Logical View

1. Overview

2. Static Structures

3. Interactions

4. Dynamic Behavior

5. Example: Logical View for the ATM

=2
-//- ’// -
\- B . . : \’/
Logical View Process View
Cl interf ii 2
asses, Interfaces,
' Use cases
s-/i/' - Use Case View :7-
N
— . .
- Implementation Deployment View —
View
Source, binary, executable components

1. Overview

-The purpose of the logical view is to specify the functional
requirements of the system. The main artifact of the logical view
IS the design model:

* The design model gives a concrete description of the functional
behavior of the system. It is derived from the analysis model.
* The analysis model gives an abstract description of the system
behavior based on the use case model.

*In general only the design model is maintained in the logical view,
since the analysis model provides a rough sketch, which is later
refined into design artifacts.

Design Model
-The design model consists of collaborating classes, organized
Into subsystems.

-Artifacts involved in the design model may include:

eclass, interaction, and state diagrams
o the subsystems and their interfaces

2. Static Structures

Notion of Class
<= a description of a group of objects with:

ecommon properties (attributes),

e common behavior (operations),
«common relationships to other objects, and common semantics.

= In the UML classes are represented as compartmentalized rectangles:
top compartment contains the name of the class
emiddle compartment contains the structure of the class (attributes)
*bottom compartment contains the behavior of the class (operations)

Class Interface
name objects are underlined
\‘m_______. Shape attributes abstract elements are in italics.
+ origin : Point &—
icihilityv- + move(p :.E'__D_irlt)_.____hh_ﬁ
Visibility: _ //--"_—_'-.l- resize(s : Scale) signature name Q
+ public visibility | + display() Ly
invalidateRegion() L
protected 9 operations IApplication
private Responsibilities
-- manage shape
state L
-- handle basic shape| extra compartment
transformations

Extensibility Mechanisms

«Stereotype
*Tagged value
eConstraint
/*——1 «container» tagged value
ActionQueue
sterectype {version = 3.2} @—
add(a : Action) {add runs in O(1) time}
remove(n : Integer)
o s 4
length() : Integer constraint
'® «helper functions»
reorder()

Notion of Stereotype
sprovides the capability to create a new kind of modeling element.
s\We can create new kinds of classes by defining stereotypes for classes.
the stereotype for a class is shown below the class name enclosed in
guillemets (<< >>).
sexamples of class stereotypes: exception, utility etc.

Boundary, Entity, and Control Classes

=The Rational Unified Process advocates for finding the classes for a
system by looking for boundary, control, and entity classes.

Entity classes:
*model information and associated behavior that is generally long lived
emay reflect a real-world entity, or may be needed to perform tasks internal
to the system
eare application independent: may be used in more than one application.

Boundary classes:
*handle the communication between the system surroundings and the inside
of the system
can provide the interface to a user or another system

Control classes:
*model sequencing behavior specific to one or more use cases.
stypically are application-dependent classes.

Relationships

= Provide the conduit for object interaction

= Several kinds of relationships: Vehicle
*Association <
eDependency| <-------------- T
*Realization | <t
«Aggregation <> Truck Car
Inheritance

Association
name iplici
multlli?l"C'W) navigation
0.1 Employs
ond - } end
e : employer employee nfilled diamond for aggregation

/. /. filled diamond for composition
interface specifier role name

Class Diagram

= Purpose

*Provide a picture or view of some or all the classes/interfaces in the model

oStatic design view of the system

———¢__Company aggregation

class 1 ?._ I,

. | 1.* e Multiplicity 1. l name
‘ Department Locations Office t—-""/
name : Name = | address : String
0.1 waice © Number
constraint
P
role -—t o
I . {subset} | oochciation %_ Eﬂ_nf[_e}llzahm
I\"l —
member | 1..* 1| manager Headquarters
Person
narme : Narna __ alkibutes
amployeelD : Intager &
fitle : String _ operations
getPhoto{p: Photo) :
getSoundBite() & Contactinformation
getContactinformation(} | - - 24 address : String
getPersonalRecords() - |

-"I x“‘-u intarface
I.' = PersonnelRecond

™
depeandancy taxl D) ‘]
employmentHistarny

salary ISacurelnfarmaticn

Object Diagram

= Shows a set of objects and their relationships at a point in time
= Shows instances and links
= Built during analysis and design (address the static design view)
= Purpose

o|llustrate data/object structures

] c: Company
*Specify snapshots
d1 : Department d2 : Department
name = “Sales” sname = "“R&D”
link &
object . d3 : Department attribute value
name = “US Sales”

manager anonymous object
p : Person / (
: Contactinformation

name = “Erin” '
employeelD = 4362 address = “1472 Miller St.”
title = “VP of Sales”

Static Structure Diagrams

= Subsystem: Independent unit of functionality that consists of a

collection of related classes and/or other subsystems.

«Offer interfaces and uses interfaces provided by other subsystems.
In the UML, subsystems are represented as folders/packages:

= Dependency Relationships: provides and uses relationships

<<subsystem>>
People
Information

*Uses relationship, shown as a dashed arrow to the used interface.

*Provides relationship, shown as a straight line to the provided interface.

*Subsystem A is dependent on subsystem B implies that one or more
classes in A initiates communication with one or more public classes
in B: Ais called the client and B the supplier.

Transfer

<<subsystem>>
DirectBanking

<<subsystem>>
AccountService

3. Interactions

Use Case Realization
=the functionality of a use case is defined by describing the
scenarios involved.
a scenario is an instance of a use case: it is one path through the flow of events
for the use case.

eecach use case is a web of scenarios: primary scenarios (the normal flow for the
use case) and secondary scenarios (the what-if logic of the use case).

escenarios help identify the objects, the classes, and the object
interactions needed to carry out a piece of the functionality
specified by the use case.

=the flow of events for a use case Is captured in text, whereas
scenarios are captured in interaction diagrams.
=two types of interaction diagrams:

esequence diagrams
ocollaboration diagrams

Sequence Diagram

*Shows object interactions arranged in time sequence
*Purpose
—Model flow of control

—Illustrate typical scenarios
Depicts the objects and classes involved in the scenario and the sequence of
messages exchanged between the objects needed to carry out the functionality
of the scenario.

| .
object nteraction
\4 t: Thread : Toolkit
al :run(3 | o lifeline
1
/. run() ' callbackLoop()
sequence j creation
label message / «Create ‘/—
call ——— P p: Peer
focus of control ~ handleExpose& '.

e recursion —_|

“\.*____.‘:“:—_—-—'-return

| «destroy» g N/
T / o

1
! : destruction

Collaboration Diagram

*Shows object interactions organized around the objects and their links
to each other (Arranged to emphasize structural organization)

*Purpose
—Model flow of control

—Illustrate coordination of object structure and control
Alternate way to describe a scenario

¢ : Client

collaboration diagram

1: «create»
link — e | 2: setActions(a, d, o)
3: «destroy»
«|local» message

L I]
+Tran$acti0n | global
{transient} >

object 2.1 : setValues(d, 3.4)
2.2 : setValues(a, "CO")

*A collaboration diagram contains:
-objects drawn as rectangles
-links between objects shown as lines connecting the linked objects
-messages shown as text and an arrow that points from the client to the
supplier.

p : ODBDProxy

4. Dynamic Behavior

Statechart Diagram
= Use cases and scenarios provide a way to describe system
behavior, that is the interaction between objects in the system.

= A state transition diagram allows the modeling of the behavior
Inside a single object.

o [t shows the events or messages that cause a transition from one
state to another, and the actions that result from a state change.

oIt is created only for classes with significant dynamic behavior,
like control classes.

= State:
«a condition during the life of an object when it satisfies some condition,
performs some action, or waits for an event
found by examining the attributes and links defined for the object

srepresented as a rectangle with rounded corners

State Machine

final state —»
state

.N off / transition nested state
uard
— / R

Idle
ready(3) [signalOK]

keepAlive / check()

Warking

initial state

internal transition
offHook / reclaimConnection()

w?

action

= Transitions:
srepresents a change from an originating state to a successor state (that
may be the same as the originating state).
emay have an action and/or a guard condition associated with it, and
may also trigger an event.

Activity Diagram
«Captures dynamic behavior (activity-oriented)
*Behavior that occurs within the state is called an activity: starts when the state

IS entered and either completes or is interrupted by an outgoing transition.

initial state
— 3 _..

*Purpose

-Model business workflow
. _____-'-r:l- Select sita
Model operations E'T
r
action 5tat7$‘;_ - ""FE Commission architect J
. "'HH""R__ -.l.f
h ~% Devalop plan -_:'I

II." ' \ bl
I| |I "'\H l'|..| i
[H"-\.-\';) Ty
i Bid plan a

| 1
| I|I
Ilb-l:‘l"-II_IErI‘lld._|_-|.'l-r_:l.l1L|1 inot acceptad]
[else) concurrent fork
-

| | |
| \ iy e
\ \ . activity state
\ \ «L W with submachine
b & N T,
-.__1 '-.:’ Lho il whark J 15_”13' 1ra|:|_Er wt:urh[]:;: concurrant join
\ l .
H\“H k11 '.l; - .)
S - _— object flow
S ! i
&~ CertiicatefOccupancy
[complated)

= " L
?Iﬂlﬁh I:DI'IEIHI,.II:!IIDI".IJ.

fimal state W
- P

N

5. Example: Logical View for the ATM

Withdraw Money Use case

2:requestWithdrawal

:Cashierinterface g :Withdrawal
1:identify
i 5:dispense money 3:validate and
'\ withdraw
Customer -Dispenser 4:authorizeDispense | v

:Account

Deposit Use Case

:Cashierlnterface 2:requestDeposit

1:ideW
% :Deposit 5: deposit
%ﬁﬂwoney \

Customer /
:MoneyReceptor 4 -Account

:moneyReception

Transfer Use Case

1:identify«

:Cashierlnterface

\j:requestTrans r

‘Transfer

Al:Account

3:validate

4:transfer

A2:Account

Class Diagram

<<boundary>>
Dispenser

<<control>>
Withdrawal

authorizeDispense()

requestWithdrawal()

<<boundary>>
CashierlInterface

identify()

<<boundary>>
MoneyReceptor

<<control>> <<entity>>

Transfer Account

requestTransfer() validate()
deposit()
transfer()
withdraw()

<<control>>
Deposit

putMoney()

requestDeposit()
moneyReception()

(Refined) Class diagram providing a view of the classes involved
In withdraw Money use case (design model)

CardReader

Display

Transaction

Persistent
Class

% — | v\ /v Manager
\ KeyPad Client
Customer) Manager
Withdrawal
Dispenser /
Feeder
A 4
Account
: Cash Manager
Dispenser Counter

Sensor

/\

Account

Traceability (Withdraw use case)

Analysis

-
c
>
o
A O
+— mw |||||||||||||||||||| M
c | |- 1S S
S (4T m
2 y £
S et v 2 <
< . | T S ©
,,,,, L e O ©
,,,,,,,,,,, <>
:/:/://:/:/ —
I
)
_ 2 g &
||||||||||| = ‘n =
S A = 20O
....... I — S o <3
© c
g s 2 S
< + S
= S M
" — < d r
= - TN] < =
- =
& £
T =S D
O o n m
. @) S %
S <
.- o X
\\\ '~ S
T ()] —
L @
7 N T L o
Qrb b\\ P N“w\ ||||||||||||| @ m
(V) ‘\ \\\\\ S St A L
22 G 2w
L |- TV 5 =
2 c o
O L @©
O [= Cc
© 3
A -
P I A @
o B =
Q |41 © >
© 3]
& i o
— - \/ w ©
..w N] [al S
IS s | |S
— I Oy v ©
k5 >, X
= C |
N I ol
I3 O)
C » — " —
wn @)
A

[
S| =
- D
(&]
S S |
o o N
Feb) =
© z <
W : ;
g g @
o = =
= e g = 2
o> |35 = 3 :
Bt C] e qla W
= S ST s
m <
S| €
lab) : i
— wn
S |58 : e
> 2 m B S Sy ,
o [0S = = 4
D - :
gz 2
> g | 3 m
- Q £ s =
: S g =l 2 g
S| e —
M K — 2 h |||||||||||||||||
X S =
= 2 :
S 5| ° 3
a A4
o < S <
c) =") A —
d = % B —
— o g | 1
< e
(g
beb) @)
c
- S
— =
@) 3 m
Xl | ---x- i E
S B |-z
r 5 - A Bl T
= S o 3| = 1
- . a =
m 5 : < 3| =
) = a7
< A TT .
[v __
....................... A A R

Statechart Modeling Dynamic Behavior of Account Class

/Aguntftate

debit

[amount<=balance]/balance-=amount

.

deposi [amount<=-balance]/
balance+=amount-1

~

[amount>balance]/balance-=amount

wjthdraw

[amount>-balance]/ cedit
balance+=amount- credi

\/ deposit/balance+=amount

/

public class Account {
private int balance;

public void deposit (int amount) {
if (balance > 0) balance = balance + amount;
else balance = balance + amount — 1; // transaction fee

}

public void withdraw (amount) {

if (balance>0) balance = balance — amount;

1

Static Structure Diagram

Withdrawal
<<subsystem>> "_““““>©7 <<subsystem>> | >Q— <<subsystem>>
ATM Interface Q< ___________ Transaction Mgt Transfers Account Mgt
Customer
<<subsystem>>
ATM Interface
<<subsystem>>
UDisplay Classes Subsystems
CardReader, Display, UDisplay/ATM Interface
Dispenser DispenserFeeder, Dispenser/ATM Interface
DispenserSensor, CashCounter
Withdrawal, TransactionMgr TransactionMgt
Account, PersistentClass, AccountMgt

AccountMgr

<<layer>>
Application-specific

Structuring Using Layer Architectural Pattern

<<layer>>
Application-general

V

Subsystems Layers
ATM Interface Application-
specific
Transaction Mgt, Application-
Account Mgt general
Middleware

<<layer>>
Middleware

System-software

V

<<layer>>
System-software

Requirements | Design
|
| 1 |
I]]
UML use case I u UML ACthlty u UML State
descriptions and diagrams i Diagrams Diagrams
i A
|
|
|
|
|
Requirements | oo e
! Diagrams Diagrams
' |
Scenarios /‘I/'
|
|
|
} = - —4 =
i UML Sequence UML Collaboration
| Diagrams Diagrams
|
|
|

INTERACTIONS CLASS STRUCTURE STATES

Coding

UML
Package
Diagrams

UML
Component
Diagrams

UML
Deployment
Diagrams

