Collaborative Filtering
 Practical Machine Learning, CS 294-34

Lester Mackey

Based on slides by Aleksandr Simma
October 18, 2009

Outline

(1) Problem Formulation

Centering

 Shrinkage(2) Preliminaries

Naive Bayes
KNN
(3) Classification/Regression

SVD
Factor Analysis
(4) Low Dimensional Matrix Factorization

Implicit Feedback
Time Dependence
5 Extensions
(6) Combining Methods

Challenges for CF
(7) Conclusions

References

What is Collaborative Filtering?

Group of users

Group of items

What is Collaborative Filtering?

Group of users

Group of items

- Observe some user-item preferences
- Predict new preferences:

Does Bob like strawberries???

Collaborative Filtering in the Wild...

Amazon.com recommends products based on purchase history

Linder et al., 2003

Collaborative Filtering in the Wild...

```
Wyeb Images Videos Maps News Shopsing Gmail more F
Google news
\(\square\) \(\square\) Search Newrs Search the Web \(\begin{aligned} & \text { Advanued nemberatch } \\ & \text { Preterences }\end{aligned}\)
Fersonslized

\section*{gmail.com}

Iog Stories
Recommended
U.S.

World
ScijTech
- Business

Sports
Entertainment
Spotlight
Health
| Most Popular

\section*{All news}

Headlines
Images

```

Obama Nobel Peace Prize: Obama wins, and partisan fighting continues
Chicago Tribune - Mark Z Barabak, Geraldine Baum - 45 minutes ago
President Earack Obama's winning of the Nobel Peace Prize brought nothing of the sort at
home, as political combatants were quick to as sume their usual banlements: Democtats largely halled the...

- Video: Did Dbama Deserye Nobel Prize? CES
LiOhama can get one, you can ton Detroit Free Press
Now York Times - Philadelphia Inquirer - Fon Worth Star Telegram - Wikipedia: 2000 Nobe Peace Prize
all 10.171 news articles a \square Emal this story

```

```

US Senate panel votes to extend security law
Reuters - Thomas Ferraro, anthony Eoade - 0ct 8, 2009
WASHINGTON (Reuters) - A Senate Judiciary Committee, drawing criticism from both liberals
and conservatives yoter on Thursday to extend expiring provisions of a post-September 11
law designed to prolect the United States from another atlack
AP Inteniew. White House erpands climate campaign The Associated Press
IS Senate Panel Unlikely To Debate CO2 Bill Before Nov Wall Street Journal
New York Times - Houston Chronicle - Politice - Red, Green, and Blue
all 265 news articles n Email this story

```

```

Barnes \& Noble May Sell its Own E-reader
PC World - Harty McCracken. Oct 9, 2009
Gookstore behemoth Bames \& Noble aboul to enter the e-book fray with its own Android powsed device? I like these numors: The Wall Strest Joumal is reporing that bookstore ehemoth Bames \& Noble will soon stat selling it 0 own $=-r e a d e r$ device.
Bames \& Noble's E-Reader Gets Real Wired Newrs
Bames \& Noble's E-Reader Gots Real Wired New's
Bames \& Nable's Sales Down In Aug-Sep New View Given Wyall Street Journal
NNET Naws - San Francisca Chronicle - Register - FOWNows
all 208 news articles n Emal this story

```
```

Dow Ends Week at Highest Level in a Year
Washington Post - 3 hours ago
US stocks gained last week, pushing the Dow Jones industrial average to its highest close in
year, as Alcoa unexpectedly reported a profit and economic data signaled the US recession is ending.
Duo of IBM. Intel Prapels Dow's Fiun wall Street Journa
Stocks Finish with Gains Eusinesswoek
Bloomberg- Reuters - The Associated Press
all 178 news articles.n 龱 LeM Email this story

```

\title{
- Google News \\ recommends new articles based on click and search history \\ - Millions of users, millions of articles
}

\author{
Das et al., 2007
}

\section*{Collaborative Filtering in the Wild...}

Netflix predicts other "Movies You'll \(>\) " based on past numeric ratings (1-5 stars)

- Recommendations drive 60\% of Netflix's DVD rentals
- Mostly smaller, independent movies (Thompson 2008)
http://www.netflix.com

\section*{Collaborative Filtering in the Wild...}

- Netflix Prize:

Beat Netflix recommender system, using Netflix data \(\rightarrow\) Win \(\$ 1\) million
- Data: 480,000 users 18,000 movies 100 million observed ratings = only \(1.1 \%\) of ratings observed
"The Netflix Prize seeks to substantially improve the accuracy of predictions about how much someone is going to love a movie based on their movie preferences."

\section*{What is Collaborative Filtering?}

Insight: Personal preferences are correlated
- If Jack loves A and B, and Jill loves A, B, and C, then Jack is more likely to love C
Collaborative Filtering Task
- Discover patterns in observed preference behavior (e.g. purchase history, item ratings, click counts) across community of users
- Predict new preferences based on those patterns

Does not rely on item or user attributes (e.g. demographic info, author, genre)
- Content-based filtering: complementary approach

\section*{What is Collaborative Filtering?}

\section*{Given:}
- Users \(u \in\{1, \ldots, U\}\)
- Items \(i \in\{1, \ldots, M\}\)
- Training set \(\mathcal{T}\) with observed, real-valued preferences \(r_{u i}\) for some user-item pairs ( \(u, i\) )
- \(r_{u i}=\) e.g. purchase indicator, item rating, click count ...

Goal: Predict unobserved preferences
- Test set \(Q\) with pairs \((u, i)\) not in \(\mathcal{T}\)

View as matrix completion problem
- Fill in unknown entries of sparse preference matrix
\[
\mathbf{R}=\underbrace{\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right]}_{M \text { items }}\} \text { U users }
\]

\section*{What is Collaborative Filtering?}

\section*{Measuring success}
- Interested in error on unseen test set \(Q\), not on training set
- For each \((u, i)\) let \(r_{u i}=\) true preference, \(\hat{r}_{u i}=\) predicted preference
- Root Mean Square Error
- RMSE \(=\sqrt{\frac{1}{|Q|} \sum_{(u, i) \in Q}\left(r_{u i}-\hat{r}_{u i}\right)^{2}}\)
- Mean Absolute Error
- \(\operatorname{MAE}=\frac{1}{|Q|} \sum_{(u, i) \in Q}\left|r_{u i}-\hat{r}_{u i}\right|\)
- Ranking-based objectives
- e.g. What fraction of true top-10 preferences are in predicted top 10 ?

\section*{Centering Your Data}
- What?
- Remove bias term from each rating before applying CF methods: \(\tilde{r}_{u i}=r_{u i}-b_{u i}\)
- Why?
- Some users give systematically higher ratings
- Some items receive systematically higher ratings
- Many interesting patterns are in variation around these systematic biases
- Some methods assume mean-centered data
- Recall PCA required mean centering to measure variance around the mean

\section*{Centering Your Data}
- What?
- Remove bias term from each rating before applying CF methods: \(\tilde{r}_{u i}=r_{u i}-b_{u i}\)
- How?
- Global mean rating
- \(b_{u i}=\mu:=\frac{1}{|\mathcal{T}|} \sum_{(u, i) \in \mathcal{T}} r_{u i}\)
- Item's mean rating
- \(b_{u i}=b_{i}:=\frac{1}{|R(i)|} \sum_{u \in R(i)} r_{u i}\)
- \(R(i)\) is the set of users who rated item \(i\)
- User's mean rating
- \(b_{u i}=b_{u}:=\frac{1}{R(u) \mid} \sum_{i \in R(u)} r_{u i}\)
- \(R(u)\) is the set of items rated by user \(u\)
- Item's mean rating + user's mean deviation from item mean
- \(b_{u i}=b_{i}+\frac{1}{|R(u)|} \sum_{i \in R(u)}\left(r_{u i}-b_{i}\right)\)

\section*{Shrinkage}
- What?
- Interpolating between an estimate computed from data and a fixed, predetermined value
- Why?
- Common task in CF: Compute estimate (e.g. a mean rating) for each user/item
- Not all estimates are equally reliable
- Some users have orders of magnitude more ratings than others
- Estimates based on fewer datapoints tend to be noisier
\[
\mathbf{R}=\begin{array}{cccccccc} 
& A & B & C & D & E & F & \text { User mean } \\
\text { Alice } & 2 & 5 & 5 & 4 & 3 & 5 & 4 \\
\text { Bob } & 2 & ? & ? & ? & ? & ? & 2 \\
\text { Craig } & 3 & 3 & 4 & 3 & ? & 4 & 3.4
\end{array}
\]
- Hard to trust mean based on one rating

\section*{Shrinkage}
- What?
- Interpolating between an estimate computed from data and a fixed, predetermined value
- How?
- e.g. Shrunk User Mean:
\[
\tilde{b}_{u}=\frac{\alpha}{\alpha+|R(u)|} * \mu+\frac{|R(u)|}{\alpha+|R(u)|} * b_{u}
\]
- \(\mu\) is the global mean, \(\alpha\) controls degree of shrinkage
- When user has many ratings, \(\tilde{b}_{u} \approx\) user's mean rating
- When user has few ratings, \(\tilde{b}_{u} \approx\) global mean rating
\(\begin{array}{lllllll}A & B & C & D & E & F & \text { User mean Shrunk mean }\end{array}\)
\(\mathbf{R}=\begin{array}{ccccccccc}\text { Alice } & 2 & 5 & 5 & 4 & 3 & 5 & 4 & 3.94 \\ \text { Bob } & 2 & ? & ? & ? & ? & ? & 2 & 2.79 \\ \text { Craig } & 3 & 3 & 4 & 3 & ? & 4 & 3.4 & 3.43\end{array}\)
Global mean \(\mu=3.58, \alpha=1\)

\section*{Classification/Regression for CF}

Interpretation: CF is a set of \(M\) classification/regression problems, one for each item
- Consider a fixed item \(i\)
- Treat each user as incomplete vector of user's ratings for all items except \(i: \vec{r}_{u}=(3, ?, ?, 4, ?, 5, ?, 1,3)\)
- Class of each user w.r.t. item \(i\) is the user's rating for item \(i\) (e.g. 1, 2, 3, 4, or 5)
- Predicting rating \(r_{u i} \equiv\) Classifying user vector \(\vec{r}_{u}\)

\section*{Classification/Regression for CF}

\section*{Approach:}
- Choose your favorite classifier/regression algorithm
- Train separate predictor for each item
- To predict \(r_{u i}\) for user \(u\) and item \(i\), apply item i's predictor to vector of user u's incomplete ratings vector

\section*{Pros:}
- Reduces CF to a well-known, well-studied problem
- Many good prediction algorithms available

\section*{Cons:}
- Predictor must handle missing data (unobserved ratings)
- Training M independent predictors can be expensive
- Approach may not take advantage of problem structure
- Item-specific subproblems are often related

\section*{Naive Bayes Classifier}
- Treat distinct rating values as classes
- Consider classification for item \(i\)
- Main assumption
- For any items \(j \neq k \neq i, r_{j}\) and \(r_{k}\) are conditionally independent given \(r_{i}\)
- When we know rating \(r_{u i}\) all of a user's other ratings are independent
- Parameters to estimate
- Prior class probabilities: \(P\left(r_{i}=v\right)\)
- Likelihood: \(P\left(r_{j}=w \mid r_{i}=v\right)\)

\section*{Naive Bayes Classifier}

Train classifier with all users who have rated item i
- Use counts to estimate prior and likelihood
\[
\begin{gathered}
P\left(r_{i}=v\right)=\frac{\sum_{u=1}^{U} \mathbf{1}\left(r_{u i}=v\right)}{\sum_{w=1}^{V} \sum_{i=1}^{U} \mathbf{1}\left(r_{u i}=w\right)} \\
P\left(r_{j}=w \mid r_{i}=v\right)=\frac{\sum_{u=1}^{U} \mathbf{1}\left(r_{u i}=v, r_{u j}=w\right)}{\sum_{z=1}^{V} \sum_{u=1}^{U} \mathbf{1}\left(r_{u i}=v, r_{u j}=z\right)}
\end{gathered}
\]
- Complexity
- \(O\left(\sum_{u=1}^{U}|R(u)|^{2}\right)\) time and \(O\left(M^{2} V^{2}\right)\) space for all items

Predict rating for \((u, i)\) using posterior
\[
P\left(r_{u i}=v \mid r_{u 1}, \ldots, r_{u M}\right)=\frac{P\left(r_{u i}=v\right) \prod_{j \neq i} P\left(r_{u j} \mid r_{u i}=v\right)}{\sum_{w=1}^{V} P\left(r_{u i}=w\right) \prod_{j \neq i} P\left(r_{u j} \mid r_{u i}=w\right)}
\]

\section*{Naive Bayes Summary}

\section*{Pros:}
- Easy to implement
- Off-the-shelf implementations readily available

Cons:
- Large space requirements when storing parameters for all M predictors
- Makes strong independence assumptions
- Parameter estimates will be noisy for items with few ratings
- E.g. \(P\left(r_{j}=w \mid r_{i}=v\right)=0\) if no user rated both \(i\) and \(j\)

\section*{Addressing cons:}
- Tie together parameter learning in each item's predictor
- Shrinkage/smoothing is an example of this

\section*{K Nearest Neighbor Methods}

Most widely used class of CF methods
- Flavors: Item-based and User-based
- Represent each item as incomplete vector of user ratings: \(\vec{r}_{. i}=(3, ?, ?, 4, ?, 5, ?, 1,3)\)
- To predict new rating \(r_{u i}\) for query user \(u\) and item \(i\) :
(1) Compute similarity between \(i\) and every other item
(2) Find \(K\) items rated by \(u\) most similar to \(i\)
(3) Predict weighted average of similar items' ratings
- Intuition: Users rate similar items similarly.

\section*{KNN: Computing Similarities}

How to measure similarity between items?
- Cosine similarity
\[
S\left(\vec{r}_{. j}, \vec{r}_{. j}\right)=\frac{\left\langle\vec{r}_{. i}, \vec{r}_{. j}\right\rangle}{\left\|\vec{r}_{. j}\right\|\left\|\vec{r}_{. j}\right\|}
\]
- Pearson correlation coefficient
\[
S\left(\vec{r}_{. i}, \vec{r}_{. j}\right)=\frac{\left\langle\vec{r}_{. i}-\operatorname{mean}\left(\vec{r}_{. i}\right), \vec{r}_{. j}-\operatorname{mean}\left(\vec{r}_{j}\right)\right\rangle}{\left\|\vec{r}_{. i}-\operatorname{mean}\left(\vec{r}_{. i}\right)\right\|\left\|\vec{r}_{. j}-\operatorname{mean}\left(\vec{r}_{. j}\right)\right\|}
\]
- Inverse Euclidean distance
\[
S\left(\vec{r}_{.,}, \vec{r}_{. j}\right)=\frac{1}{\left\|\vec{r}_{. i}-\vec{r}_{. j}\right\|}
\]

Problem: These measures assume complete vectors
Solution: Compute over subset of users rated by both items
Complexity: \(O\left(\sum_{u=1}^{U}|R(u)|^{2}\right)\) time

\section*{KNN: Choosing K neighbors}

How to choose \(K\) nearest neighbors?
- Select \(K\) items with largest similarity score to query item \(i\)

Problem: Not all items were rated by query user \(u\)
Solution: Choose \(K\) most similar items rated by \(u\)
Complexity: \(O(\min (K M, M \log M))\)

\section*{KNN: Forming Weighted Predictions}

Predicted rating for query user \(u\) and item \(i\)
- \(N(i ; u)\) is the neighborhood of item \(i\) for user \(u\)
- i.e. the \(K\) most similar items rated by \(u\)
- \(\hat{r}_{u i}=b_{u i}+\sum_{N(i ; u)} w_{i j}\left(r_{u j}-b_{u j}\right)\)

How to choose weights for each neighbor?
- Equal weights: \(w_{i j}=\frac{1}{|N(i ; u)|}\)
- Similarity weights: \(w_{i j}=\frac{S(i, j)}{\sum_{j \in N(i, i)} S(i, j)}\) (Herlocker et al., 1999)
- Learn optimal weights for each user (Bell and Koren, 2007)
- Learn optimal global weights (Koren, 2008)

Complexity: \(O(K)\)

\section*{KNN: User Optimized Weights}

Intuition: For a given query user \(u\) and item \(i\), choose weights that best predict other known ratings of item \(i\) using only \(N(i ; u)\) :
\[
\min _{\mathbf{w}_{\mathrm{i} .}} \sum_{s \in R(i), s \neq u}\left(r_{s i}-\sum_{j \in N(i ; u)} w_{i j} r_{s j}\right)^{2}
\]

With no missing ratings, this is a linear regression problem: \(K\) closest movies
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \frac{\omega}{む} \\
& \frac{N}{3} \\
& \overline{<}
\end{aligned}
\] & \begin{tabular}{|l}
3 \\
5 \\
3 \\
4 \\
2 \\
4 \\
3
\end{tabular} & & \(\begin{array}{llllll}3 & 1 & 4 & 1 & 5 \\ 1 & 5 & 2 & 2 & 1 \\ 4 & 2 & 3 & 1 & 4 \\ 2 & 2 & 4 & 2 & 1 \\ 4 & 2 & 1 & 1 & 3 \\ 3 & 5 & 4 & 1 & 4 \\ 4 & 2 & 1 & 1 & 5\end{array}\) \\
\hline & y & & X \\
\hline
\end{tabular}

Bell and Koren, 2007

\section*{KNN: User Optimized Weights}
- Optimal solution: \(w=A^{-1} b\) for \(A=X^{\top} X, b=X^{\top} y\)
- Problem: \(X\) contains missing entries
- Not all items in \(N(i ; u)\) were rated by all users
- Solution: Approximate \(A\) and \(b\)
\[
\begin{aligned}
\hat{A}_{j k} & =\frac{\sum_{s \in R(j) \cap R(k)} r_{s j} r_{s k}}{|R(j) \cap R(k)|} \\
\hat{b}_{k} & =\frac{\sum_{s \in R(i) \cap R(k)} r_{s i} r_{s k}}{|R(i) \cap R(k)|} \\
\hat{w} & =\hat{A}^{-1} \hat{b}
\end{aligned}
\]
- Estimates based on users who rated each pair of items

\section*{KNN: User Optimized Weights}

\section*{Benefits}
- Weights optimized for the task of rating prediction
- Not just borrowed from the neighborhood selection phase
- Weights not constrained to sum to 1
- Important if all nearest neighbors are dissimilar
- Weights derived simultaneously
- Accounts for correlations among neighbors
- Outperforms KNN with similarity or equal weights
- Can compute entries of \(\hat{A}\) and \(\hat{b}\) offline in parallel

\section*{Drawbacks}
- Must solve additional KxK system of linear equations per query

\section*{KNN: Globally Optimized Weights}

Consider the following KNN prediction rule for query ( \(u, i\) ):
\[
\hat{r}_{u i}=b_{u i}+|N(i ; u)|^{-\frac{1}{2}} \sum_{j \in N(i ; u)} w_{i j}\left(r_{u j}-b_{u j}\right)
\]

Could learn a single set of KNN weights \(w_{i j}\), shared by all users, that minimize regularized MSE:
\[
E=\frac{1}{|\mathcal{T}|} \sum_{(u, i) \in \mathcal{T}} \frac{1}{2}\left(\hat{r}_{u i}-r_{u i}\right)^{2}+\lambda \sum_{i=1}^{M} \sum_{j=1}^{M} \frac{1}{2} w_{i j}^{2}=\frac{1}{|\mathcal{T}|} \sum_{(u, i) \in \mathcal{T}} E_{u i}
\]

Optimize objective using stochastic gradient descent:
- For each example \((u, i) \in \mathcal{T}\), update \(w_{i j} \forall j \in N(i ; u)\)
\[
\begin{aligned}
w_{i j}^{t+1} & =w_{i j}^{t}-\gamma \frac{\partial}{\partial w_{i j}} E_{u i} \\
& =w_{i j}^{t}-\gamma\left(|N(i ; u)|^{-\frac{1}{2}}\left(\hat{r}_{u i}-r_{u i}\right)\left(r_{u j}-b_{u j}\right)+\lambda w_{i j}^{t}\right)
\end{aligned}
\]

\section*{KNN: Globally Optimized Weights}

\section*{Benefits}
- Weights optimized for the task of rating prediction
- Not just borrowed from the neighborhood selection phase
- Weights not constrained to sum to 1
- Important if all nearest neighbors are dissimilar
- Weights derived simultaneously
- Accounts for correlations among neighbors
- Outperforms KNN with similarity or equal weights

\section*{Drawbacks}
- Must solve global optimization problem at training time
- Must store \(O\left(M^{2}\right)\) weights in memory

\section*{KNN: Summary}

Comparison of KNN weighting schemes on Netflix quiz data


Koren, 2008

\section*{KNN: Summary}

\section*{Pros}
- Intuitive interpretation
- When weights not learned...
- Easy to implement
- Zero training time
- Learning prediction weights can greatly improve accuracy for little overhead in space and time

\section*{Cons}
- When weights not learned...
- Need to store all item (or user) vectors in memory
- May redundantly recompute similarity scores at test time
- Similarity/equal weights not always suitable for prediction
- When weights learned...
- Need to store \(O\left(M^{2}\right)\) or \(O\left(U^{2}\right)\) parameters
- Must update stored parameters when new ratings occur

\section*{Low Dimensional Matrix Factorization}

\section*{Matrix Completion}
- Filling in the unknown ratings in a sparse \(U \times M\) matrix \(R\)
\[
\mathbf{R}=\left[\begin{array}{ccccc}
? & ? & 1 & \ldots & 4 \\
3 & ? & ? & \ldots & ? \\
? & 5 & ? & \ldots & 5
\end{array}\right]
\]

Low dimensional matrix factorization
- Model R as a product of two lower dimensional matrices

\(\approx\)

- \(A\) is \(U \times K\) "user factor" matrix, \(K \ll U, M\)
- \(B\) is \(M \times K\), "item factor" matrix
- Learning \(A\) and \(B\) allows us to reconstruct all of \(R\)

\section*{Low Dimensional Matrix Factorization}


Interpretation: Rows of \(A\) and \(B\) are low dimensional feature vectors \(a_{u}\) and \(b_{i}\) for each user \(u\) and item \(i\)

Motivation: Dimensionality reduction
- Compact representation: only need to learn and store UK + MK parameters
- Matrices can often be adequately represented by low rank factorizations

\section*{Low Dimensional Matrix Factorization}


\section*{\(B^{\top}\)}

Very general framework that encapsulates many ML methods
- Singular value decomposition
- Clustering
- A can represent cluster centers
- B probabilities of belonging to each cluster
- Factor Analysis/Probabilistic PCA

\section*{Singular Value Decomposition}

Squared error objective for MF
\[
\underset{A, B}{\operatorname{argmin}}\left\|R-A B^{T}\right\|_{2}^{2}=\underset{A, B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M}\left(r_{u i}-\left\langle a_{u}, b_{i}\right\rangle\right)^{2}
\]
- Reasonable objective since RMSE is our error metric

When all of \(R\) is observed, this problem is solved by singular value decomposition (SVD)
- SVD: \(R=H \Sigma V^{\top}\)
- \(H\) is \(U \times U\) with \(H^{\top} H=I_{U \times U}\)
- \(V\) is \(M \times M\) with \(V^{\top} V=I_{M \times M}\)
- \(\Sigma\) is \(U \times M\) and diagonal
- Solution: Take first \(K\) pairs of singular vectors
- Let \(A=H_{U \times K} \Sigma_{K \times K}\) and \(B=V_{M \times K}\)

\section*{SVD with Missing Values}

Weighted SE objective
\[
\underset{A, B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{u i}\left(r_{u i}-\left\langle a_{u}, b_{i}\right\rangle\right)^{2}
\]

Binary weights
- \(W_{u i}=1\) if \(r_{u i}\) observed, \(W_{u i}=0\) otherwise
- Only penalize errors on known ratings

\section*{How to optimize?}
- Straightforward singular value decomposition no longer applies
- Local minima exist \(\Rightarrow\) algorithm initialization is important

\section*{SVD with Missing Values}

Insight: Chicken and egg problem
- If we knew the missing values in \(R\), could apply SVD
- If we could apply SVD, we could find the missing values in \(R\)
- Idea: Fill in unknown entries with best guess; apply SVD; repeat

\section*{Expectation-Maximization (EM) algorithm}
- Alternate until convergence:
(1) E step: \(X=W * R+(1-W) * \hat{R}\)
(* represents entrywise product)
(2) M step: \([H, \Sigma, V]=S V D(X), \hat{R}=H_{U \times K} \Sigma_{K \times K} V_{M \times K}^{T}\)

Complexity: \(O(U M)\) space and \(O(U M K)\) time per EM iteration
- What if UM or UMK is very large?
- \(U M=8.5\) billion for Netflix Prize dataset
- Complete ratings matrix may not even fit into memory!

Srebro and Jaakkola, 2003

\section*{SVD with Missing Values}

Regularized weighted SE objective
\[
\underset{A, B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{u i}\left(r_{u i}-\left\langle a_{u}, b_{i}\right\rangle\right)^{2}+\lambda\left(\sum_{u=1}^{U}\left\|a_{u}\right\|^{2}+\sum_{i=1}^{M}\left\|b_{i}\right\|^{2}\right)
\]

Equivalent form
\[
\underset{A, B}{\operatorname{argmin}} \sum_{(u, i) \in \mathcal{T}}\left(r_{u i}-\left\langle a_{u}, b_{i}\right\rangle\right)^{2}+\lambda\left(\sum_{u=1}^{U}\left\|a_{u}\right\|^{2}+\sum_{i=1}^{M}\left\|b_{i}\right\|^{2}\right)
\]

\section*{Motivation}
- Counters overfitting by implicitly restricting optimization space
- Shrinks entries of \(A\) and \(B\) toward 0
- Can improve generalization error, performance on unseen test data

\section*{SVD with Missing Values}

Insight: If we knew \(B\), could solve for each row of \(A\) via ridge regression and vice-versa
- Alternate between optimizing \(A\) and optimizing \(B\) with the other matrix held fixed

\section*{Alternating least squares (ALS) algorithm}
- Alternate until convergence:
(1) For each user \(u\), update
\[
a_{u} \leftarrow\left(\sum_{i \in R(u)} b_{i} b_{i}^{T}+\lambda l\right)^{-1} \sum_{i \in R(u)} r_{u i} b_{i}
\]
(2) For each item \(i\), update
\[
b_{i} \leftarrow\left(\sum_{u \in R(i)} a_{u} a_{u}^{T}+\lambda I\right)^{-1} \sum_{u \in R(i)} r_{u i} a_{u}
\]

Complexity: \(O(U K+M K)\) space, \(O\left(U K^{3}+M K^{3}\right)\) time per iteration
- Note: updates for vectors \(a_{u}\) can all be performed in parallel (same for \(b_{i}\) )
- No need to store completed ratings matrix

\section*{SVD with Missing Values}

Insight: Use standard gradient descent
- \(\nabla_{a_{u}} E=\lambda a_{u}+\sum_{i \in R(u)} b_{i}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\)
- \(\nabla_{b_{i}} E=\lambda b_{i}+\sum_{u \in R(i)} a_{u}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\)

\section*{Gradient descent algorithm}
- Repeat until convergence:
(1) For each user \(u\), update
\[
a_{u} \leftarrow a_{u}-\gamma\left(\lambda a_{u}+\sum_{i \in R(u)} b_{i}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\right)
\]
(2) For each item \(i\), update
\[
b_{i} \leftarrow b_{i}-\gamma\left(\lambda b_{i}+\sum_{u \in R(i)} a_{u}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\right)
\]
- Can update all \(a_{u}\) in parallel (same for \(b_{i}\) )

Complexity: \(O(U K+M K)\) space, \(O(N K)\) time per iteration
- No need to store completed ratings matrix
- No \(K^{3}\) overhead from solving linear regressions

\section*{SVD with Missing Values}

Insight: Update parameter after each observed rating
- \(\nabla_{a_{u}} E_{u i}=\lambda a_{u}+b_{i}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\)
- \(\nabla_{b_{i}} E_{u i}=\lambda b_{i}+a_{u}\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\)

\section*{Stochastic gradient descent algorithm}
- Repeat until convergence:
(1) For each \((u, i) \in \mathcal{T}\)
(1) Calculate error: \(e_{u i} \leftarrow\left(\left\langle a_{u}, b_{i}\right\rangle-r_{u i}\right)\)
(2) Update \(a_{u} \leftarrow a_{u}-\gamma\left(\lambda a_{u}+b_{i} e_{u i}\right)\)
(3) Update \(b_{i} \leftarrow b_{i}-\gamma\left(\lambda b_{i}+a_{u} e_{u i}\right)\)

Complexity: \(O(U K+M K)\) space, \(O(N K)\) time per pass through training set
- No need to store completed ratings matrix
- No \(K^{3}\) overhead from solving linear regressions

\section*{Constrained MF as Clustering}

Insight: Soft clustering of items is MF
- Row \(b_{i}\) represents item i's fractional belonging to each cluster
- Columns of \(A\) are cluster centers
- Yields greater interpretability

\section*{Constrained weighted SE objective}
\[
\underset{A, B}{\operatorname{argmin}} \sum_{u=1}^{U} \sum_{i=1}^{M} W_{u i}\left(r_{u i}-\left\langle a_{u}, b_{i}\right\rangle\right)^{2} \text { s.t. } \forall i \quad b_{i} \geq 0, \sum_{k=1}^{K} b_{i k}=1
\]
- Wu and Li (2008) penalize constraints in the objective and optimize via stochastic gradient descent

Takeaway: Can add your favorite constraints and optimize with standard techniques

\section*{Factor Analysis}

\section*{Motivation}
- Explain data variability in terms of latent factors
- Provide model for how data is generated


\section*{The Model}
- For each user, \(r_{u}=\) partially observed ratings vector in \(\mathbb{R}^{M}\)
- For each user, \(b_{u}=\) latent factor vector in \(\mathbb{R}^{K}\)
- \(A\) is an \(M \times K\) matrix of parameters (factor loading matrix)
- \(\Psi\) is an \(M \times M\) covariance matrix
- Probabilistic PCA: Special case when \(\Psi=\sigma^{2}\) I
- To generate ratings for user \(u\) :
(1) Draw \(b_{u} \sim \mathcal{N}\left(0, I_{K}\right)\)
(2) Draw \(r_{u} \sim \mathcal{N}\left(A b_{u}, \Psi\right)\)

\section*{Factor Analysis}

\section*{Parameter Learning}
- Only need to learn \(A\) and \(\Psi\)
- \(b_{u}\) are variables to be integrated out
- Typically use EM algorithm (Canny, 2002)
- Can be very slow for large datasets
- Alternative: Stochastic gradient descent on negative log likelihood (Lawrence


\section*{Low Dimensional MF: Summary}

\section*{Pros}
- Data reduction: only need to store UK + MK parameters at test time
- \(M K+M^{2}\) needed for Factor Analysis
- Gradient descent and ALS procedures are easy to implement and scale well to large datasets
- Empirically yields high accuracy in CF tasks
- Matrix factors could be used as inputs into other learning algorithms (e.g. classifiers)

\section*{Cons}
- Missing data MF objectives plagued by many local minima
- Initialization is important
- EM approaches tend to be slow for large datasets

\section*{Incorporating Implicit Feedback}

\section*{Implicit feedback}
- In addition to explicitly observed ratings, may have access to binary information reflecting implicit user preferences
- Is a movie in a user's queue at Netflix?
- Was this item purchased (but never rated)?
- Test set can be a source of implicit feedback
- For each ( \(u, i\) ) in the test set, we know \(u\) rated \(i\); we just don't know the rating.
- Data is not "missing at random"
- The fact that a user rated an item provides information about the rating.
- E.g. People who rated Lord of The Rings I and II tend to rate LOTR III more highly.
- Can extend several of our algorithms to incorporate implicit feedback as additional binary preferences

\section*{Incorporating Implicit Feedback}

\section*{KNN: Globally Optimized Weights}
- Let \(T(i ; u)\) be the set of \(K\) items most similar to \(i\) for which \(u\) has positive implicit feedback
- E.g. Positive implicit feedback: Every item purchased by u or every movie in the queue of \(u\)
- Augment the KNN prediction rule with implicit feedback weights \(c_{i j}\) :
\[
\hat{r}_{u i}=b_{u i}+|N(i ; u)|^{-\frac{1}{2}} \sum_{j \in N(i ; u)} w_{i j}\left(r_{u j}-b_{u j}\right)+|T(i ; u)|^{-\frac{1}{2}} \sum_{j \in T(i ; u)} c_{i j}
\]
- Each \(c_{i j}\) is an offset of the baseline KNN prediction
- \(c_{i j}\) is large when implicit feedback about \(j\) is informative about \(i\)
- Optimize \(w_{i j}\) and \(c_{i j}\) jointly using stochastic gradient descent

\section*{Incorporating Implicit Feedback}

Comparison of KNN weighting schemes on Netflix test data


Koren, 2008

\section*{Incorporating Implicit Feedback}

\section*{NSVD}
- Represent each user as a "bag of movies"
- Instead of learning \(a_{u}\) for each user explicitly, learn second set of item vectors, \(\tilde{b}_{i}\)
- Let \(a_{u}=|T(u)|^{-\frac{1}{2}} \sum_{i \in T(u)} \tilde{b}_{i}\) where \(T(u)\) is the set of all items for which \(u\) has positive implicit feedback
- New MF objective:
\[
\left.\underset{\tilde{B}, B}{\operatorname{argmin}} \sum_{(u, i) \in \mathcal{T}}\left(r_{u i}-\left.\langle | T(u)\right|^{-\frac{1}{2}} \sum_{j \in T(u)} \tilde{b}_{j}, b_{i}\right\rangle\right)^{2}
\]
- Train via stochastic gradient descent with regularization
- Additional properties
- 2MK parameters instead of \(M K+U K\), useful when \(M<U\)
- Handles new users without retraining
- Empirically underperforms SVD techniques but captures different patterns in the data

\section*{Incorporating Implicit Feedback}

\section*{SVD++}
- Integrate the missing-data SVD and NSVD objectives
\[
\left.\underset{A, \tilde{B}, B}{\operatorname{argmin}} \sum_{(u, i) \in \mathcal{T}}\left(r_{u i}-\left.\left\langle a_{u}+\right| T(u)\right|^{-\frac{1}{2}} \sum_{j \in T(u)} \tilde{b}_{j}, b_{i}\right\rangle\right)^{2}
\]
- Learning both explicit user vectors, \(a_{u}\), and implicit vectors, \(|T(u)|^{-\frac{1}{2}} \sum_{j \in T(u)} \tilde{b}_{j}\)
- Train via stochastic gradient descent with regularization

Performance on Netflix Prize quiz set
\begin{tabular}{|l|c|c|c|}
\hline Model & 50 factors & 100 factors & 200 factors \\
\hline SVD & 0.9046 & 0.9025 & 0.9009 \\
SVD++ & 0.8952 & 0.8924 & 0.8911 \\
\hline
\end{tabular}

\section*{Adding Time Dependence}

Claim: Preferences are time-dependent
- Items grow and fade in popularity
- User tastes evolve over time
- Decade, season, and day of the week all influence expressed preferences
- Even number of items rated in a day can be predictive of ratings (Pragmatic Theory Netflix Grand Prize Talk 2009)

Average movie rating versus number of movies rated that day in Netflix dataset (Piotte and Chabbert 2009)

\section*{Memento vs Patch Adams}

Memento (127318 samples)


Patch Adams (121769 samples)


Average movie rating versus number of days since first rating in Netflix dataset


Koren, 2009

\section*{Adding Time Dependence}

Claim: Preferences are time-dependent
Claim: Rating timestamps routinely collected by companies
- Dates provided for each rating in Netflix Prize dataset
\(\Rightarrow\) Valuable to introduce time dependence into CF algorithms

\section*{Adding Time Dependence}

\section*{TimeSVD++}
- Parameterize explicit user factor vectors by time
\[
\mathrm{a}_{u}(t)=\mathrm{a}_{u}+\alpha_{u} \operatorname{dev}(t)+\boldsymbol{\aleph}_{u t}
\]
- \(a_{u}\) is a static baseline vector
- \(\alpha_{u} \operatorname{dev}(t)\) is a static vector multiplied by the deviation from the user's average rating time
- Captures linear changes in time
- \(\boldsymbol{\aleph}_{u t}\) is a vector learned for a specific point in time

\section*{Adding Time Dependence}

\section*{TimeSVD++}
- New objective
\[
\left.\underset{A(t), \tilde{B}, B}{\operatorname{argmin}} \sum_{(u, i) \in \mathcal{T}}\left(r_{u i}-\left.\left\langle a_{u}(t)+\right| T(u)\right|^{-\frac{1}{2}} \sum_{j \in T(u)} \tilde{b}_{j}, b_{i}\right\rangle\right)^{2}
\]
- Optimize via regularized stochastic gradient descent

Results on Netflix Quiz Set
\begin{tabular}{|l|c|c|c|c|c|}
\hline Model & \(f=10\) & \(f=20\) & \(f=50\) & \(f=100\) & \(f=200\) \\
\hline SVD & .9140 & .9074 & .9046 & .9025 & .9009 \\
SVD++ & .9131 & .9032 & .8952 & .8924 & .8911 \\
timeSVD ++ & .8971 & .8891 & .8824 & .8805 & .8799 \\
\hline
\end{tabular}
- \(f\) in this chart above is \(K\) in our model
- Note: \(f=200\) requires fitting billions of parameters with only 100 million ratings!

\section*{Adding Time Dependence}

\section*{KNN: Globally optimized time-decaying weights}
- New prediction rule
\[
\begin{gathered}
\hat{r}_{u i}=b_{u i}+|N(i ; u)|^{-\frac{1}{2}} \sum_{(j, t) \in N(i ; u)} e^{-\beta_{u}\left|t-t_{j}\right|} w_{i j}\left(r_{u j}-b_{u j}\right) \\
+|T(i ; u)|^{-\frac{1}{2}} \sum_{(j, t) \in T(i ; u)} e^{-\beta_{u}\left|t-t_{j}\right|} c_{i j}
\end{gathered}
\]
- Intuition: Allow the strength of item relationships to decay with time elapsed between ratings
- Optimize regularized weighted SE objective via stochastic gradient descent
- Netflix test set RMSE drops from .9002 (without time) to .8885

\section*{Combining Methods}

\section*{Why combine?}
- Diminishing returns from optimizing a single algorithm
- Different models capture different aspects of the data
- Statistical motivation
- If \(X_{1}, X_{2}\) uncorrelated with equal mean, \(\operatorname{Var}\left(\frac{X_{1}}{2}+\frac{X_{2}}{2}\right)=\frac{1}{4}\left(\operatorname{Var}\left(X_{1}\right)+\operatorname{Var}\left(X_{2}\right)\right)\)
- Moral: Errors of different algorithms can cancel out

\section*{Combining Methods}

\section*{Training on Errors}
- Many CF algorithms handle arbitrarily real-valued preferences
- Treat the prediction errors of one algorithm as input "preferences" of second algorithm
- Second algorithm can learn to predict and hence offset the errors of the first
- Often yields improved accuracy
\begin{tabular}{|l|c||c|c|c||c|c|c|}
\hline & \multicolumn{2}{|c|}{ No interpolation } & \multicolumn{3}{c|}{ Correlation-based interpolation } & \multicolumn{3}{c|}{ Jointly derived interpolation } \\
Data normalization & \((k=0)\) & \(k=20\) & \(k=35\) & \(k=50\) & \(k=20\) & \(k=35\) & \(k=50\) \\
\hline none (raw scores) & NA & 0.9947 & 1.002 & 1.0085 & 0.9536 & 0.9596 & 0.9644 \\
double centering & 0.9841 & 0.9431 & 0.9470 & 0.9502 & 0.9216 & 0.9198 & 0.9197 \\
global effects & 0.9657 & 0.9364 & 0.9390 & 0.9413 & 0.9194 & 0.9179 & 0.9174 \\
factorization & 0.9167 & 0.9156 & 0.9142 & 0.9142 & 0.9071 & 0.9071 & 0.9071 \\
\hline
\end{tabular}

\section*{Combining Methods}

\section*{Stacked Ridge Regression}
- Linearly combine algorithm predictions to best predict unseen ratings
- Withhold a subset of your training set ratings from algorithms during training
- Let columns of \(\mathbf{P}=\) predictions of each algorithm on hold-out set
- Let \(\mathbf{y}=\) true hold-out set ratings
- Solve for optimal regularized blending coefficients, \(\beta\) \(\min _{\beta}\|\mathbf{y}-\mathbf{P} \beta\|^{2}+\lambda\|\beta\|^{2}\)
- Solution: \(\beta=\left(\mathbf{P}^{\top} \mathbf{P}+\lambda \mathbf{I}\right)^{-1} \mathbf{P}^{\top} \mathbf{y}\)
- Blended predictions often more accurate than any single predictor on true test set

\section*{Combining Methods}

\section*{Integrating Models}
- Largest boosts in accuracy come from integrating disparate approaches into a single unified model
- Integrated KNN-SVD++ predictor
\[
\begin{aligned}
& \left.\hat{r}_{u i}=\left.\left\langle a_{u}+\right| T(u)\right|^{-\frac{1}{2}} \sum_{j \in T(u)} \tilde{b}_{j}, b_{i}\right\rangle+|T(i ; u)|^{-\frac{1}{2}} \sum_{j \in T(i ; u)} c_{i j} \\
& +b_{u i}+|N(i ; u)|^{-\frac{1}{2}} \sum_{j \in N(i ; u)} w_{i j}\left(r_{u j}-b_{u j}\right)
\end{aligned}
\]
- Optimize regularized weighted SE objective via stochastic gradient descent
- Results on Netflix Quiz Set
\begin{tabular}{|l|c|c|c|}
\hline & 50 factors & 100 factors & 200 factors \\
\hline RMSE & 0.8877 & 0.8870 & 0.8868 \\
time/iteration & 17 min & 20 min & 25 min \\
\hline
\end{tabular}

\section*{Challenges for CF}

Relevant objectives
- How will output of CF algorithms will be used in a real system?
- Predicting actual rating may be useless!
- May care more about ranking of items

Missing at random assumption
- Many CF methods incorrectly assume that the items rated are chosen randomly, independently of preferences
- How can our models capture information in choices of ratings?
- Marlin et al, 2007, Salakhutdinov and Mnih, 2007

\section*{Challenges for CF}

Preference versus intention
- Distinguish what people like from what people are interested in seeing/purchasing
- Worthless to recommend an item a user already has/was going to buy anyway

Scaling to truly large datasets
- Latest algorithms scale to 100 million rating Netflix dataset. Can they scale to 10 billion ratings? Millions of users and items?
- Simple and parallelizable algorithms are preferred

\section*{Challenges for CF}

Multiple individuals using the same account
- Benefit in modeling their individual preferences?

Handling users and items with few ratings
- Use user and item meta-data: Content-based filtering
- User demographics, movie genre, etc.
- Kernel methods seem promising
- Basilico and Hofmann, 2004, Yu et al., 2009
- Subject of Netflix Prize 2 http://www.netflixprize.com/community/viewtopic.php?id=1520
- Answer is worth \(\$ 500,000\)

\section*{References}
- K. Ali and W. van Stam, "TiVo: Making Show Recommendations Using a Distributed Collaborative Filtering Architecture," Proc. 10th ACM SIGKDD Int. Conference on Knowledge Discovery and Data Mining, pp. 394401, 2004.
- J. Basilico, T. Hofmann. 2004. Unifying collaborative and content-based Itering. In Proceedings of the ICML, 65.72.
- R. Bell and Y. Koren, "Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights," IEEE International Conference on Data Mining (ICDM07), pp. 4352, 2007.
- J. Bennet and S. Lanning, "The Netflix Prize," KDD Cup and Workshop, 2007. www.netflixprize.com.
- L. Breiman, (1996). Stacked Regressions. Machine Learning, Vol. 24, pp. 49-64.
- J. Canny, "Collaborative Filtering with Privacy via Factor Analysis," Proc. 25th ACM SIGIR Conf.on Research and Development in Information Retrieval (SIGIR02), pp. 238245, 2002.
- A. Das, M. Datar, A. Garg and S. Rajaram, "Google News Personalization: Scalable Online Collaborative Filtering," WWW07, pp. 271-280, 2007.

\section*{References}
- S. Funk, "Netflix Update: Try This At Home," http://sifter.org/simon/journal/20061211.html, 2006.
- J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, "An Algorithmic Framework for Performing Collaborative Filtering," in Proceedings of the Conference on Research and Development in Information Retrieval, 1999.
- Y. Koren. Collaborative filtering with temporal dynamics KDD, pp. 447-456, ACM, 2009.
- Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD08), pp. 426434, 2008.
- N. Lawrence and R. Urtasun.Non-linear matrix factorization with Gaussian processes. ICML, ACM International Conference Proceeding Series, Vol. 382, p. 76, ACM, 2009.
- G. Linden, B. Smith and J. York, "Amazon.com Recommendations: Item-to-item Collaborative Filtering," IEEE Internet Computing 7 (2003), 7680.

\section*{References}
- B. Marlin, R. Zemel, S. Roweis, and M. Slaney, "Collaborative filtering and the Missing at Random Assumption," Proc. 23rd Conference on Uncertainty in Artificial Intelligence, 2007.
- A. Paterek, "Improving Regularized Singular Value Decomposition for Collaborative Filtering," Proc. KDD Cup and Workshop, 2007.
- M. Piotte and M. Chabbert, "Extending the toolbox," Netflix Grand Prize technical presentation, http://pragmatictheory.blogspot.com/, 2009.
- R. Salakhutdinov, A. Mnih and G. Hinton. Restricted Boltzmann Machines for collaborative filtering. Proc. 24th Annual International Conference on Machine Learning, pp. 791798, 2007.
- N. Srebro and T. Jaakkola. Weighted low-rank approximations. In 20th International Conference on Machine Learning, pages 720-727. AAAI Press, 2003.
- Gabor Takacs, Istvan Pilaszy, Bottyan Nemeth, and Domonkos Tikk. Scalable collaborative Itering approaches for large recommender systems. Journal of Machine Learning Research, 10:623-656, 2009.
- C. Thompson. If you liked this, youre sure to love that. The New York Times, Nov 21, 2008.

\section*{References}
- J. Wu and T. Li. A Modified Fuzzy C-Means Algorithm For Collaborative Filtering. Proc. Netflix-KDD Workshop, 2008.
- K. Yu, J. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative prediction using a nonparametric random effects model. In The 25th International Conference on Machine Learning (ICML), 2009.
- Y. Zhou, D. Wilkinson, R. Schreiber, R. Pan. "Large-Scale Parallel Collaborative Filtering for the Netix Prize," AAIM 2008: 337-348.```

