the resulting files tend to be quite

sizeable 13. Given the multitude of environment variables required to fine tune the profiling

process, we present Figure 2.10 which is a sample script used for the profiled execution of a

program.

13. A typical profiling run for one of our applications generates 500kbytes of data while the same application
will generate over 1.4Gbyte of trace data.

44

2.6.1 Selecting The Profile Depth

The first variables of interest are TAU_CALLPATH_DEPTH and TAU_DEPTH_LIMIT, from

lines 4 and 5, which guide the depth at which the profiling must take place. For example, a

TAU_DEPTH_LIMIT of 2 applied to the call graph of a program, such as the one described by

Figure 2.3 , would generate a profile containing the statistical information for vq() and load_

samples() only, as these are the ones on the second level below the main() invocation.

Program Runscript.sh

1 #!/bin/bash
2 trap ’exit 1’ 2 3
3
4 export TAU_CALLPATH_DEPTH=1
5 export TAU_DEPTH_LIMIT=2
6
7 # COUNTER1 enforced by the use of MULTIPLECOUNTERS and PAPI.
8 export COUNTER1=GET_TIME_OF_DAY
9 export COUNTER2=PAPI_L2_TCM

10 export COUNTER3=PAPI_L2_DCM
11 export COUNTER4=PAPI_TOT_CYC
12
13 for ITER in ‘seq 1 30‘
14 do
15 for I in ‘seq 2 18‘
16 do
17 PROF_DIR="PAPI_MPI_Trace_iter_${ITER}/PAPI_MPI_Trace_${I}"
18 EXP_DIR=/data/eric/$PROF_DIR
19 cexec -p "mkdir -p $EXP_DIR" >/dev/null
20 export TRACEDIR=$EXP_DIR
21 export PROFILEDIR=$EXP_DIR
22
23 orterun -x COUNTER1 -x COUNTER2 -x COUNTER3 -x COUNTER4 \
24 -x PROFILEDIR -x TRACEDIR \
25 --prefix ~/openmpi_i686/ -hostfile nodes -np $I \
26 ./pvq_i686_TAU /data/eric/feat_trainc_342910
27
28 mkdir -p $PWD/$PROF_DIR
29 cexec -p "mv $EXP_DIR/* $PWD/$PROF_DIR && rmdir $EXP_DIR"
30 done
31 done

Figure 2.10 : A sample script that sets up the environment for multiple runs of profiling.

2.6.2 Selecting The Desired PAPI Events

Another set of important variables are present between lines 8 and 11. These are used to

define the PAPI counters that will be used by TAU to profile the application. The first variable

(COUNTER1) has to be set to GET_TIME_OF_DAY as it is used as a reference to synchronize

the individual traces provided by each independent node.

45

2.6.3 Controlling The Data Flow

As we have mentioned earlyer, the profiling and tracing of an application can generate sizeable

amounts of data. In lines 17 to 21, we configure the variables TRACEDIR and PROFILEDIR

to point to local storage and are identified based on the experiment’s parameters. Lines 23 to 26

is the actual command line to launch the experiment. All environment variables are propagated

to all nodes thanks to the -x option from orterun [5], OpenMPI’s parallel process launcher.

Once the application completes its execution, lines 28 and 29 transfer the resulting traces from

the node’s local storage to the server for post-processing of the data.

2.6.4 Storing The Data

Performance Data Management Framework (PerfDMF) [27] is an interface to multiple types

of databases 14, which leverages the use of the TAU suite for keeping track of the evolution of

an application’s performance as the codebase changes. Although it is not required for viewing

profiles 15 per say, it is so for more elaborate analysis such as the ones that can be performed by

the perfexplorer component 16, which can only access profile data through the PerfDMF

interface. It also enables greater collaborative efforts as the standardized storing of the data

eases distributed accessibility.

The tools provided by PerfDMF are command line oriented and meant to ease the configuration

of the GUI tools and automate the insertion of trial data. Although injecting the data into the

database can be accomplished through the use of paraprof’s GUI, which requires manual

loading of each resulting profile for each experiment 17, the command line tool perfdmf_

loadtrial is profiled to automate the process. Although this component does not play an

active role in the profiling process, it plays a critical role in the decoupling of the profiling

process from the analysis.

14. Version 2.18.1 of TAU supports PostgreSQL, MySQL, Oracle and Derby, a local file-based database.
15. We will present paraprof shortly.
16. Yes, also presented shortly.
17. A quick looks at Figure 2.10 reveals that one would have to perform 30 ∗ 17 = 510 manual insertions!

46

2.7 Paraprof and PerfExplorer: The Profiling Graphical User Interfaces

TAU provides two independent GUIs for interpreting the profiled application’s data. The

first we present is paraprof [2], used specifically for profile analysis. The second tool,

perfexplorer [26], is used for performance and scalability analysis. In both cases, they

are composed of a main window, as depicted in Figures 2.11 (a) and 2.11 (b), for selecting

the data source.

(a) The paraprof manager window. (b) The perfexplorer client window.

Figure 2.11 : Both GUIs possess a main window from which the data set(s) to be ana-
lyzed is selected. The selection is performed in the left pane where trials are presented
in the form of a tree structure. The latter depends on how the data was imported using
PerfDMF. We see in (a) that paraprof has an additional branch, which is used for the
current folder’s data and that (b) possesses an additional leaf named view.

In the case of paraprof (Figure 2.11 (a)), an additional tree is present since this application

can be used in a stand-alone fashion (without the use of the database backend). Contrary to

this, perfexplorer explicitly depends on the data being stored in a database, hence the

single tree seen in Figure 2.11 (b). Note that perfexplorer has an additional leaf entry

named views, this will be discussed with the use of perfexplorer itself.

47

2.7.1 The Paraprof Profile Viewer

Paraprof is a GUI component that provides a simple yet powerful presentation of the collected

profiles. It has the ability to read the profile data from a multitude of different formats including

gprof generated profiles. When used with TAU’s suite, simply starting the application in the

directory containing the output files is sufficient for the application to load and display the

data. This implies that it can be used in a stand-alone mode, without requiring the connection

to a database. The loaded profile can also be stored or retrieved to and from the database if

so configured. Figure 2.12 is the first data representation displayed if paraprof is started

within a directory containing profile data. By default, the bars are normalized, which makes

the standard deviation (Std. Dev) seem disproportionate compared to the observed results.

Figure 2.12 : A normalized profile view of all processes including the global mean and
the standard deviation (Std. Dev.) of each functions. In this case the metric is the time
proportion as per GET_TIME_OF_DAY. Each color represents a specific function and its
length is proportional to the total execution time on that specific node.

What makes this GUI interesting is the fact that any presented information has a contextual

menu granting access to additional information. One can start from a global view of the entire

execution and iterate down to the source code. This is also true for the hardware’s metadata

which is accessible through the contextual menu presented when hovering above the node

48

names. Such information becomes important when performance analysis is performed as well

as for keeping track of the historical evolution of a given program.

The presented data can also be filtered by selectively hiding functions, or group of functions,

through the function (or function group) legend windows. This is presented in Figure 2.13

where all functions are enabled but one group is selected, which adds emphasis to the selected

group in the bar graph window. We also changed view configuration to present de-normalized

and unstacked bars, as an alternative to the one in Figure 2.12 .

Figure 2.13 : Individual functions and group of functions can be selected to focus the
displayed statistics. Here, the TAU_USER group is selected in the Group Legend pane
(bottom left), which highlights the relevant functions in the main window (right). Note
that we have de-selected the stacked bar presentation for the main window to present an
alternative to the normalized stacked bars from Figure 2.12 .

The 3 Dimensional (3D) view, in Figure 2.14 , provides a more intuitive and dense analysis

of the collected statistics when compared to Figures 2.12 and 2.13 . This view should

therefore be the first one to be used to gain a rapid perspective of the program’s behavior. The

barcharts can then be used for a more in-depth analysis as they provide a complete mechanism

for accessing all the data relating to each element of the program within its context 18.

18. There is no contextual menu in the 3D presentation linking a given component to its metrics nor to its
section of source code.

49

Fi
gu

re
2.

14
:

A
n

al
te

rn
at

e
re

pr
es

en
ta

tio
n

of
th

e
da

ta
in

3D
.T

hi
s

vi
ew

pr
ov

id
es

a
m

or
e

in
tu

iti
ve

vi
ew

of
th

e
da

ta
th

ro
ug

h
a

la
nd

sc
ap

e
re

pr
es

en
ta

tio
n

or
a

se
ri

es
of

ba
rs

(a
s

sh
ow

n)
.T

he
ba

r
he

ig
ht

an
d

co
lo

r
in

te
ns

ity
ca

n
re

la
te

to
an

y
of

th
e

co
lle

ct
ed

PA
PI

m
et

ri
c

or
on

e
of

th
e

de
ri

ve
d

m
et

ri
cs

cr
ea

te
d

by
th

e
us

er
.

50

It is also possible to visualize the callgraph of a given execution thread. Figure 2.15 presents

two such graphs for the same program where Figure 2.15 (a) is the graph of a master process

while Figure 2.15 (b) is the one for a slave process. The box size and color are guided by their

relation to selected metrics such as inclusive time and exclusive times. As with the barcharts,

contextual menus grant access to contextual information such as the source code of a function

and its statistics. Selecting one of the functions also highlights it in all other paraprof

windows displaying this function (except for the 3D view).

(a) The master process’s callgraph. (b) A node’s process callgraph.

Figure 2.15 : paraprof has the ability to display the call graph if the program was
profiled with the -PROFILECALLPATH option turned on. By default the box width is
proportional to the inclusive times and the box color is selected according to the exclusive
runtime of a given function. Both programs are the same but it is clear that the call path
from the master node in (a) is different from one of the slave nodes in (b).

Figure 2.16 is an example of an interaction sequence presenting the path from profiled data

contained in the PerfDMF database down to the source code from the profiled application 19.

19. A path to the source code must be provided is none is currently configured.

51

1

2

3

Figure 2.16 : An example of an analysis sequence in paraprof. From top left, circling
counter-clockwise, is the sequence from paraprof manager window, through the bar
charts, the call graph and then to the source code.

In all cases, paraprof can only be used for the punctual analysis of a given execution with

a fixed context (such as the number of nodes). This implies that it is not the preferred tool for

scalability and efficiency analysis and should be used for the performance analysis of a fixed

context.

2.7.2 The PerfExplorer Performance Analyzer

As a sister application to paraprof, perfexplorer [26] is a more elaborate graphical

front end specially created for statistical and efficiency analysis of parallel profiles. This tool

is geared at providing an insight on a parallel program’s scalability and efficiency, given some

real-world runs of a program under possibly differing conditions. As such, it is expected that

multiple profile runs will be executed with per-run variations such as the number of used nodes.

52

Given that scalability is a central concern to parallel processing, this tool is geared at giving as

much information as possible in that respect so that one can quickly identify scaling issues.

Although paraprof provided a complete view of a single profile, it lacked the ability to

convey tendencies that can only be obtained by comparing different profiled runs of a program.

These tendencies are the application’s speedup and efficiency.

2.7.3 Application Speedup

The speedup (Sp) is traditionally defined as per Eq. (2.1), a ratio between t1, the time for a

single process execution and tp, the time for executing its parallel counterpart with p processes.

This evaluation of the speedup holds true as long as the program scaling is strong, meaning that

the computational load is not changed as machines are added. In such a case, ideal speedup

is in direct proportion to the number of processors. Simply put, if there are p processors, the

ideal speedup (and ultimate goal) is that a parallel application should run p times faster than

its sequential equivalent. Linear speedup is seldom possible to attain unless the application is

embarrassingly parallel, meaning that it will perform computation more than anything else for

any given p processors. Although the “anything else” is historically bound to communications,

we will demonstrate later that there are other factors that influence the application’s speedup,

and therefore, scalability.

Sp =
t1
tp

(2.1)

The programmers of perfexplorer don’t assume the reference execution of a program to

be a single process and define a baseline execution time tbase of a given program that is based

on the first available timing sample, which is not necessarily executing sequentially on as a

single process. This leads to what they call relative speedup. This leads to a slight redefinition

of Eq. (2.1) as Eq. (2.2) by replacing the unit time t1 with a base reference time tbase which is

not bound to a single thread execution.

Sp =
tbase

tp
(2.2)

53

Figure 2.17 : The top line shows the ideal speedup, based on the experimental data right
below it, which starts with tbase = t1 (1 processor) up to the timing for p = 16 processors.
The bottom line seems to have poor speedup as it is far from the ideal line (also drawn).
For this curve, the baseline time tbase is based on the execution with p = 5 processes.
This induces a distortion in the speedup representation as the two series have a different
reference for tbase.

The direct implication is that an ideal speedup is not necessarily equal to the number of proces-

sors but rather a scaled factor of tbase by pbase, the number of processor used for the base run.

To illustrate this, we ran the test program with artificially low and high computation charac-

teristics and with a different number of worker nodes to start with. We then draw the speedup

for both execution cases in Figure 2.17 . The ideal speedup is drawn top most, then the first

experiment with low computational load starting at p = 1 and finally, the lower most curve is

for he experiment starting with p = 5 processors with very high computational load. Both runs

are executed up to using 16 processes. Although the bottom most run would seem to possess

a lower speedup, a closer look in Figure 2.18 indicates that the application is in fact exerting

ideal speedup characteristics according to perfexplorer.

54

Given relative speedup is being used, to be able to compare both executions, the program would

have to permit the scaling of tbase by pbase2/pbase1 for a true comparison to be possible when

presented within the same graphic. A normalized result is obtained by setting pbase1 = 1, which

would give a scaling factor of 5. This does confirm that the second experiment, which had

displayed a seemingly poor speedup of 3.2, actually has an ideal speedup of 16 (3.2× 5 = 16)

after rescaling.

Figure 2.18 : A closer look of the experiment having a baseline time tbase with 5 proces-
sors demonstrates that it actually exerts ideal speedup according to perfexplorer’s
guideline.

Another feature is the ability to display per-function speedups, which can help identify func-

tions that will become problematic as processors are added. Figure 2.19 is one such example

where the functions falling off below the ideal speedup curve are the most probable candidates

of becoming scalability bottlenecks.

55

Figure 2.19 : The speedup of each event is drawn independently to isolate the functions
that do not scale well. Functions that fall off the ideal speedup reference line are the most
probable barriers to scalability.

2.7.4 Application Parallel Efficiency

The parallel efficiency Ep of a parallel application is a measure of its ability to use pro-

cessors as they are added to the execution environment. Its general form is in Eq. (2.3),

which is the speedup from Eq. (2.1) normalized over the number of processes pcount. Since

perfexplorer doesn’t assume the baseline time tbase is for a single process (or tbase = t1),

Eq. (2.3) is redefined as relative efficiency in Eq. (2.4). This is once again a variation on the

speedup, this time scaled by pbase/p where pbase is the count of processors used for the baseline

execution.

Ep =
t1

(tp · pcount)
(2.3)

Erel
p =

tbase · pbase

tp · p
(2.4)

56

As it is demonstrated in Figure 2.20 , the relative efficiency is a more appropriate measure of

scalability when comparing different algorithms in differing contexts. The implementation that

seemed to have initially poor speedup is in fact more efficient. The ideal is to keep the efficiency

to 1 (or 100%) as p grows. As it is the case with the speedup graphs, it is also possible to display

the relative efficiency for each element of the executing program, as demonstrated in Figure

2.21

Figure 2.20 : Relative efficiency is not affected by the baseline’s processor count p. The
most efficient implementation (top line), averaging at 1, was originally presented as hav-
ing comparatively poor speedup in Figure 2.17 .

2.7.5 Runtime Breakdown

The speedup and efficiency graphs are the de facto metrics to characterize a parallel process in

its execution environment. As a complement to these representations, the runtime breakdown

is composed of stacked areas representing each function’s proportional contribution to the total

execution time. This is a more intuitive view of the per-component performance progression

57

Figure 2.21 : Relative efficiency by event can help identify functions with poor scalability.
The ideal is to remain close to 1 as processor count grows.

as processors are added. As an example, Figure 2.22 presents the same problem under three

different angles. The relative speedup and efficiency graphs from Figure 2.22 (a) and Figure

2.22 (b) don’t convey a view as intuitive as presented by the runtime breakdown in Figure 2.22

(c). Functions that present poor scalability will grow in surface area as processors are added.

A quick glance at the runtime breakdown identifies these problematic functions quickly and

efficiently.

2.7.6 Views

An additional feature of perfexplorer is its ability to create views based on the data present

in PerfDMF. For example, if we have 15 iterations of the same experiment, displaying the

resulting runtimes as in Figure 2.23 (a) isn’t practical. Creating a view consolidating all

iterations into a single experiment enables perfexplorer to display averaged statistics as

58

(a) Relative speedup graph. (b) Relative efficiency graph.

(c) Runtime breakdown graph.

Figure 2.22 : Comparing three representation of the same profile run using relative
efficiency in (b), relative speedup in (a) and a runtime breakdown graph in (c). The intu-
itive display from the runtime breakdown eases the identification of functions becoming
problematic as processors are added. Simply put, a widening cone such as the second
predominant layer from the top, is indicative of a growing bottleneck. A tightening cone,
on the other hand, means that the function looses proportional importance in the overall
execution time. Parallel or constant area are signs of linear (ideal) speedup of a function.

we see in Figure 2.23 (b), where the drawn cureve is the average runtime of the same 15

experiments.

59

(a) Simultaneous display of the runtimes characteristics for 15 iterations of the same experiment.

(b) Average runtime characteristics for 15 iterations of the same experiment.

Figure 2.23 : The use of perfexplorer views help consolidating experimental data
for a better analytical perspective. All 15 experiments are presented in (a) whereas an
averaged view is presented in (b).

60

2.8 Discussions

We have skimmed the surface of the vast and complex field of program profiling, especially in

the case of parallel and distributed processing. The following points are our main observation

concerning the tools we have mentioned in this chapter:

– The generic form of gprof is of little use to the parallel processing community when it

comes to performance assessment. External tools are required for basic visualization tasks

such as callgraph generation and there is no obvious means of consolidating the collected

information across multiple runs.

– Modern processors provide internal counters which convey much more relevant information

on the execution of a program other than time of execution. Performance enhancement and

better understanding of a program’s dynamics is accessible thanks to the use of PAPI in

conjunction with profiling tools such as TAU.

– TAU is a complex yet powerful profiling suite that consolidates the entire process of manual

or automatic code trace insertions, execution tuning, data collection and displaying of the re-

sults thanks to specialized GUIs oriented towards profiling and statistical analysis. This suite

provides one of the most integrated and complete set of tools for program characterization

in the context of parallel HPC.

Finally, Table 2.2 associates the different profiling approaches supported by the preseted tool-

s/tollsets. It is more than obvious that TAU wins in all respects, hands down.

Box Type gprof TAU
Black Not capable. Only MPI calls through runtime interposition

(library wrapers) 21

White Not applicable One can manually insert TAU specific profil-
ing calls for a fine-grained control over which
portion of the code is to be profiled.

Grey This is the modus operandi for gprof through
the -pg option passed onto GCC. It is inappro-
priate for parallel HPC programs.

Supported in two ways: 1- through the use of
selective profiling definition file 2- fully auto-
mated using the PDT.

Table 2.2: Black, Grey and White Box capabilities for the presented tools.

CHAPTER 3

CASE STUDY: PARALLEL K-MEANS ALGORITHM ANALYSIS

Unsupervised learning has become a popular field of study ever since it’s infancy. One of the

tried and true algorithms that keeps re-surfacing in one form or another is the k-means clus-

tering algorithm. This data mining algorithm uses an iterative learning approach. Its training

phase can prove to be very time consuming depending on the size of the dataset n, its dimen-

sion of vectors d, the number of centroids k and the number of iterations Niter. The latter is

a stop condition determined by an imposed convergence threshold δ. Given its computational

complexity, represented by Eq. (3.1), it is not surprising that means to accelerating the k-means

algorithm has been a point of interest since it’s inception.

O(ndkNiter) (3.1)

We concentrate an implementation of the k-means used for unsupervised learning of segmented

handwritten numeral strings as proposed by [44], Section 3, Foreground-Background Feature

Extraction (FBFE) Module. In this context, k is varied using an EA in an attempt to obtain

an optimal Hidden Markov Model (HMM). This requires many repeated learning phases,

implying that any means by which the process can be accelerated can lead to a higher quality

classifier and/or in less time.

Having access to a sequential and a parallel implementation (master-slave) of the algorithm,

we will proceed as if we were performing a typical migration from the sequential to the parallel

version as a means to validate the approach. With the help of Grey Box profiling results, we then

propose a restructured version of the parallel algorithm (island model) which has both a simpler

and more efficient implementation, statements which will be supported through comparative

profiling of each key functions.

We therefore start by studying the sequential algorithm’s profile, after which, we identify the

potential parallel approaches. General parallelization considerations are presented for the al-

62

gorithm. The master-slave version is then analyzed to ascertain its adherence to the identified

approaches and pin point probable scalability bottlenecks. An alternate parallel model is then

proposed, the island model, with a restructured communication scheme which both simplifies

and optimizes the code. In all cases, TAU is used to perform the analysis.

3.1 The Sequential k-means Algorithm

Given an unalbelled database DB of elements of dimension d represented as xᵀ = {x1, x2,

· · · , xd}, we randomly select 1 k elements that are to become the centroids defined by cᵀ =

(c1, c2, · · · , cd), thus rendering the table of centroids C. For each elements in DB, we then

identify the closest centroid cj through Euclidean norm 2 (as denoted by ‖·‖). Once the owning

identified (say, the jth centroid), each element’s values are summed into an intermediate value

c′j while keeping the count of elements in mj . The new centroids are then computed by mean

vector such that c′j =
c′j
mj

. The process is iterated until the convergence threshold dist is

lower than the allowed distortion, defined as δ. This convergence threshold is computed as

the average distortion, which is the sum of the Euclidean norm between each element and its

centroid over |DB|, the database size. This process is summarized in algorithm 2.

3.1.1 Empirical Evaluation of the Algorithm

As with most parallel programs, our implementation of the k-means first started as a sequential

version of itself. A profile of the application is used to identify the most time consuming

sections of the algorithm as well as its computational characteristics. Parallel strategies, such

as partitioning, depend on the computational granularity of a program, a measure we will be

able to obtain through profiling coupled with some knowledge of the implemented algorithm.

Our profile information is obtained by compiling the program with TAU as presented in Figure

3.1 3. The parameters for this execution of the algorithm are d = 47 (vectors dimension is

1. Our implementation uses the elements located at each |DB|/k interval so that the results would be deter-
ministic between experiments, therefore comparable.

2. The Euclidean norm is the one we chose among many other distance computations as it is the one mostly
used in our current experiments.

3. The extended version is avalable at Figure II.1

63

1: Random initialization of C by selecting k elements in DB
2: repeat
3: Clear out intermediate values C ′ ← 0, dist← 0 and m← 0
4: for all xi, where 1 ≤ i ≤ |DB| do
5: Identify closest centroid as per arg min

k
(‖xi − ck‖)

6: Save the element’s distance from the centroid dist = ‖xi − ck‖
7: Add xi to intermediate centroid: c′k := c′k + xi

8: Increment the centroid’s element counter mk := mk + 1
9: end for

10: for all c′j , where 1 ≤ j ≤ k do
11: Compute the new mean vector c′j := c′j/mj

12: end for
13: Assign new centroids as current C = C ′

14: Compute distortion dist := dist/|DB|
15: until |dist| < δ

Algorithm 2: The Sequential K-Means

47), k = 500 (we want 500 centroids), |DB| = 67879 (we will use 67879 samples from

the database). With a convergence threshold of δ = 0.001, 9 iterations were required for the

program to complete.

Sequential k-means profiling
1 $ export \
2 TAU_MAKEFILE=~/TAU/TAU/x86_64/lib/Makefile.tau-callpath-pdt
3 $ tau_cc.sh -optCompile="[snip]" vq.c -o vq_SIMD
4 $./vq_SIMD ./featg_col.dat $((6787955/100))
5 [snip]

Figure 3.1 : Profiling and execution of the sequential k-means algorithm using TAU. The
program is then started by specifying the reference database and the number of samples
to load from the database. Here we load 1% of the entire database. The [snip] tags
indicate output truncation.

We present an analysis of the resulting profile in Figure 3.2 . First, the call graph in Figure

3.2 (a) indicates that the execution time (width of the boxes) runs down a direct path to the pre-

dominant function centroid_def(), being as wide as the main function. This observation

is confirmed by Figure 3.2 (b) and Figure 3.2 (c), where the length of the bars representing

64

each functions are proportional to their time contribution. The function call counts presented

in Figure 3.2 (d) come in handy with regards to a program’s eligibility for parallelization as a

high count and significant total execution time (from Figure 3.2 (c)) are indicative of probable

partitioning for a given function. Since we are observing profiles and not traces, we have no

means of establishing the level of each function’s cohesion between calls. Nonetheless, we do

have a priori knowledge of the implemented algorithm and know that the computation from

the principal loop, at line 4 of Algorithm 2, can be performed on all n elements independently.

Lastly, the time per call metric, from Figure 3.2 (e), gives a hint as to which functions might

be scalability bottlenecks. This information leads to scrutinizing the load_samples() and

vq() functions as their high time per call metric might indicate a single long task, susceptible

of not being parallelized.

65

(a
)

C
al

l
G

ra
ph

,
bo

x
w

id
th

pr
op

or
tio

na
l

to
in

cl
us

iv
e

tim
e,

co
lo

ri
s

by
ex

cl
us

iv
e

tim
e.

n
o

d
e

 0

(b
)

St
ac

ke
d

pr
ofi

le
,b

ar
se

gm
en

ts
ar

e
pr

op
or

tio
na

lt
o

th
e

fu
nc

tio
n’

s
tim

e
co

nt
ri

bu
tio

n.

fl
o

a
t

d
f(

fl
o

a
t

*,
 f

lo
a

t
*)

 0

.2
2

6
in

t
c
e

n
tr

o
id

_d
e

f(
in

t,
 f

lo
a

t
*)

4
2

.7
4

2
in

t
lo

a
d

_s
a

m
p

le
s
2

(c
h

a
r

*)
 2

.7
4

8
vo

id
 m

e
a

n
_v

e
c
to

r(
)

 0
.0

0
2

vo
id

 v
q

()

 1
.4

(c
)

E
xc

lu
si

ve
tim

e
(i

n
se

co
nd

s)
.

fl
o

a
t

d
f(

fl
o

a
t

*,
 f

lo
a

t
*)

1
0

0
0

0
1

in
t

c
e

n
tr

o
id

_d
e

f(
in

t,
 f

lo
a

t
*)

6

1
0

9
1

1
in

t
lo

a
d

_s
a

m
p

le
s
2

(c
h

a
r

*)

 1

vo
id

 m
e

a
n

_v
e

c
to

r(
)

 9
vo

id
 v

q
()

 1

(d
)

E
xc

lu
si

ve
ca

ll
co

un
t.

fl
o

a
t

d
f(

fl
o

a
t

*,
 f

lo
a

t
*)

 0
.0

0
2

in
t

c
e

n
tr

o
id

_d
e

f(
in

t,
 f

lo
a

t
*)

0

.0
7

in
t

lo
a

d
_s

a
m

p
le

s
2

(c
h

a
r

*)
2

7
4

7
.9

vo
id

 m
e

a
n

_v
e

c
to

r(
)

0

.2
3

vo
id

 v
q

()
1

3
9

9
.5

(e
)

E
xc

lu
si

ve
tim

e
pe

rc
al

l(
in

m
ill

is
ec

on
ds

).

Fi
gu

re
3.

2
:E

ac
h

gr
ap

hi
c

is
a

w
in

do
w

fr
om

p
a
r
a
p
r
o
f

,u
se

d
to

pr
es

en
ta

sp
ec

ifi
c

vi
ew

of
th

e
se

qu
en

tia
lk

-m
ea

ns
pr

ofi
le

.T
he

ca
ll

gr
ap

h
in

(a
)c

le
ar

ly
sh

ow
st

ha
tt

he
ex

ec
ut

io
n

tim
e

is
m

os
tly

at
tr

ib
ut

ab
le

to
c
e
n
t
r
o
i
d
_
d
e
f
(
)

.T
he

st
ac

ke
d

ba
rg

ra
ph

in
(b

),
an

d
its

de
co

ns
tr

uc
te

d
ve

rs
io

n
in

(c
),

al
so

in
di

ca
te

s
th

is
pr

op
or

tio
na

li
m

po
rt

an
ce

.
T

he
ca

ll
co

un
ts

fr
om

(d
)h

el
p

id
en

tif
y

po
te

nt
ia

lp
ar

tit
io

ni
ng

ar
ea

s
as

w
el

la
s

its
gr

ai
n.

(e
)i

s
us

ef
ul

fo
r

id
en

tif
yi

ng
hi

gh
ly

co
he

si
ve

fu
nc

tio
ns

(m
an

y
sh

or
tc

al
ls

),
th

us
po

te
nt

ia
lc

om
m

un
ic

at
io

n
bo

tt
le

ne
ck

s.

66

3.2 The Parallel K-Means Algorithm

As we will be presenting two parallelization approaches to the k-means algorithm, let’s start

by presenting common concepts for both approaches. We will start by presenting how the k-

means may be subdivided followed by the implied communications required by the selected

strategy.

3.2.1 First, Divide: The Segmentation Strategies

A typical approach to accelerating the resolution of massive amounts of loosely coupled cal-

culations is to divide the calculated data into more manageable segments. This parallelization

technique is applicable to the most basic form of the k-means algorithm, where, by definition,

|DB| � k, meaning that the size of the database |DB| is much more important than the num-

ber of desired centroids k. This implies subdividing the reference database DB amongst the ω

workers, which we incrementally identify as pid = 0, 1, 2, · · · , ω. This approach is known as a

coarse grained segmentation strategy of the problem with communications only performed be-

tween iterations. This is possible since the centroids aren’t updated until a complete pass on the

element database has been performed. The computation complexity form Eq. (3.1) therefore

becomes Eq. (3.2).

O

(
|DB|
ω

dkNiter

)
(3.2)

3.2.1.1 Strided Segmentation

Two approaches to the segmentation are presented here, the first one is from [43] and is pre-

sented in Algorithm 3. It consists in assigning the |DB| elements of the database to each ω

worker by strides in a round-robin fashion. This is accomplished using a modulo function of

the ω node count as the database is being traversed . In essence, this strategy ensures that the

workload is subdivided as evenly as possible to all nodes.

67

1: for all xi, where 1 ≤ i ≤ |DB| do
2: if pid = i mod ω then
3: DBj

pid = xi {the ith sample is assigned to pid’s local database}
4: end if
5: end for

Algorithm 3: Segmentation by Strides of the Database

3.2.1.2 Blocked Segmentation

The other approach, implemented for our island model, consists in subdividing the database

into |DB|/ω large blocks. The rational behind this approach is that it provides a predictable

access pattern for the hardware and therefore eases optimization through prefetching of the

data. It also makes it possible to consolidate the loading of the data into a single system call.

This strategy is described by algorithm Algorithm 4 where DBpid is a local process’s database

to be initialized with a block of elements within the interval delimited by pid × |DB|/ω <=

i < (pid+1)×|DB|/ω. In the case where there is a remainder to |DB|/ω, they are assigned to

the last processor. Figure 3.3 is a graphical representation of these two segmentation strategies

applied to a database.

1: if pid = ω {If pid is the last process} then
2: DBpid := DBi | pid× |DB|/ω <= i <= |DB|
3: else
4: DBpid := DBi | pid× |DB|/ω <= i < (pid+ 1)× |DB|/ω
5: end if

Algorithm 4: Blocked Segmentation of the Database

3.2.1.3 Hardware Considerations: Load Balancing

The two presented approaches do not take into consideration possible variations in hardware

characteristics between the computing nodes. These variations can come into play when there

is a significant difference in processor performance where a slower node would slow down the

process in whole. A common method of compensating such situations is to assign segments

proportionally equivalent to the processing power of each node. This can be accomplished

68

+ =
CPU 0

CPU 1

CPU 2

...

CPU ω

DB

Database Segmentation

CPU 0

CPU 1

CPU 2

...

CPU ω

=
CPU 0

CPU 1

CPU 2

...

CPU ω

Strided

Blocked

Figure 3.3 : Database segmentation strategies: TOP- Strided segmentation (fine grained)
is used by the master-slave algorithm where each element of the database is assigned to
one ω worker node in a round-robin fashion. BOTTOM- Block segmentation approach
(coarse grained), assigns equal consecutive chunks of the database to each worker as per
|DB|/ω with the remainder assigned to the last worker.

statically (at processing start up) or dynamically, through a scheduling scheme which assigns

computational tasks as the processing evolves. The former typically requires little communi-

cations whereas the latter usually implies a continuous stream of communications from a task

manager towards the nodes. This queue based approach has been explored for the k-means

algorithm by [58] with less than optimal results. We note that, in that specific case, |DB| and

d were significantly small compared to our typical use cases 4.

3.2.1.4 Hardware Considerations: Physical Limitations

Another issue that can come about are the actual hardware limitations for each processing

node. For example, the available RAM a node has can dictate the maximum size of each

segment. Such considerations will also gain much relevance with the growing use of Graphics

Processing Units (GPUs). Such technology impose stricter segmentation guidelines as the

processing units share limited amounts of video memory [7]. This in effect limits the amount

4. Their largest performance test cases had at most |DB| = 100k samples with d = 2 whereas we have
|DB| = 6, 5M and d = 47.

69

of data sets that can be loaded at a given time as well as require a different program structure to

be used. The gain in performance remains important in the realm of classification algorithms

as demonstrated in [16] 5.

3.2.2 Then Tell Everyone: Communications

Let’s recall that the core element of the k-means algorithm is to compute the Euclidean norm

between a given element and its representative centroid. We loosely represent this computation

as tcomp. The end of each computation cycle Niter is punctuated by a communication stage,

identified as tcomm, where all partial results are amalgamated 6. These two components lead

to the general parallel tim (t||) equation presented in Eq. (3.3). This is the prized crude repre-

sentation [14] of parallel processing time, which, as we will demonstrate, can easily lead to

distorted expectations. For example, other times such as initialization (tinit) and loading (tload)

times will come into play as important contributors to be dealt with.

t|| = Niter · (tcomp + tcomm) (3.3)

It was demonstrated implicitly by [57] and then explicitly by [43] that the number of nodes

ω, used in the parallelization of the computation process, is theoretically limited by the inter-

iteration communications. Since the modelization of the communications is dependant upon

the logical and topological distribution, we will present them in more details in their respective

sections.

3.3 And Conquer: Master-Slave Model

Although there are many ways one can implement the master-slave k-means algorithm [13,

43], their topology can be generalized by Figure 3.4 . The approach we present here is from

[43], where the master is responsible for computing the intermediate steps of the algorithm

such as the centroid update and total distortion as well as propagating the new centroids. We

5. Again, we must be weary of the dataset size as their experiment’s dimensionality is not comparable to ours.
6. We consider the consolidation as part of tcomp given its computational insignificance.

70

depict this in Algorithm 5 where the ωorkers (top half) are numbered such that ω = [0, p− 1].

The segmentation strategy is described by line 3 of Algorithm 5 using a ternary opertator where

the local database (DBω) is assigned the element DBj if the remainder of applying the modulo

operator to j with the node number ω matches the node number itself, otherwise, the element

is skipped 7.

Master

NodeWorker0 Node Node NodeWorkerω...Worker1 Worker2

Figure 3.4 : A typical master-slave topology. All communications originate and terminate
on the master. The nodes do not communicate between each other.

3.3.1 Master-Slave Communications

We identify communications using bold and underline in Algorithm 5. In this version of the

algorithm, the k centroids are initialized by having each node select its first k/ω elements and

send these to all other nodes. This process is performed using a modulo operator, applied

against the node’s identity ω, with each element being sent as they are selected. This requires

k × (ω − 1)2 PtP communications.

After an iteration, each node sends its local centroid table C ′ω, element count mω and distortion

distω vectors, to the master. This, in turn, represents 3ω PtP communications, each having a

respective payload of kd for C ′ω, k for mω and distω elements 8. The master then computes

the new centroids table C and global distortion dist and sends them back to the workers for the

next iteration.

7. Note that some off by one adjustments were not included for clarity. The actual implementation is available
in Appendix I.

8. Where each element is the size of a float (4 bytes).

71

1: if pid > 0 {This is a slave process} then
2: Initialization of C by selecting the first k/p elements from each pid in a round robin

fashion and sending each locally selected element to all other workers
3: Initialization of local database: DBωj

← (j mod ω) = ω ? DBj : < skip >
4: repeat
5: Clear out intermediate values C ′ ← 0 and m← 0
6: for all xi in DBω do
7: Identify closest centroid as per arg min

k
(‖xi − ck‖)

8: Save the element’s distance from the centroid distω = ‖xi − ck‖
9: Add xi to intermediate centroid: ck′

ω := ck′
ω + xi

10: Increment the centroid’s element counter mk
ω := mk

ω + 1
11: end for
12: Send partial results, mω, C ′ω and distω, to master process and wait for new C and

total dist.
13: until |dist| < δ

(ω Workers)

(Master)
14: else if pid = 0 {This is the master process} then
15: repeat
16: Wait for partial results, mω, C ′ω and distω, from slave processes.

17: Combine partial results such that mk =
ω∑

j=1

mi and C ′ =
ω∑

j=1

C ′i

18: for all c′j where 1 ≤ j ≤ k do
19: Compute the new mean vector c′j := c′j/m

j

20: end for
21: Assign new centroids as current C = C ′

22: Compute total distortion dist = 1
|DB|

ω∑
j=1

distj

23: Send new C and dist to slaves.
24: until |dist| < δ
25: end if

Algorithm 5: The Master-Slave Parallel K-Means

Recalling the general communications model in Eq. (1.4) (from section 1.3.5), the master-slave

communications overhead is modeled by two phases of communications. The worker to master

communications are represented by Eq. (3.4), which is composed of three distinct PtP commu-

nications (hence 3ts) and a total payload of 4k(d+ 2). The master to worker communications

is described by Eq. (3.5) which is also composed of three distinct PtP communications with a

72

payload of 4(k(d+ 1) + 2).

Tworker
collect = 3ts + tbyte · 4k(d+ 2) (3.4)

Tmaster
update = 3ts + tbyte · 4(k(d+ 1) + 2) (3.5)

We have adapted these equations to reflect the actual source code implementation of the com-

munication primitives. These are comprised of matching pairs of MPI_send/MPI_recv

function pairs as illustrated by Figure 3.5 . Variable names are chosen to concur with Algo-

rithm 5.

Workers send partial results

//Send parital results to Master
MPI_Send(&C , (K*D), MPI_FLOAT, master, tag+1, MPI_COMM_WORLD);
MPI_Send(&distc, K , MPI_FLOAT, master, tag+3, MPI_COMM_WORLD);
MPI_Send(&m_w , K , MPI_FLOAT, master, tag+2, MPI_COMM_WORLD);

//get results from Workers
for(j = 1; j < w; j++)
{

MPI_Recv(&C , (K*D), MPI_FLOAT, j, tag+1, MPI_COMM_WORLD, &status);
MPI_Recv(&distc, K , MPI_FLOAT, j, tag+3, MPI_COMM_WORLD, &status);
MPI_Recv(&m_w , K , MPI_FLOAT, j, tag+2, MPI_COMM_WORLD, &status);

...
}

Figure 3.5 : The workers send their partial results to the master

Master updates workers

//Master
for(i = 1; i < totalnodes; i++)
{

MPI_Send(&C , (K*(D+1)), MPI_FLOAT, i, tag , MPI_COMM_WORLD);
MPI_Send(&dist_ant, 1 , MPI_FLOAT, i, tag+5, MPI_COMM_WORLD);
MPI_Send(&dist , 1 , MPI_FLOAT, i, tag+6, MPI_COMM_WORLD);

}

//receive from the Master
MPI_Recv(&C , (K*(D+1)), MPI_FLOAT, master, tag , MPI_COMM_WORLD, &status);
MPI_Recv(&dist_ant, 1 , MPI_FLOAT, master, tag+5, MPI_COMM_WORLD, &status);
MPI_Recv(&dist , 1 , MPI_FLOAT, master, tag+6, MPI_COMM_WORLD, &status);

Figure 3.6 : The master updates the workers with the new values

73

The Message Sequence Chart in Figure 3.7 illustrates an idealized 9 communications between

the master and workers. This emphasizes the fact that all communications originate and termi-

nate on the master.

3.3.2 Master-Slave Empirical Modelization

As it was demonstrated in Chapter 1, performance characteristics vary significantly even within

the same class of hardware. The simple communications model, described in section 1.3.5 from

that same chapter, will be used as a basis to define the communication times of this master-slave

implementation. The model is completed using TAU [46] to extract the computation times of

important parts of the application. The Beowulf cluster used for our tests is described in detail

in Appendix III.

A gross estimate of the parallel computation time tcomp‖, for one iteration t, is presented in

Eq. (3.6) where tf(‖·‖) is the time required for a single Euclidean norm computation, k is the

number of centroids, n is the number of samples in the database and ω is the number of workers.

We chose tf(‖·‖) for the computation times as it is the smallest token of computation in the k-

means algorithm but also the most called upon.

tcomp‖ = tf(‖·‖)k
|DB|
ω

(3.6)

We have measured that tf(‖·‖) ≈ 1.8µs. With |DB| = 342910 (the size of the entire test

database), k = 10 and ω = 10, we get a modeled tcomp‖ = 0.6172 seconds per iteration.

Eq. (3.4) and Eq. (3.5) are then used to estimate tcomm. Given the vector size of d = 47, we get

tcomm = ω
(
Tworker

collect + Tmaster
update

)
(3.7)

= 10 (6ts + tbyte · (4(k(d+ 1) + 2) + 4(k(d+ 1) + 2)))

= 6.4576ms

9. Meaning that we neglect the possibility of out of order communications and collisions.

74

master worker1 worker2 workerw

Nodes send partial results.

C1

dist1

m1

C2

dist2

m2

Cw

distw

mw

Master computes new centroids.

Master updates workers.

C1

dist_ant1

dist1

C2

dist_ant2

dist2

Cw

dist_antw

distw

Figure 3.7 : Master-Slave Message Sequence Chart (MSC) for the inter-iteration com-
munications. All communications are point to point and must be performed by all nodes.

The first thing one notices is that the model anticipates that the communications will be negli-

gible 10 compared to the actual computation. Knowing that a trial run with the same parameters

10. Close to 100 times less.

75

took six iterations to converge, the general equation presented in Eq. (3.3) renders a total ex-

pected execution time of 3.74 seconds. Unfortunately, this figure proves to be overly optimistic

as the actual measured execution time averages 11 around 9.23 seconds. The execution time

is therefore more than threefolds the estimated value using the theoretical model based on

empirical data.

To investigate this large discrepancy, we profile the entire application using TAU. Our obser-

vations start with the 3D view from Figure 3.8 where we have isolated the two functions of

interest, the communications (the first row identified as MPI_Recv()), and the computation

(the second row which is identified as float df()). The height of the bars represent the time

spent in each function, the color represents the time per call of each function. As expected, the

master node (node zero) spends most of its time in the MPI_Recv communication call as it

waits for the workers to complete their part of the computation. What is also revealed is the

heterogeneity of the cluster 12 with nodes being more powerful than others. This is put forth by

the varying heights and lighter coloring 13 of the communication bars for the faster computers.

The 3D view makes it easy and intuitive to correlate the computation time and communication

times seen by each worker node. It is obvious that faster computers end up waiting longer in

the communication calls by simply looking at the bar height. These observations alone are

sufficient to invalidate our assumptions about the communications model, the most notable one

being that one must account for delays imposed by all other nodes for a communication to be

considered completed in a master-slave topology using PtP communications. In other words,

the present communication model is designed in a way that each PtP must complete in the

correct order, and all delays imposed by slower nodes must be added. Note that this is not a

limitation of the communication library but rather a design flaw in the code’s use of the library

by forcing a given sequence in the communications.

11. We ran 30 times the experiment within the same timeframe varying the node count from 2 to 24
12. Described in more details in Chapter III, section 1.
13. Had the color been the same for all bars of the same row, this would have indicated that all calls took the

same time for that row, therefore implying that higher bars are indicative or more calls, not longer calls.

76

Figure 3.8 : The 3D view of the master-slave communications MPI_Recv() and compu-
tation cycles df() for all nodes. The master node (node 0) spends most of its time waiting
for the results from the ωorker nodes. Columns are colored according to time per call for
the function.

We now observe the tasks accomplished by a single worker. Figure 3.9 is a barchart presenting

each function’s cumulative contribution to the total execution time for a single worker. As

expected, df() takes most of the time with 3.2 seconds. Once again, we notice the excessive

time (compared to the anticipated model) for MPI_* function calls.

Furthermore, what the model fails to address is the fact that the loading of the samples database,

the function called load_samples(), would come in second place with 2.47 seconds. This

last observation is one of the often neglected considerations in parallel performance models, a

point brought up by Foster in [14] when discussing execution profiles.

77

Figure 3.9 : Average time spent by all nodes in each function. Each calls are sorted by
order of contribution importance. Calls under 0.008 seconds aren’t shown for clarity.
Braces indicate the source file and line numbers, bracket information specify which call
parameters were used and function call paths are indicated using ’=>’.

The runtime correlation analysis graphic from Figure 3.10 is also used to correlate a function’s

execution time with the addition of worker nodes. Of all the functions, only MPI_Init() has

a negative correlation coefficient (r = −0.50), meaning that its execution time is unrelated to

the addition of worker nodes and might also become a bottleneck.

Finally, we performed a scalability analysis by varying the number of ωorkers between 2

and 24. The resulting runtime breakdown graphic in Figure 3.11 shows that the load_

samples() function is hampering scalability as its importance grows with the addition of

computing nodes. An important note about MPI_Recv() is that it seems to scale quite well

but, in fact, the presented proportion is biased by the fact that the baseline reference of two

nodes actually has a single node computing and the master essentially spends close to 100%

of its time in the MPI_Recv() call. Hence the 50% proportion allotted to this call when only

two nodes are considered. We also confirm our observation from Figure 3.10 , where the neg-

ative correlation predicted that the MPI_Init()’s function time contribution would grow and

therefore become a potential bottleneck as nodes are added.

78

L
o
g
(

)

Figure 3.10 : Correlation analysis for ω = [2, 24]. Each function’s time contribution is
drawn as the worker count grows. The correlation coefficient r, indicates the correlation
between the addition of nodes and the execution time of the function.

With such information at hand, we move onto the following section in which we present an

optimized version of the parallel k-means where we have implemented the island parallel com-

putation paradigm.

79

Figure 3.11 : Runtime breakdown for ω = [2, 24]. Each function’s proportional impor-
tance for the total execution time is depicted by its surface coverage as nodes are added
to the computation. A perfectly scalable function would be represented by a constant
surface area whereas a growing surface is indicative of poor scaling.

3.4 Or, Invade: Synchronous Island Model

In the master-slave model, all communications are performed from and towards a master node.

Also, this node typically doesn’t participate in the computational task other than communicat-

ing and computing intermediate parameters. Computation cycles are therefore lost while the

master awaits the results from the nodes and, vice versa, the nodes are idle while waiting for

the update from the master node. Also, given the PtP implementation, computation on the last

node can only start after all other nodes have received their updates, which we have modeled

as (w − 1) · Tmaster
update . As another well-known topological parallel paradigm is the synchronous

island model which can be generalized by Figure 3.12 . In this model, all nodes participate to

the computation and the communication paths interconnect all nodes. This implies the use of

80

a fully connected (or flat) network such as is the case in most Beowulf implementations using

Ethernet networking fabric.

NodeNode0 NodeNode1

NodeNode2 NodeNodew...

Figure 3.12 : A typical island topology. Communications originate and terminate be-
tween each node. This model implies a fully connected network where all nodes can see
eachother (typical Ethernet configuration). The number of actual communications varies
depending on the MPI implementation of the global communicators.

We use this model to address inefficiencies found in the master-slave model. Our implemen-

tation of the synchronous island parallel k-means is described in Algorithm 6. Again, the

communications are in bold and underlined and, as with the master-slave model, are also the

point at which all nodes are synchronized at the end of each iteration.

The most notable change between the master-slave and island model is the lack of distinction

between a said master node and workers. Note that we have also implemented a simplified

centroid initialization scheme where all nodes use a predefined pattern to initialize C using

elements from X . This modification eliminates the need to communicate between nodes for

this initial step and also ensures that the result is not dependant upon the number of nodes

used 14.

14. The original master-slave implementation would use a modulo operator combined with the node count to
select elements from DB, this would lead to variances in the end result and in the execution time.

81

1: Local initialization of C with elements from DB using a pattern known by all workers
2: Each local database DBω is assigned a chunk of size |DB|/ω
3: repeat
4: Clear out intermediate values C ′ ← 0 and m← 0
5: for all xi in DBω do
6: Identify closest centroid as per arg min

k
(‖xi − ck‖)

7: Save the element’s distance from the centroid distω = ‖xi − ck‖
8: Add xi to intermediate centroid: ck′

ω := ck′
ω + xi

9: Increment the centroid’s element counter mk
ω := mk

ω + 1
10: end for
11: Exchange and combine partial results:

Local values of mω, C ′ω and distω, are exchanged with all ωorkers
While they are being exchanged, combine partial results such that:

mk =
ω∑

j=1

mi and C ′ =
ω∑

j=1

C ′i

12: for all c′j where 1 ≤ j ≤ k do
13: Compute the new mean vector c′j := c′j/m

j

14: end for
15: Assign new centroids as current C = C ′

16: Compute total distortion dist = 1
|DB|

ω∑
j=1

distj

17: until |dist| < δ

Algorithm 6: The Island Parallel K-Means. All nodes execute this exact same algorithm.

82

3.4.1 Optimizing the code

As a general rule, code optimization requires that a baseline be established as a point of com-

parison to assess the enhancement or degradation of performance. Since we have performed

a complete profiling of the application, we have access to per-function execution times with

a given set of parameters such as node count, centroid count and loaded elements from the

sample database. We can therefore work on individual functions and compare the optimized

versions to the original ones.

We have established that the following functions 15, in order of importance as per Figure 3.9

, either require optimization or represent a significant enough portion of the execution time to

warrant further investigation:

– df(): The Euclidean norm computation function;

– load_samples(): The database loading function;

– MPI_Recv() [*]: The MPI calls (we consider the sum of all of them);

– centroid_def(): The function that defines which elements of DB are clostest to the k

centroid.

The three categories of optimizations are therefore to be considered, computation, I/O, and

communications. In this section, we present the MPI communication primitives as they are

the most abstracted from the hardware architecture, are tightly bound to the chosen topology

(island), and will represent the most code architecture change. The I/O (load_samples())

and computation routines (centroid_def() and df()) are both applicable on a ordered basis

and apply to any model. They will therefore be presented in their own section.

15. You may peer into their original implementation in Appendix I and their final implementation in Appendix
II.

83

3.4.2 Island Communications

As we have just demonstrated, the island model is algorithmically simpler than the master-

slave approach. The master’s role in the previous implementation served the only function

of collecting three partial results then computing and redistributing the new centroids and the

current global distortion.

3.4.2.1 Overlapping Communications and Computation

In the island model, these three steps are accomplished by the three MPI collective calls as

presented in algorithm Figure 3.13 . Not only do their semantic adhere more closely to Algo-

rithm 6, but they also replace 15 blocking PtP calls 16 that were made in the original master-

slave implementation. This approach also has the added benefit that it provides the necessary

leeway for MPI-level improvements in the implementation of the global communicator [56, 4].

Another key benefit is that it also overlaps communications with computation 17 as well as

simplifies the implementation which in effect reduces the probability of introducing deadlock

conditions and simplifies debugging.

Island Communications
MPI_Allreduce(MPI_IN_PLACE, &distc, 1 , MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN_PLACE, c_cnt , K , MPI_INT , MPI_SUM, MPI_COMM_WORLD);
MPI_Allreduce(MPI_IN_PLACE, c_sum , K*T, MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);

Figure 3.13 : The three collective calls used to communicate and perform an element by
element summation of all three intermediate variables.

The Message Sequence Chart (MSC) in Figure 3.14 illustrates the communications between

all workers. The three collective calls are clearly separated by the horizontal dotted lines, which

in effect indicate a communication barrier where all nodes must have completed their call to

the communicator before moving onto the next call. These barriers will prove to be a limitation

to the algorithm which we will address shortly.

16. Including the calls made during the initialization, otherwise the figure is 11 calls for the main computation
loop.

17. The efficiency of the overlapping is dependant upon the MPI library implementation.

84

node1 node2 node3 nodew

Nodes send partial results for m.

Broadcast m1

Broadcast m2

Broadcast m3

Broadcast m w

Nodes send partial results for C.

Broadcast C 1

Broadcast C 2

Broadcast C 3

Broadcast C w

Nodes send partial results for dist.

Broadcast dist 1

Broadcast dist 2

Broadcast dist 3

Broadcast dist w

Nodes computes new centroids.

Figure 3.14 : Island MSC for the inter-iteration communications. Although
drawn as sequential, collective communications can overlap within the same call to
MPI_Allreduce but must complete within the same call (equivalent to a communi-
cation barrier). These barriers are depicted by the horizontal dotted lines. They must
also be performed by all nodes.

But first, we observe a few results comparing the two communication approaches. In Figure

3.15 (a), the total average communication time sums up to about 4.45 for the master-slave

algorithm. In Figure 3.15 (b), our island model presents a significant improvement with a

given average of 0.51 seconds for its unique communication.

85

(a) Average master-slave communication times.

(b) Average island communication time.

Figure 3.15 : Average communication times for both approaches. Master-slave commu-
nications are presented in (a) while the only communication for the island model is in
(b).

3.4.2.2 Less Talk, More Work

As we have just mentioned, although the use of three separate collective communication calls

is semantically identical to the algorithm, the introduced synchronization barriers add commu-

nication latency and prevent the overlap of computation for the successive collective calls. This

effectively eliminates some of the advantages of the collective communicators.

There are two ways to address this. The first one is to create a custom MPI data type (structure),

which consolidates the three elements into a single communication block. The creation of

custom data types in itself isn’t too problematic but their use with collective communicators

that operate on the data adds the complexity of also having to create custom MPI operators.

We opted to use a simple alternative which consists in using a single large vector to contain all

three elements. This approach requires less code modification and proved to be much simpler to

implement. It is also possible because the operation to be performed on all exchanged elements

is the same (a summation) and that the datatypes are compatible. The only variable assignment

that required some modification is for the centroid ownership counter m which was changed

86

from int to float. The three calls from algorithm Figure 3.13 are therefore merged into a

single call as presented in algorithm Figure 3.16

Merged Island Communications

MPI_Allreduce(MPI_IN_PLACE, c_sum , (K*T + K + 1), MPI_FLOAT, MPI_SUM, MPI_COMM_WORLD);

Figure 3.16 : A single collective call performs the exchange and summation of all inter-
mediate values. The variable c_sum is supersized to include C, m and dist, hence the
communication size of K ∗ T + K + 1. Each variable simply points to its specific region
within c_sum.

The Message Sequence Chart (MSC) for the communications therefore becomes much simpler

as attested by Figure 3.17 where all communications are consolidated into a single call from

each node. This approach has the potential 18 of generating as little as ω communications

compared to the PtP approach with its 6 · (ω − 1) communications 19.

node1 node2 node3 nodew

Nodes send partial results for m, C and dist.

Broadcast m,C,dist 1

Broadcast m,C,dist2

Broadcast m,C,dist 3

Broadcast m,C,distw

Nodes compute new centroids.

Figure 3.17 : Simplified Island MSC for the inter-iteration communications. A single
collective call from each node communicates all intermediate values and performs their
sum at the same time.

18. The MPI standard does not enforce that collective communicators be implemented efficiently. They can
actually be a wrapped version of PtP communications

19. Recall that there are 3 send-receive pairs for each node in the master-slave model.

87

3.5 Optimization of I/O Routines

We have established that the load_samples() I/O function is hampering most of the scala-

bility according to Figure 3.11 . Investigations into the load_samples() I/O routine reveals

that the database is in fact an ASCII (text) file containing 47 columns of numeral data separated

by spaces for each dimension d and each element on its own line.

Storing data in textual format, although human readable, represents a heavy burden as far as

raw space and computation requirements are concerned.

For example, each element of a vector is represented by a character string (ie: 0.032352) to

which we must add a space or the end of line character. This representation takes a total of 9

bytes for single number where its binary equivalent in float format only takes 4 bytes. Not

withstanding a gain in precision, storing the data in binary format would therefore reduce the

raw data transfer requirements down to 44% of the original figures. Furthermore, the textual

representation of numbers have to be converted to float format, which implies that each and

every byte of the file has to pass through the processor. This represents a considerable amount

of processing which, in its binary format, isn’t required.

Finally, performance enhancing mechanisms such as Direct Memory Access (DMA), allowing

the direct transfer of data from disk to memory, as well as OS based file caching are impossible

with the use of textual data. Even if the data is cached in main memory due to recent access, it

will still need to be re-parsed by the processor the next time the program is called 20.

The above-mentioned reasons and the poor performance revealed by our performance profiling

has lead our implementation to use a binary file format. The performance gain is more than sig-

nificant, trial runs executed on 12 nodes using both approaches revealed that the text database

took an average of 2.085 seconds to load whereas the binary version took 0.018 seconds to

load 21. This represents a considerable speedup, the binary version being over 115 times faster

20. Recall that the k-means of our case study is part of a Genetic Algorithm (GA) in which the k-means serves
as a fitness evaluator, thus being called multiple times upon the same data.

21. The binary database was in cache as the previous system call forced a read of the entire file (a call to
md5sum).

88

than the original code. Such speed gain is attributable to the fact that there is no longer a need

to convert from the ASCII format, less data needs to be read from disk, the data can be loaded

directly into RAM without passing through the CPU and the use of file pointer arithmetic is

now possible, eliminating the need to read the entire database to load the node’s portion into

memory (we can jump to the right entry immediately). This enhances the program’s scalabil-

ity by reducing the read time proportionally to the number of workers (read time should be

inversely propositional to the number of nodes).

3.6 Computational Optimizations: Coding for High Performance Computing (HPC)

Although the ultimate goal of most programming language is to provide an abstraction layer

between hardware and software components, some considerations are to be taken into account

when dealing with HPC. Such programming constraints are seldom applied unless there is

a proven performance gain in the overall application, which implies that hotspots have been

identified and that proposed techniques are known to have a significant impact.

In both parallel models, the df() and centroid_def() functions have prooven to be hotspots.

They both possess a high call and cumulative time count (Figure 3.2 (d) and Figure 3.2 (c)).

But what we have also noted is that these function calls are very short (Figure 3.2 (e)). Code

optimization techniques are much more complex and require intrinsic knowledge of the under-

lying hardware to guide the applied techniques. We will use TAU and PAPI more extensively

in this section to investigate the probable paths to optimizing the code. When possible, the

compiler’s implementation of the technique will be used when a performance gain is obtained.

We will only revert to manual modifications of the code when absolutely necessary. This way,

the code remains as close to the original implementation and doesn’t get overfitted to a given

hardware platform.

89

3.6.1 Compiler Directives

Compilers are the core component of any software development project, it is therefore essential

to be aware of their capabilities and options as well as the impact using optimization flags. We

study the impact of these in Appendix I and refer to the obtained results throughout this chapter.

3.6.2 Mathematical Libraries Versus Code

We have just demonstrated that most of the program’s execution time is made up of small math-

ematical kernels called up repeatedly. Most basic mathematical functions, such as pow(),

sin(), cos() are implemented via standard mathematical libraries. It is often debated

whether or not these should be used when performance is concerned.

The glibcmathematical library has an Institute of Electrical and Electronics Engineers (IEEE)

standard compliant implementation of basic trigonometrical, logarithmic, power and many

other operations. Although our Euclidean computation kernel is quite simple, we notice that

the df() function from Figure I.2 might be implemented with the pow() function 22 to com-

pute the squared distance. We investigated the relevance of such a substitution of the explicit

code with its equivalent call to pow(). As we can see in Figure 3.18 , the use of pow() ren-

ders code that is slower and less efficient than its hand-coded equivalent. In all cases, whether

it be time, processor cycles, processor instructions, floating point instructions and vectorized

floaring point instructions, the hand coded implementation is always faster, uses less processor

cycles and instructions.

We attribute the performance loss to the fact that the library approach adds a function call and

that the current GCC implementation does not yet perform propagation of optimizations such

as defined by -ffast-math 23. Note that optimization propagation such as ignoring error

and boundary conditions down to the compiled library is defined in the C99 standard 24.

22. Note that the library documentation stipulates that any of the functions may in fact be defined as macros.
23. Referring to “treatment of error conditions by math library functions (math_errhandling)” at

http://gcc.gnu.org/c99status.html for all 4.x versions of the GCC
24. As per http://www.open-std.org/jtc1/sc22/wg14/www/standards, The lastest publi-

cally available version of the standard is the combined C99 + TC1 + TC2, WG14 N1124, dated 2005-05-06.

http://www.open-std.org/jtc1/sc22/wg14/www/standards

90

(a) Metric: GET_TIME_OF_DAY

(b) Metric: PAPI_TOT_CYC

(c) Metric: PAPI_TOT_INS

(d) Metric: PAPI_FP_INS

(e) Metric: PAPI_VEC_INS

Figure 3.18 : Comparing hand coded squared function (a×a) to the use of pow() on Intel
Q6600. The metric used in all cases is the exclusive mean per-call values of the fucntion.
In all figures ((a) to (e)), the top bar (in blue) uses the explicit definition while the red bar
below uses the library call to pow(a,2). All the presented metrics point to the expanded
version as being more efficient by consuming less total time (a), cycles (b), issuing less
instructions (c) (total) and even less floating point (d) and vector instructions (e).

The performance gain, on the other hand, can be explained by the fact that the compiler was

able to recognize the intended operation and generated code that would explicitly use hardware

specific features such as SIMD instructions, some of the key features of the Intel Q6600. We

detail their use and implication, coupled with loop optimizations, in the following sections.

3.6.3 Using Single Instruction Multiple Data

As we have discussed in Chapter 1, most contemporary processors have stagnated as far as

clock speed is concerned. Other strategies such as ILP and data parallel operations are now

being implemented to compensate for the lack of performance enhancements. This in ef-

fect is indicative of the rebirth of vector processing, mostly by adding SIMD instruction sets

(mnemonics) or similarly purposed processing units [39]. These instructions, as their name

indicate, perform a single instruction upon multiple data units. The main difference between

processors are the available instructions, ranging from simple arithmetic to complex matrix

91

manipulations, the data width, such as single versus double float elements, and the element

count (2, 4, 8, etc..) upon which they can operate simultaneously.

Their effectiveness is therefore dependant upon low level data parallelism and locality which

typically occur when performing vector computation where the same instruction is to be ap-

plied to multiple consecutive elements (ie: consider the addition of two vectors). Their use has

proven to generate code with significant speedup [15] but still require careful considerations

with regards to memory access patterns [45].

To take advantage of these specialized instructions, the compilers need to be hinted both on

the command line and through mindful coding practices so that the mathematical idioms are

recognized by the compiler. As we have just demonstrated, the use of the generic implemen-

tation of pow() is to be avoided as it obfuscates the intended operation from the compiler and

hampers optimization.

GCC’s documentation states that hardware specific SIMD extensions are enabled through the

option -mfpmath=sse coupled with a combination of flags such as -msse, -msse2, -

m3dnow, and so on, depending on the hardware. In the case of more recent 64 bit hardware

such as the x86_64 based architectures 25, the extensions are enabled by default. By their

nature, these instructions are typically used within loops and prove to be most effective when

implemented in unrolled loops [15], our next topic.

3.6.4 Loop Optimizations

Probably some of the most popular topics in literature pertaining to HPC [25, 54, 31, 23],

optimization of frequently called loops mostly consist in obtaining a higher computation versus

control/branch ratio while reducing memory references to a minimum.

Instead of executing a single element of a loop and calling upon the indexing and break condi-

tions, we execute multiple steps of the loop before, within and after the said loop. An example

of one of these techniques, loop unrolling, is described in algorithm 7. In this case, we have

25. Which imply most current Intel and AMD processors.

92

unrolled the inner loop by a ratio of 4 : 1 computations versus branch verification. The loop

indice advances by steps of its unrolled power, four in this case, and the remainder of the index

is executed in its regular form at the termination of the unrolled version.

1: for i = 0; i < (Size− 4); i+ = 4 do
2: DATA[i]=OP1[i]+OP2[i];
3: DATA[i+1]=OP1[i+1]+OP2[i+1];
4: DATA[i+2]=OP1[i+2]+OP2[i+2];
5: DATA[i+3]=OP1[i+3]+OP2[i+3];
6: end for
7: if i mod Size {If some elements are left to be computed.} then
8: for i < Size; i+ + do
9: DATA[i]=OP1[i]+OP2[i];

10: end for
11: end if

Algorithm 7: Loop Unrolling

The direct C code application of this technique is presented in Figure 3.19 where both the

regular (left) and unrolled (right) versions of df() are presented.

Loop Unrolling

1 eric@thinkbig1 ~/1_Files/1_ETS/1_Maitrise/Code/pvq $ diff --suppress-common-lines -y \
2 <(mpicc -E vq.c) \
3 <(mpicc -DUNROLL -E vq.c)
4 # 61 "vq.c" | # 80 "vq.c"
5 inline float df(const float *v1, const float *v2) | inline float df(const float *v1, const float *v2)
6 float sum=0.0; | float sum =0.0;
7 int i; | float sum1=0.0;
8 | float sum2=0.0;
9 | float sum3=0.0;

10 | int i=0;
11 |
12 | if (47>4){
13 for(i=0; i<47; i++) | for(; i<(47-4); i+=4){
14 | sum +=(v1[i]-v2[i])*(v1[i]-v2[i]);
15 sum+=(v1[i]-v2[i])*(v1[i]-v2[i]); | sum1+=(v1[i+1]-v2[i+1])*(v1[i+1]-v2[i+1]);
16 | sum2+=(v1[i+2]-v2[i+2])*(v1[i+2]-v2[i+2]);
17 | sum3+=(v1[i+3]-v2[i+3])*(v1[i+3]-v2[i+3]);
18 | }
19 | }
20 > if (47%4)
21 > for(; i<47; i++)
22 > sum+=(v1[i]-v2[i])*(v1[i]-v2[i]);
23 >
24 > sum+=sum1;
25 > sum+=sum2;
26 > sum+=sum3;

Figure 3.19 : On the left, the original loop. On the right, the fourfold unrolled version of
this same loop.

93

The self evident drawback of this approach is that it assumes the loop index to be high enough

as to mask the added control latency imposed by this larger code base. Such manual modifica-

tions, other than inducing probable errors, make the code less legible and somewhat hardware

dependent as the unrolling “level” is to be defined by the processor’s characteristics such as

data, instruction and address cache sizes. For these reason, it is preferable to let the compiler

perform these optimizations.

Although most loop optimizations flags are set by the -O3 general optimization level and, by

their nature, should not impact the results, we have found that adding -ffast-math was

required for the compiler to actually unroll the loops. This might be explained by the fact that,

as it was mentioned in [15], code vectorization and loop optimization techniques tend to be

tightly bound by nature of their application.

To inspect the use of the SIMD extensions and loop optimizations by comparing the assembly

code for the df() function using both -O3 and the combined -O3 -ffast-math flags. In

Figure 3.20 , we see that the right-hand side has an unrolled version of the loop which also

implements software pipelining prologue (lines 16− 24) before instructions are unrolled (lines

25− 30 repeated six times) and then all data is reconciled in the epilogue (not shown) with the

added touch that the loop index is transformed into a decremented index (line 40), reputed to

be a faster control approach on some hardware.

Being closely related to hardware, the impact of such optimizations will vary from platform

to platform. This is well illustrated in Figure 3.21 where we compare above mentioned opti-

mization approaches using the general flag -O3, then both -O3 -ffast-math and finally

forcing the compiler to unroll all loops with -funroll-all-loops. Figure 3.21 (a) dis-

plays a time reduction of about 6% for the Athlon XP platform and we also note that forcing

the unrolling of all loops proves to be detrimental to df()’s profiled time. Figure 3.21 (b)

demonstrates that there is barely any gain obtained on the Intel Q6600.

In the case of the Intel Q6600, many reasons might explain the lack of performance gains.

Apart from compiler adaptation to this recent platform, the hardware itself might actually be

94

Use of SIMD and unrolling of loops

1 .L62: | .L67:
2 .L61: | .L66:
3 .L54: | .L59:
4 jne .L56 | jne .L61
5 .L64: | .L69:
6 jmp .L56 | jmp .L61
7 > .L70:
8 .L60: <
9 jmp .L62 | jmp .L67

10 subl $12, %esp | pushl %ebx
11 xorl %eax, %eax | subl $4, %esp
12 movl 16(%esp), %ecx | movl 12(%esp), %eax
13 movl 20(%esp), %edx | movl 16(%esp), %edx
14 xorps %xmm1, %xmm1 | movlps (%eax), %xmm2
15 > movlps (%edx), %xmm0
16 > leal 144(%eax), %ecx
17 > movlps 16(%edx), %xmm1
18 > leal 144(%edx), %ebx
19 > movhps 8(%edx), %xmm0
20 > movhps 8(%eax), %xmm2
21 > movhps 24(%edx), %xmm1
22 > subps %xmm0, %xmm2
23 > movlps 16(%eax), %xmm0
24 > movhps 24(%eax), %xmm0
25 > subps %xmm1, %xmm0
26 > mulps %xmm2, %xmm2
27 > movlps 32(%edx), %xmm1
28 > movhps 40(%edx), %xmm1
29 > mulps %xmm0, %xmm0
30 > addps %xmm0, %xmm2
31
32 [nothing] [last 6 ops. repeated 7 times]
33 [Additionnal padding code for pipeline reassembly]
34
35 .L67: | .L72:
36 movss (%ecx,%eax,4), %xmm0 | movss (%eax), %xmm0
37 subss (%edx,%eax,4), %xmm0 | subss (%edx), %xmm0
38 incl %eax | addl $4, %eax
39 cmpl $47, %eax | addl $4, %edx
40 > decl %ecx
41 jne .L67 | jne .L72
42 sqrtss %xmm1, %xmm0 | sqrtss %xmm1, %xmm1

Figure 3.20 : Pre-assembly output from GCC for an Athlon XP processor for df(). On
the left, the code is compiled with explicit use of SIMD directives such as -mfpmath=sse
-msse -m3dnow. On the right, the addition of -ffast-math has triggered unrolling
of loop as well as additional use of the SIMD capabilities, generating more efficiently
vectorized code.

more efficient and not require as much hand-tuning of the source code. Recall that most of the

techniques pertaining to optimizing loops revolve around computation versus control ratios and

data locality. Since the processors have grown dramatically in cache sizes, it is a fair bet that the

4M cache of the Intel Q6600, compared to the Athlon XP ’s 512K 26, is having a significant

impact which require that classic techniques be revisited and re-evaluated with regard to their

implementation and pertinence.

Other approaches in HPC computing include hand coding the assembly. Although rather rare

given the prohibitive efforts required to implement, there is a vectorial mathematical library by

26. Also noting that some of our models had 256K.

95

float df()
 1.36

 1.28 (94.062%)
 1.288 (94.715%)

(a) Metric: GET_TIME_OF_DAY per call on Athlon XP

float df()
 0.508

 0.506 (99.62%)
 0.506 (99.674%)

(b) Metric: GET_TIME_OF_DAY per call on Intel Q6600

Figure 3.21 : Execution time comparison between using -O3 (top bars in blue), adding
-ffast-math (middle bars in red), and also addinf -funroll-all-loops (bottom
bars in green). The (a) is for the execution time on Athlon XP processors where we can
see that df() does not seem to benefit from -funroll-all-loops but does perform
better with about 6% in time gain with only -ffast-math. (b) is on Intel Q6600 where
very little differences are noted between the three approaches.

the name of its creator, Kazushige Goto, known as GOTO Basic Linear Algebra Subroutines

(BLAS) which is the result of such strenuous efforts. We investigate its use in our next topic.

96

3.6.5 BLAS Libraries

The GOTO [20] implementation of BLAS is reputed to be the fastest since it has been hand

written in assembler and fine tuned for all supported processors. We have replaced the Eu-

clidean norm computation (the df()) function with its equivalent linear algebra mathematical

representation using the Level 1 scalar-vector BLAS. This implementation is described by the

following equation sequence where Eq. (3.8) performs copy of one of the vectors into a tem-

porary work area, which is then added with the negated second vector in Eq. (3.9). The norm

of the resulting vector is returned as a single scalar in Eq. (3.10).

V dist← v1 (3.8)

V dist← −α · v2 + V dist (3.9)

ret← ‖V dist‖2 (3.10)

This sequence translates into the code presented in Figure 3.22 , where each element of the

original implementation are aligned with their equivalent BLAS call when possible. Note that

the BLAS implementation actually performs the vector difference and norm in different steps

while this is fused into a single line in the case of the C code implementation.

Using BLAS Routine

1 eric@thinkbig1 ~/1_Files/1_ETS/1_Maitrise/Code/pvq $ diff --ignore-blank-lines --suppress-common-lines -y \
2 <(mpicc -E vq.c|egrep -v ^$) \
3 <(mpicc -DUSE_BLAS -E vq.c)
4 # 74 "vq.c" | # 62 "vq.c"
5 | float Vdist[47];
6 |
7 inline float df(const float *v1, const float *v2) | inline float df(const float *v1, const float *v2){
8 { |
9 float sum=0.0; | cblas_scopy(47,v1,1,Vdist,1);

10 int i; |
11 for(i=0; i<47; i++) | cblas_saxpy(47,-1.0,v2,1,Vdist,1);
12 sum+=(v1[i]-v2[i])*(v1[i]-v2[i]); |
13 return sqrtf(sum); < return cblas_snrm2(47,Vdist,1);

Figure 3.22 : The df() function using BLAS. On the left, the original loop. On the right,
the BLAS version of this same loop. The operations on the right are aligned with the ones
they (mostly) replace on the left.

We compare this use of the library in Figure 3.23 to our previously optimized version that

used -ffast-math. As we can see, using the BLAS Level 1 library is detrimental to the

97

performance in our case from all points of view (time, computing cycles and all). According to

[19], this is probably linked to limited loop unrolling capabilities in the Level 1 routines due

to the lack of prior vector dimensionality knowledge, the same paradox faced by the compiler

when unrolling loops. To investigate this further, we created a synthetic problem 27 calling

upon the df() function repeatedly while varying the vector size. Our results, presented in

Figure 3.23 (f), clearly demonstrate that there is no vector size where these libraries represent

a performance gain.

It is therefore not recommended that Level 1 BLAS be used instead of plain C code.

27. this is the same program used to investigate cache saturation in Chapter 1, section 1.2.2

98

(a) Metric: GET_TIME_OF_DAY per call.

(b) Metric: PAPI_TOT_CYC per call.

(c) Metric: PAPI_TOT_INS per call.

(d) Metric: PAPI_FP_INS per call.

(e) Metric: PAPI_VEC_INS per call.

1 ns

10 ns

100 ns

1 us

10 us

1 2 4 8 16 32 64 128 256 512 1 k

Ti
m

e
(s

ec
)

Vector Size (Bytes)

GCC -ffast-math
GCC with BLAS

(f) Performance comparison between BLAS and plain C using GCC -O3 -ffast-math. In no scenario does
the BLAS implementation overcome the C implementation of the Euclidean norm computation.

Figure 3.23 : The Level 1 BLAS libraraies (top blue bars and line) perform poorly in
all cases compared to the code optimized with -ffast-math. This is reflected in all
aspects of the computation whether it being time (a), CPU cycles (b), instructions (c) or
even floating point operations ((d) and (e)). Further investigation by varying the vector
size has proven this to always be the case as demonstrated in (f)

99

3.6.6 Comparing All Approaches

Finally, we collect the results of all approaches in Figure 3.24 , where we include the time per

call results of df() for both the Athlon XP (Figure 3.24 (a)) and Intel Q6600 (Figure 3.24

(c)). This comparison in approaches and hardware brings forth many observations:

– Not worth using at all, the call to pow() is most detrimental on the Intel Q6600, where its

performance is even worse than using BLAS;

– The general optimization flag, -O3, performs poorly on Athlon XP , even more so than

using the pow() function, similar observations are made for the Intel Q6600;

– The compiler’s profiling mechanism renders the best result on Intel Q6600, while average

on Athlon XP ;

– The use of -fast-math is best on Athlon XP while its use alone is detrimental on Intel

Q6600;

– On Athlon XP , the three best results are generally very close to eachother (within 1%) and

are a variant of a combination of using -ffast-math and other more advanced compiler

options not included in the general flags such as -O3.

Additionally, we correlate these time results with the total cache misses observed on each plat-

form. The L2 cache misses displayed by Figure 3.24 (b) are clearly linked with the execution

time seen for the Athlon XP . For the same observation to be made on the Intel Q6600, we

have to observe the miss rate at the L1 cache. This clearly indicates that our application is

mostly memory bound and that RAM to CPU bandwidth is essential for the execution perfor-

mance. It also alleviates the use of data locality optimization techniques as well as any other

means of taking advantage of the processor’s prefetching abilities to keep the active data in

local cache.

100

fl
o

a
t

d
f(

)

 1
.3

3
4

 1
.2

8
8

 (
9

6
.5

4
%

)
 1

.2
8

8
 (

9
6

.5
6

3
%

)
 1

.5
3

8
 (

1
1

5
.2

8
%

)

1
.2

8
 (

9
5

.8
9

7
%

)

1
.3

6
 (

1
0

1
.9

5
%

)

(a
)

A
th

lo
n
X
P

:T
im

e
(G
E
T
_
T
I
M
E
_
O
F
_
D
A
Y

).

fl
o

a
t

d
f(

)

 0
.0

2
3

 0
.0

1
2

 (
5

0
.4

6
6

%
)

 0
.0

1
1

 (
4

7
.5

9
8

%
)

 0
.1

9
6

 (
8

5
2

.2
7

6
%

)
 0

.0
1

1
 (

4
8

.5
1

7
%

)

0
.0

3
 (

1
2

8
.4

5
5

%
)

(b
)

A
th

lo
n
X
P

:L
2

To
ta

lC
ac

he
M

is
se

s
(P
A
P
I
_
L
2
_
T
C
M

).

fl
o

a
t

d
f(

)

8
.7

E
-7

6
.1

E
-7

 (
7

0
.0

5
2

%
)

6
.3

E
-7

 (
7

2
.0

2
9

%
)

7
.4

E
-7

 (
8

4
.4

9
3

%
)

7
.0

E
-7

 (
8

0
.4

0
4

%
)

6
.8

E
-7

 (
7

7
.8

6
6

%
)

(c
)

In
te

lQ
66

00
:T

im
e

(G
E
T
_
T
I
M
E
_
O
F
_
D
A
Y

).

fl
o

a
t

d
f(

)

0

.2
8

 0
.2

3
4

 (
8

3
.7

4
4

%
)

 0
.2

4
2

 (
8

6
.5

1
3

%
)

 0
.3

6
2

 (
1

2
9

.3
1

3
%

)
 0

.3
0

4
 (

1
0

8
.5

7
2

%
)

 0

.3
 (

1
0

7
.2

0
9

%
)

(d
)

In
te

lQ
66

00
:L

1
To

ta
lC

ac
he

M
is

se
s

(P
A
P
I
_
L
1
_
T
C
M

).

Fi
gu

re
3.

24
:

C
om

pa
ri

ng
al

la
pp

ro
ac

he
s

A
th

lo
n
X
P

(a
)a

nd
In

te
lQ

66
00

(c
).

In
bo

th
ca

se
s,

B
L

A
S

(p
ur

pl
e)

an
d
p
o
w

()
(li

gh
t

bl
ue

)a
re

th
e

w
or

st
pe

rf
or

m
in

g.
A

di
re

ct
co

rr
el

at
io

n
is

m
ad

e
be

tw
ee

n
pe

rf
or

m
an

ce
an

d
L

2
ca

ch
e

m
is

se
s

(b
)f

or
th

e
A

th
lo

n
X
P

.I
n

th
e

ca
se

of
th

e
In

te
lQ

66
00

,t
he

sa
m

e
cl

ea
r

cu
tc

or
re

la
tio

n,
re

qu
ir

es
th

at
w

e
go

do
w

n
to

th
e

L
1

ca
ch

e
(d

).

101

3.7 Looking at the Global Picture

The significant impact that optimization strategies have on the cache state are bound to have

repercussive effects on the program from a global point of view. It is therefore warranted that

the execution of the program in its entirety be considered to ascertain its performance from a

global perspective. Furthermore, even though it might be self evident, one must not forget that

profiling induces significant overhead 28, especially for small computation kernels such as the

two observed functions.

For this reason, it is always pertinent to compare profiled times with minimally (or ideally

non-) profiled ones. In our case, we accomplish this by selecting TAU’s minimal profile by

including only MPI and PDT as the first is required for proper library linking and recalling

that the latter for actually used inserting profile data into the source code 29. We also perform

this comparison in the parallel realm as to confirm that our proposed optimizations don’t have

adverse effects on the program when considering its parallel execution environment. Figure

3.25 contains the results of this time comparison executed on both the Headless cluster, based

on Athlon XP hardware, in Figure 3.25 (a) and the H2 cluster, based on the Intel Q6600

processor in Figure 3.25 (b).

In the case of the AthlonXP architecture, the use of both -ffast-math and -fprofile-

use come as the globally best approach, even though our profiling of df() had slated -

ffast-math as the best. This is not too surprising since the profiling capabilities most

probably optimized another area of the code, such as centroid_def, and that these two ap-

proaches had less than 1% differentiating them. The analysis of the Intel Q6600 architecture is

less clear as most of the approaches overlap and no distinc advantage is given to one of them.

Only a clear statement about the worst cases can be made, being that the pow() and BLAS

approaches are to be avoided in our specific case.

28. Our profiled code rand as much as ten times slower, depending on selected counters.
29. Later versions of TAU are slated to have the ability of totally disabling the inserted profiling functions by

switching to stub functions thanks to an environment variable.

102

Total Execution Time on Headless

Number of Nodes

-ffast-math O3 -ffast-math -funroll-all-loops-ffast-math -fprofile-useGOTO BLAS pow()

T
im

e
 -

 s
e

c
o

n
d

s

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

(a) On the Athlon XP based cluster, there are four distinct time profiles out of six possibilities. Overlapping
eachother are O3 with pow as well as -ffast-math with -ffast-math -funroll-all-loops.
The overall “winner” is the execution optimized with -ffast-math -fprofile-use

Total Execution Time on H2

GOTO BLAS -ffast-math -funroll-all-loops -ffast-math -fprofile-use O3-ffast-mathpow()

1 2 3 4 5 6 7 8 9 10 11 12

Number of Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

T
im

e
 -

 s
e

c
o

n
d

s

(b) On the Intel Q6600 based cluster, the profiles mostly overlap with the exception of the approaches using
pow() and GOTO BLAS. No distinct advantage can be discerned from the other approaches. An execution
jump is observed when seven nodes are reached, which we show to be attributed to OpenMPI’s MPI_Init()
in Figure 3.26 (a).

Figure 3.25 : Total execution times on both clusters. The Headless cluster (a), based on
Athlon XP hardware, lends a distinct advantage to the use of -ffast-math. On the
H2 cluster (b), based on Intel Q6600 hardware, most options overlap leading to no clear
“winner”, barring the use of GOTO BLAS and pow.

103

Figure 3.26 (a) is the runtime breakdown for the best optimized option on the H2 cluster. We

note that MPI_Init() is responsible for the runtime jump between six and seven node exe-

cution and that the communications primitive, MPI_Allreduce() is growing in importance.

As expected from the previous runtime results, the runtime breakdown from the Headless clus-

ter is less messy as shown in Figure 3.26 (b). An argument could have been made that the

computation is so fast on the newer Intel Q6600 hardware that the MPI routines were bound

to take over in execution proportion. But, as seen in Figure 3.25 , the total execution time on

both cluster actually place the older Athlon XP architecture ahead. This discrepancy could be

explained by the fact that both clusters don’t have exactly the same version of OpenMPI library

(1.2.8 for H2 and 1.2.9 for Headless)

These result are interesting since they emphasize the fact that parallel models only taking into

account the computation and communications can be completely off target when attempting to

calculate the number of nodes to use to remain efficient 30. They also bring forth the importance

of keeping critical libraries up to date 31.

30. Recalling that efficiency is usually a 50/50 ratio between computation and communications.
31. Note that the release notes bear no mention of performance changes made between the two aforementioned

versions of OpenMPI.

104

Total Runtime Breakdown on H2

float df() int centroid_def() int main() MPI_Allreduce() MPI_Finalize() MPI_Init() void vq() other

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
T

im
e

(a) Runtime breakdown on H2, MPI_Init() induces most of the jitter and an overhead jump
after seven nodes. The communication are also growing in importance when observingMPI_
Allreduce().

Runtime Breakdown on Headless

float df() int centroid_def() MPI_Allreduce() MPI_Init() void vq() other

1 2 3 4 5 6 7 8 9 10 11 12

Number of Processors

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
T

im
e

(b) Runtime breakdown on Headless, most of the execution is spent in actual computation and little
overhead is seen from the communications and the initialization function.

Figure 3.26 : The runrime breakdown for the best optimized options on both clusters. In
(a) most of the execution time on the H2 cluster is spent in MPI libraries. We see this is
not the case in (b) for the headless cluster where most of the time is spent in computation.

105

3.8 Discussions

In this chapter, we have presented both a master-slave and a synchronous island model of the

parallel K-Means. The synchronous island model was elaborated to address issues surround-

ing overly complex communication patterns of the original master-slave implementation and

to enable computation and communications to overlap. By doing this, we have successfully re-

placed over fifteen communication pairs with a single collective communication. From the I/O

perspective, important performance gain was obtained through the conversion of the ASCII

based database into its binary format equivalent. Through profiling, the synchronous island

model was optimized where six different approaches were compared. These included com-

piler directives, standard mathematical library calls and specialized vectorial libraries (BLAS).

A correlation between performance and cache size was established for this memory bound

algorithm. For our experiments, two architectures of completely different generations were

compared, the Athlon XP and the Intel Q6600 processors.

Our final observations are that:

– There is no globally best solution or option to optimizing a program;

– Performance attainment requires profiling on a function level and on a global level;

– Profiling is to be performed for each new hardware platform;

– Process and environment initialization must be taken into account;

– Programs which are memory bound will always benefit from larger processor caches.

CONCLUSION AND FUTURE OUTLOOK

Our work set out to be an exploration of the profiling and optimization tools with the intent of

defining the preferred hardware and software platform upon which to execute our characterized

code. In Chapter 1, we have established that the typical problems encountered are memory

bound and therefore would most benefit from processor with larger caches coupled with the

fastest memory available. When network fabric was concerned, bigger and faster always come

first but have an inherently high cost. With the advent of CMPs, virtually communication less

parallel processing will become more and more important. However, the necessity to control

execution concurrence of functions or programs accessing large sums of data will be required

to ensure the processor cache is not being trashed. In the case of problems with large datasets

loaded from disk, a clear advantage was set for distributed loading (local storage) of these sets

after an initial propagation of the latter.

In Chapter 2, we shortly defined different approaches to profiling, which we differentiate using

the terms Black, White, and Grey Box. We then quickly established the downfall and inap-

propriateness of classic profiling tools such as gprof when it comes to parallel HPC. An

elaborate open source profiling suite, TAU was presented with its main GUI components be-

ing paraprof, the parallel profiling viewer, and perfexplorer, the performance analyzer

mainly used for scalability and performance analysis. The use of support utilities such as the

Program Database Toolkit (PDT), for automated Grey Box profiling and Performance Appli-

cation Programming Interface (PAPI), for high precision and specialized measurements (such

as floating point operations) were also demonstrated. Throughout the chapter, an example pro-

gram and multiple synthetic setups were executed and profiled to demonstrate the suite’s usage

for identifying bottlenecks, with some warnings about possible misinterpretations.

Three implementations of the k-means algorithm were presented in Chapter 3. The material

from both previous chapters served to surgically dissected the sequential and first parallel im-

plementation (Master-Slave), which then served to spawn an improved implementation (the is-

land model). Multiple performance optimization strategies were applied with special hardware

107

centric considerations as well as careful compiler directive selections. Optimal communica-

tions strategy, consolidating computation with data transmission, were employed to optimize

the MPI aspect of the implementation. The proper use of global communicators were employed

to simplify and offload the communication patterns to MPI’s internal logic.

Finally, we believe that have demonstrated that parallel HPC coding requires close attention to

the hardware characteristics as well as the necessity for attentive profiling of parallel code. The

extensive profiling we have performed to identify the best optimization path has demonstrated

that the exercise of attaining the best results in the field of HPC is an iterative process to be

repeated with the each hardware platform for any given software.

Optimization Quick Reference

As we have stressed many times, optimizing execution performance is an iterative process

given its dependence on code base and the environment upon which the latter is to be executed.

Figure 3.27 is a deceptively simplified depiction of this iterative process where a change in

any of the environmental or code elements, as we had presented them in Figure 1 , represent

an entry point to the optimization process. As we have demonstrated, the application of each

of these steps require a wide range of tools.

Attempting to propose a generalized solution would be futile and misleading. Nonetheless,

we present in Table 3.1 a short list of the optimization techniques we have applied during the

optimization process. It may be used as a quick reference when similar coding or execution

paradigms are met. Obviously, this table is not meant to cover the entire realm of code opti-

mization, there are many excellent books [54, 23] which cover this subject more appropriately.

The astute observer will note that most of these tactics have existed for well over a decade.

In most cases, performance gain is obtained through consolidation of sparse data and stream-

lining its access, which is in essence minding data locality. We attribute this to the fact that

contemporary computers are still mostly based on the Von Neumann Architecture, even the

Chip MultiProcessorss (CMPs) may be considered a special case of this architecture.

108

yes

no

Profile

Start

Improvements
possible?

Apply
optimizations

Identify
bottlenecks

Get on
With life!

Hardware
change

Software
change

Library
change

Parameter
change

Figure 3.27 : A deceptively simple diagram depicting the iterative optimization process of
a program. The multiple entry points recall that a change in any one of the elements from
Figure 1 are susceptible to provoking a new optimization pass. The ultimate convergence
being that there is no more possible improvements given a stabilized environment, and
one can then get on with life.

Things To Come

The CMP, or multi-core processors, are now the de facto standard desktop processor with

implied parallelism to harness their power. As we have demonstrated, differing architectures

and cache structures offered by vendors don’t make it a clear-cut choice which will provide the

best performance, it’s application specific. With the addition of a growing adoption of General

Purpose Graphics Processing Units (GPGPUs), the parallel processing landscape is changing

rapidly. The following is a condensed list of topics related to the realm of HPC not treated in

this paper but with a significant growth in popularity in the last year. All of these are parallel

109

Category Symptom/Cause(s) Probable Solution Path(s)

I/O
Large
files/databases

- Use binary formated files
- Use local storage for frequently read data
- Enhance storage performance

Many small files - Consolidate files into a single file
API and
libraries

MPI_INIT() takes a long
time

Switch to an MPI implementation that supports daemonization

Most time is spent in an
external API routine

Write your own implementation and comparing results

Communi-
cations

Many
and small

- Consolidate if possible, use global communicators
- Upgrade network fabric for low latency

Many
and large

- Fine tune OS specific parameters (ie: Jumbo Frames, caching pa-
rameters)
- Upgrade network fabric for high bandwidth

Program-
ming

Many calls to a small func-
tion

Inline the function’s code

Loop with embedded con-
ditions

“Unswitch” the loop by creating independent loops with the condi-
tions checked outside

Loop
applied to
large
datasets

Be mindful of data locality: explode or create data structures to
consolidate the element(s) of interest for the loop
- Simplify the loop’s operations and exit conditions to let the com-
piler unroll and vectorize its execution
- Don’t make function calls within the loop

Table 3.1: Per bottleneck optimization recommendations. Prior profiling to identify the
applicability of these approaches is primordial.

approaches which do not require a communication library such as OpenMPI but can very well

be implemented in a hybrid context:

1) General Purpose Graphics Processing Units

a) The Compute Unified Device Architecture (CUDA) library from NVIDIA [7, 16], is

growing rapidly in importance in the realm of massively parallel computation adhering

to the Single Program Multiple Data (SPMD) paradigm where the exact same sequence

of instructions (execution kernel) is to be applied to a large dataset;

b) Open Computing Language (OpenCL) 32, is a new standard describing a set of low level

functions for parallel processing. It is meant to eventually supersede libraries such as

CUDA to present a uniform access to multi-processing capable hardware. Although

its use it not limited to GPU parallelization and includes CMPs and CELL processing

32. http://www.khronos.org/opencl/

http://www.khronos.org/opencl/

110

units, mentioned below, most of the current work present its use in the realm of GPU

processing.

2) Compiler and Coding Technologies

a) GCC, newer versions (starting from 4.4), now support per-function optimization prag-

mas as well as an increasing number of optimization flags;

b) OpenMP, although not technically a tool, its use requires slight modifications to the

source code to automatically parallelized blocks of code;

c) Low Level Virtual Machine (LLVM), a new modular compiler meant to generate faster

and more efficient code.

3) Hardware

a) CELL processors [30, 24], these multi-core platforms are growing rapidly in popularity;

b) Intel’s Quick Path Interconnect (QPI), a competitor to HT, is now starting to be available

on the market, opening the doors to more multi-cpu platforms.

APPENDIX I

THE GNU C Compiler (GCC)

Unless otherwise noted, our experiments are based on GNU C Compiler version 4.3.2 (Gentoo

4.3.2− r3 p1.6, pie− 10.1.5).

Code optimization is generally controlled using compiler directives, flags and options. Direc-

tives are defined via #pragma keys inserted in the source code. An example of such usage are

the directives used to automate parallelization via OpenMP.

Flags are bi-valued command line switches that enable or disable features. Their general form

is -flag for enabling a given flag, or -noflag for disabling this same flag. No all flags

are performance related as some are used to enable features such as profiling 1, guided opti-

mization 2, and even generate explanatory text files concerning decisions taken by the different

heuristics engines 3 .

Options are more elaborate and accept either multiple values or a varying range of values. For

example, it is possible to specify the L1 cache size of a processor via the --param l1-

cache-size=15k parameter. Most of the options address internal variables used by GCC

and can control its heuristical analisys of the source code during compilation. A demonstration

of such an option follows.

GCC has over 144 flags, 77 of which are enabled by the global optimization flag -O2 and 82

for -O3. As a general rule of tumbs, the third optimizaion level (-O3), is usualy considered to

provide the best performing results while remaining safe 4. Since these optimization levels are

in fact a combination of individual flags, it is worthwhile to note the differences between he

two levels. Recent versions of GCC make this easily possible through the command presented

1. Such as: -fprofile-arcs -fprofile-generate.
2. Such as:-fbranch-probabilities -fprofile-use
3. Notably, -fdump-tree-vect-details -fdump-ipa-cgraph.
4. In this context, code safeness mostly refers to the code’s conformance to precision standards established by

International Standards Organization (ISO) and IEEE standards

112

in Figure I.1, where we identify the flags disabled in the -O2 level (thus enabled in -O3)

thanks to the --help=optimizers option. The result of such a call can help guide the

user as to which flags might toggled for performance comparisons. It can also come of use

when attempting to idenfity which specific flags or options are included or not for a given

architecture, for example, this would be accomplished by a command such as gcc --help=

target,joined.

eric@fourrier ~ $ diff \
> <(gcc -c -O2 -Q --help=optimizers) \
> <(gcc -c -O3 -Q --help=optimizers) \
> | grep disabled
< -fgcse-after-reload [disabled]
< -finline-functions [disabled]
< -fpredictive-commoning [disabled]
< -ftree-vectorize [disabled]
< -funswitch-loops [disabled]

Figure I.1: disabled in the -O2 level but enabled in -O3. As specified in the manpage for
GCC, the -O2 optimization level leaves out options that can grow the code size. This is to
be considered if excessive instruction cache misses are found during the profiling of the
application.

1 Help GCC Help You: Choosing the Right Flags

Unlike Fortran, which was destined for mathematical computation from its inception, the C 5

language was intended to be used as system programming language. This means that the

assumptions made for Fortran do not apply to C.

For example, in C it is not uncommon to have two seemingly distinct variables point to the

same location. This is known as variable or pointer aliasing and has a significant impact on

the compiler’s ability to implement optimizations which are data dependent. This is one of

the many examples where the user can tell the compiler about the absence of such aliasing

therefore permitting higher levels of optimization. This would be accomplished by enabling

5. And most other languages.

113

the -fstrict-aliasing flag. Note that this flag is actually enabled by default for most

optimization levels. We present it as a meere example. As a matter of fact, the selection of op-

timization flags, givent their count and non-trivial implications, has become quite complex. As

stated ealyer, general opimization flags, -O2, -O3, contain opions that make no assumptions

about the code and ensure that there is no alteration of the expected output.

We will use our a priori knowledge of the source code and inspect df() and centroid_def()

in Figure I.2 and note the following characteristics also considering knwon variables such such

as the size of the T vector, and K, the centroid count.

Concerning df():

– The heart of the loop is composed of three floating point operations;

– The loop is called T times, which we know to be 47 in our case;

Concerning centroid_def():

– It calls df() K times;

– It gets called X/ω times 6 itself;

– The inner loop is dependant upon the return of the df() function call.

In both cases, we are dealing with simple mathematical kernels applied in a loop upon many

elements of a given vector. Furthermore, the k-means computation is an iterative process where

theK cenroids are re-computed at each iteration. The cummulative error or bias only apply to a

single iteration. We also posses the knowledge that our mathematical evaluations are not using

nor are they sensitive to boundary conditions, such as Not a Number (NaN) and Infinity (Inf),

and we needn’t distinguish between positive and negative zero values as every numerical values

in the database are between 1 and 10−9. Such a situation therefore implies optimizations that

are proper to small loops and simple mathematical operations. These considerations permit the

use of -O3 in conjunction with -ffast-math, which are general optimization flags made

up of a selection of other individual flags. The -ffast-math flag implements techniques

known to have repercussions on the mathematical precision and also ignores many exceptional

6. The number of samples treated by the local worker.

114

Source code for df()

1 float df(const float *v1, const float *v2)
2 {
3 float sum=0.0;
4 int i;
5 for(i=0; i<T; i++)
6 sum+=(v1[i]-v2[i])*(v1[i]-v2[i]);
7 }

(a) The df(), distance function, Euclidean computation function from the k-means implementation.

Source code for centroid_def()

1 inline int centroid_def(unsigned int idx, float *d)
2 {
3 register int i,centroid=-1;
4 float dist, mdist=999999999.;
5
6 for(i=0;i<K;i++) {
7 dist=df(¢roids[i*T], &samples[idx*T]);
8 if (dist < mdist) {
9 mdist=dist;

10 centroid=i;
11 }
12 }
13
14 *d=mdist;
15 return centroid;
16 }

(b) The centroid_def() centroid definition function. It calls the df() function K times and gets called X/ω
times.

Figure I.2: The df(), distance function, Euclidean computation function from the k-
means implementation.

conditions pertaining to boundary values. Still, to ensure the validity of the end results, the

computetd centroids of each optimization technique is compared to the ones obtained by run-

ning a non-optimized, baseline version of the code. In all cases, the total summed distortion

beetween each component was found to be null.

The following sections present our findings and results supporting theuse of such optimization

flags in our context.

2 Let GCC Help You: Using Profiles

One of the last avenues we explore is the capability that most compilers possess of adapting

optimization strategies with a priori knowledge of the code’s behaviour thanks to specially gen-

erated profiles. This approach obviously implies that the code be compiled with specific flags to

enable the profiling (-fprofile-arcs and -fprofile-generate) and then that it be

recompiled with the explicit mention that the generated profiles be used (-fprofile-use).

The intended outcome of this approach is that the compiler should generate code that uti-

115

lizes case-specific optimizations, prooven to be the best with the collected knowledge. This

approach essentially provide measured values to the internal cost model heuristics of the com-

piler and also enables specific optimizations which depend on the availability of such profile.

This is notably the case of the -fbranch-probabilities flag which is most significant

in the area of control structures prevalent in loops.

Obviously, two phases are implied where the first one is composed of a trial execution and the

second one consists in compiling with the generated data. We illustrate this in Figure I.3, a

section of our project’s Makefile, where a call to make mpi automatically compiles the

application, a profiling version, runs it once with typical parameters, and then re-compiles it

with the generated profile.

Makefile with profile based optimizations

1 GCCFLAGS_O3 = -Wall -Winline -march=native -O3 -save-temps
2 GCCFLAGS = $(GCCFLAGS_O3) \
3 -mfpmath=sse -msse -m3dnow \
4 -ffast-math
5
6 GCC_PROFILE = $(GCCFLAGS) -fprofile-arcs -fprofile-generate
7 GCC_POST_PROFILE = $(GCCFLAGS) -fbranch-probabilities -fprofile-use -Wcoverage-mismatch
8
9 mpi:

10 mpicc $(GCCFLAGS) $(SRCS) -o $(PROGOUT)
11 mpicc $(GCC_PROFILE) $(SRCS) -o $(PROGOUT)_gcc-prof
12 orterun -np 12 -hostfile ~/hosts ./$(PROGOUT)_gcc-prof /data/eric/featg_col.dat 10 342910
13 mpicc $(GCC_POST_PROFILE) $(SRCS) -o $(PROGOUT)_gcc-profiled

Figure I.3: Part of our Makefile used to generate and use GCC’s profilie guided op-
timizations on Athlon XP hardware. The application is built calling make mpi, which
will automatically generate the application, a profiling version, run a single execution and
the compile a profile-guided version from the results of the previous run.

As we applied this approach, we have noticed that the best resutls are obtained if the profile

phase is compiled with the same optimization flags as the final code using the profile. In other

words, don’t expect the profiler to automagically enable -ffast-math and don’t simply en-

able it after the application was profiled. In essence, the approach should be used transparantly

with all other compilation option and optimization techniques discussed earlyer.

APPENDIX II

COLLECTION OF COMMANDS

This section contains the extended version of logs and traces for commands and their output

referred to throughout the document.

1 Identification of GCC Option Differences

The following sequence of commands are used to identify the inclusion of specific directives

within global optimization flags. The basic technique is described in GCC’s manual page and

we present here our usage to obtain the data pertaining to 3.6 when attempting to identify

probable paths to further optimizing code execution thanks to specific performance-centric

options.

2 Taxonomy of the k-means Algorithm

Sequential k-means profiling

1 $ export TAU_MAKEFILE=~/TAU/TAU/x86_64/lib/Makefile.tau-callpath-pdt
2 $ tau_cc.sh -optCompile="-Wall -march=native -mfpmath=sse -O3 -fkeep-inline-functions -funsafe-loop-optimizations \
3 -freorder-blocks-and-partition -fno-math-errno -ffinite-math-only -fno-trapping-math -fno-signaling-nans \
4 -fwhole-program -combine -ffast-math -ftree-vectorizer-verbose=4 -fdump-tree-vect-details" vq.c -o vq_SIMD
5 $./vq_SIMD ./featg_col.dat $((6787955/100))
6 Limiting sample load to 67879 samples.
7 NSR = 67879
8 Take it easy, I am classifying...
9 TWO LAST AVERAGE DISTORTIONS: AD1=0.000000 AD2=0.463098 Dif=0.463098

10 TWO LAST AVERAGE DISTORTIONS: AD1=0.463098 AD2=0.369992 Dif=0.093105
11 TWO LAST AVERAGE DISTORTIONS: AD1=0.369992 AD2=0.352347 Dif=0.017645
12 TWO LAST AVERAGE DISTORTIONS: AD1=0.352347 AD2=0.343929 Dif=0.008418
13 TWO LAST AVERAGE DISTORTIONS: AD1=0.343929 AD2=0.339822 Dif=0.004107
14 TWO LAST AVERAGE DISTORTIONS: AD1=0.339822 AD2=0.337425 Dif=0.002398
15 TWO LAST AVERAGE DISTORTIONS: AD1=0.337425 AD2=0.335747 Dif=0.001678
16 TWO LAST AVERAGE DISTORTIONS: AD1=0.335747 AD2=0.334442 Dif=0.001305
17 TWO LAST AVERAGE DISTORTIONS: AD1=0.334442 AD2=0.333580 Dif=0.000862
18
19 Tempo total(s): 1333.028

Figure II.1: Profiling and execution of the sequential k-means algorithm using TAU. The
program is then started by specifying the reference database and the number of samples
to load from the database.

APPENDIX III

MACHINE DESCRIPTIONS

1 The Thinkbig Cluster

1.1 General Description

This Beowulf style cluster is composed of sixteen machines with two different processor spec-

ifications and interconnected using 100 BaseT Fast Ethernet. The topology consists of a log-

ically flat networks with two switches bridging interconnected as described by Figure III.1.

This classifies it as a slightly heterogeneous cluster with a fully connected topology. Commu-

nication paths between the nodes are direct while communications with the head node is split

at the IP level between two links thanks to subnet separation. The network mask is set to a

typicl class C of 255.255.255.0 with one broadcast domain from the point of view of the nodes.

The serve has its NICs configured with a subclass of 255.255.255.128, where the first NIC is

assigned the lower part of the address range and the second NIC the upper section.

1.2 Node Specifications

The two node types are described in table Table III.1 where the most significant hardware dif-

ferences are outlined. The local disks vary in size between 20, 40 and 80 Gigs and performance

caracteristics as illustrated by Figure III.2. This data was collected using the averages results

for 30 runs of the Zoned Constant Angular Velocity (ZCAV) utility 1. It is well illustrated that,

in most cases 2, HDD transfer rate diminishes significantly as the data is located on higher order

blocks.

All nodes are booted via Pre eXecution Environment (PXE) and share the user’s $HOME folder

via NFS with a local disk for scratch space.

1. Included with the bonnie++ HDD performance suite
2. With the notable exception of one of the 80 Gigabyte HDDs which seems to be defective given its low and

irregular performance.

118

Figure III.1: Thinkbig Beowulf cluster topology

Parameters Machine Profiles
A B

Processor

Model Name AMD Athlon(TM) XP 2500+ AMD Athlon(TM) XP 2600+
Cache Size (KB) 512 256

CPU MHz 1833.18 2083.158
BogoMIPS 3669.17 4169.51

Table III.1: Thinkbig Node Specifications

1.3 Operating System

The cluster’s OS is Gentoo based with important software versions described in table III.2.

Software Version
GCC Gentoo 4.3.1-r1 p1.1
ICC Version 10.1 Build 20080602
OpenMPI 1.2.7 r19401
Linux Kernel linux-2.6.17-gentoo-r4
PAPI 3.5.0

Table III.2: Thinkbig Software Specifications

119

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 0 10000 20000 30000 40000 50000 60000 70000 80000

K
by

te
s/

se
c

Block #

Figure III.2: The HDD’s Zoned Constant Angular Velocity graph for 16 nodes of the
Thinkbig cluster. These performance profiles illustrate well the heterogenety of the HDDs
performance. The 40 and 80 G Byte HDDs start off with the same performance whereas
the 20 G byte models are more than twice as slow.

1.4 Performance Application Programming Interface

The node’s kernel was patched to support PAPI. Figure III.3 lists the available events.

120

papi_avail -a Output

eric@thinkbig1 ~ $ papi_avail -a
Available events and hardware information.

Vendor string and code : AuthenticAMD (2)
Model string and code : AMD K7 (9)
CPU Revision : 0.000000
CPU Megahertz : 2083.157959
CPU’s in this Node : 1
Nodes in this System : 1
Total CPU’s : 1
Number Hardware Counters : 4
Max Multiplex Counters : 32

The following correspond to fields in the PAPI_event_info_t structure.

Name Derived Description (Mgr. Note)
PAPI_L1_DCM Yes Level 1 data cache misses
PAPI_L1_ICM No Level 1 instruction cache misses
PAPI_L2_DCM No Level 2 data cache misses
PAPI_L2_ICM No Level 2 instruction cache misses
PAPI_L1_TCM Yes Level 1 cache misses
PAPI_L2_TCM Yes Level 2 cache misses
PAPI_TLB_DM No Data translation lookaside buffer misses
PAPI_TLB_IM No Instruction translation lookaside buffer misses
PAPI_TLB_TL Yes Total translation lookaside buffer misses
PAPI_L1_LDM No Level 1 load misses
PAPI_L1_STM No Level 1 store misses
PAPI_L2_LDM No Level 2 load misses
PAPI_L2_STM No Level 2 store misses
PAPI_HW_INT No Hardware interrupts
PAPI_BR_UCN No Unconditional branch instructions
PAPI_BR_CN No Conditional branch instructions
PAPI_BR_TKN No Conditional branch instructions taken
PAPI_BR_NTK Yes Conditional branch instructions not taken
PAPI_BR_MSP No Conditional branch instructions mispredicted
PAPI_BR_PRC Yes Conditional branch instructions correctly predicted
PAPI_TOT_INS No Instructions completed
PAPI_BR_INS No Branch instructions
PAPI_RES_STL No Cycles stalled on any resource
PAPI_TOT_CYC No Total cycles
PAPI_L1_DCH Yes Level 1 data cache hits
PAPI_L2_DCH No Level 2 data cache hits
PAPI_L1_DCA No Level 1 data cache accesses
PAPI_L2_DCA Yes Level 2 data cache accesses
PAPI_L2_DCR No Level 2 data cache reads
PAPI_L2_DCW No Level 2 data cache writes
PAPI_L1_ICA No Level 1 instruction cache accesses
PAPI_L2_ICA No Level 2 instruction cache accesses
PAPI_L1_ICR No Level 1 instruction cache reads
PAPI_L1_TCA Yes Level 1 total cache accesses

avail.c PASSED

Figure III.3: Output listing of all PAPI events as per papi_avail -a for the Athlon XP
processors.

2 The H2 Cluster

2.1 General Description

This Beowulf style cluster is composed of nine machines each possessing a single Intel Intel

Q6600 Quad Core processor and interconnected using Gigabyte Ethernet. The topology con-

sists of a flat networks with a single Dell Powerconnect 2745 switch left in unmanaged mode.

121

This classifies it as a homogeneous cluster with a fully connected topology. Communication

paths between the nodes and the master are direct.

2.2 Node Specifications

All nodes are identically built with an Intel Q6600 processor, 4GB of RAM and a local Serial

Advanced Technology Attachment (SATA) HDD of 500GB. A more detailed description is

presented in Table III.3, note that the processor cache size is shared amongst all four cores

while other specifications are for each independent core.

Parameters Machine Profile

Processor

Model Name Intel(R) Core(TM)2 Quad CPU Q6600
Cache Size (KB) 4096
CPU MHz 2400
BogoMIPS 4800

HDD

Brand Western Digital
Model Name WD5000AAKS-0
Cache Size (MB) 16
Capacity (GB) 500

Motherboard
Brand ASUSTeK Computer INC.
Model Name P5N7A-VM
Revision Rev 1.xx

RAM
Installed (GB) 4
Speed (MHz) 800
Count 2

Table III.3: H2 Node Specifications.

2.3 Operating System

The cluster’s OS is Gentoo based with important software versions described in table III.4.

2.4 Performance Application Programming Interface

The node’s kernel was patched to support PAPI. Figure III.4 lists the available events.

122

Software Version
GCC Gentoo 4.3.3-r2 p1.1, pie-10.1.5
ICC 10.1 Build 20080801
OpenMPI 1.2.7 r19401
Linux Kernel 2.6.25-gentoo-r7
PAPI 3.6.2

Table III.4: H2 Software Specifications

123

papi_avail -a Output

eric@node01 ~ $ papi_avail -a
Available events and hardware information.
--
Vendor string and code : GenuineIntel (1)
Model string and code : Intel Core 2 (18)
CPU Revision : 11.000000
CPU Megahertz : 2399.969971
CPU Clock Megahertz : 2399
CPU’s in this Node : 4
Nodes in this System : 1
Total CPU’s : 4
Number Hardware Counters : 5
Max Multiplex Counters : 32
--
The following correspond to fields in the PAPI_event_info_t structure.

Name Code Deriv Description (Note)
PAPI_L1_DCM 0x80000000 No Level 1 data cache misses
PAPI_L1_ICM 0x80000001 No Level 1 instruction cache misses
PAPI_L2_DCM 0x80000002 Yes Level 2 data cache misses
PAPI_L2_ICM 0x80000003 No Level 2 instruction cache misses
PAPI_L1_TCM 0x80000006 No Level 1 cache misses
PAPI_L2_TCM 0x80000007 No Level 2 cache misses
PAPI_CA_SHR 0x8000000a No Requests for exclusive access to shared cache line
PAPI_CA_CLN 0x8000000b No Requests for exclusive access to clean cache line
PAPI_CA_ITV 0x8000000d No Requests for cache line intervention
PAPI_TLB_DM 0x80000014 No Data translation lookaside buffer misses
PAPI_TLB_IM 0x80000015 No Instruction translation lookaside buffer misses
PAPI_L1_LDM 0x80000017 No Level 1 load misses
PAPI_L1_STM 0x80000018 No Level 1 store misses
PAPI_L2_LDM 0x80000019 Yes Level 2 load misses
PAPI_L2_STM 0x8000001a No Level 2 store misses
PAPI_HW_INT 0x80000029 No Hardware interrupts
PAPI_BR_CN 0x8000002b No Conditional branch instructions
PAPI_BR_TKN 0x8000002c No Conditional branch instructions taken
PAPI_BR_NTK 0x8000002d No Conditional branch instructions not taken
PAPI_BR_MSP 0x8000002e No Conditional branch instructions mispredicted
PAPI_BR_PRC 0x8000002f Yes Conditional branch instructions correctly predicted
PAPI_TOT_IIS 0x80000031 No Instructions issued
PAPI_TOT_INS 0x80000032 No Instructions completed
PAPI_FP_INS 0x80000034 No Floating point instructions
PAPI_BR_INS 0x80000037 No Branch instructions
PAPI_VEC_INS 0x80000038 No Vector/SIMD instructions
PAPI_RES_STL 0x80000039 No Cycles stalled on any resource
PAPI_TOT_CYC 0x8000003b No Total cycles
PAPI_L1_DCH 0x8000003e Yes Level 1 data cache hits
PAPI_L1_DCA 0x80000040 No Level 1 data cache accesses
PAPI_L2_DCA 0x80000041 Yes Level 2 data cache accesses
PAPI_L2_DCR 0x80000044 No Level 2 data cache reads
PAPI_L2_DCW 0x80000047 No Level 2 data cache writes
PAPI_L1_ICH 0x80000049 Yes Level 1 instruction cache hits
PAPI_L2_ICH 0x8000004a Yes Level 2 instruction cache hits
PAPI_L1_ICA 0x8000004c No Level 1 instruction cache accesses
PAPI_L2_ICA 0x8000004d No Level 2 instruction cache accesses
PAPI_L2_TCH 0x80000056 Yes Level 2 total cache hits
PAPI_L1_TCA 0x80000058 Yes Level 1 total cache accesses
PAPI_L2_TCA 0x80000059 No Level 2 total cache accesses
PAPI_L2_TCR 0x8000005c Yes Level 2 total cache reads
PAPI_L2_TCW 0x8000005f No Level 2 total cache writes
PAPI_FML_INS 0x80000061 No Floating point multiply instructions
PAPI_FDV_INS 0x80000063 No Floating point divide instructions
PAPI_FP_OPS 0x80000066 No Floating point operations

Of 45 available events, 10 are derived.

avail.c PASSED

Figure III.4: Output listing of all PAPI events as per papi_avail -a for the IntelQ6600
processor.

124

3 The Multiprocessor Servers

The two SMP machines used for our experimentations both possessed 32GBytes of RAM

and 8 Dual Core AMD Opteron processors. Table III.5 lists their key hardware caratersitics.

Software caracteristics are listed in Table Table III.6, cells containing ’-’ mean the software

wasn’t installed on the specific machine. Note that PAPI was not installed on these systems

either.

Parameters Machine Profiles
SunFire x4600 Tyan VX50

Processor

Model Name Processor 885 Processor 875
Cache Size (KB) 1024 1024

CPU MHz 2600 2200
BogoMIPS 5226 4420

Table III.5: SMP machine hardware specifications

Software Version
GCC Gentoo 4.3.1-r1 p1.1
ICC Version 10.1 Build 20080602
OpenMPI 1.2.7 r19401
Linux Kernel linux-2.6.17-gentoo-r4
PAPI 3.5.0

Table III.6: SMP machine software specifications

APPENDIX IV

SOURCE CODE

This section contains the printout of the principal source code used in our experimentation.

When reasonable, the code was left untouched. When applicable, blocks of commeted test

code were removed for clarity.

1 The Island Master-Slave Implementation

The following is the original implementation of the Master-Slave k-means.
1 /∗&==&∗

2 ∗& &∗

3 ∗& Module Name : v e c t o r q u a n t i s a t i o n based on k−means a l g o r i t h m &∗

4 ∗& (P a r a l l e l A l g o r i t h m) &∗

5 ∗& T h i s i s a C++ program w i t h MPI l i b r a r y &∗

6 ∗& A u t h o r s : A lceu B r i t t o / A l b e r t Hung−Ren Ko &∗

7 ∗& &∗

8 ∗& &∗

9 ∗& &∗

10 ∗& To c o m p i l e w i t h t h e M a k e f i l e : make &∗

11 ∗& To s e t up t h e t o p o l o g y o f k e r n e l s : lamboot −v lamcon f . lam &∗

12 ∗& To run : mpirun −v −np #(number o f k e r n e l s) pvq f i l e n a m e &∗

13 ∗& To e r a s e t h e s e t t o p o l o g y o f k e r n e l s : wipe &∗

14 ∗& I t w i l l g e n e r a t e t h e f i l e : c e n t r o i d s &∗

15 ∗&==&∗ /

16

17 # i n c l u d e < s t d i o . h>

18 # i n c l u d e < c t y p e . h>

19 # i n c l u d e < s t r i n g . h>

20 # i n c l u d e < s t d l i b . h>

21 # i n c l u d e <math . h>

22 # i n c l u d e < i o s t r e a m >

23 # i n c l u d e < f s t r e a m >

24 # i n c l u d e <iomanip >

25 # i n c l u d e < c a s s e r t >

26 # i n c l u d e < s s t r e a m >

27 # i n c l u d e <mpi . h>

28 u s i n g namespace s t d ;

29

30 # i n c l u d e <ct ime >

31

32 # d e f i n e THRESHOLD 0.001 /∗ t h r e s h o l d used t o s t o p i t e r a t i o n s ∗ /

33 # d e f i n e T 34 /∗ s i z e o f t h e f e a t u r e v e c t o r ∗ /

34 # d e f i n e NC 256 /∗ number o f c e n t r o i d s ∗ /

35

36 i n t NSR; /∗ number o f samp les ∗ /

37 i n t SKIP ; /∗ NSR d i v i d e d by NC ∗ /

38 i n t NS ; /∗ maximum number o f samples ∗ /

39

126

40 /∗ s t r u c t used t o keep a f e a t u r e v e c t o r and i t s c e n t r o i d ∗ /

41 t y p e d e f s t r u c t

42 {

43 f l o a t f e a t [T] ;

44 i n t c e n t r o i d ;

45 } sample ;

46

47 /∗ s t r u c t used t o keep a c e n t r o i d and t h e number o f samp les i n i t ∗ /

48 t y p e d e f s t r u c t

49 {

50 f l o a t f e a t [T] ;

51 f l o a t number ;

52 } c e n t r o i d ;

53

54

55 sample ∗samples ; /∗ keep a l l t r a i n i n g samples ∗ /

56 c e n t r o i d c e n t r o i d s [NC] ; /∗ keep a l l c e n t r o i d s ∗ /

57 f l o a t c_sum [NC] [T] ; /∗ sum o f a l l sample s o f a c l a s s , i t i s used t o u pd a t e t h e c e n t r o i d s ∗ /

58 i n t mynode , t o t a l n o d e s ;

59 i n t s l a v e s =1;

60 i n t m a s t e r = 0 ;

61 i n t t a g =1;

62 i n t sum , s t a r t v a l , endva l , accum ;

63 i n t i , j , k ;

64 MPI_Sta tus s t a t u s ;

65 i n t l oadCoun t = 0 ;

66

67 /∗ d i s t a n c e f u n c t i o n − E u c l i d i a n D i s t a n c e ∗ /

68 f l o a t df (f l o a t ∗v1 , f l o a t ∗v2)

69 {

70 i n t i ;

71 f l o a t d i s t , sum ;

72

73 sum = 0 . ;

74 f o r (i =0 ; i <T ; i ++)

75 sum=sum+ (v1 [i]−v2 [i]) ∗ (v1 [i]−v2 [i]) ;

76

77 d i s t = (f l o a t) s q r t ((f l o a t) sum) ;

78 re turn d i s t ;

79 }

80

81 /∗ l oad samples ∗ /

82 i n t l o a d _ s a m p l e s (char ∗ f i l e n a m e)

83 {

84 FILE ∗ fp ;

85 i n t i , j ;

86 i n t Obs ;

87 i n t r e g _ s i z e = s i z e o f (f l o a t) ∗ T ;

88 i f s t r e a m i n S t r e a m (f i l e n a m e) ;

89 loadCoun t = 0 ;

90 s t r i n g l i n e ;

91 i n t l i n e C o u n t = 0 ;

92

93 fp = fopen (f i l e n a m e , " r ") ;

94

95 i f (! fp)

96 {

97 p r i n t f (" can ’ t open thou f i l e : %s \ n " , f i l e n a m e) ;

98 re turn (0) ;

99 }

127

100 f s e e k (fp , 0 , SEEK_END) ;

101

102 NS = (i n t) f t e l l (fp) / r e g _ s i z e ;

103

104 i f (t o t a l n o d e s > 1)

105 {

106 samples = (sample ∗) ma l l oc ((NS / (t o t a l n o d e s−1)) ∗ s i z e o f (sample)) ;

107 }

108

109 e l s e

110 {

111 samples = (sample ∗) ma l l oc ((NS) ∗ s i z e o f (sample)) ;

112 }

113

114 / / f s e e k (fp , 0 , SEEK_SET) ;

115 i f (! s amples) re turn −1;

116

117 f c l o s e (fp) ;

118

119 /∗ l oad samples ∗ /

120

121 whi le (! i n S t r e a m . e o f () && l i n e C o u n t < NS)

122 {

123 g e t l i n e (inS t ream , l i n e) ;

124 i s t r i n g s t r e a m i s t r (l i n e) ;

125 i f ((fmod ((l i n e C o u n t +1) , (t o t a l n o d e s −1)) == (mynode −1)) && (mynode != m a s t e r))

126 {

127 f o r (i = 0 ; i < T ; i ++)

128 {

129 i s t r >> sample s [loadCoun t] . f e a t [i] ;

130 sample s [loadCoun t] . c e n t r o i d =−1;

131 }

132 loadCoun t ++;

133 }

134 l i n e C o u n t ++;

135 }

136

137 i f (mynode == (1 + fmod ((l i n e C o u n t) , (t o t a l n o d e s − 1))))

138 {

139 loadCoun t −−;

140 }

141 / / ’ cause t h e l a s t k e r n e l w i l l l oad t h e end l i n e o f t h e f i l e

142

143 NS = (l i n e C o u n t −1) ; / / minus one because t h e r e i s one empty l i n e a t t h e end o f t h e f i l e f p

144

145 p r i n t f (" F i n a l NS = %d \ n " , NS) ;

146 / / c o u t << " mynode " << mynode << " loadCount " << loadCount << e n d l ;

147 re turn (l i n e C o u n t −1) ; /∗ r e t u r n i−1 when b i n a r y mode ∗ /

148 }

149

150 /∗ c e n t r o i d i n i t i a l i z a t i o n − i t s e l e c t s t h e f i r s t s e t o f c e n t r o i d s ∗ /

151 void c e n t r o i d _ i n i t ()

152 {

153 i n t i , j , k , x ;

154

155 f o r (i = 0 ; i < NC; i ++)

156 {

157 x = 0 ;

158 i f (mynode == fmod ((i) , (t o t a l n o d e s −1)) +1)

159 {

128

160 f o r (j =0 ; j <T ; j ++)

161 {

162 c e n t r o i d s [i] . f e a t [j]= sample s [x] . f e a t [j] ;

163 / / c o u t << " " << samples [x] . f e a t [j] ;

164 c e n t r o i d s [i] . number =0;

165 }

166 / / c o u t << e n d l << " mynode= " << mynode << " x= " << x << e n d l ;

167 x ++;

168 f o r (k =0; k < t o t a l n o d e s ; k++)

169 {

170 MPI_Send (&c e n t r o i d s [i] , (T+1) , MPI_FLOAT , k , t a g +9 , MPI_COMM_WORLD) ;

171 }

172 }

173 MPI_Recv (&c e n t r o i d s [i] , (T+1) , MPI_FLOAT , (i n t) (fmod ((i) , (t o t a l n o d e s −1)) +1) , t a g +9 , MPI_COMM_WORLD

, &s t a t u s) ;

174 }

175 }

176

177 /∗ c l a s s i f i c a t i o n o f a sample t a k i n g i n t o a c c o u n t each c e n t r o i d ∗ /

178 i n t c e n t r o i d _ d e f (i n t pos , f l o a t ∗d)

179 {

180 i n t i , i n d e x ;

181 f l o a t mdis t , d i s t ;

182

183 m d i s t =999999999 . ;

184 f o r (i =0 ; i <NC; i ++)

185 {

186 d i s t = d f (c e n t r o i d s [i] . f e a t , s ample s [pos] . f e a t) ;

187 i f (d i s t < m d i s t) { m d i s t = d i s t ; i n d e x = i ; } ;

188 }

189

190 ∗d= m d i s t ;

191 re turn i n d e x ;

192 }

193

194 /∗ i t c a l c u l a t e s new c e n t r o i d s ∗ /

195 void mean_vec to r ()

196 {

197 i n t i , j , c ;

198 f l o a t maste r_c_number [NC] ;

199

200 f o r (c =0 ; c<NC; c++)

201 i f (c e n t r o i d s [c] . number != 0)

202 f o r (j =0 ; j <T ; j ++)

203 c e n t r o i d s [c] . f e a t [j] = c_sum [c] [j] / c e n t r o i d s [c] . number ;

204

205 f o r (i = 1 ; i < t o t a l n o d e s ; i ++)

206 MPI_Send (&c e n t r o i d s , (NC∗ (T+1)) , MPI_FLOAT , i , t ag , MPI_COMM_WORLD) ;

207 }

208

209

210 /∗ i t c a l c u l a t e s t h e mean d i s t o r t i o n ∗ /

211 f l o a t a v e r a g e _ d i s t o r t i o n (f l o a t ∗x)

212 {

213 i n t i ;

214 f l o a t ad ;

215 ad =0;

216 f o r (i =0 ; i <NC; i ++)

217 ad=ad+x [i] ;

218

129

219 ad=ad /NSR;

220 re turn ad ;

221 }

222

223 void vq ()

224 {

225 i n t i t e r a t i o n ;

226 i n t c e n t r , j , i , k , c ;

227 f l o a t d i s t o r t i o n , d i s t o r t i o n _ a n t , d i s t c [NC] , d i s t ;

228 d i s t o r t i o n =0;

229 i t e r a t i o n =1;

230

231 i f (mynode == m a s t e r)

232 p r i n t f (" Take i t easy , I am c l a s s i f y i n g . . . \ n ") ;

233

234 do

235 {

236 /∗ I n i t i a l i z a t i o n ∗ /

237 f o r (i =0 ; i <NC; i ++)

238 {

239 c e n t r o i d s [i] . number =0; d i s t c [i] = 0 . ;

240 f o r (j =0 ; j <T ; j ++) c_sum [i] [j] = 0 . ;

241 } ;

242

243

244 i f (mynode != m a s t e r)

245 {

246 f l o a t send_c_number [NC] ;

247 j = 0 ;

248 whi le (j < loadCoun t)

249 {

250 c e n t r = c e n t r o i d _ d e f (j , &d i s t) ;

251 sample s [j] . c e n t r o i d = c e n t r ;

252 d i s t c [c e n t r]= d i s t c [c e n t r]+ d i s t ;

253 c e n t r o i d s [c e n t r] . number = (c e n t r o i d s [c e n t r] . number) + 1 ;

254 f o r (i =0 ; i <T ; i ++)

255 c_sum [c e n t r] [i]+= sample s [j] . f e a t [i] ;

256

257 j ++;

258 }

259

260 / / p a r a l l e l i z e t h i s p a r t s

261 f o r (i = 0 ; i < NC; i ++)

262 send_c_number [i] = c e n t r o i d s [i] . number ;

263

264 MPI_Send (&c_sum , (NC∗T) , MPI_FLOAT , mas te r , t a g +1 , MPI_COMM_WORLD) ;

265 MPI_Send (&d i s t c , NC, MPI_FLOAT , mas te r , t a g +3 , MPI_COMM_WORLD) ;

266 MPI_Send (&send_c_number , NC, MPI_FLOAT , mas te r , t a g +2 , MPI_COMM_WORLD) ;

267

268 / / r e c e i v e from t h e b r o a d c a s t

269 MPI_Recv (&c e n t r o i d s , (NC∗ (T+1)) , MPI_FLOAT , mas te r , t ag , MPI_COMM_WORLD, &s t a t u s) ;

270 MPI_Recv (&d i s t o r t i o n _ a n t , 1 , MPI_FLOAT , mas te r , t a g +5 , MPI_COMM_WORLD, &s t a t u s) ;

271 MPI_Recv (&d i s t o r t i o n , 1 , MPI_FLOAT , mas te r , t a g +6 , MPI_COMM_WORLD, &s t a t u s) ;

272 }

273

274 i f (mynode == m a s t e r)

275 {

276

277 f l o a t s l ave_c_sum [NC] [T] ;

278 f l o a t s l a v e _ d i s t c [NC] ;

130

279 f l o a t m a s t e r _ c e n t r o i d s _ n u m b e r [NC] ;

280

281 f o r (j = 1 ; j < t o t a l n o d e s ; j ++)

282 {

283 MPI_Recv (&slave_c_sum , (NC∗T) , MPI_FLOAT , j , t a g +1 , MPI_COMM_WORLD, &s t a t u s) ;

284 MPI_Recv (&s l a v e _ d i s t c , NC, MPI_FLOAT , j , t a g +3 , MPI_COMM_WORLD, &s t a t u s) ;

285 MPI_Recv (&m a s t e r _ c e n t r o i d s _ n u m b e r , NC, MPI_FLOAT , j , t a g +2 , MPI_COMM_WORLD, &s t a t u s) ;

286 f o r (i = 0 ; i < NC; i ++)

287 {

288 f o r (k = 0 ; k < T ; k++)

289 c_sum [i] [k] = c_sum [i] [k] + s lave_c_sum [i] [k] ;

290

291 d i s t c [i] = d i s t c [i]+ s l a v e _ d i s t c [i] ;

292 c e n t r o i d s [i] . number = c e n t r o i d s [i] . number + m a s t e r _ c e n t r o i d s _ n u m b e r [i] ;

293 }

294

295 }

296

297 mean_vec to r () ;

298

299 d i s t o r t i o n _ a n t = d i s t o r t i o n ;

300 d i s t o r t i o n = a v e r a g e _ d i s t o r t i o n (d i s t c) ;

301

302 f o r (i = 1 ; i < t o t a l n o d e s ; i ++)

303 {

304 MPI_Send (&d i s t o r t i o n _ a n t , 1 , MPI_FLOAT , i , t a g +5 , MPI_COMM_WORLD) ;

305 MPI_Send (&d i s t o r t i o n , 1 , MPI_FLOAT , i , t a g +6 , MPI_COMM_WORLD) ;

306 }

307 }

308

309 i t e r a t i o n ++;

310 }

311 whi le (f a b s ((f l o a t) (d i s t o r t i o n _ a n t − d i s t o r t i o n)) > THRESHOLD) ;

312

313 c o u t << " i t e r a t i o n " << i t e r a t i o n << e n d l ;

314 }

315

316 /∗ show c e n t r o i d s ∗ /

317 void s h o w _ c e n t r o i d s ()

318 {

319 i n t i , j ;

320

321 p r i n t f (" C e n t r o i d s \ n ") ;

322 f o r (i =0 ; i <NC; i ++)

323 {

324 f o r (j =0 ; j <T ; j ++)

325 i f (i == 0 | | i == (NC−1)) p r i n t f (" %2.2 f " , c e n t r o i d s [i] . f e a t [j]) ;

326

327 i f (i == 0 | | i == (NC−1)) p r i n t f (" \ n ") ;

328 }

329 }

330

331 /∗ show samples ∗ /

332 void show_samples ()

333 {

334 i n t i , j ;

335 f o r (i =0 ; i <NSR; i ++)

336 {

337 f o r (j =0 ; j <T ; j ++) p r i n t f ("%f " , s amples [i] . f e a t [j]) ;

338 p r i n t f (" c=%d \ n " , s amples [i] . c e n t r o i d) ;

131

339 }

340 }

341

342 /∗ save c e n t r o i d s ∗ /

343 void s a v e _ c e n t r o i d s ()

344 {

345 i n t i , j ;

346 FILE ∗ fp ;

347

348 fp = fopen (" c e n t r o i d s " , "wb") ;

349 /∗ p r i n t f (" Sa v i ng c e n t r o i d s \ n ") ; ∗ /

350 f o r (i =0 ; i <NC; i ++)

351 {

352 f o r (j =0 ; j <T ; j ++)

353 f p r i n t f (fp , "%f , " , c e n t r o i d s [i] . f e a t [j]) ;

354 f p r i n t f (fp , " \ n ") ;

355 }

356 f c l o s e (fp) ;

357 }

358

359

360 /∗ main ∗ /

361 main (i n t argc , char ∗a rgv [])

362 {

363 char ∗fnamein ;

364

365 t i m e _ t tempo1 , tempo2 , tempo3 ;

366 f l o a t tempo ;

367

368 fnamein = a rgv [1] ;

369

370 MP I _ I n i t (&argc , &argv) ;

371 MPI_Comm_size (MPI_COMM_WORLD, &t o t a l n o d e s) ;

372 MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

373

374 /∗ l oad samples ∗ /

375

376 NSR= l o a d _ s a m p l e s (fnamein) ;

377

378 t ime (&tempo1) ;

379

380 i f (mynode == m a s t e r)

381 {

382 i f (NSR== −1) { p r i n t f (" e r r o r = l o a d i n g sample f i l e \ n ") ; e x i t (1) ; }

383 p r i n t f ("NSR = %d \ n " , NSR) ;

384 t ime (&tempo2) ;

385 tempo = d i f f t i m e (tempo2 , tempo1) ;

386 c o u t << e n d l << " Loading t ime (s) : " << tempo << e n d l ;

387 }

388

389 c e n t r o i d _ i n i t () ;

390

391 sum = 0 ;

392

393 i f (mynode != m a s t e r)

394 {

395 s t a r t v a l = (NSR∗ (mynode−1) / (t o t a l n o d e s−1)) +1 ;

396 e n d v a l = NSR∗ (mynode) / (t o t a l n o d e s−1) ;

397 }

398

132

399 /∗ v e c t o r q u a n t i s a t i o n ∗ /

400 vq () ;

401

402 i f (mynode == m a s t e r)

403 {

404 / / s h o w _ c e n t r o i d s () ;

405 s a v e _ c e n t r o i d s () ;

406 t ime (&tempo3) ;

407 tempo = d i f f t i m e (tempo3 , tempo2) ;

408 p r i n t f (" \ n E x e c u t i o n t ime (s) : %.3 f \ n " , tempo) ;

409 }

410 M P I _ F i n a l i z e () ;

411 re turn 0 ;

412 }

2 The Island k-means Implementation

The following is the implementation of the Island k-means we have implemented and used

througout the document and experiments. It is an evolution of the orignial code presented

above.
1 /∗&==&∗

2 ∗& &∗

3 ∗& Module Name : v e c t o r q u a n t i s a t i o n based on k−means a l g o r i t h m &∗

4 ∗& Author : A lceu B r i t t o &∗

5 ∗& E r i c Thibodeau (12−2007) &∗

6 ∗& R e v i s i o n s : (2 0 0 7) ET : o p t i m i z e d u s i n g b l a s / i p p / mkl l i b r a r i e s &∗

7 ∗& (2 0 0 8) ET : MPI re−i m p l e m e n t a t i o n &∗

8 ∗& (28−11−2008) ET : No need t o send d i s t c as a v e c t o r , we o n l y need &∗

9 ∗& t h e summed d i s t o r t i o n ! d i s t c [K] becomes d i s t c &∗

10 ∗& Communicat ions are now f u s e d i n t o a s i n g l e c a l l &∗

11 ∗&==&∗ /

12

13 # i n c l u d e <mpi . h>

14 # i n c l u d e < s t d i o . h>

15 # i n c l u d e < c t y p e . h>

16 # i n c l u d e < s t r i n g . h>

17 # i n c l u d e < s t d l i b . h>

18 # i n c l u d e <math . h>

19 # i n c l u d e < s y s / t ime . h>

20 / / # i f d e f USE_BLAS

21 # i n c l u d e " c b l a s . h "

22 / / # e n d i f

23

24 / / Don ’ t change t h i s u n l e s s you re−a d j u s t t h e l o o p s manua l l y

25 # d e f i n e UNROLL_LEVEL 4

26 # d e f i n e THRESHOLD 0.001

27 # d e f i n e T 47 /∗ s i z e o f t h e f e a t u r e v e c t o r ∗ /

28

29 # d e f i n e DEBUG

30

31 long N S _ t o t a l =−1; / / number o f samp les (t o t a l) , d e r i v e d from DB_size or argv [3]

32 long NS ; / / number o f samp les (l o c a l) , i s N S _ t o t a l / t o t a l n o d e s

33 long K; / / K i n K−Means , t h i s i s argv [2]

34

133

35 t y p e d e f f l o a t sample ; /∗ A l t h o ug h t h i s migh t seem c o n v o l u t e d , we can j u s t change t h i s l i n e

36 t o do ub l e and a l l c o m p u t a t i o n s now use d o u b l e s i n s t e a d o f f l o a t ∗ /

37 sample ∗samples ; /∗ P t r t o t a b l e o f a l l t r a i n i n g samples ∗ /

38 i n t V_sz = s i z e o f (sample) ∗ T ; / / V e c t o r S i z e

39 f l o a t ∗ c e n t r o i d s ; /∗ P t r t o t a b l e o f c e n t r o i d s ∗ /

40 f l o a t ∗c _ c n t ; /∗ k e e p s t h e c o u n t o f samples per c e n t r o i d ∗ /

41 f l o a t ∗c_sum ; /∗ sum o f a l l sample s o f a c l a s s , i t i s used t o u pd a t e t h e c e n t r o i d s ∗ /

42 i n t c_sum_s ize ; /∗ Used t o s u p e r s i z e c_sum t o a l s o c o n t a i n c_sum + c _ c n t + d i s t c ∗ /

43

44 / / MPI v a r s :

45 / / MPI_S ta tus s t a t u s ;

46 i n t mynode ;

47 i n t t o t a l n o d e s ;

48

49

50 /∗ d i s t a n c e f u n c t i o n −

51 ∗ E u c l i d e a n D i s t a n c e i s used , which a l s o means i t i s assumed t h a t t h e "T" e l e m e n t s i n t h e

52 ∗ m u l t i−d i m e n t i o n v e c t o r s are o r t h o g o n a l , meaning t h a t t h e i n f o r m a t i o n t h e y c a r r y abou t t h e

53 ∗ da ta does n o t o v e r l a p . In a p e r f e c t l y o r t h o g o n a l sys tem , i f one o f t h e v a r i a b l e s o f t h e T

54 ∗ d i m e n t i o n i s v a r i e d , a l l o t h e r v a l u e s aren ’ t a f f e c t e d . T h i s i s se ldom t h e case i n p r a c t i c e

55 ∗ t hough we t r y t o g e t as c l o s e as p o s s i b l e . I t ’ s d e f i n t i o n :

56 ∗

57 ∗ d i s t a n c e = s q r t ((Vec t1 − Vec t2) ^ 2) <<−− e s s e n t i a l l y Py thagorean Theorem on a d i m e n t i o n > 2

58 ∗

59 ∗ ∗ /

60 # i f d e f USE_BLAS

61 / / b l a s temp v e c t o r s :

62 f l o a t V d i s t [T] ;

63

64 i n l i n e f l o a t df (c o n s t f l o a t ∗v1 , c o n s t f l o a t ∗v2) {

65 c b l a s _ s c o p y (T , v1 , 1 , Vdi s t , 1) ;

66 c b l a s _ s a x p y (T,−1.0 , v2 , 1 , Vd i s t , 1) ;

67 re turn c b l a s _ s n r m 2 (T , Vdi s t , 1) ;

68 }

69

70 # e l s e

71

72 # i f n d e f UNROLL

73 / / f l o a t d f (sample ∗v1 , sample ∗v2)

74 i n l i n e f l o a t df (c o n s t f l o a t ∗v1 , c o n s t f l o a t ∗v2)

75 {

76 f l o a t sum = 0 . 0 ;

77 i n t i ;

78

79 / / The use o f pow (i , 2) g i v e s f a s t e r code b u t has l i t t l e or no

80 / / im pac t when −O3/−O2 i s used

81 / / We r e p l a c e sum=sum+(v1 [i]−v2 [i]) ∗(v1 [i]−v2 [i]) ;

82 / / w i t h sum+=pow ((v1 [i]−v2 [i]) , 2) ;

83 f o r (i =0 ; i <T ; i ++)

84 # i f n d e f POW

85 sum+=(v1 [i]−v2 [i]) ∗(v1 [i]−v2 [i]) ;

86 # e l s e

87 sum+=pow ((v1 [i]−v2 [i]) , 2) ;

88 # e n d i f / /POW

89

90 re turn s q r t f (sum) ;

91 }

92 # e l s e / / UNROLL

93 i n l i n e f l o a t df (c o n s t f l o a t ∗v1 , c o n s t f l o a t ∗v2)

94 {

134

95 f l o a t sum = 0 . 0 ;

96 f l o a t sum1 = 0 . 0 ;

97 f l o a t sum2 = 0 . 0 ;

98 f l o a t sum3 = 0 . 0 ;

99 i n t i =0 ;

100

101 i f (T>UNROLL_LEVEL) {

102 f o r (; i <(T−UNROLL_LEVEL) ; i +=UNROLL_LEVEL) {

103 sum +=(v1 [i]−v2 [i]) ∗(v1 [i]−v2 [i]) ;

104 sum1 +=(v1 [i +1]−v2 [i + 1]) ∗(v1 [i +1]−v2 [i + 1]) ;

105 sum2 +=(v1 [i +2]−v2 [i + 2]) ∗(v1 [i +2]−v2 [i + 2]) ;

106 sum3 +=(v1 [i +3]−v2 [i + 3]) ∗(v1 [i +3]−v2 [i + 3]) ;

107 }

108 }

109 i f (T%UNROLL_LEVEL)

110 f o r (; i <T ; i ++)

111 sum+=(v1 [i]−v2 [i]) ∗(v1 [i]−v2 [i]) ;

112

113 sum+=sum1 ;

114 sum+=sum2 ;

115 sum+=sum3 ;

116 re turn s q r t f (sum) ;

117 }

118 # e n d i f / / UNROLL

119

120 # e n d i f / / USE_BLAS

121

122 /∗ l oad samples

123 ∗

124 ∗ The c u r r e n t l o a d i n g o f samples i s t e c h n i c a l l y o p t i m a l b u t n o t i d e a l f o r a

125 ∗ p a r a l l e l i m p l e m e n t a t i o n s i n c e t h e l a s t node migh t end up w i t h p o t e n t i a l l y

126 ∗ no c o m p u t a t i o n . T h i s i s l e s s than d e s i r e a b l e .

127 ∗∗ /

128 i n t l o a d _ s a m p l e s (char ∗ f i l e n a m e)

129 {

130 FILE ∗ fp ;

131 i n t l o a d e d ;

132 i n t n ;

133 i n t n_w =0; / / worker ’ s n c o u n t

134 i n t n_w_adj =0 ; / / c o u n t a f t e r a d j u s t i n g w i t h n % w

135

136 fp = fopen (f i l e n a m e , " r ") ;

137

138 f s e e k (fp , 0 , SEEK_END) ;

139 n = f t e l l (fp) / V_sz ;

140 f s e e k (fp , 0 , SEEK_SET) ;

141 i f ((N S _ t o t a l < 0) | | (N S _ t o t a l > n))

142 N S _ t o t a l = n ;

143 # i f d e f DEBUG

144 i f (mynode == 0)

145 p r i n t f (" T o t a l number o f samples = %l d \ n " , N S _ t o t a l) ;

146 # e n d i f / / DEBUG

147

148 / / Normal chunck s i z e

149 n_w = n_w_adj = N S _ t o t a l / t o t a l n o d e s ;

150 n_w_adj−−; / / o f f−by−one : C i n d i c e s s t a r t a t 0 , o t h e r w i s e we end up w i t h o v e r l a p

151 / / The o v e r f l o w i s a s s i g n e d t o t h e l a s t node (n o t good i f N S _ t o t a l / t o t a l n o d e s !>>> t o t a l n o d e s) :

152 i f (mynode == t o t a l n o d e s −1)

153 n_w_adj = n_w + N S _ t o t a l % t o t a l n o d e s ;

154

135

155 / / Check in l o g i c :

156 / / p r i n t f (" Node %d , S t a r t / End : %d/%d \ n " , mynode , mynode∗n_w , mynode∗n_w+n_w_adj) ;

157 samples =(sample ∗) m a l lo c (n_w_adj∗V_sz) ;

158 i f (! s amples) {

159 p r i n t f ("Memory a l l o c a t i o n e r r o r w h i l e l o a d i n g DB . \ n ") ;

160 goto l o a d _ e r r o r ;

161 }

162

163 /∗ l oad samples ∗ /

164 / / s e e k i n g t o t h e chunck t h i s p r o c e s w i l l s t a r t l o a d i n g a t ; and load . . .

165 f s e e k (fp , mynode∗n_w∗V_sz , SEEK_SET) ;

166 l o a d e d = f r e a d (samples , V_sz , n_w_adj , fp) ;

167 i f (l o a d e d != n_w_adj) {

168 p r i n t f ("An e r r o r o c c u r e d w h i l e l o a d i n g t h e DB: ") ;

169 p r i n t f (" Loaded %d and e x p e c t e d %d " , loaded , n_w_adj) ;

170 goto mem_error ;

171 }

172

173 re turn l o a d e d ;

174

175 l o a d _ e r r o r :

176 f r e e (samples) ;

177 mem_error :

178 f c l o s e (fp) ;

179 re turn −1;

180 }

181

182 /∗ c e n t r o i d i n i t i a l i z a t i o n − i t s e l e c t s t h e f i r s t s e t o f c e n t r o i d s

183 ∗

184 ∗ The o r i g i n a l p a r a l l e l code would s e a r c h t h r o u g h l o c a l y lo ade d samples

185 ∗ and s e l e c samples as i n i t i a l c e n t r o i d s u s i n g a modulo o p e r a t o r + node # .

186 ∗ We w i l l use t h e a c t u a l l DB and keep t h e same i n i t i a l i s a t i o n as w i t h t t h e

187 ∗ s e q u e n t i a l code r e a d i n g t h e samples from t h e DB

188 ∗∗ /

189 void c e n t r o i d _ i n i t (c o n s t char ∗fname)

190 {

191 FILE ∗ fp ;

192 i n t i ;

193 i n t x ;

194 / / To g e t t h e same i n i t as t h e s e q u e n t i a l v e r s i o n ;

195 / / ∗ V_sz because we ’ re d e a l i n g w i t h f i l e p o i n t e r s (b y t e s) :

196 i n t s k i p =(NS_ to t a l−1) /K∗V_sz ;

197

198 fp = fopen (fname , " r ") ;

199

200 f o r (i =0 , x =0; i <K; i ++ , x+= s k i p) {

201 f s e e k (fp , x , SEEK_SET) ;

202 f r e a d (& c e n t r o i d s [T∗ i] , s i z e o f (sample) , T , fp) ;

203 / / memcpy ((v o i d ∗) &c e n t r o i d s [T∗ i] , (v o i d ∗) &samples [T∗x] , T ∗ s i z e o f (f l o a t)) ;

204 }

205 f c l o s e (fp) ;

206 }

207

208 /∗

209 ∗ T h i s v e r s i o n o f t h e i n i t i s meant t o be used i f t h e DB i s n o t s t o r e d l o c a l l y .

210 ∗ The advan tage i s t h a t o n l y 1 p r o c e s s does t h e s low IO and t h e b r o a d c a s t s t h e lo ad ed

211 ∗ da ta u s i n g an o p t i m i z e d (we hope , MPI i m p l e m e n t a t i o n dependan t) b r o a d c a s t t o a l l nodes .

212 ∗ Cost model :

213 ∗ C_sz = " s i z e o f (c e n t r o i d s) " = T∗K∗ s i z e o f (f l o a t)

214 ∗ T_load = BW_io / C_sz + T_broadcas t_K

136

215 ∗ T_broadcas t_K = T_comm_ini t + BW_net / C_sz + C_sz /MTU∗T_IGU

216 ∗ T_comma_in i t =73.1028 (usec) (average l a t e n c y from hpcc−1.0.0

217 ∗ MTU=1500 (e t h e r n e t)

218 ∗ T_IGU=15ms (e m p i r i c a l , m p p t e s t)

219 ∗∗ /

220 void c e n t r o i d _ i n i t _ n e t (c o n s t char ∗fname)

221 {

222 i f (mynode == 0)

223 c e n t r o i d _ i n i t (fname) ;

224 MPI_Bcast (c e n t r o i d s , T∗K, MPI_FLOAT , 0 , MPI_COMM_WORLD) ;

225 }

226

227 /∗ c l a s s i f i c a t i o n o f a sample t a k i n g i n t o a c c o u n t each c e n t r o i d ∗ /

228 i n l i n e i n t c e n t r o i d _ d e f (unsigned i n t idx , f l o a t ∗d)

229 {

230 r e g i s t e r i n t i , c e n t r o i d =−1;

231 f l o a t mdis t , d i s t ;

232

233 m d i s t =999999999 . ;

234 / / m d i s t=pow (2 , 3 2) ; / / we s t a r t o f f v e r y f a r . . .

235

236 f o r (i =0 ; i <K; i ++) {

237 d i s t = d f (& c e n t r o i d s [i∗T] , &samples [i d x∗T]) ;

238 i f (d i s t < m d i s t) {

239 m d i s t = d i s t ;

240 c e n t r o i d = i ;

241 }

242 }

243

244 ∗d= m d i s t ;

245 re turn c e n t r o i d ;

246 }

247

248 /∗ i t c a l c u l a t e s new c e n t r o i d s ∗ /

249 void mean_vec to r ()

250 {

251 i n t i , c , o f f s e t ;

252

253 f o r (c =0; c<K; c ++) {

254 i f (c _ c n t [c] != 0) {

255 o f f s e t =c∗T ;

256 i =0;

257 # i f d e f UNROLL2

258 i f (T>UNROLL_LEVEL) {

259 f o r (; i <(T−UNROLL_LEVEL) ; i +=UNROLL_LEVEL) {

260 c e n t r o i d s [o f f s e t + i] = c_sum [o f f s e t + i] / c _ c n t [c] ;

261 c e n t r o i d s [o f f s e t + i +1] = c_sum [o f f s e t + i + 1] / c _ c n t [c] ;

262 c e n t r o i d s [o f f s e t + i +2] = c_sum [o f f s e t + i + 2] / c _ c n t [c] ;

263 c e n t r o i d s [o f f s e t + i +3] = c_sum [o f f s e t + i + 3] / c _ c n t [c] ;

264 }

265 }

266 i f (T%UNROLL_LEVEL) / / Compi ler e l i m i n a t e s t h i s i f T and UNROLL_LEVEL are s t a t i c

267 # e n d i f

268 f o r (; i <T ; i ++)

269 c e n t r o i d s [o f f s e t + i] = c_sum [o f f s e t + i] / c _ c n t [c] ;

270 }

271 }

272 }

273

274 /∗ i t c a l c u l a t e s t h e mean d i s t o r t i o n ∗ /

137

275 i n l i n e f l o a t a v e r a g e _ d i s t o r t i o n (sample ∗x)

276 {

277 i n t i ;

278 f l o a t ad ;

279 ad =0;

280 f o r (i =0 ; i <K; i ++)

281 ad+=x [i] ;

282

283 re turn ad / N S _ t o t a l ;

284 }

285

286 void vq ()

287 {

288 i n t i t e r a t i o n =1;

289 i n t c e n t r , j , i ;

290 f l o a t d i s t o r t i o n =0;

291 f l o a t d i s t o r t i o n _ a n t ;

292 / / f l o a t d i s t c [K] ;

293 f l o a t d i s t c ;

294 f l o a t d i s t ;

295 i n t sPos ; / / used t o compute t h e c o r r e c t " t o n e x t sample " o f f s e t

296 i n t cPos ; / / used t o compute t h e c o r r e c t " t o n e x t c e n t r o i d " o f f s e t

297 / / Custom da ta t y p e f o r combined commun ica t ions :

298

299 /∗ i f (mynode == 0)

300 p r i n t f (" Take i t easy , I am c l a s s i f y i n g . . . \ n ") ;

301 ∗ /

302 d i s t o r t i o n =0;

303 i t e r a t i o n =1;

304

305 do {

306

307 /∗ I n i t i a l i z a t i o n ∗ /

308 d i s t c = 0 . ;

309 f o r (i =0 ; i <K; i ++) {

310 / / d i s t c [i] = 0 . ;

311 c _ c n t [i] = 0 ;

312 f o r (j =0 ; j <T ; j ++)

313 c_sum [i∗T+ j] = 0 . ;

314 }

315 / / Using memset i s a c t u a l l y l o n g e r than t h e above !

316 /∗ memset (d i s t c , 0 , s i z e o f (sample)∗K) ;

317 memset (c_sum , 0 , s i z e o f (sample)∗K∗T) ;

318 memset (c_cn t , 0 , s i z e o f (sample)∗K) ; ∗ /

319

320 j =0;

321 / / The core , we pass t h e e n t i r e DB here :

322 f o r (j =0 ; j <NS ; j ++) {

323

324 c e n t r = c e n t r o i d _ d e f (j , &d i s t) ;

325 / / d i s t c [c e n t r]+= d i s t ;

326 d i s t c += d i s t ;

327 c _ c n t [c e n t r] + + ;

328 / / we do t h e m u l t i p l i c a t i o n , o u t o f t h e loop :

329 / / Type o f t h i n g a c o m p i l e r s h o u l d o p t i m i z e .

330 sPos = j∗T ;

331 cPos= c e n t r∗T ;

332 i =0;

333 # i f d e f UNROLL2

334 i f (T>UNROLL_LEVEL) {

138

335 f o r (; i <(T−UNROLL_LEVEL) ; i +=UNROLL_LEVEL) {

336 c_sum [cPos+ i]+= sample s [sPos + i] ;

337 c_sum [cPos+ i +1]+= sample s [sPos + i + 1] ;

338 c_sum [cPos+ i +2]+= sample s [sPos + i + 2] ;

339 c_sum [cPos+ i +3]+= sample s [sPos + i + 3] ;

340 }

341 }

342 i f (T%UNROLL_LEVEL) / / Compi ler e l i m i n a t e s t h i s i f T and UNROLL_LEVEL are s t a t i c

343 # e n d i f

344 f o r (; i <T ; i ++)

345 c_sum [cPos+ i]+= sample s [sPos + i] ;

346 }

347

348 / / Put d i s t c i n t o end o f c_sum ’ mega−v e c t o r ’ (o f f s e t from m al l oc)

349 c_sum [c_sum_size−1] = d i s t c ;

350 MPI_Al l reduce (MPI_IN_PLACE , c_sum , c_sum_size , MPI_FLOAT , MPI_SUM, MPI_COMM_WORLD) ;

351 d i s t c = c_sum [c_sum_size−1];

352 /∗ A f t e r t h i s p o i n t , a l l v a r s are i n t h e same s t a t e as i f t h e y had been computed

353 by a s i n g l e p r o c e s s

354 ∗ /

355 mean_vec to r () ;

356

357 d i s t o r t i o n _ a n t = d i s t o r t i o n ;

358 / / d i s t o r t i o n = a v e r a g e _ d i s t o r t i o n (d i s t c) ;

359 d i s t o r t i o n = d i s t c / N S _ t o t a l ;

360

361 i t e r a t i o n ++;

362 # i f d e f DEBUG

363 i f (mynode == 0)

364 p r i n t f ("TWO LAST AVERAGE DISTORTIONS : AD1=%f AD2=%f Dif=%f \ n " , \

365 d i s t o r t i o n _ a n t , d i s t o r t i o n , f a b s ((double) (d i s t o r t i o n _ a n t − d i s t o r t i o n))) ;

366 # e n d i f

367 } whi le (f a b s ((double) (d i s t o r t i o n _ a n t − d i s t o r t i o n)) > THRESHOLD) ;

368 }

369

370 /∗ show c e n t r o i d s ∗ /

371 void s h o w _ c e n t r o i d s ()

372 {

373 i n t i , j ;

374

375 p r i n t f (" C e n t r o i d s \ n ") ;

376 f o r (i =0 ; i <K; i ++) {

377 f o r (j =0 ; j <T ; j ++)

378 i f (i == 0 | | i ==(K−1)) p r i n t f (" %2.2 f " , c e n t r o i d s [i∗T+ j]) ;

379

380 i f (i == 0 | | i ==(K−1)) p r i n t f (" \ n ") ;

381 }

382 }

383

384 /∗ show samples ∗ /

385 void show_samples ()

386 {

387 i n t i , j ;

388 f o r (i =0 ; i <NS ; i ++) {

389 f o r (j =0 ; j <T ; j ++)

390 p r i n t f ("%f " , s amples [NS∗T+ i]) ;

391 p r i n t f (" c=N/A\ n ") ;

392 }

393 }

394

139

395 /∗ save c e n t r o i d s ∗ /

396 void s a v e _ c e n t r o i d s (c o n s t char∗ outname)

397 {

398 i n t i , j ;

399 FILE ∗ fp ;

400

401 fp = fopen (outname , "wb") ;

402 /∗ p r i n t f (" Sa v i ng c e n t r o i d s \ n ") ; ∗ /

403 f o r (i =0 ; i <K; i ++) {

404 f o r (j =0 ; j <T ; j ++)

405 f p r i n t f (fp , "%f , " , c e n t r o i d s [i∗T+ j]) ;

406 f p r i n t f (fp , " \ n ") ;

407 }

408 f c l o s e (fp) ;

409 }

410

411

412 /∗ main ∗ /

413 i n t main (i n t argc , char ∗a rgv [])

414 {

415 char ∗fnamein ;

416 s t r u c t t i m e v a l tempo1 , tempo2 ;

417 s t r u c t t i m e z o n e t z p ;

418 double tempo ;

419

420 MP I _ I n i t (& argc , &argv) ;

421 MPI_Comm_size (MPI_COMM_WORLD, &t o t a l n o d e s) ;

422 MPI_Comm_rank (MPI_COMM_WORLD, &mynode) ;

423

424 fnamein = a rgv [1] ;

425 K = a t o i (a rgv [2]) ;

426 i f (a r g c > 3) {

427 N S _ t o t a l = a t o i (a rgv [3]) ;

428 i f (mynode == 0)

429 p r i n t f (" L i m i t i n g sample l o a d t o %l d sample s . \ n " , N S _ t o t a l) ;

430 }

431

432 g e t t i m e o f d a y (&tempo1 ,& t z p) ;

433

434 / / we merge c_sum , c _ c n t and d i s t i n t o a s i n g l e v e c t o r t o s i m p l i f y communica t ion c o n s o l i d a t i o n s

435 c_sum_s ize = (K ∗ T + K + 1) ;

436 c_sum = (f l o a t ∗) m a l lo c (c_sum_s ize ∗ s i z e o f (sample)) ;

437 c _ c n t = &c_sum [K∗T] ; / / beyond l a s t e l e m e n t o f c_sum i s s t a r t o f c _ c n t

438 / / c_sum = ma l lo c (K ∗ s i z e o f (sample)∗T) ;

439 / / c _ c n t = ma l lo c (K ∗ s i z e o f (sample)) ;

440 c e n t r o i d s = (f l o a t ∗) m a l lo c (K ∗ s i z e o f (sample)∗T) ;

441

442 # i f d e f DEBUG

443 i f (mynode ==0)

444 p r i n t f ("K: %d \ nT : %d \ nc_sum_s ize : %d \ n (c _ c n t − c_sum) : %d \ n " ,K, T , c_sum_size , (c _ c n t − c_sum)) ;

445 # e n d i f

446

447 i f (! c_sum | | ! c e n t r o i d s | | ! c _ c n t) {

448 p r i n t f (" m a l l oc f a i l u r e on c_sum | | c e n t r o i d s | | c _ c n t ! \ n ") ;

449 e x i t (1) ;

450 }

451

452 /∗ l oad samples ∗ /

453

454 NS= l o a d _ s a m p l e s (fnamein) ;

140

455 i f (NS==−1) {

456 p r i n t f (" \ nNode %d : ERROR = l o a d i n g sample f i l e \ n " , mynode) ;

457 M P I _ F i n a l i z e () ;

458 e x i t (1) ;

459 }

460 # i f d e f DEBUG

461 p r i n t f ("NS = %l u \ n " , NS) ;

462 # e n d i f

463

464 /∗ c e n t r o i d s i n i t i a l i z a t i o n ∗ /

465 c e n t r o i d _ i n i t (fnamein) ;

466 / / c e n t r o i d _ i n i t _ n e t (f name in) ;

467

468 /∗ v e c t o r q u a n t i s a t i o n ∗ /

469 vq () ;

470

471 / / s h o w _ c e n t r o i d s () ;

472

473 # i f d e f DEBUG

474 g e t t i m e o f d a y (&tempo2 ,& t z p) ;

475 tempo = (double) (tempo2 . t v _ s e c − tempo1 . t v _ s e c) + (((double) (tempo2 . t v _ u s e c−tempo1 . t v _ u s e c)) / 1 0 0 0 0 0 0) ;

476

477 p r i n t f (" T o t a l t ime f o r node %d (s) : %.3 f \ n " , mynode , tempo) ;

478 # e n d i f

479 i f (mynode == 0)

480 s a v e _ c e n t r o i d s (" c e n t r o i d s ") ;

481

482 M P I _ F i n a l i z e () ;

483 re turn 0 ;

484 }

BIBLIOGRAPHY

[1] Allan, Benjamin A. et Robert Armstrong et al.: A Component Architecture for
High-Performance Scientific Computing. International Journal of High Performance
Computing Applications, 20(2) :163–202, 2006, ISSN 1094-3420.

[2] Bell, R., A.D. Malony et S. Shende: ParaProf : A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis. LECTURE NOTES IN COMPUTER
SCIENCE, pages 17–26, 2003.

[3] Browne, S., J. Dongarra, N. Garner, G. Ho et P. Mucci: A Portable Programming
Interface for Performance Evaluation on Modern Processors. International Journal of
High Performance Computing Applications, 14(3) :189–204, 2000.
http://hpc.sagepub.com/cgi/content/abstract/14/3/189.

[4] Bruck, J., Ching Tien Ho, S. Kipnis, E. Upfal et D. Weathersby: Efficient algorithms for
all-to-all communications in multiport message-passing systems. Parallel and Distributed
Systems, IEEE Transactions on, 8(11) :1143–1156, Nov 1997, ISSN 1045-9219.

[5] Castain, R.H., T.S. Woodall, D.J. Daniel, J.M. Squyres, B. Barrett et G.E. Fagg: The
Open Run-Time Environment (OpenRTE) : A transparent multicluster environment for
high-performance computing. Tome 24, pages 153–157, 2008.
http://www.sciencedirect.com/science/article/B6V06-4NH7DWP-
1/2/25a63048395769febd13ce3f2a9545b8.

[6] Chang, J., Ming Huang, J. Shoemaker, J. Benoit, Szu Liang Chen, Wei Chen, Siufu Chiu,
R. Ganesan, G. Leong, V. Lukka, S. Rusu et D. Srivastava: The 65-nm 16-MB Shared On-
Die L3 Cache for the Dual-Core Intel Xeon Processor 7100 Series. Solid-State Circuits,
IEEE Journal of, 42(4) :846–852, April 2007, ISSN 0018-9200.

[7] Che, Shuai, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer et Kevin
Skadron: A performance study of general-purpose applications on graphics processors
using CUDA. J. Parallel Distrib. Comput., 68(10) :1370–1380, 2008, ISSN 0743-7315.

[8] Desnoyers, M. et M. Dagenais: Low disturbance embedded system tracing with linux
trace toolkit next generation. rapport technique, Ecole Polytechnique de Montréal, 2006.
http://ltt.polymtl.ca/files/papers/celf2006-desnoyers.pdf.

[9] Dongarra, J., K. London, S. Moore, P. Mucci et D Terpstra: Using PAPI for Hardware
Performance Monitoring on Linux Systems. Dans Conference on Linux Clusters : The
HPC Revolution, page 11, National Center for Supercomputing Applications (NCSA),
University of Illinois, June 2001.

http://hpc.sagepub.com/cgi/content/abstract/14/3/189
http://www.sciencedirect.com/science/article/B6V06-4NH7DWP-1/2/25a63048395769febd13ce3f2a9545b8
http://www.sciencedirect.com/science/article/B6V06-4NH7DWP-1/2/25a63048395769febd13ce3f2a9545b8
http://ltt.polymtl.ca/files/papers/celf2006-desnoyers.pdf

142

[10] Dongarra, J., A.D. Malony, S. Moore, P. Mucci et S. Shende: Performance
Instrumentation and Measurement for Terascale Systems. LECTURE NOTES IN
COMPUTER SCIENCE, pages 53–62, 2003.

[11] Dongarra, Jack: The Impact of Multicore on Math Software and Exploiting Single
Precision Computing to Obtain Double Precision Results. Parallel Processing, 2006.
ICPP 2006. International Conference on, page 19, Aug. 2006, ISSN 0190-3918.

[12] Dongarra, Jack, Kevin London, Shirley Moore, Philip Mucci, Daniel Terpstra, Haihang
You et Min Zhou: Experiences and Lessons Learned with a Portable Interface to
Hardware Performance Counters. Parallel and Distributed Processing Symposium,
International, 0 :6, 2003, ISSN 1530-2075.

[13] Forman, George et Bin Zhang: Linear speed-up for a parallel non-approximate recasting
of center-based clustering algorithms, including K-Means, K-Harmonic means, and EM.
Rapport technique 93, HP Laboratories, 2000. Mean square error (MSE) ; K-harmonic
means (KHM) ; Expectation-maximization (EM) ; Multidimensional data clustering ;
Center-based clustering.

[14] Foster, Ian: Designing and Building Parallel Programs. Addison-Wesley Publishing Co.,
février 1995, ISBN 0201575949.

[15] Franchetti, F., S. Kral, J. Lorenz et C.W. Ueberhuber: Efficient Utilization of SIMD
Extensions. Proceedings of the IEEE, 93(2) :409–425, Feb. 2005, ISSN 0018-9219.

[16] Garcia, V., E. Debreuve et M. Barlaud: Fast k nearest neighbor search using GPU.
Computer Vision and Pattern Recognition Workshops, 2008. CVPRW ’08. IEEE
Computer Society Conference on, pages 1–6, June 2008.

[17] Garg, P.: Investigating coverage-reliability relationship and sensitivity of reliability
to errors in the operational profile. Dans Software Testing, Reliability and Quality
Assurance, pages 21–35, Dec 1994.

[18] Gleixner, T. et D. Niehaus: Hrtimers and Beyond : Transforming the Linux Time
Subsystems. Dans Proceedings of the Ottawa Linux Symposium, tome 1, page 16, juillet
2006.

[19] GOEDEKER, Adolfy HOISIE Stephan: Performance Optimization of Numerically
Intensive Code. Siam, 2001, ISBN 0-89871-484-2.

[20] Goto, Kazushige et Robert A. van de Geijn: Anatomy of high-performance matrix
multiplication. ACM Trans. Math. Softw., 34(3) :1–25, 2008, ISSN 0098-3500.

[21] Graham, Susan L., Peter B. Kessler et Marshall K. Mckusick: Gprof : A call graph
execution profiler. Dans SIGPLAN ’82 : Proceedings of the 1982 SIGPLAN symposium

143

on Compiler construction, pages 120–126, New York, NY, USA, 1982. ACM, ISBN 0-
89791-074-5.

[22] Gropp, W. et E. Lusk: Reproducible measurements of MPI performance characteristics.
DuroPVM/MPI’99, septembre 1999.

[23] Hennessy, John L. et David A. Patterson: Computer Architecture : A Quantitative
Approach. The Morgan Kaufmann Series in Computer Architecture and Design. Denise
E. M. Penrose (The Morgan Kaufmann Series in Computer Architecture and Design),
fourth edition édition, May 2007, ISBN 13 : 978-0-12-370490-0 10 : 0-12-370490-1.
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-
20\&path=ASIN/1558605967.

[24] Hofstee, Peter et Michael Day: Hardware and software architectures for the CELL
processor. Hardware/Software Codesign and System Synthesis, 2005. CODES+ISSS
’05. Third IEEE/ACM/IFIP International Conference on, pages 1–1, Sept. 2005.

[25] Huang, JC et T. Leng: Generalized loop-unrolling : a method for program speedup. Dans
1999 IEEE Symposium on Application-Specific Systems and Software Engineering and
Technology, 1999. ASSET’99. Proceedings, pages 244–248, 1999.

[26] Huck, Kevin A. et Allen D. Malony: PerfExplorer : A Performance Data Mining
Framework For Large-Scale Parallel Computing. Dans SC ’05 : Proceedings of the
2005 ACM/IEEE conference on Supercomputing, page 41, Washington, DC, USA, 2005.
IEEE Computer Society, ISBN 1-59593-061-2.

[27] Huck, Kevin A., Allen D. Malony, Robert Bell et Alan Morris: Design and
Implementation of a Parallel Performance Data Management Framework. Dans ICPP
’05 : Proceedings of the 2005 International Conference on Parallel Processing, pages
473–482, 2005.
http://csdl2.computer.org/persagen/DLAbsToc.jsp?
resourcePath=/dl/proceedings/\&toc=comp/proceedings/icpp/
2005/2380/00/2380toc.xml\&DOI=10.1109/ICPP.2005.29.

[28] Hughes, P. et B. Conway: The AMD Opteron Northbridge Architecture. IEEE Micro,
27(2) :10–21, March-April 2007, ISSN 0272-1732.

[29] K. Huck, A. Malony S. Shende et A. Morris.: TAUg : Runtime Global Performance
Data Access using MPI. Dans Springer (rédacteur) : EuroPVM/MPI Conference, numéro
LNCS 4192, pages 313–321, September 2006.

[30] Kahle, J.: The Cell Processor Architecture. Microarchitecture, 2005. MICRO-38.
Proceedings. 38th Annual IEEE/ACM International Symposium on, pages 3–3, 12-16
Nov. 2005.

http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/1558605967
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&path=ASIN/1558605967
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/\&toc=comp/proceedings/icpp/2005/2380/00/2380toc.xml\&DOI=10.1109/ICPP.2005.29
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/\&toc=comp/proceedings/icpp/2005/2380/00/2380toc.xml\&DOI=10.1109/ICPP.2005.29
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/\&toc=comp/proceedings/icpp/2005/2380/00/2380toc.xml\&DOI=10.1109/ICPP.2005.29

144

[31] Kaspersky, Kris: Code Optimizatoin : Effective Memory Usage. A-LIST, 295 East
Swedesford Rd., 2003, ISBN 1-931769-24-9.

[32] Keltcher, Chetana N., Kevin J. McGrath, Ardsher Ahmed et Pat Conway: The AMD
Opteron Processor for Multiprocessor Servers. IEEE Micro, 23(2) :66–76, 2003,
ISSN 0272-1732.

[33] Kufrin, R.: PerfSuite : An Accessible, Open Source Performance Analysis Environment
for Linux. Dans Presented at The 6th International Conference on Linux Clusters : The
HPC Revolution, tome 151, page 05, 2005.

[34] Lindlan, K.A. ; Cuny J. ; Malony A.D. ; Shende S. ; Mohr B. ; Rivenburgh R. ; Rasmussen
C.: A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with
Templates. Supercomputing, ACM/IEEE 2000 Conference, pages 49–49, Nov 2000,
ISSN 1063-9535.

[35] Luszczek, P., J.J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J.
McCalpin, D. Bailey et D. Takahashi: Introduction to the HPC Challenge Benchmark
Suite, avril 2005.
http://repositories.cdlib.org/lbnl/LBNL-57493.

[36] Moore, M., R. Wisniewski, R. Yaghmour, K. Zanussi et T. Dagenais: Efficient and
Accurate Tracing of Events in Linux Clusters. rapport technique, Ecole Polytechnique
de Montreal, May 11-14 2003.

[37] Moore, S., D. Cronk, F. Wolf, A. Purkayastha, P. Teller, R. Araiza, M.G. Aguilera
et J. Nava: Performance Profiling and Analysis of DoD Applications Using PAPI
and TAU. Users Group Conference, (10.1109/DODUGC.2005.50) :394–399, 2005,
ISSN 10.1109/DODUGC.2005.50.

[38] Mucci, P.J., S. Browne, C. Deane et G. Ho: PAPI : A Portable Interface to Hardware
Performance Counters. Dans Proc. Dept. of Defense HPCMP Users Group Conference,
pages 7–10, 1999.

[39] Mueller, S.M. ; Jacobi C. ; Oh H. J. ; Tran K.D. ; Cottier S.R. ; Michael B.W. ; Nishikawa
H. ; Totsuka Y. ; Namatame T. ; Yano N. ; Machida T. ; Dhong S.H.: The vector floating-
point unit in a synergistic processor element of a CELL processor. Computer Arithmetic,
2005. ARITH-17 2005. 17th IEEE Symposium on, pages 59–67, 27-29 June 2005,
ISSN 1063-6889.

[40] Munson, J.C.: A software blackbox recorder. Dans Aerospace Applications Conference,
1996. Proceedings., 1996 IEEE, tome 4, pages 309–320 vol.4, Feb 1996.

[41] Nataraj, Aroon, Alan Morris, Allen D. Malony, Matthew Sottile et Pete Beckman:
The Ghost in the Machine : Observing the Effects of Kernel Operation on Parallel

http://repositories.cdlib.org/lbnl/LBNL-57493

145

Application Performance. Dans SC ’07 : Proceedings of the 2007 ACM/IEEE conference
on Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM, ISBN 978-1-59593-
764-3.

[42] Ridge, D., D. Becker, P. Merkey et T. Sterling: Beowulf : harnessing the power of
parallelism in a pile-of-PCs. Aerospace Conference, 1997. Proceedings., IEEE, 2 :79–91
vol.2, Feb 1997.

[43] S. Britto Jr, Alceu de, Paulo S. L. de Souza, Robert Sabourin, Simone R. S. de Souza
et Díbio L. Bogres: A Low-Cost Parallel K-Means Algorithm Using Cluster Computing.
rapport technique, École de Technologie Supérieure, août 2003.

[44] S. Britto Jr, Alceu de, Robert Sabourin, Bortolozzi F. et Suen C.Y: Recognition of
Handwritten Numeral Strings Using a Two-Stage Hmm-Based Method. septembre 2003.

[45] Shahbahrami, A., B. Juurlink et S. Vassiliadis: Performance Impact of Misaligned
Accesses in SIMD Extensions. Dans Proc. 17th Annual Workshop on Circuits, Systems
and Signal Processing (ProRISC2006), Veldhoven, The Netherlands, November, pages
23–24, 2006.

[46] Shende, Sameer S. et Allen D. Malony: The Tau Parallel Performance System.
International Journal of High Performance Computing Applications, 20(2) :287–311,
2006.
http://hpc.sagepub.com/cgi/content/abstract/20/2/287.

[47] Slogsnat, David, Alexander Giese et Ulrich Brüning: A versatile, low latency
HyperTransport core. Dans FPGA ’07 : Proceedings of the 2007 ACM/SIGDA 15th
international symposium on Field programmable gate arrays, pages 45–52, New York,
NY, USA, 2007. ACM, ISBN 978-1-59593-600-4.

[48] Sottile, Matthew Joseph: A measurement and simulation methodology for parallel
computing performance studies. Thèse de doctorat, University of Oregon, Albuquerque,
NM, USA, 2006, ISBN 978-0-542-73568-4. Adviser-David A. Bader.

[49] Spear, W., A. Malony, A. Morris et S. Shende: Integrating TAU with Eclipse : A
Performance Analysis System in an Integrated Development Environment. LECTURE
NOTES IN COMPUTER SCIENCE, 4208 :230, 2006.

[50] Stallings, William: Computer Organization and Architecture : designing for
performance. Alan Apt (Prentice-Hall Inc.), fifth edition édition, 2000, ISBN 0-13-
081294-3.

[51] Stultz, J., N. Aravamudan et D. Hart: We Are Not Getting Any Younger : A New Approach
to Time and Timers. Dans Linux Symposium, pages 219–232, 2005.

http://hpc.sagepub.com/cgi/content/abstract/20/2/287

146

[52] Tam, S., S. Rusu, J. Chang, S. Vora, B. Cherkauer et D. Ayers: A 65nm 95W Dual-Core
Multi-Threaded XeonÂ R© Processor with L3 Cache. Solid-State Circuits Conference,
2006. ASSCC 2006. IEEE Asian, pages 15–18, Nov. 2006.

[53] Turner, D. et X. Chen: Protocol-dependent message-passing performance on linux
clusters. Dans Proceedings of the IEEE International Conference on Cluster Computing.,
pages 187–194, septembre 2002.

[54] Wadleigh, Kevin R. et Isom L. Crawford: Software Optimization for High Performance
Computing. Helwett-Packard Professinal Books. Prentice Hall PTR, 2000, ISBN 0-13-
017008-9.

[55] Weaver, V.M. et S.A. McKee: Can hardware performance counters be trusted. Dans
Workload Characterization, 2008. IISWC 2008. IEEE International Symposium on, pages
141–150, 2008.

[56] Worringen, J.: Pipelining and overlapping for MPI collective operations. Dans Local
Computer Networks, 2003. LCN ’03. Proceedings. 28th Annual IEEE International
Conference on, pages 548–557, octobre 2003.

[57] Zhang, Bin, Meichun Hsu et George Forman: Accurate Recasting of Parameter
Estimation Algorithms Using Sufficient Statistics for Efficient Parallel Speed-Up
Demonstrated for Center-Based Data Clustering Algorithms. rapport technique, HP
Laboratories Palo Alto, juillet 2000.

[58] Zhang, Yufang, Zhongyang Xiong, Jiali Mao et Ling Ou: The Study of Parallel K-Means
Algorithm. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on, 2 :5868–5871, 2006.

	INTRODUCTION
	Chapter 1 Hardware Characterization
	Basic Computer Architecture
	The Control Unit and Arithmetic Logic Unit

	Caching in on The Main Memory
	Accessing The Main Memory
	Cache Size and Contention
	Processor Performance

	Communications
	Bandwidth
	Latency
	The HyperTransport Interconnect
	Benchmarking Network Communications
	Theoretical and Empirical Model

	Input/Output and Storage
	Local Versus Remote Storage

	Discussions

	Chapter 2 The Profiling Tools
	Black, Grey and White Box
	Sequential Profiling: Use Of gprof
	The Itch Of Measuring Time
	PAPI: Time To Scratch Below The Surface

	Tuning and Analysis Utilities (TAU)
	Configuring TAU

	Profiling the Source Code
	Automatic Code Insertions
	Semi-Automatic Code Insertions

	Executing the Profiled Code
	Selecting The Profile Depth
	Selecting The Desired PAPI Events
	Controlling The Data Flow
	Storing The Data

	Paraprof and PerfExplorer: The Profiling Graphical User Interfaces
	The Paraprof Profile Viewer
	The PerfExplorer Performance Analyzer
	Application Speedup
	Application Parallel Efficiency
	Runtime Breakdown
	Views

	Discussions

	Chapter 3 Case Study: parallel K-Means Algorithm Analysis
	The Sequential k-means Algorithm
	Empirical Evaluation of the Algorithm

	The Parallel K-Means Algorithm
	First, Divide: The Segmentation Strategies
	Strided Segmentation
	Blocked Segmentation
	Hardware Considerations: Load Balancing
	Hardware Considerations: Physical Limitations

	Then Tell Everyone: Communications

	And Conquer: Master-Slave Model
	Master-Slave Communications
	Master-Slave Empirical Modelization

	Or, Invade: Synchronous Island Model
	Optimizing the code
	Island Communications
	Overlapping Communications and Computation
	Less Talk, More Work

	Optimization of I/O Routines
	Computational Optimizations: Coding for High Performance Computing (HPC)
	Compiler Directives
	Mathematical Libraries Versus Code
	Using Single Instruction Multiple Data
	Loop Optimizations
	BLAS Libraries
	Comparing All Approaches

	Looking at the Global Picture
	Discussions

	CONCLUSION
	Appendix I The GNU C Compiler (GCC)
	Appendix II Collection Of Commands
	Appendix III Machine Descriptions
	Appendix IV Source Code
	Bibliography

