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What is Collaborative Filtering?

Group of items
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What is Collaborative Filtering?

Group of items

e Observe some user-item preferences
o Predict new preferences:

Does Bob like strawberries???
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Intro

Collaborative Filtering in the Wild

Amazon.com recommends products based on purchase
history
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Intro

Collaborative Filtering in the Wild...
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Intro

Collaborative Filtering in the Wild...

Netflix predicts other “Movies You'll ©” based on past numeric
ratings (1-5 stars)

Browse | Browse Movies DVD Sale
DVDs Instant You'll ® | Community. $5.99

Home Genres<  NewReleases  NefflixTop 100  Critics' Picks — Award Winners

Movies, actors, directors, genres

Because you enjoyed:

YOUR RECENT ACTMITY
Chinatown 04/14 We shipped
Vertigo

Dr. Strangelove 04114 We received

03/26 We received

‘We think your'll enjoy:
The Last Laugh

SUGGESTIONS FOR YOU
You have new suggestions in Movies You'll %

e Recommendations drive 60% of Netflix’s DVD rentals
o Mostly smaller, independent movies (Thompson 2008)

http://www.netflix.com
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Collaborative Filtering in the Wild...

e Netflix Prize:
Netflix/Prize Beat Netflix

i recommender system,
Wvicmia ! using Netflix data —

e Data:
480,000 users
18,000 movies
100 million observed
ratings = only 1.1% of
ratings observed

“The Netflix Prize seeks to substantially improve the accuracy
of predictions about how much someone is going to love a
movie based on their movie preferences.”
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Intro

What is Collaborative Filtering?

Insight: Personal preferences are correlated

o |f Jack loves A and B, and Jill loves A, B, and C, then Jack
is more likely to love C

Collaborative Filtering Task

¢ Discover patterns in observed preference behavior (e.g.
purchase history, item ratings, click counts) across
community of users

¢ Predict new preferences based on those patterns

Does not rely on item or user attributes (e.g. demographic info,
author, genre)

e Content-based filtering: complementary approach
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What is Collaborative Filtering?

Given:
e Usersuefl,...,U}
o ltemsie{l,..., M}
e Training set 7~ with observed, real-valued preferences r;
for some user-item pairs (u, i)
e r, = €.g. purchase indicator, item rating, click count . ..

Goal: Predict unobserved preferences
e Test set Q with pairs (u, i) notin 7~
View as matrix completion problem
e Fill in unknown entries of sparse preference matrix

7?71 ... 4
R=|3 ? 7 ? U users
7?5 7?7 ... 5
M items
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Intro

What is Collaborative Filtering?

Measuring success
e Interested in error on unseen test set @, not on training set

e For each (u, i) let r,; = true preference, f,; = predicted
preference
e Root Mean Square Error

o RMSE = IQI Z (rui — Fui)2
e Mean Absolute Error
* MAE = |Q| Y rui =l

(uieQ

¢ Ranking-based objectives

e e.g. What fraction of true top-10 preferences are in
predicted top 10?
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Prelim Centering Shrinkage

Centering Your Data

e What?
¢ Remove bias term from each rating before applying CF
methods: 7,; = ryi — byi
e Why?
e Some users give systematically higher ratings
e Some items receive systematically higher ratings
e Many interesting patterns are in variation around these
systematic biases
e Some methods assume mean-centered data

e Recall PCA required mean centering to measure variance
around the mean
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Prelim Centering Shrinkage

Centering Your Data

o What?
¢ Remove bias term from each rating before applying CF
methods: 7, = ryi — by
e How?
¢ Global mean rating
® by =p:= |1?| Lwiyer lui
e Item’s mean rating
® b,=b;:= m Yuerq) Tui
e R(i) is the set of users who rated item i
e User's mean rating
® b,=0b,:= ”qg_un ZieH(u) Tui
e R(u) is the set of items rated by user u
e ltem’s mean rating + user’s mean deviation from item mean
® b= b+ IRZ_U)I Lier(w)(rui — bi)
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Prelim Centering  Shrinkage

Shrinkage

o What?
¢ Interpolating between an estimate computed from data and
a fixed, predetermined value
e Why?
e Common task in CF: Compute estimate (e.g. a mean
rating) for each user/item
¢ Not all estimates are equally reliable
e Some users have orders of magnitude more ratings than

others
o Estimates based on fewer datapoints tend to be noisier

A B C D E F Usermean
R_ Alice 2 5 5 4 3 6§ 4
- Bob 2 ? ? ? 7?7 7 2
Craig 3 3 4 3 7 4 3.4

e Hard to trust mean based on one rating
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Prelim Centering  Shrinkage

Shrinkage

o What?
e Interpolating between an estimate computed from data and
a fixed, predetermined value

e How?
e e.g. Shrunk User Mean:

6 _ 22 . |R(U)|
YT A R YT a T IR

e u is the global mean, a controls degree of shrinkage
e When user has many ratings, b, ~ user’s mean rating

« When user has few ratings, b, ~ global mean rating

A B C D E F Usermean Shrunk mean
Alice 2 5 5 4 3 5 4 3.94
Bob 2 7 7 7?7 7 7 2 2.79
Caig 3 3 4 3 7 4 3.4 3.43

Global mean p = 3.58, a = 1

Lester Mackey Collaborative Filtering
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Class/Reg Naive Bayes KNN

Classification/Regression for CF

Interpretation: CF is a set of M classification/regression
problems, one for each item

e Consider a fixed item i

o Treat each user as incomplete vector of user’s ratings for
all items except i: 7, = (3,2,7,4,7,5,7,1,3)

e Class of each user w.r.t. item i is the user’s rating for item i
(e.0.1,2,3,4,0r5)

e Predicting rating r,; = Classifying user vector 7,
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Class/Reg Naive Bayes KNN

Classification/Regression for CF

Approach:
e Choose your favorite classifier/regression algorithm
¢ Train separate predictor for each item

e To predict r,; for user u and item i, apply item i’s predictor
to vector of user u’s incomplete ratings vector

Pros:
e Reduces CF to a well-known, well-studied problem
e Many good prediction algorithms available
Cons:
e Predictor must handle missing data (unobserved ratings)

e Training M independent predictors can be expensive
e Approach may not take advantage of problem structure
e |tem-specific subproblems are often related
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Class/Reg Naive Bayes KNN

Naive Bayes Classifier

Treat distinct rating values as classes
Consider classification for item i
Main assumption
e Foranyitemsj# k # i, rjand r¢ are
conditionally independent given r;

o When we know rating r,; all of a user’s
other ratings are independent

Parameters to estimate

¢ Prior class probabilities: P(r; = v)
e Likelihood: P(rj = wir; = v)
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Class/Reg Naive Bayes KNN

Naive Bayes Classifier

Train classifier with all users who have rated item i
¢ Use counts to estimate prior and likelihood

25:1 1(ryi=v)
ZVY/:1 Z,U:1 1(rui=w)
23:1 1 (rui =V, 1= W)

v U
2221 ZU:1 1 (rui =V, rUj = Z)

P(ri=v) =

P(ri=wlri=v) =

o Complexity
o O(XY_, |R(u)P) time and O(M?V?2) space for all items
Predict rating for (u, i) using posterior
P(ryi=v) Hj;&i P(rylrui = v)
Zv\.//:1 P(rui = w) I} P(ryjlrui = w)
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Class/Reg Naive Bayes KNN

Naive Bayes Summary

Pros:

e Easy to implement

o Off-the-shelf implementations readily available
Cons:

e Large space requirements when storing parameters for all
M predictors

o Makes strong independence assumptions
e Parameter estimates will be noisy for items with few ratings

e E.g. P(r; = w|ri = v) = 0 if no user rated both i and j
Addressing cons:
¢ Tie together parameter learning in each item’s predictor
e Shrinkage/smoothing is an example of this
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Class/Reg Naive Bayes KNN

K Nearest Neighbor Methods

Most widely used class of CF methods
e Flavors: ltem-based and User-based
o Represent each item as incomplete vector of user ratings:
ri=(3,7,74,75,771,3)
o To predict new rating r,; for query user u and item i:
© Compute similarity between i and every other item

® Find K items rated by u most similar to i
® Predict weighted average of similar items’ ratings

e Intuition: Users rate similar items similarly.
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Class/Reg Naive Bayes KNN

KNN: Computing Similarities

How to measure similarity between items?
e Cosine similarity

(i, 7))

7 173
e Pearson correlation coefficient
— mean(7), F; — mean(7}))

S(7i 7)) =

S(7;, 7)) =

r
rnean(?,)”

||r.f — mean(7))
¢ Inverse Euclidean distance

> > 1
S(ri,ry) =

I7i = 7]

Problem: These measures assume complete vectors
Compute over subset of users rated by both items
Complexity: O(Z _1 IR(u)I?) time
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Class/Reg Naive Bayes KNN

KNN: Choosing K neighbors

How to choose K nearest neighbors?
e Select K items with largest similarity score to query item i

Problem: Not all items were rated by query user u
Choose K most similar items rated by u

Complexity: O(min(KM, Mlog M))

Herlocker et al., 1999
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Class/Reg Naive Bayes KNN

KNN: Forming Weighted Predictions

Predicted rating for query user u and item i
e N(i; u) is the neighborhood of item i for user u
e i.e. the K most similar items rated by u
o Py = by + ZN(i;u) wii(ry — byj)
How to choose weights for each neighbor?

« Equal weights: w; = Wd—uﬂ

L . (7))
e Similarity weights: wj = Tt ST (Herlocker et al., 1999)
e Learn optimal weights for each user (Bell and Koren, 2007)
e Learn optimal global weights (Koren, 2008)

Complexity: O(K)
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Class/Reg Naive Bayes KNN

KNN: User Optimized Weights

Intuition: For a given query user u and item i, choose weights
that best predict other known ratings of item i using only N(i; u):
2

min E Isi — E Wil
Wi
seR(i),s#u jeN(i;u)

With no missing ratings, this is a linear regression problem:
K closest movies

—

3 31415
- 5 15221
g 3 42314
9 4l = |z2421
= 2 42113
< 4 35414

3 42115

>
=z

l,l =
Bell and Koren, 2007
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Class/Reg Naive Bayes KNN

KNN: User Optimized Weights

e Optimal solution: w = A~'b for
A=XTX,b=XTy
e Problem: X contains missing entries
e Not all items in N(i; u) were rated by

K closest movies

— all users
NE 15221 . Approximate A and b
51 il = [22::1
7| | 12113 A Y.seR(j)NR(k) Tsil'sk
3 42115 ik = -
- ’ IRG) N R(K)
¥ = W
5 Y.seR(i)nR(k) Tsilsk
K = .
5 IR(i) N R(k)
ell and Koren, 2007 Al1p
w =A"b

e Estimates based on users who rated
each pair of items
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Class/Reg Naive Bayes KNN

KNN: User Optimized Weights

Benefits
e Weights optimized for the task of rating prediction
¢ Not just borrowed from the neighborhood selection phase
¢ Weights not constrained to sum to 1
e Important if all nearest neighbors are dissimilar
¢ Weights derived simultaneously
e Accounts for correlations among neighbors
e Outperforms KNN with similarity or equal weights

« Can compute entries of A and b offline in parallel

Drawbacks

e Must solve additional KxK system of linear equations per
query

Bell and Koren, 2007
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Class/Reg Naive Bayes KNN

KNN: Globally Optimized Weights

Consider the following KNN prediction rule for query (u, i:
jeN(i;u)

Could learn a single set of KNN weights wj;, shared by alll
users, that minimize regularized MSE:

M M
1 1
2 2 _ ;
| Z = Tui) +AZZ§WU_|7'| Z Eui
(u,i) E‘T i=1 j=1 (u)eT

Optimize objective using stochastic gradient descent:
e For each example (u,i) € 7, update w;; ¥j € N(i; u)

t+1 ot 9
w; = Ww; y&w,-jE“'

= W’;- — y(IN(i; U)l_%(?ui — 1ui)(ryj — byj) + /\Wilt')

Lester Mackey Collaborative Filtering



Class/Reg Naive Bayes KNN

KNN: Globally Optimized Weights

Benefits
* Weights optimized for the task of rating prediction
¢ Not just borrowed from the neighborhood selection phase
¢ Weights not constrained to sum to 1
e Important if all nearest neighbors are dissimilar
e Weights derived simultaneously
¢ Accounts for correlations among neighbors

e Outperforms KNN with similarity or equal weights

Drawbacks
e Must solve global optimization problem at training time
e Must store O(M?) weights in memory

Koren, 2008
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Class/Reg Naive Bayes KNN

KNN: Summary

Comparison of KNN weighting schemes on Netflix quiz data

0.945
0.94
0.935
0.93 —m— Global KNN w/ implicit
Global KNN
7 0.925 User KNN
E 0.92 —— Correlation KNN
0.915 -\
- '\-\
0.905
0.9 , ‘ \.\.\'\-—

250 500 1000 2000 4000 8000 infinity
k

Koren, 2008
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Class/Reg Naive Bayes KNN

KNN: Summary

Pros

o Intuitive interpretation
e When weights not learned. . .
o Easy to implement
e Zero training time
e Learning prediction weights can greatly improve accuracy
for little overhead in space and time
Cons
¢ When weights not learned. . .
¢ Need to store all item (or user) vectors in memory
e May redundantly recompute similarity scores at test time
o Similarity/equal weights not always suitable for prediction
e When weights learned. ..
» Need to store O(M?) or O(U?) parameters
e Must update stored parameters when new ratings occur
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MF SVD Factor Analysis

Low Dimensional Matrix Factorization

Matrix Completion
e Filling in the unknown ratings in a sparse U x M matrix R

771 ... 4
R={3 7 7 ... 7
5 7 ... 5

Low dimensional matrix factorization
e Model R as a product of two lower dimensional matrices

- A

e Ais UXx K “user factor” matrix, K < U, M
e Bis Mx K, “item factor” matrix
e Learning A and B allows us to reconstruct all of R
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MF

Low Dimensional Matrix Factorization

A

Interpretation: Rows of A and B are low dimensional feature
vectors a, and b; for each user u and item i

Motivation: Dimensionality reduction

o Compact representation: only need to learn and store
UK + MK parameters

e Matrices can often be adequately represented by low rank
factorizations
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MF

Low Dimensional Matrix Factorization

A

Very general framework that encapsulates many ML methods
e Singular value decomposition

e Clustering

¢ A can represent cluster centers
¢ B probabilities of belonging to each cluster

e Factor Analysis/Probabilistic PCA
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MF SVD Factor Analysis

Singular Value Decomposition

Squared error objective for MF

argmin |7 - ABT||2—argmmZZ(ru, (au, bi))?

u=1i=

¢ Reasonable objective since RMSE is our error metric

When all of R is observed, this problem is solved by singular
value decomposition (SVD)
e SVD: R=Hx VT
o His Ux Uwith HTH = Iyxy
e Vis MxMwith VTV = Iy
e ¥ is Ux M and diagonal
e Solution: Take first K pairs of singular vectors
o LetA = HUXKZKXK and B = VMXK
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MF SVD Factor Analysis

SVD with Missing Values

Weighted SE objective

u ™M

argmin ), ), Walru = (@, b)°

u=1 i=1

Binary weights
o W, =1ifr, observed, W,; = 0 otherwise
¢ Only penalize errors on known ratings

How to optimize?

o Straightforward singular value decomposition no longer
applies
e Local minima exist = algorithm initialization is important
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MF SVD Factor Analysis

SVD with Missing Values

Insight: Chicken and egg problem
¢ |f we knew the missing values in R, could apply SVD
e If we could apply SVD, we could find the missing values in
R
e |dea: Fill in unknown entries with best guess; apply SVD;
repeat

Expectation-Maximization (EM) algorithm
¢ Alternate until convergence:
@ Estep: X=Wx+R+(1-W)=R
(* represents entrywise product)

@ Mstep: [H, %, V] = SVD(X), R = HuxkZrxx V) «

Complexity: O(UM) space and O(UMK) time per EM iteration
e What if UM or UMK is very large?
e UM = 8.5 billion for Netflix Prize dataset

o Complete ratings matrix may not even fit into memory!
Srebro and Jaakkola, 2003
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MF SVD Factor Analysis

SVD with Missing Values

Regularized weighted SE objective

argmin Z Z Wai(rui = (au, bi)? + A( Z lall® + 2 16:1)

u=1i=

Equivalent form

u M
argmin )" (i = (@, b))° + (Y llaull® + ) IbilP)

AB

(uieT u=1 i=1
Motivation
e Counters overfitting by implicitly restricting optimization
space

e Shrinks entries of A and B toward 0
e Can improve generalization error, performance on unseen
test data
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MF SVD Factor Analysis

SVD with Missing Values

Insight: If we knew B, could solve for each row of A via ridge
regression and vice-versa
¢ Alternate between optimizing A and optimizing B with the
other matrix held fixed
Alternating least squares (ALS) algorithm
¢ Alternate until convergence:
© For each user u, update
au < (Zieﬂ(u) bib/T + AI)_1 ZieR(u) ruibi
@® For each item i, update
bi  (Luery @aay + A" Lerq) fuidu
Complexity: O(UK + MK) space, O(UK® + MK?3) time per
iteration
* Note: updates for vectors a, can all be performed in
parallel (same for b;)
¢ No need to store completed ratings matrix

Zhou et al., 2008
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MF SVD Factor Analysis

SVD with Missing Values

Insight: Use standard gradient descent
* Va,E =2au+ Licp() bi({au, biy — rui)
o VpE = Abji + YLyepiy au((au, bi) — rui)
Gradient descent algorithm
e Repeat until convergence:
© For each user u, update
ay < ay— V(Aau =+ ZieR(u) bi(<au/ bi) - rui))
@® For each item i, update
bi — bi = y(Abi + Luep(iy au({au, bi) — 1i))
e Can update all a, in parallel (same for b;)
Complexity: O(UK + MK) space, O(NK) time per iteration
¢ No need to store completed ratings matrix
e No K3 overhead from solving linear regressions
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MF SVD Factor Analysis

SVD with Missing Values

Insight: Update parameter after each observed rating
* Va,Eui = Aay + bi({au, bi) — rui)
* VpEui = Abj + ay({au, b)) — rui)

Stochastic gradient descent algorithm

e Repeat until convergence:
@ Foreach (u,i)eT
@ Calculate error: ey « ({ay, bi) — ru)
® Update a, < a, - y(Aay + biey)
® Update b; < b; — y(Ab; + ayey)

Complexity: O(UK + MK) space, O(NK) time per pass
through training set

¢ No need to store completed ratings matrix

e No K3 overhead from solving linear regressions

Takacs et al., 2008, Funk, 2006
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MF SVD Factor Analysis

Constrained MF as Clustering

Insight: Soft clustering of items is MF
¢ Row b; represents item i’s fractional belonging to each
cluster
e Columns of A are cluster centers
¢ Yields greater interpretability

Constrained weighted SE objective

argmln Z Z Wii(rui — (au, b,)) s.t. V¥i bj >0, Z bix =1

u=1 i=1

e Wu and Li (2008) penalize constraints in the objective and
optimize via stochastic gradient descent

Takeaway: Can add your favorite constraints and optimize with
standard techniques
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MF SVD Factor Analysis

Factor Analysis

Motivation

e Explain data variability in terms of latent
factors

e Provide model for how data is generated

The Model
For each user, r, = partially observed ratings vector in RM
For each user, b, = latent factor vector in RK
A is an M x K matrix of parameters (factor loading matrix)
V is an M x M covariance matrix
e Probabilistic PCA: Special case when ¥ = 2/

To generate ratings for user u:

@ Draw b, ~ N(0, Ix)

® Draw r, ~ N(Ab,, V)

Canny, 2002
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MF SVD Factor Analysis

Factor Analysis

Parameter Learning

e Only need tolearn A and ¥ R
e b, are variables to be integrated out b,
e Typically use EM algorithm (Canny,
ALY
2002)
e Can be very slow for large datasets \

o Alternative: Stochastic gradient descent \. "u

on negative log likelihood (Lawrence \ U )

and Urtasun, 2009)
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MF SVD Factor Analysis

Low Dimensional MF: Summary

Pros

e Data reduction: only need to store UK + MK parameters at
test time

e MK + M? needed for Factor Analysis

o Gradient descent and ALS procedures are easy to
implement and scale well to large datasets

e Empirically yields high accuracy in CF tasks

e Matrix factors could be used as inputs into other learning
algorithms (e.g. classifiers)

Cons
e Missing data MF objectives plagued by many local minima
e Initialization is important
e EM approaches tend to be slow for large datasets
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Extend Implicit Feedback Time Dependence

Incorporating Implicit Feedback

Implicit feedback
¢ In addition to explicitly observed ratings, may have access
to binary information reflecting implicit user preferences
¢ |s a movie in a user’s queue at Netflix?
o Was this item purchased (but never rated)?
e Test set can be a source of implicit feedback
e For each (u,i) in the test set, we know u rated i; we just
don’t know the rating.
e Data is not “missing at random”
e The fact that a user rated an item provides information
about the rating.
e E.g. People who rated Lord of The Rings I and Il tend to rate
LOTR Il more highly.
e Can extend several of our algorithms to incorporate implicit
feedback as additional binary preferences

Lester Mackey Collaborative Filtering



Extend Implicit Feedback Time Dependence

Incorporating Implicit Feedback

KNN: Globally Optimized Weights
e Let T(i; u) be the set of K items most similar to i for which
u has positive implicit feedback
e E.g. Positive implicit feedback: Every item purchased by u
or every movie in the queue of u

e Augment the KNN prediction rule with implicit feedback
weights cj;:
P = bui+ NG u) ™2 ) wi(rg—by) +IT( w2 ) ¢

jeN(i;u) JeT(i;u)

e Each cj is an offset of the baseline KNN prediction

e ¢ji is large when implicit feedback about j is informative
about i

» Optimize wj; and ¢; jointly using stochastic gradient
descent

Koren, 2008
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Extend Implicit Feedback Time Dependence

Incorporating Implicit Feedback

Comparison of KNN weighting schemes on Netflix test data
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Koren, 2008
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Extend Implicit Feedback Time Dependence

Incorporating Implicit Feedback

NSVD
¢ Represent each user as a “bag of movies”
¢ Instead of learning a, for each user explicitly, learn second
set of item vectors, b;
o Leta, =|T(u)l"2 YieT(u) b; where T(u) is the set of all items
for which u has positive implicit feedback
e New MF objective:

argmin Z (ru,-—(IT(U)I_% Z Bj,bi>)2
BB (uieT JeT(u)

e Train via stochastic gradient descent with regularization
o Additional properties
e 2MK parameters instead of MK + UK, useful when M < U
e Handles new users without retraining
e Empirically underperforms SVD techniques but captures
different patterns in the data

Paterek, 2007
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Extend Implicit Feedback Time Dependence

Incorporating Implicit Feedback

SVD++
¢ Integrate the missing-data SVD and NSVD objectives

argmin Z (ryi—<au+1T(u ‘% Z b,,b,)
ABB (ui)er jeT(u)

e Learning both explicit user vectors, a,, and implicit vectors,

_1 e
IT(WI"2 Ljeru) bj
e Train via stochastic gradient descent with regularization

Performance on Netflix Prize quiz set

Model 50 factors | 100 factors | 200 factors
SVD 0.9046 0.9025 0.9009
SVD++ 0.8952 0.8924 0.8911
Koren, 2008
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Extend Implicit Feedback Time Dependence

Adding Time Dependence

Claim: Preferences are time-dependent
¢ |tems grow and fade in popularity
e User tastes evolve over time

e Decade, season, and day of the week all influence
expressed preferences

e Even number of items rated in a day can be predictive of
ratings (Pragmatic Theory Netflix Grand Prize Talk 2009)
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Implicit Feedback Time Dependence

Average movie rating versus number of movies rated that day in
Netflix dataset (Piotte and Chabbert 2009)

Memento vs Patch Adams
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Extend Implicit Feedback Time Dependence

Average movie rating versus number of days since first rating in
Netflix dataset

Rating by movie age
3.9

mean score
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Koren, 2009

Lester Mackey Collaborative Filtering



Extend Implicit Feedback Time Dependence

Adding Time Dependence

Claim: Preferences are time-dependent

Claim: Rating timestamps routinely collected by companies
e Dates provided for each rating in Netflix Prize dataset

= Valuable to introduce time dependence into CF algorithms
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Extend Implicit Feedback Time Dependence

Adding Time Dependence

TimeSVD++
e Parameterize explicit user factor vectors by time

au(t) = ay + aydev(t) + Ny

e g, is a static baseline vector

e aydev(t) is a static vector multiplied by the deviation from
the user’s average rating time
e Captures linear changes in time

e N, is a vector learned for a specific point in time

Koren, 2009
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Extend Implicit Feedback Time Dependence

Adding Time Dependence

TimeSVD++
New objective
argmin Z (ru,-—(au(t)+|T(u)|‘% Z 5,-,b,->)2
A(1),B,B (u,i)eT jeT(u)
Optimize via regularized stochastic gradient descent

Results on Netflix Quiz Set

Model 7=10 | F=20 | f=50 | F=100 | f=200
SVD 9140 | .9074 | 9046 | 9025 | 9009
SVD++ 9131 | .9032 | 8952 | .8924 | .8911
timeSVD++ | .8971 | .8891 | .8824 | .8805 | .8799

f in this chart above is K in our model
Note: f = 200 requires fitting billions of parameters with
only 100 million ratings!

Koren, 2009
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Extend Implicit Feedback Time Dependence

Adding Time Dependence

KNN: Globally optimized time-decaying weights
e New prediction rule

P = buHINGE 072 ) e Pl twy(ry - by)
(j,)eN(i;u)
HIT(i; U Z e Pult-tig;
(U 1)eT (isu)
¢ Intuition: Allow the strength of item relationships to decay
with time elapsed between ratings

e Optimize regularized weighted SE objective via stochastic
gradient descent

o Netflix test set RMSE drops from .9002 (without time) to
.8885

Koren, 2009
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Combining Methods

Why combine?
¢ Diminishing returns from optimizing a single algorithm
o Different models capture different aspects of the data

o Statistical motivation

o If Xi, X2 uncorrelated with equal mean,
Var(3 + 2) = 1(Var(Xy) + Var(Xz))
e Moral: Errors of different algorithms can cancel out

Lester Mackey Collaborative Filtering



Combo

Combining Methods

Training on Errors

e Many CF algorithms handle arbitrarily real-valued
preferences

o Treat the prediction errors of one algorithm as input
“preferences” of second algorithm

e Second algorithm can learn to predict and hence offset the
errors of the first

e Often yields improved accuracy

No interpolation || Correlation-based interpolation || Jointly derived interpolation
Data normalization (k=0) k=20| k=35 k=50 k=20 | k=35| k=50
none (raw scores) NA 0.9947 | 1.002 1.0085 0.9536 | 0.9596 | 0.9644
double centering 0.9841 0.9431 | 0.9470 0.9502 0.9216 | 0.9198 | 0.9197
global effects 0.9657 0.9364 | 0.9390 0.9413 0.9194 | 09179 | 09174
factorization 0.9167 0.9156 | 0.9142 0.9142 0.9071 | 0.9071 | 0.9071

Bell and Koren, 2007
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Combining Methods

Stacked Ridge Regression
e Linearly combine algorithm predictions to best predict
unseen ratings
e Withhold a subset of your training set ratings from
algorithms during training
e Let columns of P = predictions of each algorithm on
hold-out set

e Lety = true hold-out set ratings

e Solve for optimal regularized blending coefficients, g
ming [ly - o+ A |8

e Solution: g = (PTP + Al)~'PTy

¢ Blended predictions often more accurate than any single
predictor on true test set

Breiman, 1996
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Combining Methods

Integrating Models
e Largest boosts in accuracy come from integrating
disparate approaches into a single unified model
¢ Integrated KNN-SVD++ predictor

P =@y +IT(u)™2 Y B by +1TG w2 Y g

jeT(u) JeT(i;u)

+ by + ING )72 Y wi(ry; — by)
jeN(iu)
e Optimize regularized weighted SE objective via stochastic
gradient descent
¢ Results on Netflix Quiz Set
50 factors | 100 factors | 200 factors

RMSE 0.8877 0.8870 0.8868
time/iteration 17min 20min 25min
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Conclude Challenges for CF  References

Challenges for CF

Relevant objectives
e How will output of CF algorithms will be used in a real
system?
e Predicting actual rating may be useless!
e May care more about ranking of items

Missing at random assumption
e Many CF methods incorrectly assume that the items rated
are chosen randomly, independently of preferences

e How can our models capture information in choices of
ratings?
e Marlin et al, 2007, Salakhutdinov and Mnih, 2007
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Conclude Challenges for CF  References

Challenges for CF

Preference versus intention

¢ Distinguish what people like from what people are
interested in seeing/purchasing

e Worthless to recommend an item a user already has/was
going to buy anyway

Scaling to truly large datasets

e Latest algorithms scale to 100 million rating Netflix dataset.
Can they scale to 10 billion ratings? Millions of users and
items?

e Simple and parallelizable algorithms are preferred

Lester Mackey Collaborative Filtering



Conclude Challenges for CF  References

Challenges for CF

Multiple individuals using the same account
e Benefit in modeling their individual preferences?

Handling users and items with few ratings
e Use user and item meta-data: Content-based filtering
o User demographics, movie genre, etc.
e Kernel methods seem promising
¢ Basilico and Hofmann, 2004, Yu et al., 2009

e Subject of Netflix Prize 2
http://www.netflixprize.com/community/viewtopic.php?id=1520

e Answer is worth $500,000
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