## Collective Decision Making in two alternative choice tasks

Speed-Accuracy Trade-off in Collective Decision Making

## Vaibhav Srivastava

Department of Mechanical \& Aerospace Engineering Princeton University


Birds deciding whether to migrate or not

Joint work with: Naomi Leonard

December 10, 2013
IEEE Conference on Decision and Control
Florence, Italy

Collective Decision Making in two alternative choice tasks Collective Decision Making in two alternative choice tasks


Birds deciding whether to migrate or not


Leader election in a two party system


Birds deciding whether to migrate or not


Leader election in a two party system

Alternative 1 versus Alternative 2


Alternative 1
versus Alternative 2


- Ideal group versus Condorcet group
R. D. Sorkin, C. J. Hays, and R. West. Signal-detection analysis of group decision making. Psychological review, 108(1):183, 2001
P. Braca, S. Marano, V. Matta, and P. Willett. Asymptotic optimality of running consensus in testing binary hypotheses. IEEE Transactions on Signal
Processing, $58(2): 814-825,2010$


## Drift Diffusion Model and the Free Response Paradigm

Social Interaction and the DeGroot Model

- Models human decision making in two alternative choice tasks
- Evidence evolution in a two alternative choice task is modeled by

$$
d x(t)=\beta d t+d W(t), \quad x(t)=x_{0}
$$

- Decision process at time $\tau$ is
$\left\{\begin{array}{l}x(\tau)>\eta, \\ x(\tau)<-\eta, \\ \text { else },\end{array}\right.$ choose alternative 1 , choose alternative 2, collect more evidence.

- p: vector of opinions in a network
- A: row stochastic matrix
- models consensus seeking in a social network by

$$
\mathbf{p}(t+1)=A \mathbf{p}(t)
$$

- same as the celebrated consensus dynamics in multi-agent systems
- Continuous time consensus seeking in a social network modeled by

$$
\dot{\mathbf{p}}(t)=-L \mathbf{p}(t), \quad \mathbf{p}(0)=\mathbf{p}_{0} \quad L=\text { Laplacian Matrix }
$$

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical Association, 69(345):118-121, 1974
J. N. Tsitsiklis. Problems in Decentralized Decision Making and Computation. PhD thesis, Massachusetts Institute of Technology, November 1984 A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic R. Olfati-Saber, J. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233, 2007 R. Bogacz, E. Brown, J. Moehis, P. Hoimes, and J. D. Cohen. The
forced choice tasks. Psychological Review, 113(4):700-765, 2006

## Coupled Drift Diffusion Model

## Coupled Drift Diffusion Model

- $n$ decision-makers collect noisy signals and interact with each other
- the evidence aggregation process well modeled by

$$
\begin{equation*}
d \mathbf{x}(t)=\underbrace{-L \mathbf{x}(t) d t}_{\text {social term }}+\underbrace{\beta \mathbf{1}_{n} d t+\sigma d W(t)}_{\text {noisy signal }}, \quad \mathbf{x}(0)=\mathbf{0}_{n} . \tag{1}
\end{equation*}
$$

## Quantities of interest:

- Expected decision times
- Error rates (probability of wrong decision)
- $n$ decision-makers collect noisy signals and interact with each other
- the evidence aggregation process well modeled by

$$
\begin{equation*}
d \mathbf{x}(t)=\underbrace{-L \mathbf{x}(t) d t}_{\text {social term }}+\underbrace{\beta \mathbf{1}_{n} d t+\sigma d W(t)}_{\text {noisy signal }}, \quad \mathbf{x}(0)=\mathbf{0}_{n} . \tag{1}
\end{equation*}
$$

## Quantities of interest:

- Expected decision times
- Error rates (probability of wrong decision)


## Standard approach:

- solve first passage time associated with the FP equation for (1)
- an elliptic PDE with $n$ variables
I. Poulakakis, L. Scardovi, and N. E. Leonard. Node classification in networks of stochastic evidence accumulators. arXiv preprint arXiv:1210.4235, October 2012


## Asymptotic Optimality of the Coupled DDM

- Evidence vector: $\mathbf{x}(t)=x_{\text {cen }}(t) \mathbf{1}_{n}+\boldsymbol{\epsilon}(t)$

$$
\begin{aligned}
\mathrm{d} x_{\text {cen }}(t) & =\beta \mathrm{d} t+\frac{1}{n} \mathbf{1}_{n}^{\top} \mathrm{d} \mathbf{W}(t), x_{\text {cen }}(0)=0 \\
\mathrm{~d} \boldsymbol{\epsilon}(t) & =-L \boldsymbol{\epsilon}(t) \mathrm{d} t+\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \mathrm{d} \mathbf{W}_{n}(t), \boldsymbol{\epsilon}(0)=\mathbf{0}_{n} .
\end{aligned}
$$

- $\epsilon_{k}(t) \rightarrow \mathcal{N}\left(0,1 / \mu_{k}\right), \quad \frac{1}{\mu_{k}}=\sum_{p=2}^{n} \frac{1}{2 \lambda_{p}} u_{k}^{(p)^{2}}$
- $\mu_{k}$ is a certainty index determined purely by the interaction graph
- Evidence vector: $\mathbf{x}(t)=x_{\text {cen }}(t) \mathbf{1}_{n}+\boldsymbol{\epsilon}(t)$

$$
\begin{aligned}
\mathrm{d} x_{\operatorname{cen}}(t) & =\beta \mathrm{d} t+\frac{1}{n} \mathbf{1}_{n}^{\top} \mathrm{d} \mathbf{W}(t), x_{\text {cen }}(0)=0 \\
\mathrm{~d} \boldsymbol{\epsilon}(t) & =-L \boldsymbol{\epsilon}(t) \mathrm{d} t+\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \mathrm{d} \mathbf{W}_{n}(t), \boldsymbol{\epsilon}(0)=\mathbf{0}_{n} .
\end{aligned}
$$

- $\epsilon_{k}(t) \rightarrow \mathcal{N}\left(0,1 / \mu_{k}\right), \quad \frac{1}{\mu_{k}}=\sum_{p=2}^{n} \frac{1}{2 \lambda_{p}} u_{k}^{(p)^{2}}$
- $\mu_{k}$ is a certainty index determined purely by the interaction graph


## Asymptotic optimality

$$
\frac{x_{k}(t)-\beta t}{\sqrt{t}}=\frac{x_{\mathrm{cen}}(t)-\beta t}{\sqrt{t}}+\frac{\epsilon_{k}(t)}{\sqrt{t}} \Longrightarrow x_{k}(t)=x_{\mathrm{cen}}(t)+o(1)
$$

## Numerical Illustration: Asymptotic Optimality

## Decoupled Approximation to the Coupled DDM



Interaction graph



- decoupled approximation to $\epsilon(t)$

$$
\mathrm{d} \epsilon(t)=-L \epsilon(t) \mathrm{d} t+\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \mathrm{d} \mathbf{W}_{n}(t), \boldsymbol{\epsilon}(0)=\mathbf{0}_{n}
$$

- $\epsilon_{k}(t)$ is a continuous Gaussian process and converges to $\mathcal{N}\left(0,1 / \mu_{k}\right)$


## Decoupled Approximation to the Coupled DDM

- decoupled approximation to $\epsilon(t)$

$$
\mathrm{d} \boldsymbol{\epsilon}(t)=-L \epsilon(t) \mathrm{d} t+\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \mathrm{d} \mathbf{W}_{n}(t), \boldsymbol{\epsilon}(0)=\mathbf{0}_{n}
$$

- $\epsilon_{k}(t)$ is a continuous Gaussian process and converges to $\mathcal{N}\left(0,1 / \mu_{k}\right)$
- approximate $\epsilon_{k}(t)$ by the O-U process

$$
\mathrm{d} \varepsilon_{k}(t)=-\frac{\mu_{k}}{2} \varepsilon_{k}(t)+\mathrm{d} W(t), \quad \varepsilon_{k}(0)=0
$$

## Decoupled Approximation to the Coupled DDM

- decoupled approximation to $\epsilon(t)$

$$
\mathrm{d} \boldsymbol{\epsilon}(t)=-L \boldsymbol{\epsilon}(t) \mathrm{d} t+\left(I_{n}-\frac{1}{n} \mathbf{1}_{n} \mathbf{1}_{n}^{\top}\right) \mathrm{d} \mathbf{W}_{n}(t), \boldsymbol{\epsilon}(0)=\mathbf{0}_{n}
$$

- $\epsilon_{k}(t)$ is a continuous Gaussian process and converges to $\mathcal{N}\left(0,1 / \mu_{k}\right)$
- approximate $\epsilon_{k}(t)$ by the $\mathrm{O}-\mathrm{U}$ process

$$
\mathrm{d} \varepsilon_{k}(t)=-\frac{\mu_{k}}{2} \varepsilon_{k}(t)+\mathrm{d} W(t), \quad \varepsilon_{k}(0)=0
$$

Efficiency of approximation

$$
\lim _{t \rightarrow+\infty} \operatorname{corr}\left(\epsilon_{k}(t), \varepsilon_{k}(t)\right)=\mu_{k} \sum_{p=1}^{n} \frac{1}{2 \operatorname{eig}_{p}(L+\operatorname{diag}(\boldsymbol{\mu} / 2))}\left(\tilde{u}_{k}^{(p)}\right)^{2}-\frac{2}{n}
$$

(1) approximate evidence at node $k: x_{\text {cen }}(t)+\varepsilon_{k}(t)$
(2) Decision time and Error Rate: need to solve $n$ elliptic PDEs with

## Numerical Illustration: Decoupled Approximation

## Further Approximations

- bound the contribution by the O-U process $\varepsilon_{k}(t)$


Expected decision time


Log odds of error rates

The reduced DDM approximates the coupled DDM well

- for sufficiently large $K$, with high probability

$$
\max _{s \in[0, t]}\left|\varepsilon_{k}(t)\right| \leq \frac{K}{\sqrt{\mu_{k}}}
$$

- effective threshold for the centralized DDM belongs to the set

$$
\left(\eta-K / \sqrt{\mu_{k}}, \eta+K / \sqrt{\mu_{k}}\right)
$$

## Further Approximations

## Empirical Estimates for Threshold Correction

- bound the contribution by the O-U process $\varepsilon_{k}(t)$
- for sufficiently large $K$, with high probability

$$
\max _{s \in[0, t]}\left|\varepsilon_{k}(t)\right| \leq \frac{K}{\sqrt{\mu_{k}}}
$$

- effective threshold for the centralized DDM belongs to the set

$$
\left(\eta-K / \sqrt{\mu_{k}}, \eta+K / \sqrt{\mu_{k}}\right)
$$

## Bounds on Decision Time and Error Rates

$$
\begin{aligned}
\frac{\eta_{k}-\frac{K}{\sqrt{\mu_{k}}}}{\beta} \tanh \left(\beta n\left(\eta_{k}-\frac{K}{\sqrt{\mu_{k}}}\right)\right) & \leq \mathrm{ET}_{k}
\end{aligned} \leq \frac{\eta_{k}+\frac{K}{\sqrt{\mu_{k}}}}{\beta} \tanh \left(\beta n\left(\eta_{k}+\frac{K}{\sqrt{\mu_{k}}}\right)\right)
$$



Expected decision time
Log odds of error rates
(1) coupled DDM at each node well approximated
by centralized DDM with a modified threshold
(2) effective threshold at node $k=\eta-\frac{K(\beta)}{\sqrt{\mu_{k}}}$,

## Numerical Illustration: Threshold Corrected Centralized

DDM

## Conclusions and Future Directions

## Conclusions:



Expected decision time


Log odds of error rates
(1) towards rigorous modeling and analysis of socio-cognitive networks
(2) coupled DDM as model for social decision-making in 2-AC tasks
(3) a computationally tractable decoupled approximation to coupled DDM
(9) further approximation by the threshold corrected centralized DDM
(6) ideas extend to multi-alternative choice tasks
and 2-AC tasks with recency effect

## Future Directions:

(1) relaxing the continuous communication assumption
(2) heterogeneous individuals
(3) general decision-making tasks, e.g., multi-armed bandits

