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ABSTRACT
Collective text classification studies the problem of classifying a col-
lection of documents together by exploiting their inter-document
relationships such as paper citations or web hyperlinks. Previous
studies typically assume that such relational data are informative
for prediction, and use them in ways that highly trust their use-
fulness. Such assumption and reliance, however, make them easily
suffer when the given relational data are actually less informative.
We propose that an effective solution is to enrich more types of
relational information and to consider various relational informa-
tion simultaneously when modeling the text. Our work explores
this possibility by exploiting latent but rich textual links among
documents that can be explicitly formulated by just analyzing the
text. In our framework, we first construct a heterogeneous text
network to instantiate and encode various semantic relationships
among documents bridged through topics and n-grams. Then, we
design a Graph Edge-Attention Network to embed the structural
heterogeneity and model the complex interactions between vari-
ous text entities and their relationships. Experiments on multiple
benchmark datasets show that our effective usage of latent textual
links helps significantly improve classification performance over
the state-of-the-art baselines. Various ablation studies and hyperpa-
rameter analysis provide further insight into interesting properties
of the latent textual links we construct.

CCS CONCEPTS
• Information systems → Document representation; • Com-
puting methodologies→ Neural networks.
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text classification, collective classification, textual links, GNN
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1 INTRODUCTION
Text classification, which aims to assign categorical labels to a col-
lection of documents, is a fundamental problem that prototypes
many NLP tasks. Recent years have witnessed great advancement
in this area by applying deep models to generate high-quality rep-
resentation for each individual piece of text [6, 14, 39].

Orthogonal to that direction, collective text classification (CTC)
directs another line of research which also proves tremendous suc-
cess [33, 34, 36, 41, 43]. Instead of focusing on how to extract better
features for each individual document, CTC methods classify multi-
ple documents collectively by exploiting the relational information
among them, usually through the abstraction of text-rich infor-
mation networks. For example, academic papers are classified by
using their citation information [8], web pages by referring to their
hyperlinks [30], tweets by utilizing people’s friend relationships
[7]. Central to CTC’s success is that the given linkage information
helps guide the collection and aggregation of more text samples
relevant to the target text to predict, so that the input feature space
for each target text is enlarged to group-level, which may reduce
both bias and variance of the prediction.

However, the advantage of CTC methods also entails a critical
intrinsic weakness, which is that their performance gain heavily
relies on the quality of the pregiven inter-document links [12]. Most
existing works assume that those inter-document links are readily
available and use them in ways that significantly trust their fidelity
and usefulness for the task. For example, methods that model the
joint probability distribution of edges like TADW [41], CANE [36],
and paper2vec [8] are all trained on the given links. Graph Neural
Network (GNN) based methods such as GCN [17], GAT [37], and
their applications to CTC [13, 19] also aggregate information from
a localized neighborhood exclusively defined by the given links. A
consequence of such reliance is that the performance gain can be
seriously undermined when those pregiven links are less relevant
to the task or contain too much noise.

We propose that one effective solution to the aforementioned
problem is to extensively enrich the link types that we consider.
In other words, we can further relate documents by analyzing
just their text data and by directly extracting their latent but rich
semantic relationships from their text. We call such latent semantic
relationships textual links. Textual links are very different from the
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aforementioned links as citation, hyperlinks, or friendship, which
by their nature describe certain semantic-free relationships, and
we call those links non-textual links. While the usage of textual
links is largely under-explored previously, we believe that it also
plays a critical role in defining a properly connected network of
text entities that can significantly benefit classification tasks.

Problems with existing works. There were sporadic attempts
that implicitly entail the spirit of leveraging textual links, such as
Text GCN [43] and PTE [33]. However, none of them well formulate
and address the critical question as to how to best define and leverage
textual links among documents, which is the real key to a successful
CTC method.

Both PTE and Text GCN share a similar network construction
scheme as the following: they connect a document (node) to all
its word nodes, and connects two word nodes by co-occurrence.
Such construction, however, has several drawbacks: (1) The textual
relationships between documents bridged only by shared words
is usually very weak and noisy, and so using such links as the
backbone for the network is insufficient for making accurate classi-
fication. (2) In order for the word co-occurrence links to be valid,
both methods require using (almost) full vocabulary as word nodes,
leading again to strong noise and high computation complexity. (3)
After the network construction step, both methods then proceed to
the representation learning step which learns document node repre-
sentations for prediction. The two steps, however, are conducted in
a completely detached manner– their construct a network in a fully
unsupervised way, and their supervised representation learning
step has to accept whatever is hardcoded into their constructed
network as input. The lack of integration

In short, both works share several inherent drawbacks including
a sub-optimal construction scheme of the information network and
a computation framework that is less effective in modeling the
interaction of heterogeneous textual relationships.

Our Method. Central to what we propose are three things inte-
grated into a unified framework that makes the best of textual
links for classification. We first construct a well-connected hetero-
geneous text network to encode the rich latent inter-document
relationships in a compact and unified manner. The network (Fig.
1) involves three types of nodes: document, topic, and n-gram,
and four types of relationships among them. To determine the
topic-associated structural weights which are critical in shaping
the connectivity of our constructed network, we further discuss
two strategies of generating them with different advantages: one
strategy uses a pre-trained topic model to initialize them, and the
other automatically learns them jointly with our representation
learning framework by using variational components. Finally, we
present a Graph Edge-Attention Network (GEAT) to learn represen-
tations over our constructed network. GEAT takes a neat, unified
form of message propagation among various text entities to refine
their features. However, it still well captures the information hetero-
geneity with its edge-based attention, which lets the propagation
be modulated differently by different relationships.

2 RELATEDWORK
2.1 Link-Free Text classification
Most existing works on text classification focus on representing
documents without considering any inter-document relationships.
They start from using basic word-level features (e.g. bag-of-words,
n-gram[4], TF-IDF[29]), to using word embeddings for better cap-
turing word meanings such as [22, 25, 27]. Recent years also see
the prosperity of deep language models [6, 14, 15, 20, 21, 39] that
capture fine-grained dependencies within the document. All this
literature relates to our work in that we can use any of them as an
upstream feature extractor to generate individual document repre-
sentations, and then pipe those representations to our framework
as initial document node features.

2.2 Collective Text Classification
To exploit the inter-document relationship, collective text classifi-
cation methods combine the document linkage information with
representations of individual documents. They typically construct
a homogeneous information network where nodes represent doc-
uments and edges represent linkage among the documents, e.g.
citations, hyperlinks. To generate representations for the document
nodes, two classes of network embedding methods are mostly used:
(1) Methods that model the joint probability of links such as Deep-
walk [28], LINE [34], and their adaptation to further incorporate
text attributes such as TADW [41], paper2vec [8], CANE [36], and
PTE [33]; (2) Graph Neural Networks such as GCN [17] and GAT
[37], and Text GCN [43] which adapts GCN for text embedding.

All methods above require semantic-free document links as in-
put, except Text GCN and PTE, which construct extra document
links from the text data. Therefore, the two methods are closest
to what we propose. They share a similar network schema that
connects a document (node) to all its word nodes, and connects two
word nodes by co-occurrence. Such construction, however, has sev-
eral drawbacks: (1) The textual relationships between documents
bridged only by shared words is usually very weak and noisy, and
so using such links as the backbone for the network is insufficient
for making accurate classification. (2) In order for the word co-
occurrence links to be valid, both methods require using (almost)
full vocabulary as word nodes, leading again to strong noise and
high computation complexity. (3) Both methods’ representation
learning step does little to capture the heterogeneity of different
relationships and node entities, and are completely detached from
their network construction. Our ablation studies in Sec.3 provide
further empirical evidence.

2.3 Topic Modeling
Our work relates to topic modeling by its core concept of "topic",
which we use to enhance the structuralization process in our classi-
fication framework. Classic topic models include LSA[5], pLSA [10],
LDA[2], HDP[35], etc. Recent years also see a plethora of works on
neural topic modeling using variational and adversarial techniques
such as [23, 24, 38]. Topic models have been extensively used in var-
ious applications that require the modeling of community structure
of a collection of documents [9, 26, 31]. The topic vectors can also
serve as document representations with decent prediction power.

2
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3 PRELIMINARIES
In this section, we first formalize the distinction between textual
links and non-textual links as foundation of our discussion. Next,
we define the collective text classification problem that we consider.
Finally, we introduce several basic concepts in topic modeling,
which is widely used as a principled and elegant way to obtain
structural insight into a text corpus.

3.1 Textual and Non-textual Links
We define textual links as links which relate two documents and
are derived by analyzing just the documents’ text. They can be
either direct or indirect, meaning that textual links can exist either
between two documents, or can chain two documents through a
series of intermediate text entities such as words or topics. For
example, document A can indirectly relate to document B because
they share a certain keyword. In this case the textual link instanti-
ates the <contain> relationship between a document and a word.
This definition endows textual links with strong semantic expres-
siveness. As opposed to textual links, non-textual links are links
which relate two documents and can not be derived by just analyz-
ing their text. Classic examples are paper citations and webpage
hyperlinks, which have been studied much more extensively.

3.2 Problem Definition
The problem of CTC typically provides two input elements:

(1) A collection of documents 𝐷 = {𝑑1, . . .𝑑𝑁𝑑
}, where 𝑁𝑑 = |𝐷 |

is the number of documents. Each document contains a sequence of
words. A subset 𝐷𝑡𝑟𝑎𝑖𝑛 ⊆ 𝐷 is labeled, in which each 𝑑𝑖 ∈ 𝐷𝑡𝑟𝑎𝑖𝑛 is
assigned one of the𝐶 class labels from {1, . . . ,𝐶}.𝐷𝑡𝑒𝑠𝑡 = 𝐷\𝐷𝑡𝑟𝑎𝑖𝑛 .

(2) A set of non-textual links between documents. The links can
be represented as an adjacency matrix 𝐴 ∈ R |𝐷 |× |𝐷 | , where 𝐴𝑑𝑑′
denotes strength of the relationship between documents (indexed)
𝑑 and 𝑑 ′, and 𝐴𝑑𝑑′ = 0 if they are not related. Note that though
we primarily consider the case of undirected links for simplicity,
generalization to directed links is straightforward: one can simply
use positive and negative signs to distinguish the two directions.

Our goal is to assign a class label to each document 𝑑 ∈ 𝐷𝑡𝑒𝑠𝑡 .

3.3 Latent Dirichlet Allocation (LDA)
The Latent Dirichlet Allocation is a highly successful topic model
that provide scalable, robust, and inductive decomposition of the
rich underlying semantic structures of a given corpus. It uses a
probabilistic model to depict the generation of documents by the
following process:

𝜃
(𝑙𝑑𝑎)
𝑑

∼ Dirichlet(𝛼 (𝑙𝑑𝑎) ), for 𝑑 ∈ 𝐷 (1)

𝑧
(𝑙𝑑𝑎)
𝑛 ∼ Multinomial(𝜃 (𝑙𝑑𝑎)

𝑑
), for 𝑛 ∈ [1, 𝑁𝑑 ] (2)

𝑤
(𝑙𝑑𝑎)
𝑛 ∼ Multinomial(𝛽 (𝑙𝑑𝑎)𝑧𝑛 ), for 𝑛 ∈ [1, 𝑁𝑑 ] (3)

𝛼 (𝑙𝑑𝑎) is a parameter vector that shapes the Dirichlet prior for topic
allocation, 𝜃𝑑 is the topic allocation vector drawn from the prior,𝑁𝑑
is an auxiliary variable determining the number of terms in𝑑 , 𝑧 (𝑙𝑑𝑎)𝑛

is an one-hot indicator variable conditioned on 𝜃𝑑 and is repeatedly
drawn for different term 𝑤𝑛 , 𝛽 (𝑙𝑑𝑎) parametrize the topic-term
distribution and 𝛽

(𝑙𝑑𝑎)
𝑧𝑛 denotes the how topic 𝑧𝑛 distributes over

Figure 1: Schema of the constructed heterogeneous text network.

terms. We use the superscript (𝑙𝑑𝑎) to distinguish the variables with
variables in our proposed method.

LDA provides a clean and principled prototype of the semantic
relationships among various entities (i.e. documents, topics, terms)
in a corpus. Those relationships are well-encoded by the latent
variables and distribution parameters like 𝛽 (𝑙𝑑𝑎) and 𝜃 (𝑙𝑑𝑎) .

4 PROPOSED METHOD
Given the input defined in Sec. 3.2, we first discuss in Sec. 4.1 how
we construct a well-connected heterogeneous text network to en-
code the rich latent inter-document relationships in a compact and
unified manner. Then, Sec. 4.2 dives deeper into the computation of
some crucial link weights of the constructed network. Finally, Sec.
4.3 presents a Graph Edge-Attention Network which captures the
complex interactions among various entities and learns document
representations.

4.1 Heterogeneous Text Network Construction
We construct a heterogeneous text network 𝐺 whose architecture
is shown by the network schema in Fig. 1. Our network consists of
three types of nodes and four types of links:

Document nodes𝑉𝐷 represent the set of documents in the dataset.
Their input node feature matrix 𝑧𝐷 ∈ R |𝐷 |×𝑀𝐷 are directly piped
from the document-level representations extracted by an upstream
text feature extractor. In principle, any text feature extractor can be
used — from the classic document features such as bag-of-words or
TF-IDF, to the more advanced neural architecture like BERT, both
of which are evaluated in our experiment.

Topic nodes 𝑉𝑇 instantiate the set of topics 𝑇 which we want
to explicitly extract and formulate from the corpus. The number
of topic nodes |𝑉𝑇 | is equal to the topic number |𝑇 | which is a
hyperparameter. Their feature matrix 𝑧𝑇 ∈ R |𝑇 |×𝑀𝑇 is initialized
from a trainable embedding lookup table.

Term nodes𝑉𝑊 instantiate a set of selected n-grams from the doc-
ument collection. While existing literature provides different ways
of for n-gram selection [3, 11], in practice we found that filtering
criteria based on both TF-IDF and topic scores works well. We will
elaborate more on this in Sec. 5. However, we note that the key here
is to avoid the usage of (nearly) the entire set of n-grams — this is
especially important in a noisy corpus, and in practice we surpris-
ingly found that optimal performance is usually reached with less

3
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than 5% of all n-grams. Another advantage of pre-filtering n-grams
is that it can significantly scale down our heterogeneous network
along with the computation complexity for representation learning.
Similarly for term nodes, their feature matrix 𝑧𝑊 ∈ R |𝑊 |×𝑀𝑊 is
also initialized from a trainable embedding lookup table.

Document-Document Links 𝐸𝐷𝐷 encode the non-textual rela-
tionship and are directly mapped from the input non-textual links.
Formally speaking, the induced subgraph of𝐺 from all its document
nodes𝐷 ,𝐺𝐷𝐷 , has its connectivity fully expressed by the adjacency
matrix 𝐴 defined in Sec. 3.2. To encode the link, we use one-hot
vector to denote the relationship’s type, and further weigh it by the
relationship’s strength, i.e. 𝒛𝑑𝑑′ = [𝐴𝑑𝑑′, 0, 0, 0]⊺,∀ (𝑑, 𝑑 ′) ∈ 𝐸𝐷𝐷 .

Document-Term Links 𝐸𝐷𝑊 encode the <contain> relationship
between a document and an n-gram term in that document. To
encode the link, we use one-hot vector to denote the relationship’s
type, and further weigh it by the n-gram’s corresponding TF-IDF
value w.r.t the document: 𝒛𝑑𝑤 = [0, 𝐴𝑑𝑤 , 0, 0]⊺, ∀ (𝑑,𝑤) ∈ 𝐸𝐷𝑊 .

Document-Topic links 𝐸𝐷𝑇 and Topic-Term links 𝐸𝑇𝑊 instan-
tiate the two important structural relationships revealed by the
topic modeling: (1) a link (𝑑, 𝑡) ∈ 𝐸𝐷𝑇 exists between a docu-
ment 𝑑 ∈ 𝐷 and a topic 𝑡 ∈ 𝑇 , and represents the <mix>ture of
topic 𝑡 in document 𝑑 ; (2) a link (𝑡,𝑤) ∈ 𝐸𝑇𝑊 exists between
a topic 𝑡 ∈ 𝑇 and a n-gram 𝑤 ∈ 𝑊 , and represents the how
topic 𝑡 <distribute>s over the n-gram 𝑤 . Both types of links are
also associated with weights that parametrize the corresponding
topic mixture 𝜃 (and 𝜃𝑑𝑡 for specific 𝑑 and 𝑡 ) or word distribution
𝛽 (and 𝛽𝑡𝑤 for specific 𝑡 and 𝑤 ). 𝜃 and 𝛽 are crucial structural
weights that shape the connectivity of our network, and we dedi-
cate Sec. 4.2 to their generation. For the time being we assume that
their values are ready to use, and proceed to use one-hot encod-
ing for both types of links: 𝒛𝑑𝑡 = [0, 0, 𝜃𝑑𝑡 , 0]𝑇 ,∀(𝑑, 𝑡) ∈ 𝐸𝐷𝑇 , and
𝒛𝑡𝑤 = [0, 0, 0, 𝜃𝑡𝑤]⊺,∀ (𝑡,𝑤) ∈ 𝐸𝑇𝑊 .

4.2 Generating Topic-associated Weights
A key unsolved problem we are left with from Sec. 4.1 is the deriva-
tion of the topic-associated link weights 𝜃 and 𝛽 . As mentioned,
they are crucial structural weights that shape the connectivity
of our constructed network, and thus will significantly affect the
learned representations later. Therefore, extra care should be given
to ensure that they are computed to reflect their intended semantic
meanings with best fidelity and predictive power. Here we discuss
two well-principled strategies.

4.2.1 Initialized with a Pretrained Topic Model.
One straightforward method of determining 𝜃 and 𝛽 is to directly
map them from a topic model. We take LDA as an example to
illustrate this process:

𝐷,𝑊 , |𝑇 | LDA−−−−→ 𝜃 (𝑙𝑑𝑎) , 𝛽 (𝑙𝑑𝑎)
Init.−−−→ 𝜃, 𝛽 (4)

Given a collection of documents 𝐷 , the n-grams𝑊 , and the topic
number |𝑇 |, we include a preprocesssing step which fits a LDA
model to 𝐷 to learn the topic-word distribution parameter 𝛽 (𝑙𝑑𝑎) ,
and to infer the document-topic mixture latent variable 𝜃 (𝑙𝑑𝑎) . We
then use the derived 𝜃 (𝑙𝑑𝑎) and 𝛽 (𝑙𝑑𝑎) to respectively initialize the
𝜃 and 𝛽 used in link encoding. During the training, we do not freeze

𝜃 and 𝛽 , allowing them to be fine-tuned with gradient descent
together with other parameters. This gives our LDA-pt strategy,
which suggests that we use a pretrained LDA model to initialize
some link weights.

The LDA-pt strategy has the advantage that the weights can be
initialized in a well-defined manner by the topic model while also
enjoying some level of flexibility to be further refined later by the
supervised signals. However, it may not always be the case that
the pretrained topic model can yield predictive topic distributions.
Therefore, we propose a second variant, the VTG strategy, which
allows 𝜃 and 𝛽 to be jointly trained with our graph neural archi-
tecture proposed later in 4.3 to explicitly generate predictive topic
distributions for the classification task.

4.2.2 Joint Training with Variational Topic Generation.
The basic idea of the VTG strategy is that it employs several neural
variational components to simulate the generative and inference
process of topic modeling. This process allows 𝜃 and 𝛽 to be learned
by error back-propagation and gradient descent, which can be car-
ried out jointly with representation learning over the whole net-
work proposed in 4.3. It consists of two components for document
generation and variational inference, respectively.

Generation. For each document 𝑑 ∈ 𝐷 , our generative process
takes in a random vector sampled from isotropic Gaussian prior,
i.e. 𝜙𝑑 ∼ 𝑁 (𝜇𝑑 , 𝜌2𝑑 ), and generate the set of selected n-grams𝑊 .
The process starts by simulating the Dirichlet prior to derive the
simplex latent variable 𝜃𝑑 ∈ R |𝑇 | (here we use 𝜃𝑑 to denote the
mixture of document 𝑑 over topics𝑇 ). We use the Gaussian-softmax
function for the simulation which is similar to[32]:

𝜃𝑑 = 𝑔(𝜙𝑑 ) = softmax(𝑄1𝜙𝑑 + 𝑏1) (5)

where projectionmatrix𝑄1 and bias𝑏1 are parameters to be learned.
Joint probability of the selected n-grams is then given by:

𝑝 (𝑊 |𝜙𝑑 ) = 𝑝 (𝑊 |𝜃𝑑 ) =
∏
𝑤∈𝑊

(𝑤 |𝜙𝑑 ) =
∏
𝑤∈𝑊

∑
𝑡 ∈𝑇

𝑝 (𝑡 |𝜃𝑑 )𝑝 (𝑤 |𝑡)

(6)
where 𝑝 (𝑡 |𝜃𝑑 ) is the probability of selecting topic 𝑡 given distribu-
tion vector𝜃𝑑 , which is exactly parametrized by 𝜃𝑑𝑡 ; 𝑝 (𝑤 |𝑡) is also
parametrized by 𝛽𝑡𝑤 . Together we have:

𝑝 (𝑤 |𝜙𝑑 ) =
∏
𝑤∈𝑊

∑
𝑡 ∈𝑇

(𝑔(𝜙𝑑 ))𝑡 𝛽𝑡𝑤 (7)

Inference. For a given document 𝑑 , the inference process approxi-
mates the true posterior distribution of 𝜙𝑑 conditioned on 𝑑 and
the set of topics 𝑇 . With the re-parametrization trick [16] 𝜙𝑑 =

𝜇𝑑 + 𝜖 ∗ 𝜌𝑑 , 𝜖 ∼ 𝑁 (0, 1), we infer the posterior using bilinear prod-
uct attention based on encoding 𝑧𝑑 ∈ R𝑀𝐷 and 𝑧𝑇 ∈ R |𝑇 |×𝑀𝑇 :

𝑝 (𝜙𝑑 |𝑑,𝑇 ) ≈ 𝑞(𝜙𝑑 |𝑑,𝑇 ) = 𝑞(𝜇𝑑 , 𝜌𝑑 |𝑑,𝑇 ) (8)
𝜇𝑑 (𝑑,𝑇 ) = 𝑧𝑇𝑄2𝑧

⊺
𝑑
; 𝜌𝑑 (𝑑,𝑇 ) = exp(𝑧𝑇𝑄3𝑧

⊺
𝑑
) (9)

where𝑄2, 𝑄3 ∈ R𝑀𝑇 ×𝑀𝐷 are learnable bilinear projection matrices.
4
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Learning.Weoptimize the variational evidence lower boundL (𝑣𝑡𝑔)
𝑑

for document 𝑑 w.r.t parameters 𝑄1, 𝑄2, 𝑄3, 𝑏, 𝛽 , 𝑧𝑇 :

L (𝑣𝑡𝑔)
𝑑

=E𝑞 (𝜙𝑑 |𝑑,𝑇 )

[ ∑
𝑤∈𝑊

𝐼𝑑𝑤 log
∑
𝑡 ∈𝑇

𝑝 (𝑡 |𝜃𝑑 )𝑝 (𝑤 |𝑡)
]

− 𝐷𝐾𝐿 (𝑞(𝜙𝑑 |𝑑,𝑇 ) | |𝑝 (𝜙𝑑 )) (10)

where 𝐷𝐾𝐿 denotes the KL-divergence between two distributions.
Here because of the usage of Gaussian prior, 𝐷𝐾𝐿 can be integrated
with a closed form derivation following [16]. 𝐼𝑑𝑤 is an indicator
variable, i.e. 𝐼𝑑𝑤 = 1 iff.𝑤 is a word in document 𝑑 .

The advantage of VTG is that the whole framework can be ele-
gantly trained end-to-end, allowing it to generate topic-associated
link weights that desirably have stronger predictive power. Mean-
while, notice that the topic encoding 𝑧𝑇 , is also involved as trainable
parameters. This bridge further allows the topic generation process
and the graph neural network to interact with and benefit from
each other, and to refine the topic encoding itself. Finally, from the
perspective of regularization, we also point out the KL-divergence
term 𝐷𝐾𝐿 and the Gaussian noise 𝜖 essentially helps regularize
learning of the topic-associated link weights in a principled manner.
This can be especially helpful to deal with the strong noise and
randomness typically contained in text data.

4.3 Representation Learning in the Network
Finally, we propose a Graph Edge Attention Network (GEAT) to
learn representations in the heterogeneous network we constructed.
Input to GEAT are the heterogeneous node and edge features : 𝑍𝐷 ,
𝑍𝑇 , 𝑍𝑊 , 𝑍𝐷𝐷 , 𝑍𝐷𝑇 , 𝑍𝑇𝑊 , 𝑍𝐷𝑊 . We further use lowercase letter 𝑧
to represent an individual node or link, e.g. 𝑧𝑑 denotes input node
features of the a specific document 𝑑 , and similarly for other node
and link types.

The first thing GEAT does is to align the distribution space of
all the node and edge features via linear transformations. That is,
for all 𝑑,𝑑 ′ ∈ 𝐷, 𝑡 ∈ 𝑇,𝑤 ∈𝑊 where appropriate:

𝑥𝑑 = 𝑓𝐷 (𝑥𝑑 ), 𝑥𝑡 = 𝑓𝑇 (𝑧𝑡 ), 𝑥𝑤 = 𝑓𝑊 (𝑥𝑤) (11)
𝑒𝑑𝑑′ = 𝑓𝐷𝐷 (𝑥𝑑𝑑′), 𝑒𝑑𝑤 = 𝑓𝐷𝑊 (𝑧𝑑𝑤),
𝑒𝑑𝑡 = 𝑓𝐷𝑇 (𝑥𝑑𝑡 ), 𝑒𝑡𝑤 = 𝑓𝑇𝑊 (𝑥𝑡𝑤) (12)

where: 𝑓Ω : R𝐹Ω → R𝑀𝑉 , for Ω ∈ {𝐷,𝑊 ,𝑇 }; and 𝑓Ω′ : R4 →
R𝑀𝐸 ,for Ω ∈ {𝐷𝐷 ′, 𝐷𝑊 , 𝐷𝑇,𝑇𝑊 }, where 𝑀𝑉 and 𝑀𝐸 are dimen-
sions of the unified node feature space and link feature space, respec-
tively. The seven 𝑓 ’s with different subscripts denote the different
linear projection functions.

Eqn.(11) and (12) essentially reduce the heterogeneous network
into a homogeneous one while preserving the heterogeneity by
different 𝑓 ’s. Therefore, from now on we can safely ignore the
subscripts of features 𝑥 and 𝑒 , and instead use 𝑥𝑖 , 𝑥 𝑗 , and 𝑒𝑖 𝑗 , where
the 𝑖, 𝑗 ∈ 𝐷 ∪𝑇 ∪𝑊 are type-free indices.

GEAT then proceeds to carry out message passing among nodes
with edge-level modulation. Eqn. (13) and (14) give one layer of

GEAT:

𝑥𝑖 = 𝑥𝑖 + 𝜎 (𝐻𝑛
∑

𝑗 ∈N(𝑖)
𝑎𝑖 𝑗𝑥𝑖 𝑗 ) (13)

𝑎𝑖 𝑗 =
exp(𝐻𝑒𝑒𝑖 𝑗 + 𝑏𝑒 )∑

𝑗 ′∈N(𝑖) exp(𝐻𝑒𝑒𝑖 𝑗 ′ + 𝑏𝑒 )
(14)

, where 𝑖 is the center node, N(𝑖) is node 𝑖’s neighbors, 𝐻𝑒 ∈
R𝑀𝐸×ℎ ,𝐻𝑛 ∈ R𝑀𝑁 ×ℎ are two parameter matrices, 𝜎 is a non-linear
function such as ReLU.

After 𝐿 layers of GEAT, we obtain representations for all the
document, topic and term nodes. Representations for the document
nodes are further retrieved and piped to a single-layer perceptron to
do classification and learn from the error via the standard Softmax
and Cross Entropy loss:

L (𝑐𝑙 𝑓 ) =
∑
𝑑∈𝐷

cross-entropy(𝑐𝑑 , 𝑓𝑜𝑢𝑡 (𝑜𝑑 )) (15)

where 𝑐𝑑 is the ground truth label of document 𝑑 , 𝑜𝑑 is the output
representation from GEAT, 𝑓𝑜𝑢𝑡 is a single-layer neural network
with softmax. Finally, if the LDA-pt strategy in Sec. 4.2 is adopted,
we can directly optimize L (𝑐𝑙 𝑓 ) w.r.t GEAT’s parameters. If VTG
strategy is adopted otherwise, our optimization objective is the new
loss L given by the weighted sum of the classification loss and the
variational loss by Eqn.(16) with 𝜆 ∈ [0,∞]:

L = L (𝑐𝑙 𝑓 ) + 𝜆
∑
𝑑∈𝐷

L (𝑣𝑡𝑔)
𝑑

(16)

How is relationship heterogeneity captured by GEAT (and
why not pte, text gcn)?

5 EXPERIMENT
5.1 Experimental Setups
We implemented two variants of our model: GEAT-LDA-pt and
GEAT-VTG, corresponding to the twoweight generation strategies
discussed in Sec.4.2. For the rest of this section, we report more
details on our baselines, datasets, and training configurations.

5.1.1 Baselines.
Our method is compared with 11 baselines that cover a wide range
of existing literature. Their detailed tuning process is in Appendix.
• TF-IDF: the classic document feature of Term Frequency–Inverse
Document Frequency. We pipe it to a 2-layer fully connected neural
network for classification. We use that as the most basic baseline.
For all the methods below that do not specify its input document
node features (e.g. our method, all GNN-based baselines, TADW,
etc.) we also consistently use the basic TF-IDF features as input
document node feature. We do so because our study’s focus is not
on representing document individually, though we also include a
special baseline, BERT [21], to showcase the state-of-the-art gain
that can be made in that direction for reader’s further reference.
• LDA [2]: Latent Dirichlet Allocation. We use the topic vector gen-
erated by the topic model for each document as its representation.
Then we use a fully connected neural network for classification.

5
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• DeepWalk [28]: the classic method that learns network embed-
ding by sampling and modeling the pregiven links’ joint probability.
• TADW [41]: Text-associated DeepWalk, which extends Deep-
Walk to incorporate text features into the network embedding.
• paper2vec [8]: a method that builds a K-nearest-neighbor graph
among documents. It then merges with the citation network to
learn node embeddings by modeling all the links’ joint probability.
• CANE [36]: Context-Aware Network Embedding, which learns
multiple embeddings for a node when it interacts with different
neighbors. Its optimization objective is still to model the pregiven
links’ joint probability.
• PTE [33]: a method that seeks to learn predictive word and
document embeddings by using labels to build multiple bipartite
heterogeneous networks. It then adapts [34] to learn embeddings.
• GCN [17]: Graph Convolutional Network, a representative type
of GNN that performs localized convolution over document node
features and pregiven links using Graph Laplacian.
• GAT [37]: Graph Attention Network, a GCN extension which
integrates attention mechanism into the neighborhood aggregation.
• Text GCN [43]: a method that applies GCN to text classification.
It creates word-word links and document-word links, ignores their
types and merges them into a homogeneous network, and applies
GCN to learn node representations.
• BERT [21]: Deep Bidirectional Transformers for Language Un-
derstanding. We include this special baseline to show the state-of-
the-art performance that can be achieved if we do not explicitly
consider the connections between documents (but make full use of
the sequential information within each text).

5.1.2 Datasets.
We evaluate our method and baselines on six widely used bench-
marks whose statistics are summarized in Table 1: Hep-th [18] is a
collection of high-energy physics papers with citations; Wiki [41] is
a collection of wiki web pages with hyperlinks; CoraEnrich [8] and
Citeseer [42] are two collections of machine learning papers with
citations; PubMed [42] is a collection of bio-medical papers with
citations; Reuters-8 [43] is a subset of Reuters 21578 news reports.

Although having the raw text as input is appreciated for making
more accurate predictions, notice they are not necessarily required
by both our method and most of our baselines, which only require
the word-count matrix as the text input. Being able to work with
datasets with discrete text attributes is also important in practice.
Examples include classifying people’s social media profiles using
tagging information, and classifying long articles based on their
extracted keywords. CiteSeer, PubMed, and Wiki belong to such
cases, for which we use only 1-gram (word) as term nodes in our
method. Also notice that the last dataset Reuters-8, does not have
any pre-given links. It is a popular dataset for link-free text clas-
sification and we further include it to demonstrate our method’s
potential of leveraging the advantage of collective classification to
tackle a link-free text classification problem.

5.1.3 Preprocessing and Training Configurations.
For all datasets that come with raw text, we preprocess the text data
following a standard pipeline: we tokenize the text as [43], remove

Dataset Docs Links Vocab. Classes Type
Hep-th [18] 11752 134,956 21,614 4 papers
CoraEnrich [8] 2,708 5,278 25,935 7 papers
Wiki [41] 2,405 17,981 4,973 19 web pages
CiteSeer [42] 3,327 4,552 3,703 6 papers
PubMed [42] 19,717 44,324 500 3 papers
Reuters-8 [43] 7,647 - 7,688 20 news report

Table 1: Summary of the dataset statistics.

English stopwords defined by NLTK 1, and remove low-frequency
words appearing less than 5 times in the corpus.

To tune our model, we adopt grid search over three hyperparam-
eters: number of topics |𝑇 |, number of terms |𝑊 |, and dimensions
of hidden layers. We report their search ranges and values for other
hyperparameters such as learning rate and dropout in Appendix.
The train-val-test split for most datasets are 60%-20%-20%, except
for Hep-th and Reuter-8 where we use pregiven public split. We
sufficiently train our model using Adam optimizer until the loss
converges, and then use the validation set to select the best epoch
checkpoint for testing. For all baselines’ tuning, we follow their
default hyperparameter (search) settings reported in their paper or
implementation. We ran all the experiments 10 times using differ-
ent random seeds and report the mean Accuracy ± 95% confidence
interval as the metric, following [8, 41, 43].

5.2 Results and Discussion
Table 2 presents the test accuracies of each model. We can see that
the two variants of our proposed method significantly outperform
all the state-of-the-art baselines on most datasets (𝑝<0.05 by student
𝑡-test). On average, our best model variant improves over the accu-
racy of the strongest baseline by 1.5% in relative. We additionally
have the following observations:

•The class of GNNmethods (GNN, GAT, Text GCN) are the strongest
baselines overall. While our proposed method also adopts a graph
neural network base, it still outperforms the GNN methods by a
stable margin. We attribute this performance gain to our usage of
latent textual links: general GNNs do not take advantage of any
text-specific structural information; in contrast, our method ex-
ploits the advantage of text by using the very rich latent textual
links among the nodes.

• Text GCN’s performance lies in between GAT and our method.
However, it still consistently underperforms our method. The main
reason is that Text GCN depends only on shared words to bridge
two documents, which in practice is usually noisy. It also ignores
different relationship types in the corpus when doing propagation.
In comparison, our topic-associated links reveal more and cleaner
structural information of the corpus, and our GEAT better uses the
type information of relationships.

• CANE, PTE, and Text GCN can not work with discrete text at-
tributes (e.g.Wiki, CiteSeer, PubMed). This limits their generaliz-
ability to tasks where only discrete text tags are available, such as
classifying people’s social media profiles using some text tags, or
classifying long articles based on their extracted keywords. How-
ever, our method well copes with these scenarios because it does
1http://www.nltk.org
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Model Hep-th CoraEnrich Wiki CiteSeer PubMed Reuters-8
TF-IDF 42.04 ± 0.92 73.80 ± 2.45 71.71 ± 3.59 74.27 ± 1.44 84.28 ± 0.54 93.74 ± 0.43
LDA [2] 42.25 ± 0.69 74.02 ± 0.77 78.24 ± 0.62 76.24 ± 1.18 86.59 ± 0.75 94.48 ± 0.50
BERT [6] 45.16 ± 0.84 78.97 ± 2.43 - - - 97.11 ± 0.38†
DeepWalk [28] 39.83 ± 0.61 81.44 ± 1.63 69.91 ± 2.90 58.51 ± 2.23 86.92 ± 0.74 -
TADW [41] 44.55 ± 0.70 87.29 ± 0.58 80.72 ± 0.82† 74.67 ± 0.63 86.82 ± 0.61 -
paper2vec [8] 33.26 ± 2.98 80.58 ± 0.90 70.01 ± 2.62 59.26 ± 3.12 62.56 ± 1.33 -
CANE [36] 42.88 ± 0.87 82.84 ± 1.09 - - - -
PTE [33] 44.34 ± 0.51 88.50 ± 1.28 - - - 96.46 ± 0.16
GCN [17] 45.49 ± 0.38 87.63 ± 0.66 77.96 ± 0.45 76.68 ± 0.53† 87.15 ± 0.38† -
GAT [37] 45.88 ± 0.49 87.71 ± 0.69 78.12 ± 0.76 76.21 ± 0.59 86.94 ± 0.37 -
Text GCN [43] 46.01 ± 0.30† 90.02 ± 0.39† - - - 97.07 ± 0.10
GEAT-LDA-pt 48.23 ± 0.45* 90.42 ± 0.37* 81.22 ± 0.63 77.04 ± 0.56 88.48 ± 0.58* 97.11 ± 0.15*
GEAT-VTG 48.36 ± 0.31* 90.55 ± 0.46* 80.99 ± 0.42 77.26 ± 0.33* 88.59 ± 0.69* 97.25 ± 0.10*

Table 2: Performance in Accuracy (mean in percentage ± 95% confidence interval). † highlights the best baselines. ∗, bold font, bold font∗

respectively highlights the case where our models’ performance exceeds the best baseline on average, by 70% confidence, by 95% confidence.

not require word occurrence (though if available it can still make
use of word occurrence via n-grams).

• Comparing the two variants, GEAT-LDA-pt and GEAT-VTG, we
see that the latter performs slightly better. The reason is that com-
pared to GEAT-LDA-pt, GEAT-VTG allows more freedom in con-
structing the network – GEAT-VTG’s topic-associated link weights
are trained from scratch with supervised signals, while GEAT-LDA-
pt fine-tunes the link weights set by a pretrained topic model. The
topic model is pretrained in an unsupervised way. Therefore, GEAT-
VTG is likely to generate link weights better optimized for the
classification task.

• BERT can achieve high performance without any inter-document
relationships, because it well utilizes the sequential information
within each document. In comparison, our method makes promi-
nent progress in another direction by exploiting inter-document
relationships, which also proves to be a great success.

5.3 Ablation Studies
A central goal of our experiment is to validate the effectiveness of
each building component in our heterogeneous text graph. There-
fore, we carried out a series of ablation studies to check how re-
moving or replacing each component affects the performance. The
ablations and results are summarized in Table 2 and here is their
introduction: Ab. 1 uses our unmodified model of GEAT-LDA-pt as
the comparison base; Ab. 2-6 remove different subsets of links we
use: Ab. 2 removes the given non-textual document links 𝐸𝐷𝐷 ; Ab.
3 removes the document-word links 𝐸𝐷𝑊 ; Ab. 4 removes all the
topic-associated links which include document-topic links 𝐸𝐷𝑇 and
topic-term links 𝐸𝑇𝑊 ; Ab. 5 removes all textual links, 𝐸𝐷𝑇 , 𝐸𝑇𝑊
and 𝐸𝐷𝑊 ; Ab. 6 removes all types of links. In Ab. 7, we initialize
the term nodes differently: instead of looking them up from an
embedding table trained from scratch, we try using the pretrained
Glove word embeddings over our corpus to initialize the terms.
That is, each term (n-gram) is initialized using the average of all its
words’ pretrained embeddings. Finally, in Ab. 8 we try making ev-
ery n-gram in the corpus into a term node, so there is no aggressive
pre-filtering step which only leaves less than 10% of them.

Table 3 presents us several interesting insights into our model
via row-wise comparisons:

•Ab. 1 vs. Ab. 2-6: these comparisons show that our manually
created textual links help significantly. In fact, every type of link in
our constructed heterogeneous network contributes to the perfor-
mance, which further demonstrates the importance of mining and
leveraging rich inter-document relationships for classification.

•Ab. 6 vs. Ab. 2, 5: we see that the proper usage of textual links
not only significantly improves performance, but the improvement
can be even larger than that of using non-textual links alone (on
Hep-th dataset, for example).

•Ab.1 vs. Ab. 7: an interesting debate over our framework’s de-
sign is whether one should use pretrained word embeddings as
the initial term node features. Comparisons between these two
ablation studies show that using pretrained word embeddings actu-
ally slightly hurts the performance. This interesting phenomenon
may be because the pretrained word embeddings are trained in a
fully unsupervised manner. Therefore, they may distribute in a sub-
optimal feature space which is hard to change even with supervised
fine-tuning afterwards. In comparison, our term embeddings are
trained with supervised signals from scratch, so they may capture
semantics that are better contextualized and customized for the
classification task.

•Ab. 1 vs. Ab. 8: this comparison shows us that using the full
vocabulary set to build the text network can be a less desirable
choice. The interpretation is that we may only need a small number
of vocabularies to define cleaner and more reliable textual links for
a corpus, and to build a well-connected text network out of it to do
classification. We include more discussions on this in Sec. 5.4.

5.4 Hyperparameter Sensitivity
We analyze the effect of two important hyperparameters: the num-
ber of topic nodes |𝑇 |, and the number of term nodes |𝑊 |. In each
experiment, we set a target hyperparameter to different values,
and for each value find its corresponding optimal performances by
grid-searching a best combination of other hyperparameters. The
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No. Ablation Cora Enrich Hep-th Reuters-8
1 original method: GEAT-LDA-pt 90.42 ± 0.37 48.23 ± 0.45 97.11 ± 0.15*
2 original method - all non-textual links (𝐸𝐷𝐷 ) 84.87 ± 0.52 46.53 ± 0.47 97.11 ± 0.15*
3 original method - document-word textual links (𝐸𝐷𝑊 ) 88.91 ± 0.39 46.83 ± 0.39 96.30 ± 0.26
4 original method - topic-associated textual links (𝐸𝐷𝑇 , 𝐸𝑇𝑊 ) 87.52 ± 0.41 46.56 ± 0.35 96.52 ± 0.23
5 original method - all textual links (𝐸𝐷𝑊 , 𝐸𝐷𝑇 , 𝐸𝑇𝑊 ) 87.07 ± 0.45 45.93 ± 0.42 93.76 ± 0.31†
6 original method - all links (𝐸𝐷𝑊 , 𝐸𝐷𝑇 , 𝐸𝑇𝑊 , 𝐸𝐷𝐷 ) 73.80 ± 1.49 42.11 ± 0.55 93.76 ± 0.31†
7 original method + pretrained word embeddings 90.43 ± 0.56 48.01 ± 0.13 97.02 ± 0.10
8 original method + use all vocabulary 82.79 ± 0.64 46.32 ± 0.21 96.84 ± 0.16

Table 3: Ablation studies with GEAT-LDA-pt, performance in Accuracy (mean in percentage ± 95% confidence interval) reported.
∗†: the results are pairwise the same, because Reuters-8 does not have any non-textual links.

Figure 2: Test Accuracies w.r.t different hyperparameters.

results are plot in Fig. 2. Plots (a), (b) demonstrate the importance
topic nodes: |𝑇 | has a significant effect on the performance, and
in particular a too small |𝑇 | will likely hurt the performance. Also,
the performance peaks with certain optimal range of |𝑇 |, which
is around 1 ∼ 1.5 times the class number of the dataset (the class
numbers are listed in Table 1). From Plots (c), (d) we further observe
that similar to |𝑇 |’s case, the performance also peaks at a certain
range of |𝑊 |. This optimal range, however, is way smaller that the
magnitude of vocabulary size (only accounting for around 1% in
fact). This suggests that we may not need learn the embeddings of
all the words / terms like PTE [33] in order to classify a document.
This is consistent with Ab. 8 in Table 3, which shows that learning
embeddings for all vocabulary actually hurts performance a lot.

5.5 Visualizing Topic-term Attentions
We visualize the topic-term attentions learned by the first layer of
our GEAT-VTG model. We set up the exploration as the following:
we first train our GEAT-VTG model on CoraEnrich dataset by
setting the number of topic nodes equal to the number of label
classes, 7. Then, we retrieve the topic-term attention weights from
the first layer of our model. For each topic node, we rank the top 8
terms linked to the topic node with the highest attention weight.
Table 4 lists the ranking for 4 topic nodes. We can see from the
term examples that the attention weights learned by our model
turn out to be highly predictive of the category already, though
we do not directly use them to make predictions. We attribute this

interesting characteristic to the success of our VTG strategy and its
good integration with GEAT’s edge attention mechanism: the VTG
strategy learns good topic-term link attributes and GEAT further
uses those attributes to compute edge attention. If we instead adopt
the node-node attention mechanism used by GAT [37] , it would
be less likely to see the strong predictive power of attentions since
their attention mechanism tends to ignore the link attributes.

Topic Node 1 Topic Node 2 Topic Node 3 Topic Node 4
logic theorem tree action
infer bound decision reinforce
clause query attribute case base
belief polynomial classifier simulate

language finite decision tree instruct
causal learnable machine learning goal
decision learning algorithm classifier game

logic program converge learning algorithm policy
Table 4: Top-8 terms with highest attention weights connected to
different topic nodes. The attentions weights are extracted from the
first layer of GEAT-VTG trained on CoraEnrich dataset.

6 CONCLUSION
In this work, we study the collective text classification problem by
exploiting different latent textual links among documents. We inves-
tigate an optimal way of defining and leveraging those relationships
via the construction of a well-connected heterogeneous text net-
work. We pair the network construction process with two strategies
to generate topic-associated link weights, and further presents a
Graph Edge-Attention Network to model the complex textual rela-
tionships and to learn predictive document embeddings. Extensive
experiments show that our proposed method significantly outper-
forms various state-of-the-art baselines by a large margin. Ablation
studies further validate the effectiveness of various components in
our method.
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A ADDITIONAL EXPERIMENTAL SETUPS
A.1 Tuning Our Model
The hyperparameters search range of our method is reported in
Table 5. For each dataset, we first heuristically look for a combi-
nation learning rate and dropout rate within the range reported,
fix them, and then conduct comprehensive grid search over other
hyperparameters for the best set of values.

Hyperparameter Search Range / Value
learning rate 1e-4, 2e-4, 4e-4
dropout rate 0, 0.1, 0.3, 0.5
hidden dimension ℎ 50, 100, 150, 200
𝜆𝐷 (for GEAT-VTG only) 0.2, 0.5, 1
number of topic nodes |𝑇 | 0.5𝐶 , 𝐶 , 1.2𝐶 , 1.5𝐶 , 2𝐶
number of term nodes |𝑊 | 32, 64, 128, 256, 512, 1024

Table 5: Hyperparameter search range for the two variants
of our method. 𝐶 is the class number of each dataset.

A.2 Tuning Baselines

BERT We experiment with RoBERTa [21], the state-of-the-art ver-

sion of BERT [6]. We use the official implementation and pretrained
weights of RoBERTa provided by the HuggingFace’s transformer
library [40]. Following common practices, we replace the last linear
layer and fine-tune RoBERTa with the text classification task. Fol-
lowing the default hyper-parameter setting, the batch size is set to
16 while the learning rate is set to 2 × 10−5. The maximum input
sequence length of RoBERTa is 512 tokens. We also experiment
with LongFormer [1], which supports longer input sequences by op-
timizing the memory usage of RoBERTa’s self-attention mechanism.
However, we did not observe accuracy improvements compared to
RoBERTa. On each dataset, we fine-tune RoBERTa for 10 epochs,
and we select the best model using the validation set.

PTE We use the official implementation provided by PTE [33].
PTE learns document classification in two phases: In the feature
learning phase, PTE learns document representation using the train-
ing data. We then extract the document features for the training
set, validation set, and test set. In the classification phase, we use
the one-vs-rest (OvR) logistic regression model in the scikit-learn
package. Following the default hyper-parameter setting, we set the
window size in the convolution layer as 3, the number of feature
maps as 100, and the dimension of word vectors as 100.

Text GCN We use the official implementation provided by Text
GCN [43], and use most of their default hyperparameter settings:
learning rate = 0.02, #epochs = 200, dropout rate = 0.5, with early
stopping that stops the training if the validation performance does
not increase for more than 10 epochs.

CANE We use the official implementation provided by CANE
[36], and use the configurations mentioned in their "config.py" file:
#epochs = 200, batch size = 64, hidden dimension = 200, learning
rate = 1e-3.

GCN and GAT For the two baselines, we adopt their PyTorch
Geometric 2 implementations, and tune their learning rate, dropout,
and hidden dimensions by the same search range reported in Table 5.
Both methods share the same preprocessing step with our proposed
method.

TADW We use the official MatLab implementation provided by
[41]. We follow most of their default hyperparameter settings: 𝜆 =

0.2, 𝑘 = 80, and word vector dimension = 200.

paper2vec Unfortunately, the author does not release its code and
so we implemented the paper ourselves. The only hyperparameter
to be tuned is the dimension 𝑘 and we follow the papers advice to
search it in 160, 180, 200.

2https://pytorch-geometric.readthedocs.io/
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