
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Collective Text Classification Using
Topic-enhanced Latent Textual Links

Yanbang Wang
ywangdr@cs.stanford.edu

Stanford University

Carl Yang
j.carlyang@emory.edu
Emory University

Weixin Liang
wx@stanford.edu
Stanford University

Pan Li
panli@purdue.edu
Purdue University

Jiawei Han
hanj@illinois.edu

Univ. of Illinois at Urbana-Champaign

ABSTRACT
Collective text classification studies the problem of classifying a col-
lection of documents together by exploiting their inter-document
relationships such as paper citations or web hyperlinks. Previous
studies typically assume that such relational data are informative
for prediction, and use them in ways that highly trust their use-
fulness. Such assumption and reliance, however, make them easily
suffer when the given relational data are actually less informative.
We propose that an effective solution is to enrich more types of
relational information and to consider various relational informa-
tion simultaneously when modeling the text. Our work explores
this possibility by exploiting latent but rich textual links among
documents that can be explicitly formulated by just analyzing the
text. In our framework, we first construct a heterogeneous text
network to instantiate and encode various semantic relationships
among documents bridged through topics and n-grams. Then, we
design a Graph Edge-Attention Network to embed the structural
heterogeneity and model the complex interactions between vari-
ous text entities and their relationships. Experiments on multiple
benchmark datasets show that our effective usage of latent textual
links helps significantly improve classification performance over
the state-of-the-art baselines. Various ablation studies and hyperpa-
rameter analysis provide further insight into interesting properties
of the latent textual links we construct.

CCS CONCEPTS
• Information systems → Document representation; • Com-
puting methodologies→ Neural networks.

KEYWORDS
text classification, collective classification, textual links, GNN

ACM Reference Format:
Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han. 2021.
Collective Text Classification Using Topic-enhanced Latent Textual Links. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

Proceedings of WWW ’21: International World Wide Web Conference (WWW
’21). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION
Text classification, which aims to assign categorical labels to a col-
lection of documents, is a fundamental problem that prototypes
many NLP tasks. Recent years have witnessed great advancement
in this area by applying deep models to generate high-quality rep-
resentation for each individual piece of text [6, 14, 39].

Orthogonal to that direction, collective text classification (CTC)
directs another line of research which also proves tremendous suc-
cess [33, 34, 36, 41, 43]. Instead of focusing on how to extract better
features for each individual document, CTC methods classify multi-
ple documents collectively by exploiting the relational information
among them, usually through the abstraction of text-rich infor-
mation networks. For example, academic papers are classified by
using their citation information [8], web pages by referring to their
hyperlinks [30], tweets by utilizing people’s friend relationships
[7]. Central to CTC’s success is that the given linkage information
helps guide the collection and aggregation of more text samples
relevant to the target text to predict, so that the input feature space
for each target text is enlarged to group-level, which may reduce
both bias and variance of the prediction.

However, the advantage of CTC methods also entails a critical
intrinsic weakness, which is that their performance gain heavily
relies on the quality of the pregiven inter-document links [12]. Most
existing works assume that those inter-document links are readily
available and use them in ways that significantly trust their fidelity
and usefulness for the task. For example, methods that model the
joint probability distribution of edges like TADW [41], CANE [36],
and paper2vec [8] are all trained on the given links. Graph Neural
Network (GNN) based methods such as GCN [17], GAT [37], and
their applications to CTC [13, 19] also aggregate information from
a localized neighborhood exclusively defined by the given links. A
consequence of such reliance is that the performance gain can be
seriously undermined when those pregiven links are less relevant
to the task or contain too much noise.

We propose that one effective solution to the aforementioned
problem is to extensively enrich the link types that we consider.
In other words, we can further relate documents by analyzing
just their text data and by directly extracting their latent but rich
semantic relationships from their text. We call such latent semantic
relationships textual links. Textual links are very different from the

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

aforementioned links as citation, hyperlinks, or friendship, which
by their nature describe certain semantic-free relationships, and
we call those links non-textual links. While the usage of textual
links is largely under-explored previously, we believe that it also
plays a critical role in defining a properly connected network of
text entities that can significantly benefit classification tasks.

Problems with existing works. There were sporadic attempts
that implicitly entail the spirit of leveraging textual links, such as
Text GCN [43] and PTE [33]. However, none of them well formulate
and address the critical question as to how to best define and leverage
textual links among documents, which is the real key to a successful
CTC method.

Both PTE and Text GCN share a similar network construction
scheme as the following: they connect a document (node) to all
its word nodes, and connects two word nodes by co-occurrence.
Such construction, however, has several drawbacks: (1) The textual
relationships between documents bridged only by shared words
is usually very weak and noisy, and so using such links as the
backbone for the network is insufficient for making accurate classi-
fication. (2) In order for the word co-occurrence links to be valid,
both methods require using (almost) full vocabulary as word nodes,
leading again to strong noise and high computation complexity. (3)
After the network construction step, both methods then proceed to
the representation learning step which learns document node repre-
sentations for prediction. The two steps, however, are conducted in
a completely detached manner– their construct a network in a fully
unsupervised way, and their supervised representation learning
step has to accept whatever is hardcoded into their constructed
network as input. The lack of integration

In short, both works share several inherent drawbacks including
a sub-optimal construction scheme of the information network and
a computation framework that is less effective in modeling the
interaction of heterogeneous textual relationships.

Our Method. Central to what we propose are three things inte-
grated into a unified framework that makes the best of textual
links for classification. We first construct a well-connected hetero-
geneous text network to encode the rich latent inter-document
relationships in a compact and unified manner. The network (Fig.
1) involves three types of nodes: document, topic, and n-gram,
and four types of relationships among them. To determine the
topic-associated structural weights which are critical in shaping
the connectivity of our constructed network, we further discuss
two strategies of generating them with different advantages: one
strategy uses a pre-trained topic model to initialize them, and the
other automatically learns them jointly with our representation
learning framework by using variational components. Finally, we
present a Graph Edge-Attention Network (GEAT) to learn represen-
tations over our constructed network. GEAT takes a neat, unified
form of message propagation among various text entities to refine
their features. However, it still well captures the information hetero-
geneity with its edge-based attention, which lets the propagation
be modulated differently by different relationships.

2 RELATEDWORK
2.1 Link-Free Text classification
Most existing works on text classification focus on representing
documents without considering any inter-document relationships.
They start from using basic word-level features (e.g. bag-of-words,
n-gram[4], TF-IDF[29]), to using word embeddings for better cap-
turing word meanings such as [22, 25, 27]. Recent years also see
the prosperity of deep language models [6, 14, 15, 20, 21, 39] that
capture fine-grained dependencies within the document. All this
literature relates to our work in that we can use any of them as an
upstream feature extractor to generate individual document repre-
sentations, and then pipe those representations to our framework
as initial document node features.

2.2 Collective Text Classification
To exploit the inter-document relationship, collective text classifi-
cation methods combine the document linkage information with
representations of individual documents. They typically construct
a homogeneous information network where nodes represent doc-
uments and edges represent linkage among the documents, e.g.
citations, hyperlinks. To generate representations for the document
nodes, two classes of network embedding methods are mostly used:
(1) Methods that model the joint probability of links such as Deep-
walk [28], LINE [34], and their adaptation to further incorporate
text attributes such as TADW [41], paper2vec [8], CANE [36], and
PTE [33]; (2) Graph Neural Networks such as GCN [17] and GAT
[37], and Text GCN [43] which adapts GCN for text embedding.

All methods above require semantic-free document links as in-
put, except Text GCN and PTE, which construct extra document
links from the text data. Therefore, the two methods are closest
to what we propose. They share a similar network schema that
connects a document (node) to all its word nodes, and connects two
word nodes by co-occurrence. Such construction, however, has sev-
eral drawbacks: (1) The textual relationships between documents
bridged only by shared words is usually very weak and noisy, and
so using such links as the backbone for the network is insufficient
for making accurate classification. (2) In order for the word co-
occurrence links to be valid, both methods require using (almost)
full vocabulary as word nodes, leading again to strong noise and
high computation complexity. (3) Both methods’ representation
learning step does little to capture the heterogeneity of different
relationships and node entities, and are completely detached from
their network construction. Our ablation studies in Sec.3 provide
further empirical evidence.

2.3 Topic Modeling
Our work relates to topic modeling by its core concept of "topic",
which we use to enhance the structuralization process in our classi-
fication framework. Classic topic models include LSA[5], pLSA [10],
LDA[2], HDP[35], etc. Recent years also see a plethora of works on
neural topic modeling using variational and adversarial techniques
such as [23, 24, 38]. Topic models have been extensively used in var-
ious applications that require the modeling of community structure
of a collection of documents [9, 26, 31]. The topic vectors can also
serve as document representations with decent prediction power.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Collective Text Classification Using
Topic-enhanced Latent Textual Links WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 PRELIMINARIES
In this section, we first formalize the distinction between textual
links and non-textual links as foundation of our discussion. Next,
we define the collective text classification problem that we consider.
Finally, we introduce several basic concepts in topic modeling,
which is widely used as a principled and elegant way to obtain
structural insight into a text corpus.

3.1 Textual and Non-textual Links
We define textual links as links which relate two documents and
are derived by analyzing just the documents’ text. They can be
either direct or indirect, meaning that textual links can exist either
between two documents, or can chain two documents through a
series of intermediate text entities such as words or topics. For
example, document A can indirectly relate to document B because
they share a certain keyword. In this case the textual link instanti-
ates the <contain> relationship between a document and a word.
This definition endows textual links with strong semantic expres-
siveness. As opposed to textual links, non-textual links are links
which relate two documents and can not be derived by just analyz-
ing their text. Classic examples are paper citations and webpage
hyperlinks, which have been studied much more extensively.

3.2 Problem Definition
The problem of CTC typically provides two input elements:

(1) A collection of documents 𝐷 = {𝑑1, . . .𝑑𝑁𝑑
}, where 𝑁𝑑 = |𝐷 |

is the number of documents. Each document contains a sequence of
words. A subset 𝐷𝑡𝑟𝑎𝑖𝑛 ⊆ 𝐷 is labeled, in which each 𝑑𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 is
assigned one of the𝐶 class labels from {1, . . . ,𝐶}.𝐷𝑡𝑒𝑠𝑡 = 𝐷\𝐷𝑡𝑟𝑎𝑖𝑛 .

(2) A set of non-textual links between documents. The links can
be represented as an adjacency matrix 𝐴 ∈ R |𝐷 |× |𝐷 | , where 𝐴𝑑𝑑′
denotes strength of the relationship between documents (indexed)
𝑑 and 𝑑 ′, and 𝐴𝑑𝑑′ = 0 if they are not related. Note that though
we primarily consider the case of undirected links for simplicity,
generalization to directed links is straightforward: one can simply
use positive and negative signs to distinguish the two directions.

Our goal is to assign a class label to each document 𝑑 ∈ 𝐷𝑡𝑒𝑠𝑡 .

3.3 Latent Dirichlet Allocation (LDA)
The Latent Dirichlet Allocation is a highly successful topic model
that provide scalable, robust, and inductive decomposition of the
rich underlying semantic structures of a given corpus. It uses a
probabilistic model to depict the generation of documents by the
following process:

\
(𝑙𝑑𝑎)
𝑑

∼ Dirichlet(𝛼 (𝑙𝑑𝑎)), for 𝑑 ∈ 𝐷 (1)

𝑧
(𝑙𝑑𝑎)
𝑛 ∼ Multinomial(\ (𝑙𝑑𝑎)

𝑑
), for 𝑛 ∈ [1, 𝑁𝑑] (2)

𝑤
(𝑙𝑑𝑎)
𝑛 ∼ Multinomial(𝛽 (𝑙𝑑𝑎)𝑧𝑛), for 𝑛 ∈ [1, 𝑁𝑑] (3)

𝛼 (𝑙𝑑𝑎) is a parameter vector that shapes the Dirichlet prior for topic
allocation, \𝑑 is the topic allocation vector drawn from the prior,𝑁𝑑
is an auxiliary variable determining the number of terms in𝑑 , 𝑧 (𝑙𝑑𝑎)𝑛

is an one-hot indicator variable conditioned on \𝑑 and is repeatedly
drawn for different term 𝑤𝑛 , 𝛽 (𝑙𝑑𝑎) parametrize the topic-term
distribution and 𝛽

(𝑙𝑑𝑎)
𝑧𝑛 denotes the how topic 𝑧𝑛 distributes over

Figure 1: Schema of the constructed heterogeneous text network.

terms. We use the superscript (𝑙𝑑𝑎) to distinguish the variables with
variables in our proposed method.

LDA provides a clean and principled prototype of the semantic
relationships among various entities (i.e. documents, topics, terms)
in a corpus. Those relationships are well-encoded by the latent
variables and distribution parameters like 𝛽 (𝑙𝑑𝑎) and \ (𝑙𝑑𝑎) .

4 PROPOSED METHOD
Given the input defined in Sec. 3.2, we first discuss in Sec. 4.1 how
we construct a well-connected heterogeneous text network to en-
code the rich latent inter-document relationships in a compact and
unified manner. Then, Sec. 4.2 dives deeper into the computation of
some crucial link weights of the constructed network. Finally, Sec.
4.3 presents a Graph Edge-Attention Network which captures the
complex interactions among various entities and learns document
representations.

4.1 Heterogeneous Text Network Construction
We construct a heterogeneous text network 𝐺 whose architecture
is shown by the network schema in Fig. 1. Our network consists of
three types of nodes and four types of links:

Document nodes𝑉𝐷 represent the set of documents in the dataset.
Their input node feature matrix 𝑧𝐷 ∈ R |𝐷 |×𝑀𝐷 are directly piped
from the document-level representations extracted by an upstream
text feature extractor. In principle, any text feature extractor can be
used — from the classic document features such as bag-of-words or
TF-IDF, to the more advanced neural architecture like BERT, both
of which are evaluated in our experiment.

Topic nodes 𝑉𝑇 instantiate the set of topics 𝑇 which we want
to explicitly extract and formulate from the corpus. The number
of topic nodes |𝑉𝑇 | is equal to the topic number |𝑇 | which is a
hyperparameter. Their feature matrix 𝑧𝑇 ∈ R |𝑇 |×𝑀𝑇 is initialized
from a trainable embedding lookup table.

Term nodes𝑉𝑊 instantiate a set of selected n-grams from the doc-
ument collection. While existing literature provides different ways
of for n-gram selection [3, 11], in practice we found that filtering
criteria based on both TF-IDF and topic scores works well. We will
elaborate more on this in Sec. 5. However, we note that the key here
is to avoid the usage of (nearly) the entire set of n-grams — this is
especially important in a noisy corpus, and in practice we surpris-
ingly found that optimal performance is usually reached with less

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

than 5% of all n-grams. Another advantage of pre-filtering n-grams
is that it can significantly scale down our heterogeneous network
along with the computation complexity for representation learning.
Similarly for term nodes, their feature matrix 𝑧𝑊 ∈ R |𝑊 |×𝑀𝑊 is
also initialized from a trainable embedding lookup table.

Document-Document Links 𝐸𝐷𝐷 encode the non-textual rela-
tionship and are directly mapped from the input non-textual links.
Formally speaking, the induced subgraph of𝐺 from all its document
nodes𝐷 ,𝐺𝐷𝐷 , has its connectivity fully expressed by the adjacency
matrix 𝐴 defined in Sec. 3.2. To encode the link, we use one-hot
vector to denote the relationship’s type, and further weigh it by the
relationship’s strength, i.e. 𝒛𝑑𝑑′ = [𝐴𝑑𝑑′, 0, 0, 0]⊺,∀ (𝑑, 𝑑 ′) ∈ 𝐸𝐷𝐷 .

Document-Term Links 𝐸𝐷𝑊 encode the <contain> relationship
between a document and an n-gram term in that document. To
encode the link, we use one-hot vector to denote the relationship’s
type, and further weigh it by the n-gram’s corresponding TF-IDF
value w.r.t the document: 𝒛𝑑𝑤 = [0, 𝐴𝑑𝑤 , 0, 0]⊺, ∀ (𝑑,𝑤) ∈ 𝐸𝐷𝑊 .

Document-Topic links 𝐸𝐷𝑇 and Topic-Term links 𝐸𝑇𝑊 instan-
tiate the two important structural relationships revealed by the
topic modeling: (1) a link (𝑑, 𝑡) ∈ 𝐸𝐷𝑇 exists between a docu-
ment 𝑑 ∈ 𝐷 and a topic 𝑡 ∈ 𝑇 , and represents the <mix>ture of
topic 𝑡 in document 𝑑 ; (2) a link (𝑡,𝑤) ∈ 𝐸𝑇𝑊 exists between
a topic 𝑡 ∈ 𝑇 and a n-gram 𝑤 ∈ 𝑊 , and represents the how
topic 𝑡 <distribute>s over the n-gram 𝑤 . Both types of links are
also associated with weights that parametrize the corresponding
topic mixture \ (and \𝑑𝑡 for specific 𝑑 and 𝑡) or word distribution
𝛽 (and 𝛽𝑡𝑤 for specific 𝑡 and 𝑤). \ and 𝛽 are crucial structural
weights that shape the connectivity of our network, and we dedi-
cate Sec. 4.2 to their generation. For the time being we assume that
their values are ready to use, and proceed to use one-hot encod-
ing for both types of links: 𝒛𝑑𝑡 = [0, 0, \𝑑𝑡 , 0]𝑇 ,∀(𝑑, 𝑡) ∈ 𝐸𝐷𝑇 , and
𝒛𝑡𝑤 = [0, 0, 0, \𝑡𝑤]⊺,∀ (𝑡,𝑤) ∈ 𝐸𝑇𝑊 .

4.2 Generating Topic-associated Weights
A key unsolved problem we are left with from Sec. 4.1 is the deriva-
tion of the topic-associated link weights \ and 𝛽 . As mentioned,
they are crucial structural weights that shape the connectivity
of our constructed network, and thus will significantly affect the
learned representations later. Therefore, extra care should be given
to ensure that they are computed to reflect their intended semantic
meanings with best fidelity and predictive power. Here we discuss
two well-principled strategies.

4.2.1 Initialized with a Pretrained Topic Model.
One straightforward method of determining \ and 𝛽 is to directly
map them from a topic model. We take LDA as an example to
illustrate this process:

𝐷,𝑊 , |𝑇 | LDA−−−−→ \ (𝑙𝑑𝑎) , 𝛽 (𝑙𝑑𝑎)
Init.−−−→ \, 𝛽 (4)

Given a collection of documents 𝐷 , the n-grams𝑊 , and the topic
number |𝑇 |, we include a preprocesssing step which fits a LDA
model to 𝐷 to learn the topic-word distribution parameter 𝛽 (𝑙𝑑𝑎) ,
and to infer the document-topic mixture latent variable \ (𝑙𝑑𝑎) . We
then use the derived \ (𝑙𝑑𝑎) and 𝛽 (𝑙𝑑𝑎) to respectively initialize the
\ and 𝛽 used in link encoding. During the training, we do not freeze

\ and 𝛽 , allowing them to be fine-tuned with gradient descent
together with other parameters. This gives our LDA-pt strategy,
which suggests that we use a pretrained LDA model to initialize
some link weights.

The LDA-pt strategy has the advantage that the weights can be
initialized in a well-defined manner by the topic model while also
enjoying some level of flexibility to be further refined later by the
supervised signals. However, it may not always be the case that
the pretrained topic model can yield predictive topic distributions.
Therefore, we propose a second variant, the VTG strategy, which
allows \ and 𝛽 to be jointly trained with our graph neural archi-
tecture proposed later in 4.3 to explicitly generate predictive topic
distributions for the classification task.

4.2.2 Joint Training with Variational Topic Generation.
The basic idea of the VTG strategy is that it employs several neural
variational components to simulate the generative and inference
process of topic modeling. This process allows \ and 𝛽 to be learned
by error back-propagation and gradient descent, which can be car-
ried out jointly with representation learning over the whole net-
work proposed in 4.3. It consists of two components for document
generation and variational inference, respectively.

Generation. For each document 𝑑 ∈ 𝐷 , our generative process
takes in a random vector sampled from isotropic Gaussian prior,
i.e. 𝜙𝑑 ∼ 𝑁 (`𝑑 , 𝜌2𝑑), and generate the set of selected n-grams𝑊 .
The process starts by simulating the Dirichlet prior to derive the
simplex latent variable \𝑑 ∈ R |𝑇 | (here we use \𝑑 to denote the
mixture of document 𝑑 over topics𝑇). We use the Gaussian-softmax
function for the simulation which is similar to[32]:

\𝑑 = 𝑔(𝜙𝑑) = softmax(𝑄1𝜙𝑑 + 𝑏1) (5)

where projectionmatrix𝑄1 and bias𝑏1 are parameters to be learned.
Joint probability of the selected n-grams is then given by:

𝑝 (𝑊 |𝜙𝑑) = 𝑝 (𝑊 |\𝑑) =
∏
𝑤∈𝑊

(𝑤 |𝜙𝑑) =
∏
𝑤∈𝑊

∑
𝑡 ∈𝑇

𝑝 (𝑡 |\𝑑)𝑝 (𝑤 |𝑡)

(6)
where 𝑝 (𝑡 |\𝑑) is the probability of selecting topic 𝑡 given distribu-
tion vector\𝑑 , which is exactly parametrized by \𝑑𝑡 ; 𝑝 (𝑤 |𝑡) is also
parametrized by 𝛽𝑡𝑤 . Together we have:

𝑝 (𝑤 |𝜙𝑑) =
∏
𝑤∈𝑊

∑
𝑡 ∈𝑇

(𝑔(𝜙𝑑))𝑡 𝛽𝑡𝑤 (7)

Inference. For a given document 𝑑 , the inference process approxi-
mates the true posterior distribution of 𝜙𝑑 conditioned on 𝑑 and
the set of topics 𝑇 . With the re-parametrization trick [16] 𝜙𝑑 =

`𝑑 + 𝜖 ∗ 𝜌𝑑 , 𝜖 ∼ 𝑁 (0, 1), we infer the posterior using bilinear prod-
uct attention based on encoding 𝑧𝑑 ∈ R𝑀𝐷 and 𝑧𝑇 ∈ R |𝑇 |×𝑀𝑇 :

𝑝 (𝜙𝑑 |𝑑,𝑇) ≈ 𝑞(𝜙𝑑 |𝑑,𝑇) = 𝑞(`𝑑 , 𝜌𝑑 |𝑑,𝑇) (8)
`𝑑 (𝑑,𝑇) = 𝑧𝑇𝑄2𝑧

⊺
𝑑
; 𝜌𝑑 (𝑑,𝑇) = exp(𝑧𝑇𝑄3𝑧

⊺
𝑑
) (9)

where𝑄2, 𝑄3 ∈ R𝑀𝑇 ×𝑀𝐷 are learnable bilinear projection matrices.
4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Collective Text Classification Using
Topic-enhanced Latent Textual Links WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Learning.Weoptimize the variational evidence lower boundL (𝑣𝑡𝑔)
𝑑

for document 𝑑 w.r.t parameters 𝑄1, 𝑄2, 𝑄3, 𝑏, 𝛽 , 𝑧𝑇 :

L (𝑣𝑡𝑔)
𝑑

=E𝑞 (𝜙𝑑 |𝑑,𝑇)

[∑
𝑤∈𝑊

𝐼𝑑𝑤 log
∑
𝑡 ∈𝑇

𝑝 (𝑡 |\𝑑)𝑝 (𝑤 |𝑡)
]

− 𝐷𝐾𝐿 (𝑞(𝜙𝑑 |𝑑,𝑇) | |𝑝 (𝜙𝑑)) (10)

where 𝐷𝐾𝐿 denotes the KL-divergence between two distributions.
Here because of the usage of Gaussian prior, 𝐷𝐾𝐿 can be integrated
with a closed form derivation following [16]. 𝐼𝑑𝑤 is an indicator
variable, i.e. 𝐼𝑑𝑤 = 1 iff.𝑤 is a word in document 𝑑 .

The advantage of VTG is that the whole framework can be ele-
gantly trained end-to-end, allowing it to generate topic-associated
link weights that desirably have stronger predictive power. Mean-
while, notice that the topic encoding 𝑧𝑇 , is also involved as trainable
parameters. This bridge further allows the topic generation process
and the graph neural network to interact with and benefit from
each other, and to refine the topic encoding itself. Finally, from the
perspective of regularization, we also point out the KL-divergence
term 𝐷𝐾𝐿 and the Gaussian noise 𝜖 essentially helps regularize
learning of the topic-associated link weights in a principled manner.
This can be especially helpful to deal with the strong noise and
randomness typically contained in text data.

4.3 Representation Learning in the Network
Finally, we propose a Graph Edge Attention Network (GEAT) to
learn representations in the heterogeneous network we constructed.
Input to GEAT are the heterogeneous node and edge features : 𝑍𝐷 ,
𝑍𝑇 , 𝑍𝑊 , 𝑍𝐷𝐷 , 𝑍𝐷𝑇 , 𝑍𝑇𝑊 , 𝑍𝐷𝑊 . We further use lowercase letter 𝑧
to represent an individual node or link, e.g. 𝑧𝑑 denotes input node
features of the a specific document 𝑑 , and similarly for other node
and link types.

The first thing GEAT does is to align the distribution space of
all the node and edge features via linear transformations. That is,
for all 𝑑,𝑑 ′ ∈ 𝐷, 𝑡 ∈ 𝑇,𝑤 ∈𝑊 where appropriate:

𝑥𝑑 = 𝑓𝐷 (𝑥𝑑), 𝑥𝑡 = 𝑓𝑇 (𝑧𝑡), 𝑥𝑤 = 𝑓𝑊 (𝑥𝑤) (11)
𝑒𝑑𝑑′ = 𝑓𝐷𝐷 (𝑥𝑑𝑑′), 𝑒𝑑𝑤 = 𝑓𝐷𝑊 (𝑧𝑑𝑤),
𝑒𝑑𝑡 = 𝑓𝐷𝑇 (𝑥𝑑𝑡), 𝑒𝑡𝑤 = 𝑓𝑇𝑊 (𝑥𝑡𝑤) (12)

where: 𝑓Ω : R𝐹Ω → R𝑀𝑉 , for Ω ∈ {𝐷,𝑊 ,𝑇 }; and 𝑓Ω′ : R4 →
R𝑀𝐸 ,for Ω ∈ {𝐷𝐷 ′, 𝐷𝑊 , 𝐷𝑇,𝑇𝑊 }, where 𝑀𝑉 and 𝑀𝐸 are dimen-
sions of the unified node feature space and link feature space, respec-
tively. The seven 𝑓 ’s with different subscripts denote the different
linear projection functions.

Eqn.(11) and (12) essentially reduce the heterogeneous network
into a homogeneous one while preserving the heterogeneity by
different 𝑓 ’s. Therefore, from now on we can safely ignore the
subscripts of features 𝑥 and 𝑒 , and instead use 𝑥𝑖 , 𝑥 𝑗 , and 𝑒𝑖 𝑗 , where
the 𝑖, 𝑗 ∈ 𝐷 ∪𝑇 ∪𝑊 are type-free indices.

GEAT then proceeds to carry out message passing among nodes
with edge-level modulation. Eqn. (13) and (14) give one layer of

GEAT:

𝑥𝑖 = 𝑥𝑖 + 𝜎 (𝐻𝑛
∑

𝑗 ∈N(𝑖)
𝑎𝑖 𝑗𝑥𝑖 𝑗) (13)

𝑎𝑖 𝑗 =
exp(𝐻𝑒𝑒𝑖 𝑗 + 𝑏𝑒)∑

𝑗 ′∈N(𝑖) exp(𝐻𝑒𝑒𝑖 𝑗 ′ + 𝑏𝑒)
(14)

, where 𝑖 is the center node, N(𝑖) is node 𝑖’s neighbors, 𝐻𝑒 ∈
R𝑀𝐸×ℎ ,𝐻𝑛 ∈ R𝑀𝑁 ×ℎ are two parameter matrices, 𝜎 is a non-linear
function such as ReLU.

After 𝐿 layers of GEAT, we obtain representations for all the
document, topic and term nodes. Representations for the document
nodes are further retrieved and piped to a single-layer perceptron to
do classification and learn from the error via the standard Softmax
and Cross Entropy loss:

L (𝑐𝑙 𝑓) =
∑
𝑑∈𝐷

cross-entropy(𝑐𝑑 , 𝑓𝑜𝑢𝑡 (𝑜𝑑)) (15)

where 𝑐𝑑 is the ground truth label of document 𝑑 , 𝑜𝑑 is the output
representation from GEAT, 𝑓𝑜𝑢𝑡 is a single-layer neural network
with softmax. Finally, if the LDA-pt strategy in Sec. 4.2 is adopted,
we can directly optimize L (𝑐𝑙 𝑓) w.r.t GEAT’s parameters. If VTG
strategy is adopted otherwise, our optimization objective is the new
loss L given by the weighted sum of the classification loss and the
variational loss by Eqn.(16) with _ ∈ [0,∞]:

L = L (𝑐𝑙 𝑓) + _
∑
𝑑∈𝐷

L (𝑣𝑡𝑔)
𝑑

(16)

How is relationship heterogeneity captured by GEAT (and
why not pte, text gcn)?

5 EXPERIMENT
5.1 Experimental Setups
We implemented two variants of our model: GEAT-LDA-pt and
GEAT-VTG, corresponding to the twoweight generation strategies
discussed in Sec.4.2. For the rest of this section, we report more
details on our baselines, datasets, and training configurations.

5.1.1 Baselines.
Our method is compared with 11 baselines that cover a wide range
of existing literature. Their detailed tuning process is in Appendix.
• TF-IDF: the classic document feature of Term Frequency–Inverse
Document Frequency. We pipe it to a 2-layer fully connected neural
network for classification. We use that as the most basic baseline.
For all the methods below that do not specify its input document
node features (e.g. our method, all GNN-based baselines, TADW,
etc.) we also consistently use the basic TF-IDF features as input
document node feature. We do so because our study’s focus is not
on representing document individually, though we also include a
special baseline, BERT [21], to showcase the state-of-the-art gain
that can be made in that direction for reader’s further reference.
• LDA [2]: Latent Dirichlet Allocation. We use the topic vector gen-
erated by the topic model for each document as its representation.
Then we use a fully connected neural network for classification.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

• DeepWalk [28]: the classic method that learns network embed-
ding by sampling and modeling the pregiven links’ joint probability.
• TADW [41]: Text-associated DeepWalk, which extends Deep-
Walk to incorporate text features into the network embedding.
• paper2vec [8]: a method that builds a K-nearest-neighbor graph
among documents. It then merges with the citation network to
learn node embeddings by modeling all the links’ joint probability.
• CANE [36]: Context-Aware Network Embedding, which learns
multiple embeddings for a node when it interacts with different
neighbors. Its optimization objective is still to model the pregiven
links’ joint probability.
• PTE [33]: a method that seeks to learn predictive word and
document embeddings by using labels to build multiple bipartite
heterogeneous networks. It then adapts [34] to learn embeddings.
• GCN [17]: Graph Convolutional Network, a representative type
of GNN that performs localized convolution over document node
features and pregiven links using Graph Laplacian.
• GAT [37]: Graph Attention Network, a GCN extension which
integrates attention mechanism into the neighborhood aggregation.
• Text GCN [43]: a method that applies GCN to text classification.
It creates word-word links and document-word links, ignores their
types and merges them into a homogeneous network, and applies
GCN to learn node representations.
• BERT [21]: Deep Bidirectional Transformers for Language Un-
derstanding. We include this special baseline to show the state-of-
the-art performance that can be achieved if we do not explicitly
consider the connections between documents (but make full use of
the sequential information within each text).

5.1.2 Datasets.
We evaluate our method and baselines on six widely used bench-
marks whose statistics are summarized in Table 1: Hep-th [18] is a
collection of high-energy physics papers with citations; Wiki [41] is
a collection of wiki web pages with hyperlinks; CoraEnrich [8] and
Citeseer [42] are two collections of machine learning papers with
citations; PubMed [42] is a collection of bio-medical papers with
citations; Reuters-8 [43] is a subset of Reuters 21578 news reports.

Although having the raw text as input is appreciated for making
more accurate predictions, notice they are not necessarily required
by both our method and most of our baselines, which only require
the word-count matrix as the text input. Being able to work with
datasets with discrete text attributes is also important in practice.
Examples include classifying people’s social media profiles using
tagging information, and classifying long articles based on their
extracted keywords. CiteSeer, PubMed, and Wiki belong to such
cases, for which we use only 1-gram (word) as term nodes in our
method. Also notice that the last dataset Reuters-8, does not have
any pre-given links. It is a popular dataset for link-free text clas-
sification and we further include it to demonstrate our method’s
potential of leveraging the advantage of collective classification to
tackle a link-free text classification problem.

5.1.3 Preprocessing and Training Configurations.
For all datasets that come with raw text, we preprocess the text data
following a standard pipeline: we tokenize the text as [43], remove

Dataset Docs Links Vocab. Classes Type
Hep-th [18] 11752 134,956 21,614 4 papers
CoraEnrich [8] 2,708 5,278 25,935 7 papers
Wiki [41] 2,405 17,981 4,973 19 web pages
CiteSeer [42] 3,327 4,552 3,703 6 papers
PubMed [42] 19,717 44,324 500 3 papers
Reuters-8 [43] 7,647 - 7,688 20 news report

Table 1: Summary of the dataset statistics.

English stopwords defined by NLTK 1, and remove low-frequency
words appearing less than 5 times in the corpus.

To tune our model, we adopt grid search over three hyperparam-
eters: number of topics |𝑇 |, number of terms |𝑊 |, and dimensions
of hidden layers. We report their search ranges and values for other
hyperparameters such as learning rate and dropout in Appendix.
The train-val-test split for most datasets are 60%-20%-20%, except
for Hep-th and Reuter-8 where we use pregiven public split. We
sufficiently train our model using Adam optimizer until the loss
converges, and then use the validation set to select the best epoch
checkpoint for testing. For all baselines’ tuning, we follow their
default hyperparameter (search) settings reported in their paper or
implementation. We ran all the experiments 10 times using differ-
ent random seeds and report the mean Accuracy ± 95% confidence
interval as the metric, following [8, 41, 43].

5.2 Results and Discussion
Table 2 presents the test accuracies of each model. We can see that
the two variants of our proposed method significantly outperform
all the state-of-the-art baselines on most datasets (𝑝<0.05 by student
𝑡-test). On average, our best model variant improves over the accu-
racy of the strongest baseline by 1.5% in relative. We additionally
have the following observations:

•The class of GNNmethods (GNN, GAT, Text GCN) are the strongest
baselines overall. While our proposed method also adopts a graph
neural network base, it still outperforms the GNN methods by a
stable margin. We attribute this performance gain to our usage of
latent textual links: general GNNs do not take advantage of any
text-specific structural information; in contrast, our method ex-
ploits the advantage of text by using the very rich latent textual
links among the nodes.

• Text GCN’s performance lies in between GAT and our method.
However, it still consistently underperforms our method. The main
reason is that Text GCN depends only on shared words to bridge
two documents, which in practice is usually noisy. It also ignores
different relationship types in the corpus when doing propagation.
In comparison, our topic-associated links reveal more and cleaner
structural information of the corpus, and our GEAT better uses the
type information of relationships.

• CANE, PTE, and Text GCN can not work with discrete text at-
tributes (e.g.Wiki, CiteSeer, PubMed). This limits their generaliz-
ability to tasks where only discrete text tags are available, such as
classifying people’s social media profiles using some text tags, or
classifying long articles based on their extracted keywords. How-
ever, our method well copes with these scenarios because it does
1http://www.nltk.org

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Collective Text Classification Using
Topic-enhanced Latent Textual Links WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Model Hep-th CoraEnrich Wiki CiteSeer PubMed Reuters-8
TF-IDF 42.04 ± 0.92 73.80 ± 2.45 71.71 ± 3.59 74.27 ± 1.44 84.28 ± 0.54 93.74 ± 0.43
LDA [2] 42.25 ± 0.69 74.02 ± 0.77 78.24 ± 0.62 76.24 ± 1.18 86.59 ± 0.75 94.48 ± 0.50
BERT [6] 45.16 ± 0.84 78.97 ± 2.43 - - - 97.11 ± 0.38†
DeepWalk [28] 39.83 ± 0.61 81.44 ± 1.63 69.91 ± 2.90 58.51 ± 2.23 86.92 ± 0.74 -
TADW [41] 44.55 ± 0.70 87.29 ± 0.58 80.72 ± 0.82† 74.67 ± 0.63 86.82 ± 0.61 -
paper2vec [8] 33.26 ± 2.98 80.58 ± 0.90 70.01 ± 2.62 59.26 ± 3.12 62.56 ± 1.33 -
CANE [36] 42.88 ± 0.87 82.84 ± 1.09 - - - -
PTE [33] 44.34 ± 0.51 88.50 ± 1.28 - - - 96.46 ± 0.16
GCN [17] 45.49 ± 0.38 87.63 ± 0.66 77.96 ± 0.45 76.68 ± 0.53† 87.15 ± 0.38† -
GAT [37] 45.88 ± 0.49 87.71 ± 0.69 78.12 ± 0.76 76.21 ± 0.59 86.94 ± 0.37 -
Text GCN [43] 46.01 ± 0.30† 90.02 ± 0.39† - - - 97.07 ± 0.10
GEAT-LDA-pt 48.23 ± 0.45* 90.42 ± 0.37* 81.22 ± 0.63 77.04 ± 0.56 88.48 ± 0.58* 97.11 ± 0.15*
GEAT-VTG 48.36 ± 0.31* 90.55 ± 0.46* 80.99 ± 0.42 77.26 ± 0.33* 88.59 ± 0.69* 97.25 ± 0.10*

Table 2: Performance in Accuracy (mean in percentage ± 95% confidence interval). † highlights the best baselines. ∗, bold font, bold font∗

respectively highlights the case where our models’ performance exceeds the best baseline on average, by 70% confidence, by 95% confidence.

not require word occurrence (though if available it can still make
use of word occurrence via n-grams).

• Comparing the two variants, GEAT-LDA-pt and GEAT-VTG, we
see that the latter performs slightly better. The reason is that com-
pared to GEAT-LDA-pt, GEAT-VTG allows more freedom in con-
structing the network – GEAT-VTG’s topic-associated link weights
are trained from scratch with supervised signals, while GEAT-LDA-
pt fine-tunes the link weights set by a pretrained topic model. The
topic model is pretrained in an unsupervised way. Therefore, GEAT-
VTG is likely to generate link weights better optimized for the
classification task.

• BERT can achieve high performance without any inter-document
relationships, because it well utilizes the sequential information
within each document. In comparison, our method makes promi-
nent progress in another direction by exploiting inter-document
relationships, which also proves to be a great success.

5.3 Ablation Studies
A central goal of our experiment is to validate the effectiveness of
each building component in our heterogeneous text graph. There-
fore, we carried out a series of ablation studies to check how re-
moving or replacing each component affects the performance. The
ablations and results are summarized in Table 2 and here is their
introduction: Ab. 1 uses our unmodified model of GEAT-LDA-pt as
the comparison base; Ab. 2-6 remove different subsets of links we
use: Ab. 2 removes the given non-textual document links 𝐸𝐷𝐷 ; Ab.
3 removes the document-word links 𝐸𝐷𝑊 ; Ab. 4 removes all the
topic-associated links which include document-topic links 𝐸𝐷𝑇 and
topic-term links 𝐸𝑇𝑊 ; Ab. 5 removes all textual links, 𝐸𝐷𝑇 , 𝐸𝑇𝑊
and 𝐸𝐷𝑊 ; Ab. 6 removes all types of links. In Ab. 7, we initialize
the term nodes differently: instead of looking them up from an
embedding table trained from scratch, we try using the pretrained
Glove word embeddings over our corpus to initialize the terms.
That is, each term (n-gram) is initialized using the average of all its
words’ pretrained embeddings. Finally, in Ab. 8 we try making ev-
ery n-gram in the corpus into a term node, so there is no aggressive
pre-filtering step which only leaves less than 10% of them.

Table 3 presents us several interesting insights into our model
via row-wise comparisons:

•Ab. 1 vs. Ab. 2-6: these comparisons show that our manually
created textual links help significantly. In fact, every type of link in
our constructed heterogeneous network contributes to the perfor-
mance, which further demonstrates the importance of mining and
leveraging rich inter-document relationships for classification.

•Ab. 6 vs. Ab. 2, 5: we see that the proper usage of textual links
not only significantly improves performance, but the improvement
can be even larger than that of using non-textual links alone (on
Hep-th dataset, for example).

•Ab.1 vs. Ab. 7: an interesting debate over our framework’s de-
sign is whether one should use pretrained word embeddings as
the initial term node features. Comparisons between these two
ablation studies show that using pretrained word embeddings actu-
ally slightly hurts the performance. This interesting phenomenon
may be because the pretrained word embeddings are trained in a
fully unsupervised manner. Therefore, they may distribute in a sub-
optimal feature space which is hard to change even with supervised
fine-tuning afterwards. In comparison, our term embeddings are
trained with supervised signals from scratch, so they may capture
semantics that are better contextualized and customized for the
classification task.

•Ab. 1 vs. Ab. 8: this comparison shows us that using the full
vocabulary set to build the text network can be a less desirable
choice. The interpretation is that we may only need a small number
of vocabularies to define cleaner and more reliable textual links for
a corpus, and to build a well-connected text network out of it to do
classification. We include more discussions on this in Sec. 5.4.

5.4 Hyperparameter Sensitivity
We analyze the effect of two important hyperparameters: the num-
ber of topic nodes |𝑇 |, and the number of term nodes |𝑊 |. In each
experiment, we set a target hyperparameter to different values,
and for each value find its corresponding optimal performances by
grid-searching a best combination of other hyperparameters. The

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

No. Ablation Cora Enrich Hep-th Reuters-8
1 original method: GEAT-LDA-pt 90.42 ± 0.37 48.23 ± 0.45 97.11 ± 0.15*
2 original method - all non-textual links (𝐸𝐷𝐷) 84.87 ± 0.52 46.53 ± 0.47 97.11 ± 0.15*
3 original method - document-word textual links (𝐸𝐷𝑊) 88.91 ± 0.39 46.83 ± 0.39 96.30 ± 0.26
4 original method - topic-associated textual links (𝐸𝐷𝑇 , 𝐸𝑇𝑊) 87.52 ± 0.41 46.56 ± 0.35 96.52 ± 0.23
5 original method - all textual links (𝐸𝐷𝑊 , 𝐸𝐷𝑇 , 𝐸𝑇𝑊) 87.07 ± 0.45 45.93 ± 0.42 93.76 ± 0.31†
6 original method - all links (𝐸𝐷𝑊 , 𝐸𝐷𝑇 , 𝐸𝑇𝑊 , 𝐸𝐷𝐷) 73.80 ± 1.49 42.11 ± 0.55 93.76 ± 0.31†
7 original method + pretrained word embeddings 90.43 ± 0.56 48.01 ± 0.13 97.02 ± 0.10
8 original method + use all vocabulary 82.79 ± 0.64 46.32 ± 0.21 96.84 ± 0.16

Table 3: Ablation studies with GEAT-LDA-pt, performance in Accuracy (mean in percentage ± 95% confidence interval) reported.
∗†: the results are pairwise the same, because Reuters-8 does not have any non-textual links.

Figure 2: Test Accuracies w.r.t different hyperparameters.

results are plot in Fig. 2. Plots (a), (b) demonstrate the importance
topic nodes: |𝑇 | has a significant effect on the performance, and
in particular a too small |𝑇 | will likely hurt the performance. Also,
the performance peaks with certain optimal range of |𝑇 |, which
is around 1 ∼ 1.5 times the class number of the dataset (the class
numbers are listed in Table 1). From Plots (c), (d) we further observe
that similar to |𝑇 |’s case, the performance also peaks at a certain
range of |𝑊 |. This optimal range, however, is way smaller that the
magnitude of vocabulary size (only accounting for around 1% in
fact). This suggests that we may not need learn the embeddings of
all the words / terms like PTE [33] in order to classify a document.
This is consistent with Ab. 8 in Table 3, which shows that learning
embeddings for all vocabulary actually hurts performance a lot.

5.5 Visualizing Topic-term Attentions
We visualize the topic-term attentions learned by the first layer of
our GEAT-VTG model. We set up the exploration as the following:
we first train our GEAT-VTG model on CoraEnrich dataset by
setting the number of topic nodes equal to the number of label
classes, 7. Then, we retrieve the topic-term attention weights from
the first layer of our model. For each topic node, we rank the top 8
terms linked to the topic node with the highest attention weight.
Table 4 lists the ranking for 4 topic nodes. We can see from the
term examples that the attention weights learned by our model
turn out to be highly predictive of the category already, though
we do not directly use them to make predictions. We attribute this

interesting characteristic to the success of our VTG strategy and its
good integration with GEAT’s edge attention mechanism: the VTG
strategy learns good topic-term link attributes and GEAT further
uses those attributes to compute edge attention. If we instead adopt
the node-node attention mechanism used by GAT [37] , it would
be less likely to see the strong predictive power of attentions since
their attention mechanism tends to ignore the link attributes.

Topic Node 1 Topic Node 2 Topic Node 3 Topic Node 4
logic theorem tree action
infer bound decision reinforce
clause query attribute case base
belief polynomial classifier simulate

language finite decision tree instruct
causal learnable machine learning goal
decision learning algorithm classifier game

logic program converge learning algorithm policy
Table 4: Top-8 terms with highest attention weights connected to
different topic nodes. The attentions weights are extracted from the
first layer of GEAT-VTG trained on CoraEnrich dataset.

6 CONCLUSION
In this work, we study the collective text classification problem by
exploiting different latent textual links among documents. We inves-
tigate an optimal way of defining and leveraging those relationships
via the construction of a well-connected heterogeneous text net-
work. We pair the network construction process with two strategies
to generate topic-associated link weights, and further presents a
Graph Edge-Attention Network to model the complex textual rela-
tionships and to learn predictive document embeddings. Extensive
experiments show that our proposed method significantly outper-
forms various state-of-the-art baselines by a large margin. Ablation
studies further validate the effectiveness of various components in
our method.

ACKNOWLEDGMENTS
We thank

REFERENCES
[1] Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-

Document Transformer. arXiv:2004.05150 (2020).
[2] DavidMBlei, Andrew YNg, andMichael I Jordan. 2003. Latent dirichlet allocation.

Journal of machine Learning research 3, Jan (2003), 993–1022.
8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Collective Text Classification Using
Topic-enhanced Latent Textual Links WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[3] Vitor Carvalho and William Cohen. 2006. Improving “email speech acts” analysis
via n-gram selection. In Proceedings of the Analyzing Conversations in Text and
Speech. 35–41.

[4] William B Cavnar, John M Trenkle, et al. 1994. N-gram-based text categorization.
In Proceedings of SDAIR-94, 3rd annual symposium on document analysis and
information retrieval, Vol. 161175. Citeseer.

[5] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and
Richard Harshman. 1990. Indexing by latent semantic analysis. Journal of the
American society for information science 41, 6 (1990), 391–407.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Yajuan Duan, Furu Wei, Ming Zhou, and Heung-Yeung Shum. 2012. Graph-based
collective classification for tweets. In Proceedings of the 21st ACM international
conference on Information and knowledge management. 2323–2326.

[8] Soumyajit Ganguly and Vikram Pudi. 2017. Paper2vec: Combining graph and
text information for scientific paper representation. In European Conference on
Information Retrieval. Springer, 383–395.

[9] Chaobo He, Hanchao Li, Xiang Fei, Atiao Yang, Yong Tang, and Jia Zhu. 2017. A
topic community-based method for friend recommendation in large-scale online
social networks. Concurrency and Computation: Practice and Experience 6, 29
(2017), n–a.

[10] Thomas Hofmann. 1999. Probabilistic latent semantic indexing. In Proceedings of
the 22nd annual international ACM SIGIR conference on Research and development
in information retrieval. 50–57.

[11] John Houvardas and Efstathios Stamatatos. 2006. N-gram feature selection for
authorship identification. In International conference on artificial intelligence:
Methodology, systems, and applications. Springer, 77–86.

[12] David Jensen, Jennifer Neville, and Brian Gallagher. 2004. Why Collective Infer-
ence Improves Relational Classification. In Proceedings of the Tenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (Seattle, WA,
USA) (KDD ’04). Association for Computing Machinery, New York, NY, USA,
593–598. https://doi.org/10.1145/1014052.1014125

[13] Chanwoo Jeong, Sion Jang, Hyuna Shin, Eunjeong Park, and Sungchul Choi.
2019. A context-aware citation recommendation model with BERT and graph
convolutional networks. arXiv preprint arXiv:1903.06464 (2019).

[14] Yoon Kim. 2014. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882 (2014).

[15] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. 2015. Character-
aware neural language models. arXiv preprint arXiv:1508.06615 (2015).

[16] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[17] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net. https://openreview.net/forum?id=SJU4ayYgl

[18] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2–es.

[19] Chang Li and Dan Goldwasser. 2019. Encoding social information with graph
convolutional networks forPolitical perspective detection in news media. In
Proceedings of the 57th Annual Meeting of the Association for Computational
Linguistics. 2594–2604.

[20] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016. Recurrent neural network
for text classification with multi-task learning. arXiv preprint arXiv:1605.05101
(2016).

[21] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[22] Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance
Kaplan, and Jiawei Han. 2019. Spherical text embedding. In Advances in Neural
Information Processing Systems. 8208–8217.

[23] Yishu Miao, Edward Grefenstette, and Phil Blunsom. 2017. Discovering Discrete
Latent Topics with Neural Variational Inference. In International Conference on
Machine Learning. 2410–2419.

[24] Yishu Miao, Lei Yu, and Phil Blunsom. 2016. Neural variational inference for text
processing. In International conference on machine learning. 1727–1736.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[26] Nishith Pathak, Colin DeLong, Arindam Banerjee, and Kendrick Erickson. 2008.
Social topic models for community extraction. In The 2nd SNA-KDD workshop,
Vol. 8. 2008.

[27] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[28] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 701–710.

[29] Juan Ramos et al. 2003. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine learning,
Vol. 242. New Jersey, USA, 133–142.

[30] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[31] Marc A Smith, Lee Rainie, Ben Shneiderman, and Itai Himelboim. 2014. Mapping
Twitter topic networks: From polarized crowds to community clusters. Pew
Research Center 20 (2014), 1–56.

[32] Akash Srivastava and Charles Sutton. 2017. Autoencoding variational inference
for topic models. arXiv preprint arXiv:1703.01488 (2017).

[33] Jian Tang, Meng Qu, and Qiaozhu Mei. 2015. PTE: Predictive Text Embedding
through Large-Scale Heterogeneous Text Networks (KDD ’15). Association for
Computing Machinery, New York, NY, USA, 1165–1174. https://doi.org/10.1145/
2783258.2783307

[34] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. Line: Large-scale information network embedding. In Proceedings of the
24th international conference on world wide web. 1067–1077.

[35] Yee W Teh, Michael I Jordan, Matthew J Beal, and David M Blei. 2005. Sharing
clusters among related groups: Hierarchical Dirichlet processes. In Advances in
neural information processing systems. 1385–1392.

[36] Cunchao Tu, Han Liu, Zhiyuan Liu, and Maosong Sun. 2017. Cane: Context-
aware network embedding for relationmodeling. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
1722–1731.

[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[38] Rui Wang, Deyu Zhou, and Yulan He. 2019. Atm: Adversarial-neural topic model.
Information Processing & Management 56, 6 (2019), 102098.

[39] Yequan Wang, Minlie Huang, Xiaoyan Zhu, and Li Zhao. 2016. Attention-based
LSTM for aspect-level sentiment classification. In Proceedings of the 2016 confer-
ence on empirical methods in natural language processing. 606–615.

[40] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. ArXiv abs/1910.03771 (2019).

[41] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang. 2015.
Network representation learning with rich text information.. In IJCAI, Vol. 2015.
2111–2117.

[42] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[43] Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. Graph convolutional net-
works for text classification. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 33. 7370–7377.

9

https://doi.org/10.1145/1014052.1014125
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/2783258.2783307
https://doi.org/10.1145/2783258.2783307

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Yanbang Wang, Carl Yang, Weixin Liang, Pan Li, and Jiawei Han

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A ADDITIONAL EXPERIMENTAL SETUPS
A.1 Tuning Our Model
The hyperparameters search range of our method is reported in
Table 5. For each dataset, we first heuristically look for a combi-
nation learning rate and dropout rate within the range reported,
fix them, and then conduct comprehensive grid search over other
hyperparameters for the best set of values.

Hyperparameter Search Range / Value
learning rate 1e-4, 2e-4, 4e-4
dropout rate 0, 0.1, 0.3, 0.5
hidden dimension ℎ 50, 100, 150, 200
_𝐷 (for GEAT-VTG only) 0.2, 0.5, 1
number of topic nodes |𝑇 | 0.5𝐶 , 𝐶 , 1.2𝐶 , 1.5𝐶 , 2𝐶
number of term nodes |𝑊 | 32, 64, 128, 256, 512, 1024

Table 5: Hyperparameter search range for the two variants
of our method. 𝐶 is the class number of each dataset.

A.2 Tuning Baselines

BERT We experiment with RoBERTa [21], the state-of-the-art ver-

sion of BERT [6]. We use the official implementation and pretrained
weights of RoBERTa provided by the HuggingFace’s transformer
library [40]. Following common practices, we replace the last linear
layer and fine-tune RoBERTa with the text classification task. Fol-
lowing the default hyper-parameter setting, the batch size is set to
16 while the learning rate is set to 2 × 10−5. The maximum input
sequence length of RoBERTa is 512 tokens. We also experiment
with LongFormer [1], which supports longer input sequences by op-
timizing the memory usage of RoBERTa’s self-attention mechanism.
However, we did not observe accuracy improvements compared to
RoBERTa. On each dataset, we fine-tune RoBERTa for 10 epochs,
and we select the best model using the validation set.

PTE We use the official implementation provided by PTE [33].
PTE learns document classification in two phases: In the feature
learning phase, PTE learns document representation using the train-
ing data. We then extract the document features for the training
set, validation set, and test set. In the classification phase, we use
the one-vs-rest (OvR) logistic regression model in the scikit-learn
package. Following the default hyper-parameter setting, we set the
window size in the convolution layer as 3, the number of feature
maps as 100, and the dimension of word vectors as 100.

Text GCN We use the official implementation provided by Text
GCN [43], and use most of their default hyperparameter settings:
learning rate = 0.02, #epochs = 200, dropout rate = 0.5, with early
stopping that stops the training if the validation performance does
not increase for more than 10 epochs.

CANE We use the official implementation provided by CANE
[36], and use the configurations mentioned in their "config.py" file:
#epochs = 200, batch size = 64, hidden dimension = 200, learning
rate = 1e-3.

GCN and GAT For the two baselines, we adopt their PyTorch
Geometric 2 implementations, and tune their learning rate, dropout,
and hidden dimensions by the same search range reported in Table 5.
Both methods share the same preprocessing step with our proposed
method.

TADW We use the official MatLab implementation provided by
[41]. We follow most of their default hyperparameter settings: _ =

0.2, 𝑘 = 80, and word vector dimension = 200.

paper2vec Unfortunately, the author does not release its code and
so we implemented the paper ourselves. The only hyperparameter
to be tuned is the dimension 𝑘 and we follow the papers advice to
search it in 160, 180, 200.

2https://pytorch-geometric.readthedocs.io/
10

	Abstract
	1 Introduction
	2 Related Work
	2.1 Link-Free Text classification
	2.2 Collective Text Classification
	2.3 Topic Modeling

	3 Preliminaries
	3.1 Textual and Non-textual Links
	3.2 Problem Definition
	3.3 Latent Dirichlet Allocation (LDA)

	4 Proposed Method
	4.1 Heterogeneous Text Network Construction
	4.2 Generating Topic-associated Weights
	4.3 Representation Learning in the Network

	5 Experiment
	5.1 Experimental Setups
	5.2 Results and Discussion
	5.3 Ablation Studies
	5.4 Hyperparameter Sensitivity
	5.5 Visualizing Topic-term Attentions

	6 Conclusion
	Acknowledgments
	References
	A Additional Experimental Setups
	A.1 Tuning Our Model
	A.2 Tuning Baselines

