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What is Collaborative Filtering?

Group of users Group of items

• Observe some user-item preferences
• Predict new preferences:

Does Bob like strawberries???

Lester Mackey Collaborative Filtering



Intro Prelim Class/Reg MF Extend Combo Conclude

What is Collaborative Filtering?

Group of users Group of items

• Observe some user-item preferences
• Predict new preferences:

Does Bob like strawberries???
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Collaborative Filtering in the Wild...

Amazon.com recommends products based on purchase
history

Linder et al., 2003

Lester Mackey Collaborative Filtering



Intro Prelim Class/Reg MF Extend Combo Conclude

Collaborative Filtering in the Wild...

• Google News
recommends new
articles based on
click and search
history

• Millions of users,
millions of articles

Das et al., 2007
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Collaborative Filtering in the Wild...

Netflix predicts other “Movies You’ll ♥” based on past numeric
ratings (1-5 stars)

• Recommendations drive 60% of Netflix’s DVD rentals
• Mostly smaller, independent movies (Thompson 2008)

http://www.netflix.com
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Collaborative Filtering in the Wild...

• Netflix Prize:
Beat Netflix
recommender system,
using Netflix data→
Win $1 million

• Data:
480,000 users
18,000 movies
100 million observed
ratings = only 1.1% of
ratings observed

“The Netflix Prize seeks to substantially improve the accuracy
of predictions about how much someone is going to love a
movie based on their movie preferences.”

http://www.netflixprize.comLester Mackey Collaborative Filtering
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What is Collaborative Filtering?

Insight: Personal preferences are correlated
• If Jack loves A and B, and Jill loves A, B, and C, then Jack

is more likely to love C
Collaborative Filtering Task
• Discover patterns in observed preference behavior (e.g.

purchase history, item ratings, click counts) across
community of users

• Predict new preferences based on those patterns
Does not rely on item or user attributes (e.g. demographic info,
author, genre)
• Content-based filtering: complementary approach

Lester Mackey Collaborative Filtering
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What is Collaborative Filtering?

Given:
• Users u ∈ {1, . . . ,U}
• Items i ∈ {1, . . . ,M}
• Training set T with observed, real-valued preferences rui

for some user-item pairs (u, i)
• rui = e.g. purchase indicator, item rating, click count . . .

Goal: Predict unobserved preferences
• Test set Q with pairs (u, i) not in T

View as matrix completion problem
• Fill in unknown entries of sparse preference matrix

R =


? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5


︸                      ︷︷                      ︸

M items

U users
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What is Collaborative Filtering?

Measuring success
• Interested in error on unseen test set Q, not on training set
• For each (u, i) let rui = true preference, r̂ui = predicted

preference
• Root Mean Square Error

• RMSE =

√
1
|Q|

∑
(u,i)∈Q

(rui − r̂ui)2

• Mean Absolute Error
• MAE =

1
|Q|

∑
(u,i)∈Q

|rui − r̂ui |

• Ranking-based objectives
• e.g. What fraction of true top-10 preferences are in

predicted top 10?
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Centering Your Data

• What?
• Remove bias term from each rating before applying CF

methods: r̃ui = rui − bui

• Why?
• Some users give systematically higher ratings
• Some items receive systematically higher ratings
• Many interesting patterns are in variation around these

systematic biases
• Some methods assume mean-centered data

• Recall PCA required mean centering to measure variance
around the mean

Lester Mackey Collaborative Filtering
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Centering Your Data

• What?
• Remove bias term from each rating before applying CF

methods: r̃ui = rui − bui

• How?
• Global mean rating

• bui =µ B 1
|T |

∑
(u,i)∈T rui

• Item’s mean rating
• bui = bi B

1
|R(i)|

∑
u∈R(i) rui

• R(i) is the set of users who rated item i
• User’s mean rating

• bui = bu B
1

|R(u)|

∑
i∈R(u) rui

• R(u) is the set of items rated by user u
• Item’s mean rating + user’s mean deviation from item mean

• bui = bi +
1

|R(u)|

∑
i∈R(u)(rui − bi)
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Shrinkage

• What?
• Interpolating between an estimate computed from data and

a fixed, predetermined value
• Why?

• Common task in CF: Compute estimate (e.g. a mean
rating) for each user/item

• Not all estimates are equally reliable
• Some users have orders of magnitude more ratings than

others
• Estimates based on fewer datapoints tend to be noisier

R =

A B C D E F User mean
Alice 2 5 5 4 3 5 4
Bob 2 ? ? ? ? ? 2
Craig 3 3 4 3 ? 4 3.4

• Hard to trust mean based on one rating

Lester Mackey Collaborative Filtering
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Shrinkage

• What?
• Interpolating between an estimate computed from data and

a fixed, predetermined value
• How?

• e.g. Shrunk User Mean:

b̃u =
α

α+ |R(u)|
∗ µ+

|R(u)|

α+ |R(u)|
∗ bu

• µ is the global mean, α controls degree of shrinkage
• When user has many ratings, b̃u ≈ user’s mean rating
• When user has few ratings, b̃u ≈ global mean rating

R =

A B C D E F User mean Shrunk mean
Alice 2 5 5 4 3 5 4 3.94
Bob 2 ? ? ? ? ? 2 2.79
Craig 3 3 4 3 ? 4 3.4 3.43

Global mean µ = 3.58, α = 1
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Classification/Regression for CF

Interpretation: CF is a set of M classification/regression
problems, one for each item
• Consider a fixed item i
• Treat each user as incomplete vector of user’s ratings for

all items except i: ~ru = (3, ?, ?,4, ?,5, ?,1,3)

• Class of each user w.r.t. item i is the user’s rating for item i
(e.g. 1,2,3,4, or 5)

• Predicting rating rui ≡ Classifying user vector ~ru

Lester Mackey Collaborative Filtering
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Classification/Regression for CF

Approach:
• Choose your favorite classifier/regression algorithm
• Train separate predictor for each item
• To predict rui for user u and item i, apply item i’s predictor

to vector of user u’s incomplete ratings vector
Pros:
• Reduces CF to a well-known, well-studied problem
• Many good prediction algorithms available

Cons:
• Predictor must handle missing data (unobserved ratings)
• Training M independent predictors can be expensive
• Approach may not take advantage of problem structure

• Item-specific subproblems are often related

Lester Mackey Collaborative Filtering
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Naive Bayes Classifier

• Treat distinct rating values as classes
• Consider classification for item i
• Main assumption

• For any items j , k , i, rj and rk are
conditionally independent given ri

• When we know rating rui all of a user’s
other ratings are independent

• Parameters to estimate
• Prior class probabilities: P(ri = v)
• Likelihood: P(rj = w |ri = v)

Lester Mackey Collaborative Filtering
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Naive Bayes Classifier

Train classifier with all users who have rated item i
• Use counts to estimate prior and likelihood

P(ri = v) =

∑U
u=1 1 (rui = v)∑V

w=1
∑U

i=1 1 (rui = w)

P(rj = w |ri = v) =

∑U
u=1 1

(
rui = v , ruj = w

)
∑V

z=1
∑U

u=1 1
(
rui = v , ruj = z

)
• Complexity

• O(
∑U

u=1 |R(u)|2) time and O(M2V2) space for all items
Predict rating for (u, i) using posterior

P(rui = v |ru1, . . . , ruM) =
P(rui = v)

∏
j,i P(ruj |rui = v)∑V

w=1 P(rui = w)
∏

j,i P(ruj |rui = w)

Lester Mackey Collaborative Filtering



Intro Prelim Class/Reg MF Extend Combo Conclude Naive Bayes KNN

Naive Bayes Summary

Pros:
• Easy to implement
• Off-the-shelf implementations readily available

Cons:
• Large space requirements when storing parameters for all

M predictors
• Makes strong independence assumptions
• Parameter estimates will be noisy for items with few ratings

• E.g. P(rj = w |ri = v) = 0 if no user rated both i and j

Addressing cons:
• Tie together parameter learning in each item’s predictor
• Shrinkage/smoothing is an example of this

Lester Mackey Collaborative Filtering
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K Nearest Neighbor Methods

Most widely used class of CF methods
• Flavors: Item-based and User-based
• Represent each item as incomplete vector of user ratings:
~r.i = (3, ?, ?,4, ?,5, ?,1,3)

• To predict new rating rui for query user u and item i:
1 Compute similarity between i and every other item
2 Find K items rated by u most similar to i
3 Predict weighted average of similar items’ ratings

• Intuition: Users rate similar items similarly.

Lester Mackey Collaborative Filtering
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KNN: Computing Similarities

How to measure similarity between items?
• Cosine similarity

S(~r.i ,~r.j) =
〈~r.i ,~r.j〉∣∣∣∣∣∣~r.i ∣∣∣∣∣∣ ∣∣∣∣∣∣~r.j ∣∣∣∣∣∣

• Pearson correlation coefficient

S(~r.i ,~r.j) =
〈~r.i −mean(~r.i),~r.j −mean(~r.j)〉∣∣∣∣∣∣~r.i −mean(~r.i)

∣∣∣∣∣∣ ∣∣∣∣∣∣~r.j −mean(~r.j)
∣∣∣∣∣∣

• Inverse Euclidean distance

S(~r.i ,~r.j) =
1∣∣∣∣∣∣~r.i −~r.j ∣∣∣∣∣∣

Problem: These measures assume complete vectors
Solution: Compute over subset of users rated by both items
Complexity: O(

∑U
u=1 |R(u)|2) time

Herlocker et al., 1999Lester Mackey Collaborative Filtering
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KNN: Choosing K neighbors

How to choose K nearest neighbors?

• Select K items with largest similarity score to query item i

Problem: Not all items were rated by query user u

Solution: Choose K most similar items rated by u

Complexity: O(min(KM,M log M))

Herlocker et al., 1999

Lester Mackey Collaborative Filtering
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KNN: Forming Weighted Predictions

Predicted rating for query user u and item i
• N(i; u) is the neighborhood of item i for user u

• i.e. the K most similar items rated by u

• r̂ui = bui +
∑

N(i;u) wij(ruj − buj)

How to choose weights for each neighbor?
• Equal weights: wij = 1

|N(i;u)|

• Similarity weights: wij =
S(i,j)∑

j∈N(i;u) S(i,j) (Herlocker et al., 1999)

• Learn optimal weights for each user (Bell and Koren, 2007)
• Learn optimal global weights (Koren, 2008)

Complexity: O(K)

Lester Mackey Collaborative Filtering
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KNN: User Optimized Weights

Intuition: For a given query user u and item i, choose weights
that best predict other known ratings of item i using only N(i; u):

min
~wi.

∑
s∈R(i),s,u

rsi −
∑

j∈N(i;u)

wijrsj


2

With no missing ratings, this is a linear regression problem:

Bell and Koren, 2007
Lester Mackey Collaborative Filtering
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KNN: User Optimized Weights

Bell and Koren, 2007

• Optimal solution: w = A−1b for
A = XT X ,b = XT y

• Problem: X contains missing entries
• Not all items in N(i; u) were rated by

all users

• Solution: Approximate A and b

Âjk =

∑
s∈R(j)∩R(k) rsjrsk

|R(j) ∩ R(k )|

b̂k =

∑
s∈R(i)∩R(k) rsirsk

|R(i) ∩ R(k )|

ŵ = Â−1b̂

• Estimates based on users who rated
each pair of items

Lester Mackey Collaborative Filtering
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KNN: User Optimized Weights

Benefits
• Weights optimized for the task of rating prediction

• Not just borrowed from the neighborhood selection phase
• Weights not constrained to sum to 1

• Important if all nearest neighbors are dissimilar
• Weights derived simultaneously

• Accounts for correlations among neighbors

• Outperforms KNN with similarity or equal weights
• Can compute entries of Â and b̂ offline in parallel

Drawbacks
• Must solve additional KxK system of linear equations per

query

Bell and Koren, 2007
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KNN: Globally Optimized Weights

Consider the following KNN prediction rule for query (u, i):

r̂ui = bui + |N(i; u)|−
1
2

∑
j∈N(i;u)

wij(ruj − buj)

Could learn a single set of KNN weights wij , shared by all
users, that minimize regularized MSE:

E =
1
|T |

∑
(u,i)∈T

1
2

(r̂ui − rui)
2 + λ

M∑
i=1

M∑
j=1

1
2

w2
ij =

1
|T |

∑
(u,i)∈T

Eui

Optimize objective using stochastic gradient descent:
• For each example (u, i) ∈ T , update wij ∀j ∈ N(i; u)

w t+1
ij = w t

ij − γ
∂
∂wij

Eui

= w t
ij − γ(|N(i; u)|−

1
2 (r̂ui − rui)(ruj − buj) + λw t

ij)

Koren, 2008Lester Mackey Collaborative Filtering
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KNN: Globally Optimized Weights

Benefits
• Weights optimized for the task of rating prediction

• Not just borrowed from the neighborhood selection phase
• Weights not constrained to sum to 1

• Important if all nearest neighbors are dissimilar
• Weights derived simultaneously

• Accounts for correlations among neighbors

• Outperforms KNN with similarity or equal weights

Drawbacks
• Must solve global optimization problem at training time
• Must store O(M2) weights in memory

Koren, 2008
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KNN: Summary

Comparison of KNN weighting schemes on Netflix quiz data

Koren, 2008
Lester Mackey Collaborative Filtering
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KNN: Summary

Pros
• Intuitive interpretation
• When weights not learned. . .

• Easy to implement
• Zero training time

• Learning prediction weights can greatly improve accuracy
for little overhead in space and time

Cons
• When weights not learned. . .

• Need to store all item (or user) vectors in memory
• May redundantly recompute similarity scores at test time
• Similarity/equal weights not always suitable for prediction

• When weights learned. . .
• Need to store O(M2) or O(U2) parameters
• Must update stored parameters when new ratings occur

Lester Mackey Collaborative Filtering
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Low Dimensional Matrix Factorization

Matrix Completion
• Filling in the unknown ratings in a sparse U ×M matrix R

R =


? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5


Low dimensional matrix factorization
• Model R as a product of two lower dimensional matrices

• A is U × K “user factor” matrix, K � U,M
• B is M × K , “item factor” matrix
• Learning A and B allows us to reconstruct all of R

Lester Mackey Collaborative Filtering
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Low Dimensional Matrix Factorization

Interpretation: Rows of A and B are low dimensional feature
vectors au and bi for each user u and item i

Motivation: Dimensionality reduction
• Compact representation: only need to learn and store

UK + MK parameters
• Matrices can often be adequately represented by low rank

factorizations

Lester Mackey Collaborative Filtering
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Low Dimensional Matrix Factorization

Very general framework that encapsulates many ML methods
• Singular value decomposition
• Clustering

• A can represent cluster centers
• B probabilities of belonging to each cluster

• Factor Analysis/Probabilistic PCA

Lester Mackey Collaborative Filtering
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Singular Value Decomposition

Squared error objective for MF

argmin
A ,B

||R − ABT
||

2
2 = argmin

A ,B

U∑
u=1

M∑
i=1

(rui − 〈au,bi〉)
2

• Reasonable objective since RMSE is our error metric

When all of R is observed, this problem is solved by singular
value decomposition (SVD)
• SVD: R = HΣVT

• H is U × U with HT H = IU×U
• V is M ×M with VT V = IM×M
• Σ is U ×M and diagonal

• Solution: Take first K pairs of singular vectors
• Let A = HU×K ΣK×K and B = VM×K

Lester Mackey Collaborative Filtering
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SVD with Missing Values

Weighted SE objective

argmin
A ,B

U∑
u=1

M∑
i=1

Wui(rui − 〈au,bi〉)
2

Binary weights
• Wui = 1 if rui observed, Wui = 0 otherwise
• Only penalize errors on known ratings

How to optimize?
• Straightforward singular value decomposition no longer

applies
• Local minima exist⇒ algorithm initialization is important

Lester Mackey Collaborative Filtering
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SVD with Missing Values

Insight: Chicken and egg problem
• If we knew the missing values in R, could apply SVD
• If we could apply SVD, we could find the missing values in

R
• Idea: Fill in unknown entries with best guess; apply SVD;

repeat

Expectation-Maximization (EM) algorithm
• Alternate until convergence:

1 E step: X = W ∗ R + (1 −W) ∗ R̂
(* represents entrywise product)

2 M step: [H,Σ,V ] = SVD(X), R̂ = HU×K ΣK×K VT
M×K

Complexity: O(UM) space and O(UMK) time per EM iteration
• What if UM or UMK is very large?

• UM = 8.5 billion for Netflix Prize dataset
• Complete ratings matrix may not even fit into memory!

Srebro and Jaakkola, 2003
Lester Mackey Collaborative Filtering
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SVD with Missing Values

Regularized weighted SE objective

argmin
A ,B

U∑
u=1

M∑
i=1

Wui(rui − 〈au,bi〉)
2 + λ(

U∑
u=1

||au||
2 +

M∑
i=1

||bi ||
2)

Equivalent form

argmin
A ,B

∑
(u,i)∈T

(rui − 〈au,bi〉)
2 + λ(

U∑
u=1

||au||
2 +

M∑
i=1

||bi ||
2)

Motivation
• Counters overfitting by implicitly restricting optimization

space
• Shrinks entries of A and B toward 0

• Can improve generalization error, performance on unseen
test data

Lester Mackey Collaborative Filtering
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SVD with Missing Values

Insight: If we knew B, could solve for each row of A via ridge
regression and vice-versa
• Alternate between optimizing A and optimizing B with the

other matrix held fixed
Alternating least squares (ALS) algorithm
• Alternate until convergence:

1 For each user u, update
au ← (

∑
i∈R(u) bibT

i + λI)−1 ∑
i∈R(u) ruibi

2 For each item i, update
bi ← (

∑
u∈R(i) auaT

u + λI)−1 ∑
u∈R(i) ruiau

Complexity: O(UK + MK) space, O(UK3 + MK3) time per
iteration
• Note: updates for vectors au can all be performed in

parallel (same for bi)
• No need to store completed ratings matrix

Zhou et al., 2008

Lester Mackey Collaborative Filtering
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SVD with Missing Values

Insight: Use standard gradient descent
• 5auE = λau +

∑
i∈R(u) bi(〈au,bi〉 − rui)

• 5bi E = λbi +
∑

u∈R(i) au(〈au,bi〉 − rui)

Gradient descent algorithm
• Repeat until convergence:

1 For each user u, update
au ← au − γ(λau +

∑
i∈R(u) bi(〈au,bi〉 − rui))

2 For each item i, update
bi ← bi − γ(λbi +

∑
u∈R(i) au(〈au,bi〉 − rui))

• Can update all au in parallel (same for bi)
Complexity: O(UK + MK) space, O(NK) time per iteration
• No need to store completed ratings matrix
• No K3 overhead from solving linear regressions

Lester Mackey Collaborative Filtering
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SVD with Missing Values

Insight: Update parameter after each observed rating
• 5auEui = λau + bi(〈au,bi〉 − rui)

• 5bi Eui = λbi + au(〈au,bi〉 − rui)

Stochastic gradient descent algorithm
• Repeat until convergence:

1 For each (u, i) ∈ T
1 Calculate error: eui ← (〈au,bi〉 − rui)
2 Update au ← au − γ(λau + bieui)
3 Update bi ← bi − γ(λbi + aueui)

Complexity: O(UK + MK) space, O(NK) time per pass
through training set
• No need to store completed ratings matrix
• No K3 overhead from solving linear regressions

Takacs et al., 2008, Funk, 2006

Lester Mackey Collaborative Filtering
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Constrained MF as Clustering

Insight: Soft clustering of items is MF
• Row bi represents item i’s fractional belonging to each

cluster
• Columns of A are cluster centers
• Yields greater interpretability

Constrained weighted SE objective

argmin
A ,B

U∑
u=1

M∑
i=1

Wui(rui − 〈au,bi〉)
2 s.t. ∀i bi ≥ 0,

K∑
k=1

bik = 1

• Wu and Li (2008) penalize constraints in the objective and
optimize via stochastic gradient descent

Takeaway: Can add your favorite constraints and optimize with
standard techniques

Lester Mackey Collaborative Filtering
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Factor Analysis

Motivation
• Explain data variability in terms of latent

factors
• Provide model for how data is generated

The Model
• For each user, ru = partially observed ratings vector in RM

• For each user, bu = latent factor vector in RK

• A is an M × K matrix of parameters (factor loading matrix)
• Ψ is an M ×M covariance matrix

• Probabilistic PCA: Special case when Ψ = σ2I
• To generate ratings for user u:

1 Draw bu ∼ N(0, IK )
2 Draw ru ∼ N(Abu,Ψ)

Canny, 2002

Lester Mackey Collaborative Filtering
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Factor Analysis

Parameter Learning
• Only need to learn A and Ψ

• bu are variables to be integrated out
• Typically use EM algorithm (Canny,

2002)
• Can be very slow for large datasets

• Alternative: Stochastic gradient descent
on negative log likelihood (Lawrence
and Urtasun, 2009)

Lester Mackey Collaborative Filtering
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Low Dimensional MF: Summary

Pros
• Data reduction: only need to store UK + MK parameters at

test time
• MK + M2 needed for Factor Analysis

• Gradient descent and ALS procedures are easy to
implement and scale well to large datasets

• Empirically yields high accuracy in CF tasks
• Matrix factors could be used as inputs into other learning

algorithms (e.g. classifiers)
Cons
• Missing data MF objectives plagued by many local minima
• Initialization is important
• EM approaches tend to be slow for large datasets

Lester Mackey Collaborative Filtering
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Incorporating Implicit Feedback

Implicit feedback
• In addition to explicitly observed ratings, may have access

to binary information reflecting implicit user preferences
• Is a movie in a user’s queue at Netflix?
• Was this item purchased (but never rated)?

• Test set can be a source of implicit feedback
• For each (u, i) in the test set, we know u rated i; we just

don’t know the rating.
• Data is not “missing at random”
• The fact that a user rated an item provides information

about the rating.
• E.g. People who rated Lord of The Rings I and II tend to rate

LOTR III more highly.

• Can extend several of our algorithms to incorporate implicit
feedback as additional binary preferences

Lester Mackey Collaborative Filtering
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Incorporating Implicit Feedback

KNN: Globally Optimized Weights
• Let T(i; u) be the set of K items most similar to i for which

u has positive implicit feedback
• E.g. Positive implicit feedback: Every item purchased by u

or every movie in the queue of u
• Augment the KNN prediction rule with implicit feedback

weights cij :

r̂ui = bui + |N(i; u)|−
1
2

∑
j∈N(i;u)

wij(ruj −buj) + |T(i; u)|−
1
2

∑
j∈T(i;u)

cij

• Each cij is an offset of the baseline KNN prediction
• cij is large when implicit feedback about j is informative

about i
• Optimize wij and cij jointly using stochastic gradient

descent
Koren, 2008
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Incorporating Implicit Feedback

Comparison of KNN weighting schemes on Netflix test data

Koren, 2008
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Incorporating Implicit Feedback

NSVD
• Represent each user as a “bag of movies”
• Instead of learning au for each user explicitly, learn second

set of item vectors, b̃i
• Let au = |T(u)|−

1
2
∑

i∈T(u) b̃i where T(u) is the set of all items
for which u has positive implicit feedback

• New MF objective:

argmin
B̃ ,B

∑
(u,i)∈T

(rui − 〈|T(u)|−
1
2

∑
j∈T(u)

b̃j ,bi〉)
2

• Train via stochastic gradient descent with regularization
• Additional properties

• 2MK parameters instead of MK + UK , useful when M < U
• Handles new users without retraining
• Empirically underperforms SVD techniques but captures

different patterns in the data

Paterek, 2007
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Incorporating Implicit Feedback

SVD++
• Integrate the missing-data SVD and NSVD objectives

argmin
A ,B̃ ,B

∑
(u,i)∈T

(rui − 〈au + |T(u)|−
1
2

∑
j∈T(u)

b̃j ,bi〉)
2

• Learning both explicit user vectors, au, and implicit vectors,
|T(u)|−

1
2
∑

j∈T(u) b̃j

• Train via stochastic gradient descent with regularization

Performance on Netflix Prize quiz set

Koren, 2008
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Adding Time Dependence

Claim: Preferences are time-dependent
• Items grow and fade in popularity
• User tastes evolve over time
• Decade, season, and day of the week all influence

expressed preferences
• Even number of items rated in a day can be predictive of

ratings (Pragmatic Theory Netflix Grand Prize Talk 2009)
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Average movie rating versus number of movies rated that day in
Netflix dataset (Piotte and Chabbert 2009)
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Average movie rating versus number of days since first rating in
Netflix dataset

Koren, 2009
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Adding Time Dependence

Claim: Preferences are time-dependent

Claim: Rating timestamps routinely collected by companies
• Dates provided for each rating in Netflix Prize dataset

⇒ Valuable to introduce time dependence into CF algorithms
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Adding Time Dependence

TimeSVD++

• Parameterize explicit user factor vectors by time

au(t) = au + αudev(t) + ℵut

• au is a static baseline vector
• αudev(t) is a static vector multiplied by the deviation from

the user’s average rating time
• Captures linear changes in time

• ℵut is a vector learned for a specific point in time

Koren, 2009
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Adding Time Dependence

TimeSVD++
• New objective

argmin
A(t),B̃ ,B

∑
(u,i)∈T

(rui − 〈au(t) + |T(u)|−
1
2

∑
j∈T(u)

b̃j ,bi〉)
2

• Optimize via regularized stochastic gradient descent

Results on Netflix Quiz Set

• f in this chart above is K in our model
• Note: f = 200 requires fitting billions of parameters with

only 100 million ratings!
Koren, 2009
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Adding Time Dependence

KNN: Globally optimized time-decaying weights

• New prediction rule

r̂ui = bui+|N(i; u)|−
1
2

∑
(j,t)∈N(i;u)

e−βu |t−tj |wij(ruj − buj)

+|T(i; u)|−
1
2

∑
(j,t)∈T(i;u)

e−βu |t−tj |cij

• Intuition: Allow the strength of item relationships to decay
with time elapsed between ratings

• Optimize regularized weighted SE objective via stochastic
gradient descent

• Netflix test set RMSE drops from .9002 (without time) to
.8885

Koren, 2009
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Combining Methods

Why combine?
• Diminishing returns from optimizing a single algorithm
• Different models capture different aspects of the data
• Statistical motivation

• If X1,X2 uncorrelated with equal mean,
Var( X1

2 + X2
2 ) = 1

4 (Var(X1) + Var(X2))
• Moral: Errors of different algorithms can cancel out
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Combining Methods

Training on Errors
• Many CF algorithms handle arbitrarily real-valued

preferences
• Treat the prediction errors of one algorithm as input

“preferences” of second algorithm
• Second algorithm can learn to predict and hence offset the

errors of the first
• Often yields improved accuracy

Bell and Koren, 2007
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Combining Methods

Stacked Ridge Regression
• Linearly combine algorithm predictions to best predict

unseen ratings
• Withhold a subset of your training set ratings from

algorithms during training
• Let columns of P = predictions of each algorithm on

hold-out set
• Let y = true hold-out set ratings
• Solve for optimal regularized blending coefficients, β

minβ
∣∣∣∣∣∣y − Pβ

∣∣∣∣∣∣2 + λ
∣∣∣∣∣∣β∣∣∣∣∣∣2

• Solution: β = (P>P + λI)−1P>y
• Blended predictions often more accurate than any single

predictor on true test set

Breiman, 1996
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Combining Methods

Integrating Models
• Largest boosts in accuracy come from integrating

disparate approaches into a single unified model
• Integrated KNN-SVD++ predictor

r̂ui = 〈au + |T(u)|−
1
2

∑
j∈T(u)

b̃j ,bi〉+ |T(i; u)|−
1
2

∑
j∈T(i;u)

cij

+ bui + |N(i; u)|−
1
2

∑
j∈N(i;u)

wij(ruj − buj)

• Optimize regularized weighted SE objective via stochastic
gradient descent

• Results on Netflix Quiz Set

Koren, 2008
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Challenges for CF

Relevant objectives
• How will output of CF algorithms will be used in a real

system?
• Predicting actual rating may be useless!
• May care more about ranking of items

Missing at random assumption
• Many CF methods incorrectly assume that the items rated

are chosen randomly, independently of preferences
• How can our models capture information in choices of

ratings?
• Marlin et al, 2007, Salakhutdinov and Mnih, 2007
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Challenges for CF

Preference versus intention
• Distinguish what people like from what people are

interested in seeing/purchasing
• Worthless to recommend an item a user already has/was

going to buy anyway

Scaling to truly large datasets
• Latest algorithms scale to 100 million rating Netflix dataset.

Can they scale to 10 billion ratings? Millions of users and
items?

• Simple and parallelizable algorithms are preferred

Lester Mackey Collaborative Filtering
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Challenges for CF

Multiple individuals using the same account
• Benefit in modeling their individual preferences?

Handling users and items with few ratings
• Use user and item meta-data: Content-based filtering

• User demographics, movie genre, etc.
• Kernel methods seem promising

• Basilico and Hofmann, 2004, Yu et al., 2009
• Subject of Netflix Prize 2

http://www.netflixprize.com/community/viewtopic.php?id=1520

• Answer is worth $500,000

Lester Mackey Collaborative Filtering
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