
Logical View
1. Overview
2. Static Structures
3. Interactions
4. Dynamic Behavior
5. Example: Logical View for the ATM

Logical View Process View

Implementation
View

Process,Threads
Classes, interfaces,
collaborations

Source, binary, executable components

Deployment View

Nodes

Use Case View
Use cases

1. Overview
-The purpose of the logical view is to specify the functional
requirements of the system. The main artifact of the logical view
is the design model:

•The design model gives a concrete description of the functional
behavior of the system. It is derived from the analysis model.

•The analysis model gives an abstract description of the system
behavior based on the use case model.

• In general only the design model is maintained in the logical view,
since the analysis model provides a rough sketch, which is later
refined into design artifacts.

Design Model
-The design model consists of collaborating classes, organized
into subsystems.

-Artifacts involved in the design model may include:
•class, interaction, and state diagrams
• the subsystems and their interfaces

2. Static Structures

� in the UML classes are represented as compartmentalized rectangles:
•top compartment contains the name of the class
•middle compartment contains the structure of the class (attributes)
•bottom compartment contains the behavior of the class (operations)

Visibility:
+ public
protected
- private

Notion of Class
�a description of a group of objects with:
•common properties (attributes),
•common behavior (operations),
•common relationships to other objects, and common semantics.

Extensibility Mechanisms
•Stereotype
•Tagged value
•Constraint

Notion of Stereotype
•provides the capability to create a new kind of modeling element.
•we can create new kinds of classes by defining stereotypes for classes.
•the stereotype for a class is shown below the class name enclosed in
guillemets (<< >>).

•examples of class stereotypes: exception, utility etc.

Boundary, Entity, and Control Classes

�The Rational Unified Process advocates for finding the classes for a
system by looking for boundary, control, and entity classes.

Entity classes:
•model information and associated behavior that is generally long lived
•may reflect a real-world entity, or may be needed to perform tasks internal
to the system

•are application independent: may be used in more than one application.

Boundary classes:
•handle the communication between the system surroundings and the inside
of the system

•can provide the interface to a user or another system

Control classes:
•model sequencing behavior specific to one or more use cases.
•typically are application-dependent classes.

Relationships

�Provide the conduit for object interaction
�Several kinds of relationships:

•Association
•Dependency
•Realization
•Aggregation
•Inheritance

Vehicle

Truck Car

** **

Class Diagram
�Purpose

•Provide a picture or view of some or all the classes/interfaces in the model
•Static design view of the system

Object Diagram
�Shows a set of objects and their relationships at a point in time
�Shows instances and links
�Built during analysis and design (address the static design view)
�Purpose

•Illustrate data/object structures
•Specify snapshots

Static Structure Diagrams
�Subsystem: Independent unit of functionality that consists of a

collection of related classes and/or other subsystems.
•Offer interfaces and uses interfaces provided by other subsystems.
•In the UML, subsystems are represented as folders/packages:

<<subsystem>>
People
Information

�Dependency Relationships: provides and uses relationships
•Uses relationship, shown as a dashed arrow to the used interface.

•Provides relationship, shown as a straight line to the provided interface.

•Subsystem A is dependent on subsystem B implies that one or more
classes in A initiates communication with one or more public classes
in B: A is called the client and B the supplier.

<<subsystem>>
DirectBanking

<<subsystem>>
AccountService

Transfer

3. Interactions

�the flow of events for a use case is captured in text, whereas
scenarios are captured in interaction diagrams.

�two types of interaction diagrams:
•sequence diagrams
•collaboration diagrams

Use Case Realization
�the functionality of a use case is defined by describing the

scenarios involved.
•a scenario is an instance of a use case: it is one path through the flow of events

for the use case.

•each use case is a web of scenarios: primary scenarios (the normal flow for the
use case) and secondary scenarios (the what-if logic of the use case).

•scenarios help identify the objects, the classes, and the object
interactions needed to carry out a piece of the functionality
specified by the use case.

Sequence Diagram

•Shows object interactions arranged in time sequence
•Purpose

–Model flow of control
–Illustrate typical scenarios

•Depicts the objects and classes involved in the scenario and the sequence of
messages exchanged between the objects needed to carry out the functionality
of the scenario.

Collaboration Diagram
•Shows object interactions organized around the objects and their links
to each other (Arranged to emphasize structural organization)

•Purpose
–Model flow of control
–Illustrate coordination of object structure and control

•Alternate way to describe a scenario

•A collaboration diagram contains:
-objects drawn as rectangles
-links between objects shown as lines connecting the linked objects
-messages shown as text and an arrow that points from the client to the

supplier.

4. Dynamic Behavior

Statechart Diagram
�Use cases and scenarios provide a way to describe system

behavior, that is the interaction between objects in the system.

�A state transition diagram allows the modeling of the behavior
inside a single object.

• It shows the events or messages that cause a transition from one
state to another, and the actions that result from a state change.

• It is created only for classes with significant dynamic behavior,
like control classes.

� State:
•a condition during the life of an object when it satisfies some condition,
performs some action, or waits for an event

•found by examining the attributes and links defined for the object
•represented as a rectangle with rounded corners

� Transitions:
•represents a change from an originating state to a successor state (that

may be the same as the originating state).
•may have an action and/or a guard condition associated with it, and
may also trigger an event.

Activity Diagram
•Captures dynamic behavior (activity-oriented)
•Behavior that occurs within the state is called an activity: starts when the state
is entered and either completes or is interrupted by an outgoing transition.

•Purpose
-Model business workflow
-Model operations

5. Example: Logical View for the ATM

Withdraw Money Use case

Customer

:CashierInterface

:Dispenser

:Withdrawal

:Account

1:identify

2:requestWithdrawal

5:dispense money 3:validate and
withdraw

4:authorizeDispense

Deposit Use Case

:CashierInterface

:MoneyReceptor

:Deposit

:Account

Customer

1:identify
2:requestDeposit

3:putMoney

4:moneyReception

5: deposit

Transfer Use Case

:CashierInterface

:Transfer

A1:Account

A2:Account

1:identify

2:requestTransfer 3:validate

4:transfer

Class Diagram

<<boundary>>
CashierInterface

identify()

<<boundary>>
Dispenser

authorizeDispense()

<<boundary>>
MoneyReceptor

putMoney()

<<control>>
Withdrawal

requestWithdrawal()

<<control>>
Transfer

requestTransfer()

<<control>>
Deposit

requestDeposit()
moneyReception()

<<entity>>
Account

validate()
deposit()
transfer()
withdraw()

(Refined) Class diagram providing a view of the classes involved
in withdraw Money use case (design model)

Display

KeyPad

CardReader

Dispenser
Sensor

Dispenser
Feeder

Cash
Counter

Client
Manager

Withdrawal

Transaction
Manager

Account

Persistent
Class

Account
Manager

Customer

CashierInterface

Traceability (Withdraw use case)

Dispenser Withdrawal Account

Analysis

Design

Display

KeyPad

CardReader
Dispenser

Sensor

Dispenser
Feeder

Cash
Counter

Client
Manager

Withdrawal

Transaction
Manager

Account

Persistent
Class

Account
Manager

<<trace>> <<trace>>

<<trace>. <<trace>>

:Display :KeyPad:CardReader
:Cash

Counter
:Client

Manager
:Transaction

Manager

A Scenario of the Withdraw Money Use Case (Design Model)

…

Insert card Card inserted (ID)

Ask for PIN code
Show request

Specify PIN code

PIN code (PIN)
Request PIN validation (PIN)

Ask for amount to withdraw

Show request

Specify amount

Amount (A)

Request cash availability (A)

Request amount withdrawal (A)

Statechart Modeling Dynamic Behavior of Account Class

debit

credit

deposit

withdraw

deposit/balance+=amount

[amount>balance]/balance-=amount

[amount<=balance]/balance-=amount

[amount>-balance]/
balance+=amount-1

[amount<=-balance]/
balance+=amount-1

AccountState

public class Account {
private int balance;
public void deposit (int amount) {

if (balance > 0) balance = balance + amount;
else balance = balance + amount – 1; // transaction fee
}

public void withdraw (amount) {
if (balance>0) balance = balance – amount;

}}

Static Structure Diagram

AccountMgtAccount, PersistentClass,
AccountMgr

TransactionMgtWithdrawal, TransactionMgr

Dispenser/ATM InterfaceDispenserFeeder,
DispenserSensor, CashCounter

UDisplay/ATM InterfaceCardReader, Display,
KeyPad, ClientMgr

SubsystemsClasses

<<subsystem>>
ATM Interface

<<subsystem>>
Transaction Mgt

<<subsystem>>
Account Mgt

Customer

Withdrawal

Transfers

<<subsystem>>
ATM Interface

<<subsystem>>
UDisplay

<<subsystem>>
Dispenser

Structuring Using Layer Architectural Pattern

<<layer>>
Application-specific

<<layer>>
Application-general

<<layer>>
Middleware

Middleware

System-software

Application-
general

Transaction Mgt,
Account Mgt

Application-
specific

ATM Interface

LayersSubsystems

<<layer>>
System-software

<<subsystem>>
ATM Interface

<<subsystem>>
Transaction Mgt

<<subsystem>>
Account Mgt

<<subsystem>>
Java Virtual Machine

<<subsystem>>
Java.rmi

<<subsystem>>
Java.awt

<<subsystem>>
TCP/IP

Application-specific layer

Application-general layer

System-software layer

Middleware layer

Requirements Design Coding

UML
Package

Diagrams

UML
Component
Diagrams

UML
Deployment
Diagrams

Requirements
Specification

Scenarios

UML use case
descriptions and diagrams

UML Activity
Diagrams

UML State
Diagrams ST

A
TE

S

UML Class
Diagrams

UML Object
Diagrams

C
LA

SS
 S

TR
U

C
TU

R
E

UML Sequence
Diagrams

UML Collaboration
Diagrams

IN
TE

R
A

C
TI

O
N

S

