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Collective Decision Making in two alternative choice tasks

Birds deciding whether to migrate or not

Leader election in a two party system

Social information assimilation + decision-making = Socio-Cognitive Networks
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Collective Decision Making in Socio-Cognitive Networks
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R. D. Sorkin, C. J. Hays, and R. West. Signal-detection analysis of group decision making. Psychological review, 108(1):183, 2001

P. Braca, S. Marano, V. Matta, and P. Willett. Asymptotic optimality of running consensus in testing binary hypotheses. IEEE Transactions on Signal
Processing, 58(2):814–825, 2010
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Drift Diffusion Model and the Free Response Paradigm

Models human decision making in two alternative choice tasks

Evidence evolution in a two alternative choice task is modeled by

dx(t) = βdt + dW (t), x(t) = x0

Decision process at time τ is






x(τ) > η, choose alternative 1,

x(τ) < −η, choose alternative 2,

else, collect more evidence.
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R. Bogacz, E. Brown, J. Moehlis, P. Holmes, and J. D. Cohen. The physics of optimal decision making: A formal analysis of performance in two-alternative
forced choice tasks. Psychological Review, 113(4):700–765, 2006
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Social Interaction and the DeGroot Model

p: vector of opinions in a network

A: row stochastic matrix

models consensus seeking in a social network by

p(t + 1) = Ap(t).

same as the celebrated consensus dynamics in multi-agent systems

Continuous time consensus seeking in a social network modeled by

ṗ(t) = −Lp(t), p(0) = p0 L = Laplacian Matrix

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118–121, 1974

J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis, Massachusetts Institute of Technology, November 1984

A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic
Control, 48(6):988–1001, 2003

R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233, 2007
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Coupled Drift Diffusion Model

n decision-makers collect noisy signals and interact with each other

the evidence aggregation process well modeled by

dx(t) = −Lx(t)dt� �� �
social term

+ β1ndt + σdW (t)� �� �
noisy signal

, x(0) = 0n. (1)

Quantities of interest:

Expected decision times

Error rates (probability of wrong decision)

Standard approach:

solve first passage time associated with the FP equation for (1)

an elliptic PDE with n variables

I. Poulakakis, L. Scardovi, and N. E. Leonard. Node classification in networks of stochastic evidence accumulators.
arXiv preprint arXiv:1210.4235, October 2012
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Asymptotic Optimality of the Coupled DDM

Evidence vector: x(t) = xcen(t)1n + �(t)

dxcen(t) = βdt +
1

n
1�n dW(t), xcen(0) = 0

d�(t) = −L�(t)dt + (In −
1

n
1n1

�
n )dWn(t), �(0) = 0n.

�k(t) → N (0, 1/µk),
1
µk

=
�n

p=2
1

2λp
u(p)k

2

µk is a certainty index determined purely by the interaction graph

Asymptotic optimality

xk(t)− βt√
t

=
xcen(t)− βt√

t
+

�k(t)√
t

=⇒ xk(t) = xcen(t) + o(1)
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Numerical Illustration: Asymptotic Optimality
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Decoupled Approximation to the Coupled DDM

decoupled approximation to �(t)

d�(t) = −L�(t)dt + (In −
1

n
1n1

�
n )dWn(t), �(0) = 0n

�k(t) is a continuous Gaussian process and converges to N (0, 1/µk)

approximate �k(t) by the O-U process

dεk(t) = −µk

2
εk(t) + dW (t), εk(0) = 0

Efficiency of approximation

lim
t→+∞

corr(�k(t), εk(t)) = µk

n�

p=1

1

2eigp(L+ diag(µ/2))
(ũ(p)k )

2 − 2

n

1 approximate evidence at node k : xcen(t) + εk(t)
2 Decision time and Error Rate: need to solve n elliptic PDEs with

two variables opposed to a PDE with n variables earlier
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Numerical Illustration: Decoupled Approximation
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The reduced DDM approximates the coupled DDM well
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Further Approximations

bound the contribution by the O-U process εk(t)

for sufficiently large K , with high probability

max
s∈[0,t]

|εk(t)| ≤
K

√
µk

effective threshold for the centralized DDM belongs to the set

(η − K/
√
µk , η + K/

√
µk)

Bounds on Decision Time and Error Rates

ηk − K√
µk

β
tanh

�
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�
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K
√
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��
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K√
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β
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�
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�
ηk +

K
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��

1

1 + exp
�
2βn

�
ηk +

K√
µ
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Empirical Estimates for Threshold Correction
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Numerical Illustration: Threshold Corrected Centralized

DDM
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The centralized DDM with corrected thresholds approximates the
coupled DDM well
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Conclusions and Future Directions

Conclusions:

1 towards rigorous modeling and analysis of socio-cognitive networks

2 coupled DDM as model for social decision-making in 2-AC tasks

3 a computationally tractable decoupled approximation to coupled DDM

4 further approximation by the threshold corrected centralized DDM

5 ideas extend to multi-alternative choice tasks

and 2-AC tasks with recency effect

Future Directions:

1 relaxing the continuous communication assumption

2 heterogeneous individuals

3 general decision-making tasks, e.g., multi-armed bandits
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