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Preface

Thank you for your interest in our book, but more importantly, thank you for taking the time to
read the Preface. I always read the Prefaces of the textbooks which I use in my classes because
I believe it is in the Preface where I begin to understand the authors - who they are, what their
motivation for writing the book was, and what they hope the reader will get out of reading the text.
Pedagogical issues such as content organization and how professors and students should best
use a book can usually be gleaned out of its Table of Contents, but the reasons behind the choices
authors make should be shared in the Preface. Also, I feel that the Preface of a textbook should
demonstrate the authors’ love of their discipline and passion for teaching, so that I come away
believing that they really want to help students and not just make money. Thus, I thank my fellow
Preface-readers again for giving me the opportunity to share with you the need and vision which
guided the creation of this book and passion which both Carl and I hold for Mathematics and the
teaching of it.

Carl and I are natives of Northeast Ohio. We met in graduate school at Kent State University
in 1997. I finished my Ph.D in Pure Mathematics in August 1998 and started teaching at Lorain
County Community College in Elyria, Ohio just two days after graduation. Carl earned his Ph.D
in Pure Mathematics in August 2000 and started teaching at Lakeland Community College in
Kirtland, Ohio that same month. Our schools are fairly similar in size and mission and each serves
a similar population of students. The students range in age from about 16 (Ohio has a Post-
Secondary Enrollment Option program which allows high school students to take college courses
for free while still in high school.) to over 65. Many of the “non-traditional” students are returning
to school in order to change careers. A majority of the students at both schools receive some sort
of financial aid, be it scholarships from the schools’ foundations, state-funded grants or federal
financial aid like student loans, and many of them have lives busied by family and job demands.
Some will be taking their Associate degrees and entering (or re-entering) the workforce while
others will be continuing on to a four-year college or university. Despite their many differences, our
students share one common attribute: they do not want to spend $200 on a College Algebra book.

The challenge of reducing the cost of textbooks is one that many states, including Ohio, are taking
quite seriously. Indeed, state-level leaders have started to work with faculty from several of the
colleges and universities in Ohio and with the major publishers as well. That process will take
considerable time so Carl and I came up with a plan of our own. We decided that the best way to
help our students right now was to write our own College Algebra book and give it away electroni-
cally for free. We were granted sabbaticals from our respective institutions for the Spring semester
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of 2009 and actually began writing the textbook on December 16, 2008. Using an open-source
text editor called TexNicCenter and an open-source distribution of LaTeX called MikTex 2.7, Carl
and I wrote and edited all of the text, exercises and answers and created all of the graphs (using
Metapost within LaTeX) for Version 0.9 in about eight months. (We choose to create a text in
only black and white to keep printing costs to a minimum for those students who prefer a printed
edition. This somewhat Spartan page layout stands in sharp relief to the explosion of colors found
in most other College Algebra texts, but neither Carl nor I believe the four-color print adds any-
thing of value.) I used the book in three sections of College Algebra at Lorain County Community
College in the Fall of 2009 and Carl’s colleague, Dr. Bill Previts, taught a section of College Al-
gebra at Lakeland with the book that semester as well. Students had the option of downloading
the book as a .pdf file from our website www.stitz-zeager.com or buying a low-cost printed ver-
sion from our colleges’ respective bookstores. (By giving this book away for free electronically,
we end the cycle of new editions appearing every 18 months to curtail the used book market.)
During Thanksgiving break in November 2009, many additional exercises written by Dr. Previts
were added and the typographical errors found by our students and others were corrected. On
December 10, 2009, Version

√
2 was released. The book remains free for download at our website

and by using Lulu.com as an on-demand printing service, our bookstores are now able to provide
a printed edition for just under $19. Neither Carl nor I have, or will ever, receive any royalties from
the printed editions. As a contribution back to the open-source community, all of the LaTeX files
used to compile the book are available for free under a Creative Commons License on our website
as well. That way, anyone who would like to rearrange or edit the content for their classes can do
so as long as it remains free.

The only disadvantage to not working for a publisher is that we don’t have a paid editorial staff.
What we have instead, beyond ourselves, is friends, colleagues and unknown people in the open-
source community who alert us to errors they find as they read the textbook. What we gain in
not having to report to a publisher so dramatically outweighs the lack of the paid staff that we
have turned down every offer to publish our book. (As of the writing of this Preface, we’ve had
three offers.) By maintaining this book by ourselves, Carl and I retain all creative control and keep
the book our own. We control the organization, depth and rigor of the content which means we
can resist the pressure to diminish the rigor and homogenize the content so as to appeal to a
mass market. A casual glance through the Table of Contents of most of the major publishers’
College Algebra books reveals nearly isomorphic content in both order and depth. Our Table of
Contents shows a different approach, one that might be labeled “Functions First.” To truly use The
Rule of Four, that is, in order to discuss each new concept algebraically, graphically, numerically
and verbally, it seems completely obvious to us that one would need to introduce functions first.
(Take a moment and compare our ordering to the classic “equations first, then the Cartesian Plane
and THEN functions” approach seen in most of the major players.) We then introduce a class of
functions and discuss the equations, inequalities (with a heavy emphasis on sign diagrams) and
applications which involve functions in that class. The material is presented at a level that definitely
prepares a student for Calculus while giving them relevant Mathematics which can be used in
other classes as well. Graphing calculators are used sparingly and only as a tool to enhance the
Mathematics, not to replace it. The answers to nearly all of the computational homework exercises

http://www.stitz-zeager.com
http://www.lulu.com/content/paperback-book/college-algebra/7513097
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are given in the text and we have gone to great lengths to write some very thought provoking
discussion questions whose answers are not given. One will notice that our exercise sets are
much shorter than the traditional sets of nearly 100 “drill and kill” questions which build skill devoid
of understanding. Our experience has been that students can do about 15-20 homework exercises
a night so we very carefully chose smaller sets of questions which cover all of the necessary skills
and get the students thinking more deeply about the Mathematics involved.

Critics of the Open Educational Resource movement might quip that “open-source is where bad
content goes to die,” to which I say this: take a serious look at what we offer our students. Look
through a few sections to see if what we’ve written is bad content in your opinion. I see this open-
source book not as something which is “free and worth every penny”, but rather, as a high quality
alternative to the business as usual of the textbook industry and I hope that you agree. If you have
any comments, questions or concerns please feel free to contact me at jeff@stitz-zeager.com or
Carl at carl@stitz-zeager.com.

Jeff Zeager
Lorain County Community College
January 25, 2010
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Chapter 0

Prerequisites

The authors would like nothing more than to dive right into the sheer excitement of Precalculus.
However, experience - our own as well as that of our colleagues - has taught us that is it bene-
ficial, if not completely necessary, to review what students should know before embarking on a
Precalculus adventure. The goal of Chapter 0 is exactly that: to review the concepts, skills and
vocabulary we believe are prerequisite to a rigorous, college-level Precalculus course. This review
is not designed to teach the material to students who have never seen it before thus the presenta-
tion is more succinct and the exercise sets are shorter than those usually found in an Intermediate
Algebra text. An outline of the chapter is given below.
Section 0.1 (Basic Set Theory and Interval Notation) contains a brief summary of the set theory
terminology used throughout the text including sets of real numbers and interval notation.
Section 0.2 (Real Number Arithmetic) lists the properties of real number arithmetic.
Section 0.3 (Linear Equations and Inequalities) focuses on solving linear equations and linear
inequalities from a strictly algebraic perspective. The geometry of graphing lines in the plane is
deferred until Section 2.1 (Linear Functions).
Section 0.4 (Absolute Value Equations and Inequalities) begins with a definition of absolute value
as a distance. Fundamental properties of absolute value are listed and then basic equations and
inequalities involving absolute value are solved using the ‘distance definition’ and those properties.
Absolute value is revisited in much greater depth in Section 2.3 (Absolute Value Functions).
Section 0.5 (Polynomial Arithmetic) covers the addition, subtraction, multiplication and division of
polynomials as well as the vocabulary which is used extensively when the graphs of polynomials
are studied in Chapter 3 (Polynomials).
Section 0.6 (Factoring) covers basic factoring techniques and how to solve equations using those
techniques along with the Zero Product Property of Real Numbers.
Section 0.7 (Quadratic Equations) discusses solving quadratic equations using the technique of
‘completing the square’ and by using the Quadratic Formula. Equations which are ‘quadratic in
form’ are also discussed.
Section 0.8 (Rational Expressions and Equations) starts with the basic arithmetic of rational ex-
pressions and the simplifying of compound fractions. Solving equations by clearing denominators
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and the handling negative integer exponents are presented but the graphing of rational functions
is deferred until Chapter 4 (Rational Functions).
Section 0.9 (Radicals and Equations) covers simplifying radicals as well as the solving of basic
equations involving radicals.
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0.1 Basic Set Theory and Interval Notation

0.1.1 Some Basic Set Theory Notions

Like all good Math books, we begin with a definition.

Definition 0.1. A set is a well-defined collection of objects which are called the ‘elements’ of
the set. Here, ‘well-defined’ means that it is possible to determine if something belongs to the
collection or not, without prejudice.

The collection of letters that make up the word “smolko” is well-defined and is a set, but the
collection of the worst Math teachers in the world is not well-defined and therefore is not a set.1

In general, there are three ways to describe sets and those methods are listed below.

Ways to Describe Sets

1. The Verbal Method: Use a sentence to define the set.

2. The Roster Method: Begin with a left brace ‘{’, list each element of the set only once
and then end with a right brace ‘}’.

3. The Set-Builder Method: A combination of the verbal and roster methods using a
“dummy variable” such as x .

For example, let S be the set described verbally as the set of letters that make up the word
“smolko”. A roster description of S is {s, m, o, l , k}. Note that we listed ‘o’ only once, even
though it appears twice in the word “smolko”. Also, the order of the elements doesn’t matter,
so {k , l , m, o, s} is also a roster description of S. Moving right along, a set-builder description
of S is: {x | x is a letter in the word “smolko”}. The way to read this is ‘The set of elements x
such that x is a letter in the word “smolko”.’ In each of the above cases, we may use the familiar
equals sign ‘=’ and write S = {s, m, o, l , k} or S = {x | x is a letter in the word “smolko”}.
Notice that m is in S but many other letters, such as q, are not in S. We express these ideas of
set inclusion and exclusion mathematically using the symbols m ∈ S (read ‘m is in S’) and q /∈ S
(read ‘q is not in S’). More precisely, we have the following.

Definition 0.2. Let A be a set.

• If x is an element of A then we write x ∈ A which is read ‘x is in A’.

• If x is not an element of A then we write x /∈ A which is read ‘x is not in A’.

Now let’s consider the set C = {x | x is a consonant in the word “smolko”}. A roster description
of C is C = {s, m, l , k}. Note that by construction, every element of C is also in S. We express

1For a more thought-provoking example, consider the collection of all things that do not contain themselves - this
leads to the famous Russell’s Paradox.

http://en.wikipedia.org/wiki/Russell's_paradox
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this relationship by stating that the set C is a subset of the set S, which is written in symbols as
C ⊆ S. The more formal definition is given below.

Definition 0.3. Given sets A and B, we say that the set A is a subset of the set B and write
‘A ⊆ B’ if every element in A is also an element of B.

Note that in our example above C ⊆ S, but not vice-versa, since o ∈ S but o /∈ C. Additionally,
the set of vowels V = {a, e, i , o, u}, while it does have an element in common with S, is not a
subset of S. (As an added note, S is not a subset of V , either.) We could, however, build a set
which contains both S and V as subsets by gathering all of the elements in both S and V together
into a single set, say U = {s, m, o, l , k , a, e, i , u}. Then S ⊆ U and V ⊆ U. The set U we have
built is called the union of the sets S and V and is denoted S ∪ V . Furthermore, S and V aren’t
completely different sets since they both contain the letter ‘o.’ The intersection of two sets is the
set of elements (if any) the two sets have in common. In this case, the intersection of S and V is
{o}, written S ∩ V = {o}. We formalize these ideas below.

Definition 0.4. Suppose A and B are sets.

• The intersection of A and B is A ∩ B = {x | x ∈ A and x ∈ B}

• The union of A and B is A ∪ B = {x | x ∈ A or x ∈ B (or both)}

The key words in Definition 0.4 to focus on are the conjunctions: ‘intersection’ corresponds to
‘and’ meaning the elements have to be in both sets to be in the intersection, whereas ‘union’
corresponds to ‘or’ meaning the elements have to be in one set, or the other set (or both). In other
words, to belong to the union of two sets an element must belong to at least one of them.

Returning to the sets C and V above, C ∪ V = {s, m, l , k , a, e, i , o, u}.2 When it comes to their
intersection, however, we run into a bit of notational awkwardness since C and V have no elements
in common. While we could write C ∩V = {}, this sort of thing happens often enough that we give
the set with no elements a name.

Definition 0.5. The Empty Set ∅ is the set which contains no elements. That is,

∅ = {} = {x | x 6= x}.

As promised, the empty set is the set containing no elements since no matter what ‘x ’ is, ‘x = x .’
Like the number ‘0,’ the empty set plays a vital role in mathematics.3 We introduce it here more as
a symbol of convenience as opposed to a contrivance.4 Using this new bit of notation, we have for
the sets C and V above that C ∩V = ∅. A nice way to visualize relationships between sets and set
operations is to draw a Venn Diagram. A Venn Diagram for the sets S, C and V is drawn at the
top of the next page.

2Which just so happens to be the same set as S ∪ V .
3Sadly, the full extent of the empty set’s role will not be explored in this text.
4Actually, the empty set can be used to generate numbers - mathematicians can create something from nothing!

http://en.wikipedia.org/wiki/Venn_diagram
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s m l k o a e i u

S V

C

U

A Venn Diagram for C, S and V .

In the Venn Diagram above we have three circles - one for each of the sets C, S and V . We
visualize the area enclosed by each of these circles as the elements of each set. Here, we’ve
spelled out the elements for definitiveness. Notice that the circle representing the set C is com-
pletely inside the circle representing S. This is a geometric way of showing that C ⊆ S. Also,
notice that the circles representing S and V overlap on the letter ‘o’. This common region is how
we visualize S ∩ V . Notice that since C ∩ V = ∅, the circles which represent C and V have no
overlap whatsoever.

All of these circles lie in a rectangle labeled U (for ‘universal’ set). A universal set contains all
of the elements under discussion, so it could always be taken as the union of all of the sets in
question, or an even larger set. In this case, we could take U = S ∪ V or U as the set of letters
in the entire alphabet. The reader may well wonder if there is an ultimate universal set which
contains everything. The short answer is ‘no’ and we refer you once again to Russell’s Paradox.
The usual triptych of Venn Diagrams indicating generic sets A and B along with A ∩ B and A ∪ B
is given below.

A B

U

A ∩ B

A B

U

A ∪ B

A B

U

Sets A and B. A ∩ B is shaded. A ∪ B is shaded.

http://en.wikipedia.org/wiki/Russell's_paradox
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0.1.2 Sets of Real Numbers

The playground for most of this text is the set of Real Numbers. Many quantities in the ‘real world’
can be quantified using real numbers: the temperature at a given time, the revenue generated
by selling a certain number of products and the maximum population of Sasquatch which can
inhabit a particular region are just three basic examples. A succinct, but nonetheless incomplete5

definition of a real number is given below.

Definition 0.6. A real number is any number which possesses a decimal representation. The
set of real numbers is denoted by the character R.

Certain subsets of the real numbers are worthy of note and are listed below. In fact, in more
advanced texts,6 the real numbers are constructed from some of these subsets.

Special Subsets of Real Numbers

1. The Natural Numbers: N = {1, 2, 3, ...} The periods of ellipsis ‘...’ here indicate that the
natural numbers contain 1, 2, 3 ‘and so forth’.

2. The Whole Numbers: W = {0, 1, 2, ...}.

3. The Integers: Z = {... ,−3,−2,−1, 0, 1, 2, 3, ...} = {0,±1,±2,±3, ...}.a

4. The Rational Numbers: Q =
{a

b |a ∈ Zand b ∈ Z
}

. Rational numbers are the ratios of
integers where the denominator is not zero. It turns out that another way to describe the
rational numbersb is:

Q = {x | x possesses a repeating or terminating decimal representation}

5. The Irrational Numbers: P = {x | x ∈ R but x /∈ Q}.c That is, an irrational number is a
real number which isn’t rational. Said differently,

P = {x | x possesses a decimal representation which neither repeats nor terminates}
aThe symbol ± is read ‘plus or minus’ and it is a shorthand notation which appears throughout the text. Just

remember that x = ±3 means x = 3 or x = −3.
bSee Section 9.2.
cExamples here include number π (See Section 10.1),

√
2 and 0.101001000100001 ....

Note that every natural number is a whole number which, in turn, is an integer. Each integer is a
rational number (take b = 1 in the above definition for Q) and since every rational number is a real
number7 the sets N, W, Z, Q, and R are nested like Matryoshka dolls. More formally, these sets
form a subset chain: N ⊆ W ⊆ Z ⊆ Q ⊆ R. The reader is encouraged to sketch a Venn Diagram
depicting R and all of the subsets mentioned above. It is time for an example.

5Math pun intended!
6See, for instance, Landau’s Foundations of Analysis.
7Thanks to long division!

http://en.wikipedia.org/wiki/Matryoshka_doll
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Example 0.1.1.

1. Write a roster description for P = {2n |n ∈ N} and E = {2n |n ∈ Z}.

2. Write a verbal description for S = {x2 | x ∈ R}.

3. Let A = {−117, 4
5 , 0.202002, 0.202002000200002 ...}.

(a) Which elements of A are natural numbers? Rational numbers? Real numbers?

(b) Find A ∩W, A ∩ Z and A ∩ P.

4. What is another name for N ∪Q? What about Q ∪ P?

Solution.

1. To find a roster description for these sets, we need to list their elements. Starting with
P = {2n |n ∈ N}, we substitute natural number values n into the formula 2n. For n = 1 we get
21 = 2, for n = 2 we get 22 = 4, for n = 3 we get 23 = 8 and for n = 4 we get 24 = 16. Hence P
describes the powers of 2, so a roster description for P is P = {2, 4, 8, 16, ...} where the ‘...’
indicates the that pattern continues.8

Proceeding in the same way, we generate elements in E = {2n |n ∈ Z} by plugging in integer
values of n into the formula 2n. Starting with n = 0 we obtain 2(0) = 0. For n = 1 we get
2(1) = 2, for n = −1 we get 2(−1) = −2 for n = 2, we get 2(2) = 4 and for n = −2 we get
2(−2) = −4. As n moves through the integers, 2n produces all of the even integers.9 A roster
description for E is E = {0,±2,±4, ...}.

2. One way to verbally describe S is to say that S is the ‘set of all squares of real numbers’.
While this isn’t incorrect, we’d like to take this opportunity to delve a little deeper.10 What
makes the set S = {x2 | x ∈ R} a little trickier to wrangle than the sets P or E above is that
the dummy variable here, x , runs through all real numbers. Unlike the natural numbers or
the integers, the real numbers cannot be listed in any methodical way.11 Nevertheless, we
can select some real numbers, square them and get a sense of what kind of numbers lie in
S. For x = −2, x2 = (−2)2 = 4 so 4 is in S, as are

(3
2

)2
= 9

4 and (
√

117)2 = 117. Even things
like (−π)2 and (0.101001000100001 ...)2 are in S.

So suppose s ∈ S. What can be said about s? We know there is some real number x so
that s = x2. Since x2 ≥ 0 for any real number x , we know s ≥ 0. This tells us that everything

8This isn’t the most precise way to describe this set - it’s always dangerous to use ‘...’ since we assume that the
pattern is clearly demonstrated and thus made evident to the reader. Formulas are more precise because the pattern
is clear.

9This shouldn’t be too surprising, since an even integer is defined to be an integer multiple of 2.
10Think of this as an opportunity to stop and smell the mathematical roses.
11This is a nontrivial statement. Interested readers are directed to a discussion of Cantor’s Diagonal Argument.

http://en.wikipedia.org/wiki/Cantor's_diagonal_argument
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in S is a non-negative real number.12 This begs the question: are all of the non-negative
real numbers in S? Suppose n is a non-negative real number, that is, n ≥ 0. If n were in S,
there would be a real number x so that x2 = n. As you may recall, we can solve x2 = n by
‘extracting square roots’: x = ±

√
n. Since n ≥ 0,

√
n is a real number.13 Moreover, (

√
n)2 = n

so n is the square of a real number which means n ∈ S. Hence, S is the set of non-negative
real numbers.

3. (a) The set A contains no natural numbers.14 Clearly, 4
5 is a rational number as is −117

(which can be written as −117
1 ). It’s the last two numbers listed in A, 0.202002 and

0.202002000200002 ..., that warrant some discussion. First, recall that the ‘line’ over
the digits 2002 in 0.202002 (called the vinculum) indicates that these digits repeat, so it
is a rational number.15 As for the number 0.202002000200002 ..., the ‘...’ indicates the
pattern of adding an extra ‘0’ followed by a ‘2’ is what defines this real number. Despite
the fact there is a pattern to this decimal, this decimal is not repeating, so it is not a
rational number - it is, in fact, an irrational number. All of the elements of A are real
numbers, since all of them can be expressed as decimals (remember that 4

5 = 0.8).

(b) The set A ∩ W = {x | x ∈ A and x ∈W} is another way of saying we are looking for
the set of numbers in A which are whole numbers. Since A contains no whole num-
bers, A ∩ W = ∅. Similarly, A ∩ Z is looking for the set of numbers in A which are
integers. Since −117 is the only integer in A, A ∩ Z = {−117}. As for the set A ∩ P,
as discussed in part (a), the number 0.202002000200002 ... is irrational, so A ∩ P =
{0.202002000200002 ...}.

4. The set N ∪ Q = {x | x ∈ N or x ∈ Q} is the union of the set of natural numbers with the set
of rational numbers. Since every natural number is a rational number, N doesn’t contribute
any new elements to Q, so N ∪ Q = Q.16 For the set Q ∪ P, we note that every real number
is either rational or not, hence Q ∪ P = R, pretty much by the definition of the set P.

As you may recall, we often visualize the set of real numbers R as a line where each point on the
line corresponds to one and only one real number. Given two different real numbers a and b, we
write a < b if a is located to the left of b on the number line, as shown below.

a b
The real number line with two numbers a and b where a < b.

While this notion seems innocuous, it is worth pointing out that this convention is rooted in two
deep properties of real numbers. The first property is that R is complete. This means that there

12This means S is a subset of the non-negative real numbers.
13This is called the ‘square root closed’ property of the non-negative real numbers.
14Carl was tempted to include 0.9 in the set A, but thought better of it. See Section 9.2 for details.
15So 0.202002 = 0.20200220022002 ....
16In fact, anytime A ⊆ B, A ∪ B = B and vice-versa. See the exercises.

http://en.wikipedia.org/wiki/Complete_metric_space
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are no ‘holes’ or ‘gaps’ in the real number line.17 Another way to think about this is that if you
choose any two distinct (different) real numbers, and look between them, you’ll find a solid line
segment (or interval) consisting of infinitely many real numbers. The next result tells us what types
of numbers we can expect to find.

Density Property of Q and P in R
Between any two distinct real numbers, there is at least one rational number and irrational
number. It then follows that between any two distinct real numbers there will be infinitely many
rational and irrational numbers.

The root word ‘dense’ here communicates the idea that rationals and irrationals are ‘thoroughly
mixed’ into R. The reader is encouraged to think about how one would find both a rational and an
irrational number between, say, 0.9999 and 1. Once you’ve done that, try doing the same thing for
the numbers 0.9 and 1. (‘Try’ is the operative word, here.18)
The second property R possesses that lets us view it as a line is that the set is totally ordered.
This means that given any two real numbers a and b, either a < b, a > b or a = b which allows
us to arrange the numbers from least (left) to greatest (right). You may have heard this property
given as the ‘Law of Trichotomy’.

Law of Trichotomy
If a and b are real numbers then exactly one of the following statements is true:

a < b a > b a = b

Segments of the real number line are called intervals. They play a huge role not only in this
text but also in the Calculus curriculum so we need a concise way to describe them. We start by
examining a few examples of the interval notation associated with some specific sets of numbers.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x |1 ≤ x < 3} [1, 3) 1 3

{x | − 1 ≤ x ≤ 4} [−1, 4] −1 4

{x | x ≤ 5} (−∞, 5] 5

{x | x > −2} (−2,∞) −2

As you can glean from the table, for intervals with finite endpoints we start by writing ‘left endpoint,
right endpoint’. We use square brackets, ‘[’ or ‘]’, if the endpoint is included in the interval. This

17Alas, this intuitive feel for what it means to be ‘complete’ is as good as it gets at this level. Completeness does get
a much more precise meaning later in courses like Analysis and Topology.

18Again, see Section 9.2 for details.

http://en.wikipedia.org/wiki/Total_order
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corresponds to a ‘filled-in’ or ‘closed’ dot on the number line to indicate that the number is included
in the set. Otherwise, we use parentheses, ‘(’ or ‘)’ that correspond to an ‘open’ circle which
indicates that the endpoint is not part of the set. If the interval does not have finite endpoints, we
use the symbol −∞ to indicate that the interval extends indefinitely to the left and the symbol ∞
to indicate that the interval extends indefinitely to the right. Since infinity is a concept, and not a
number, we always use parentheses when using these symbols in interval notation, and use the
appropriate arrow to indicate that the interval extends indefinitely in one or both directions. We
summarize all of the possible cases in one convenient table below.19

Interval Notation

Let a and b be real numbers with a < b.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x |a < x < b} (a, b) a b

{x |a ≤ x < b} [a, b) a b

{x |a < x ≤ b} (a, b] a b

{x |a ≤ x ≤ b} [a, b] a b

{x | x < b} (−∞, b) b

{x | x ≤ b} (−∞, b] b

{x | x > a} (a,∞) a

{x | x ≥ a} [a,∞) a

R (−∞,∞)

We close this section with an example that ties together several concepts presented earlier. Specif-
ically, we demonstrate how to use interval notation along with the concepts of ‘union’ and ‘inter-
section’ to describe a variety of sets on the real number line.

19The importance of understanding interval notation in Calculus cannot be overstated so please do yourself a favor
and memorize this chart.
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Example 0.1.2.

1. Express the following sets of numbers using interval notation.

(a) {x | x ≤ −2 or x ≥ 2} (b) {x | x 6= 3}

(c) {x | x 6= ±3} (d) {x | − 1 < x ≤ 3 or x = 5}

2. Let A = [−5, 3) and B = (1,∞). Find A ∩ B and A ∪ B.

Solution.

1. (a) The best way to proceed here is to graph the set of numbers on the number line
and glean the answer from it. The inequality x ≤ −2 corresponds to the interval
(−∞,−2] and the inequality x ≥ 2 corresponds to the interval [2,∞). The ‘or’ in
{x | x ≤ −2 or x ≥ 2} tells us that we are looking for the union of these two intervals,
so our answer is (−∞,−2] ∪ [2,∞).

−2 2
(−∞,−2] ∪ [2,∞)

(b) For the set {x | x 6= 3}, we shade the entire real number line except x = 3, where we
leave an open circle. This divides the real number line into two intervals, (−∞, 3) and
(3,∞). Since the values of x could be in one of these intervals or the other, we once
again use the union symbol to get {x | x 6= 3} = (−∞, 3) ∪ (3,∞).

3
(−∞, 3) ∪ (3,∞)

(c) For the set {x | x 6= ±3}, we proceed as before and exclude both x = 3 and x = −3 from
our set. (Do you remember what we said back on 6 about x = ±3?) This breaks the
number line into three intervals, (−∞,−3), (−3, 3) and (3,∞). Since the set describes
real numbers which come from the first, second or third interval, we have {x | x 6= ±3} =
(−∞,−3) ∪ (−3, 3) ∪ (3,∞).

−3 3
(−∞,−3) ∪ (−3, 3) ∪ (3,∞)

(d) Graphing the set {x | − 1 < x ≤ 3 or x = 5} yields the interval (−1, 3] along with the
single number 5. While we could express this single point as [5, 5], it is customary to
write a single point as a ‘singleton set’, so in our case we have the set {5}. Thus our
final answer is {x | − 1 < x ≤ 3 or x = 5} = (−1, 3] ∪ {5}.

−1 3 5
(−1, 3] ∪ {5}
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2. We start by graphing A = [−5, 3) and B = (1,∞) on the number line. To find A∩B, we need to
find the numbers in common to both A and B, in other words, the overlap of the two intervals.
Clearly, everything between 1 and 3 is in both A and B. However, since 1 is in A but not in
B, 1 is not in the intersection. Similarly, since 3 is in B but not in A, it isn’t in the intersection
either. Hence, A ∩ B = (1, 3). To find A ∪ B, we need to find the numbers in at least one of
A or B. Graphically, we shade A and B along with it. Notice here that even though 1 isn’t
in B, it is in A, so it’s the union along with all the other elements of A between −5 and 1. A
similar argument goes for the inclusion of 3 in the union. The result of shading both A and B
together gives us A ∪ B = [−5,∞).

−5 1 3
A = [−5, 3), B = (1,∞)

−5 1 3
A ∩ B = (1, 3)

−5 1 3
A ∪ B = [−5,∞)
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0.1.3 Exercises

1. Find a verbal description for O = {2n − 1 |n ∈ N}

2. Find a roster description for X = {z2 | z ∈ Z}

3. Let A =
{
−3,−1.02,−3

5
, 0.57, 1.23,

√
3, 5.2020020002 ... ,

20
10

, 117
}

(a) List the elements of A which are natural numbers.

(b) List the elements of A which are irrational numbers.

(c) Find A ∩ Z
(d) Find A ∩Q

4. Fill in the chart below.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | − 1 ≤ x < 5}

[0, 3)

2 7

{x | − 5 < x ≤ 0}

(−3, 3)

5 7

{x | x ≤ 3}

(−∞, 9)

4

{x | x ≥ −3}
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In Exercises 5 - 10, find the indicated intersection or union and simplify if possible. Express your
answers in interval notation.

5. (−1, 5] ∩ [0, 8) 6. (−1, 1) ∪ [0, 6] 7. (−∞, 4] ∩ (0,∞)

8. (−∞, 0) ∩ [1, 5] 9. (−∞, 0) ∪ [1, 5] 10. (−∞, 5] ∩ [5, 8)

In Exercises 11 - 22, write the set using interval notation.

11. {x | x 6= 5} 12. {x | x 6= −1} 13. {x | x 6= −3, 4}

14. {x | x 6= 0, 2} 15. {x | x 6= 2, −2} 16. {x | x 6= 0, ±4}

17. {x | x ≤ −1 or x ≥ 1} 18. {x | x < 3 or x ≥ 2} 19. {x | x ≤ −3 or x > 0}

20. {x | x ≤ 5 or x = 6} 21. {x | x > 2 or x = ±1} 22. {x | −3 < x < 3 or x = 4}

For Exercises 23 - 28, use the blank Venn Diagram below A, B, and C as a guide for you to shade
the following sets.

A B

C

U

23. A ∪ C 24. B ∩ C 25. (A ∪ B) ∪ C

26. (A ∩ B) ∩ C 27. A ∩ (B ∪ C) 28. (A ∩ B) ∪ (A ∩ C)

29. Explain how your answers to problems 27 and 28 show A∩(B∪C) = (A∩B)∪(A∩C). Phrased
differently, this shows ‘intersection distributes over union.’ Discuss with your classmates if
‘union’ distributes over ‘intersection.’ Use a Venn Diagram to support your answer.

30. Discuss with your classmates how many numbers are in the interval (0, 1).
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0.1.4 Answers

1. O is the odd natural numbers.

2. X = {0, 1, 4, 9, 16, ...}

3. (a)
20
10

= 2 and 117

(b)
√

3 and 5.2020020002

(c)
{
−3,

20
10

, 117
}

(d)
{
−3,−1.02,−3

5
, 0.57, 1.23,

20
10

, 117
}

4.

Set of Real Numbers Interval Notation Region on the Real Number Line

{x | − 1 ≤ x < 5} [−1, 5) −1 5

{x |0 ≤ x < 3} [0, 3) 0 3

{x |2 < x ≤ 7} (2, 7] 2 7

{x | − 5 < x ≤ 0} (−5, 0] −5 0

{x | − 3 < x < 3} (−3, 3) −3 3

{x |5 ≤ x ≤ 7} [5, 7] 5 7

{x | x ≤ 3} (−∞, 3] 3

{x | x < 9} (−∞, 9) 9

{x | x > 4} (4,∞) 4

{x | x ≥ −3} [−3,∞) −3
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5. (−1, 5] ∩ [0, 8) = [0, 5] 6. (−1, 1) ∪ [0, 6] = (−1, 6]

7. (−∞, 4] ∩ (0,∞) = (0, 4] 8. (−∞, 0) ∩ [1, 5] = ∅

9. (−∞, 0) ∪ [1, 5] = (−∞, 0) ∪ [1, 5] 10. (−∞, 5] ∩ [5, 8) = {5}

11. (−∞, 5) ∪ (5,∞) 12. (−∞,−1) ∪ (−1,∞)

13. (−∞,−3) ∪ (−3, 4) ∪ (4,∞) 14. (−∞, 0) ∪ (0, 2) ∪ (2,∞)

15. (−∞,−2) ∪ (−2, 2) ∪ (2,∞) 16. (−∞,−4) ∪ (−4, 0) ∪ (0, 4) ∪ (4,∞)

17. (−∞,−1] ∪ [1,∞) 18. (−∞,∞)

19. (−∞,−3] ∪ (0,∞) 20. (−∞, 5] ∪ {6}

21. {−1} ∪ {1} ∪ (2,∞) 22. (−3, 3) ∪ {4}

23. A ∪ C

A B

C

U

24. B ∩ C

A B

C

U
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25. (A ∪ B) ∪ C

A B

C

U

26. (A ∩ B) ∩ C

A B

C

U

27. A ∩ (B ∪ C)

A B

C

U

28. (A ∩ B) ∪ (A ∩ C)

A B

C

U

29. Yes, A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

A B

C

U
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0.2 Real Number Arithmetic

In this section we list the properties of real number arithmetic. This is meant to be a succinct,
targeted review so we’ll resist the temptation to wax poetic about these axioms and their sub-
tleties and refer the interested reader to a more formal course in Abstract Algebra. There are two
(primary) operations one can perform with real numbers: addition and multiplication.

Properties of Real Number Addition

• Closure: For all real numbers a and b, a + b is also a real number.

• Commutativity: For all real numbers a and b, a + b = b + a.

• Associativity: For all real numbers a, b and c, a + (b + c) = (a + b) + c.

• Identity: There is a real number ‘0’ so that for all real numbers a, a + 0 = a.

• Inverse: For all real numbers a, there is a real number −a such that a + (−a) = 0.

• Definition of Subtraction: For all real numbers a and b, a− b = a + (−b).

Next, we give real number multiplication a similar treatment. Recall that we may denote the product
of two real numbers a and b a variety of ways: ab, a · b, a(b), (a)(b) and so on. We’ll refrain from
using a× b for real number multiplication in this text with one notable exception in Definition 0.7.

Properties of Real Number Multiplication

• Closure: For all real numbers a and b, ab is also a real number.

• Commutativity: For all real numbers a and b, ab = ba.

• Associativity: For all real numbers a, b and c, a(bc) = (ab)c.

• Identity: There is a real number ‘1’ so that for all real numbers a, a · 1 = a.

• Inverse: For all real numbers a 6= 0, there is a real number
1
a

such that a
(

1
a

)
= 1.

• Definition of Division: For all real numbers a and b 6= 0, a÷ b =
a
b

= a
(

1
b

)
.

While most students and some faculty tend to skip over these properties or give them a cursory
glance at best,1 it is important to realize that the properties stated above are what drive the sym-
bolic manipulation for all of Algebra. When listing a tally of more than two numbers, 1 + 2 + 3 for
example, we don’t need to specify the order in which those numbers are added. Notice though, try
as we might, we can add only two numbers at a time and it is the associative property of addition
which assures us that we could organize this sum as (1 + 2) + 3 or 1 + (2 + 3). This brings up a

1Not unlike how Carl approached all the Elven poetry in The Lord of the Rings.
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note about ‘grouping symbols’. Recall that parentheses and brackets are used in order to specify
which operations are to be performed first. In the absence of such grouping symbols, multipli-
cation (and hence division) is given priority over addition (and hence subtraction). For example,
1 + 2 · 3 = 1 + 6 = 7, but (1 + 2) · 3 = 3 · 3 = 9. As you may recall, we can ‘distribute’ the 3 across the
addition if we really wanted to do the multiplication first: (1 + 2) · 3 = 1 · 3 + 2 · 3 = 3 + 6 = 9. More
generally, we have the following.

The Distributive Property and Factoring
For all real numbers a, b and c:

• Distributive Property: a(b + c) = ab + ac and (a + b)c = ac + bc.

• Factoring:a ab + ac = a(b + c) and ac + bc = (a + b)c.
aOr, as Carl calls it, ‘reading the Distributive Property from right to left.’

It is worth pointing out that we didn’t really need to list the Distributive Property both for a(b + c)
(distributing from the left) and (a + b)c (distributing from the right), since the commutative property
of multiplication gives us one from the other. Also, ‘factoring’ really is the same equation as the
distributive property, just read from right to left. These are the first of many redundancies in this
section, and they exist in this review section for one reason only - in our experience, many students
see these things differently so we will list them as such.
It is hard to overstate the importance of the Distributive Property. For example, in the expression
5(2 + x), without knowing the value of x , we cannot perform the addition inside the parentheses
first; we must rely on the distributive property here to get 5(2 + x) = 5 · 2 + 5 · x = 10 + 5x . The
Distributive Property is also responsible for combining ‘like terms’. Why is 3x + 2x = 5x? Because
3x + 2x = (3 + 2)x = 5x .
We continue our review with summaries of other properties of arithmetic, each of which can be
derived from the properties listed above. First up are properties of the additive identity 0.

Properties of Zero
Suppose a and b are real numbers.

• Zero Product Property: ab = 0 if and only if a = 0 or b = 0 (or both)

Note: This not only says that 0 ·a = 0 for any real number a, it also says that the only way
to get an answer of ‘0’ when multiplying two real numbers is to have one (or both) of the
numbers be ‘0’ in the first place.

• Zeros in Fractions: If a 6= 0,
0
a

= 0 ·
(

1
a

)
= 0.

Note: The quantity
a
0

is undefined.a

aThe expression 0
0 is technically an ‘indeterminant form’ as opposed to being strictly ‘undefined’ meaning that

with Calculus we can make some sense of it in certain situations. We’ll talk more about this in Chapter 4.
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The Zero Product Property drives most of the equation solving algorithms in Algebra because it
allows us to take complicated equations and reduce them to simpler ones. For example, you may
recall that one way to solve x2 + x − 6 = 0 is by factoring2 the left hand side of this equation to get
(x − 2)(x + 3) = 0. From here, we apply the Zero Product Property and set each factor equal to
zero. This yields x − 2 = 0 or x + 3 = 0 so x = 2 or x = −3. This application to solving equations
leads, in turn, to some deep and profound structure theorems in Chapter 3.

Next up is a review of the arithmetic of ‘negatives’. On page 18 we first introduced the dash
which we all recognize as the ‘negative’ symbol in terms of the additive inverse. For example, the
number −3 (read ‘negative 3’) is defined so that 3 + (−3) = 0. We then defined subtraction using
the concept of the additive inverse again so that, for example, 5− 3 = 5 + (−3). In this text we do
not distinguish typographically between the dashes in the expressions ‘5−3’ and ‘−3’ even though
they are mathematically quite different.3 In the expression ‘5 − 3,’ the dash is a binary operation
(that is, an operation requiring two numbers) whereas in ‘−3’, the dash is a unary operation (that
is, an operation requiring only one number). You might ask, ‘Who cares?’ Your calculator does -
that’s who! In the text we can write −3 − 3 = −6 but that will not work in your calculator. Instead
you’d need to type −3− 3 to get −6 where the first dash comes from the ‘+/−’ key.

Properties of Negatives
Given real numbers a and b we have the following.

• Additive Inverse Properties: −a = (−1)a and −(−a) = a

• Products of Negatives: (−a)(−b) = ab.

• Negatives and Products: −ab = −(ab) = (−a)b = a(−b).

• Negatives and Fractions: If b is nonzero, −a
b

=
−a
b

=
a
−b

and
−a
−b

=
a
b

.

• ‘Distributing’ Negatives: −(a + b) = −a− b and −(a− b) = −a + b = b − a.

• ‘Factoring’ Negatives:a −a− b = −(a + b) and b − a = −(a− b).
aOr, as Carl calls it, reading ‘Distributing’ Negatives from right to left.

An important point here is that when we ‘distribute’ negatives, we do so across addition or sub-
traction only. This is because we are really distributing a factor of −1 across each of these terms:
−(a + b) = (−1)(a + b) = (−1)(a) + (−1)(b) = (−a) + (−b) = −a − b. Negatives do not ‘distribute’
across multiplication: −(2 ·3) 6= (−2) · (−3). Instead, −(2 ·3) = (−2) · (3) = (2) · (−3) = −6. The same
sort of thing goes for fractions: −3

5 can be written as −3
5 or 3

−5 , but not −3
−5 . Speaking of fractions,

we now review their arithmetic.

2Don’t worry. We’ll review this in due course. And, yes, this is our old friend the Distributive Property!
3We’re not just being lazy here. We looked at many of the big publishers’ Precalculus books and none of them use

different dashes, either.
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Properties of Fractions
Suppose a, b, c and d are real numbers. Assume them to be nonzero whenever necessary; for
example, when they appear in a denominator.

• Identity Properties: a =
a
1

and
a
a

= 1.

• Fraction Equality:
a
b

=
c
d

if and only if ad = bc.

• Multiplication of Fractions:
a
b
· c

d
=

ac
bd

. In particular:
a
b
· c =

a
b
· c

1
=

ac
b

Note: A common denominator is not required to multiply fractions!

• Divisiona of Fractions:
a
b
÷ c

d
=

a
b
· d

c
=

ad
bc

.

In particular: 1÷ a
b

=
b
a

and
a
b
÷ c =

a
b
÷ c

1
=

a
b
· 1

c
=

a
bc

Note: A common denominator is not required to divide fractions!

• Addition and Subtraction of Fractions:
a
b
± c

b
=

a± c
b

.

Note: A common denominator is required to add or subtract fractions!

• Equivalent Fractions:
a
b

=
ad
bd

, since
a
b

=
a
b
· 1 =

a
b
· d

d
=

ad
bd

Note: The only way to change the denominator is to multiply both it and the numerator by
the same nonzero value because we are, in essence, multiplying the fraction by 1.

• ‘Reducing’b Fractions:
a��d
b��d

=
a
b

, since
ad
bd

=
a
b
· d

d
=

a
b
· 1 =

a
b

.

In particular,
ab
b

= a since
ab
b

=
ab

1 · b
=

a��b
1 ·��b

=
a
1

= a and
b − a
a− b

=
(−1)����(a− b)
��

��(a− b)
= −1.

Note: We may only cancel common factors from both numerator and denominator.
aThe old ‘invert and multiply’ or ‘fraction gymnastics’ play.
bOr ‘Canceling’ Common Factors - this is really just reading the previous property ‘from right to left’.

Students make so many mistakes with fractions that we feel it is necessary to pause a moment in
the narrative and offer you the following example.
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Example 0.2.1. Perform the indicated operations and simplify. By ‘simplify’ here, we mean to have
the final answer written in the form a

b where a and b are integers which have no common factors.
Said another way, we want a

b in ‘lowest terms’.

1.
1
4

+
6
7

2.
5

12
−
(

47
30
− 7

3

)
3.

7
3−5 −

7
3−5.21

5− 5.21
4.

12
5 −

7
24

1 +
(12

5

) ( 7
24

)
5.

(2(2) + 1)(−3− (−3))− 5(4− 7)
4− 2(3)

6.
(

3
5

)(
5

13

)
−
(

4
5

)(
−12

13

)
Solution.

1. It may seem silly to start with an example this basic but experience has taught us not to take
much for granted. We start by finding the lowest common denominator and then we rewrite
the fractions using that new denominator. Since 4 and 7 are relatively prime, meaning they
have no factors in common, the lowest common denominator is 4 · 7 = 28.

1
4

+
6
7

=
1
4
· 7

7
+

6
7
· 4

4
Equivalent Fractions

=
7
28

+
24
28

Multiplication of Fractions

=
31
28

Addition of Fractions

The result is in lowest terms because 31 and 28 are relatively prime so we’re done.

2. We could begin with the subtraction in parentheses, namely 47
30 −

7
3 , and then subtract that

result from 5
12 . It’s easier, however, to first distribute the negative across the quantity in paren-

theses and then use the Associative Property to perform all of the addition and subtraction
in one step.4 The lowest common denominator5 for all three fractions is 60.

5
12
−
(

47
30
− 7

3

)
=

5
12
− 47

30
+

7
3

Distribute the Negative

=
5

12
· 5

5
− 47

30
· 2

2
+

7
3
· 20

20
Equivalent Fractions

=
25
60
− 94

60
+

140
60

Multiplication of Fractions

=
71
60

Addition and Subtraction of Fractions

The numerator and denominator are relatively prime so the fraction is in lowest terms and
we have our final answer.

4See the remark on page 18 about how we add 1 + 2 + 3.
5We could have used 12 · 30 · 3 = 1080 as our common denominator but then the numerators would become

unnecessarily large. It’s best to use the lowest common denominator.
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3. What we are asked to simplify in this problem is known as a ‘complex’ or ‘compound’ fraction.
Simply put, we have fractions within a fraction.6 The longest division line7 acts as a grouping
symbol, quite literally dividing the compound fraction into a numerator (containing fractions)
and a denominator (which in this case does not contain fractions). The first step to simplifying
a compound fraction like this one is to see if you can simplify the little fractions inside it. To
that end, we clean up the fractions in the numerator as follows.

7
3− 5

− 7
3− 5.21

5− 5.21
=

7
−2
− 7
−2.21

−0.21

=
−
(
−7

2
+

7
2.21

)
0.21

Properties of Negatives

=

7
2
− 7

2.21
0.21

Distribute the Negative

We are left with a compound fraction with decimals. We could replace 2.21 with 221
100 but

that would make a mess.8 It’s better in this case to eliminate the decimal by multiplying the
numerator and denominator of the fraction with the decimal in it by 100 (since 2.21·100 = 221
is an integer) as shown below.

7
2
− 7

2.21
0.21

=

7
2
− 7 · 100

2.21 · 100
0.21

=

7
2
− 700

221
0.21

We now perform the subtraction in the numerator and replace 0.21 with 21
100 in the denomina-

tor. This will leave us with one fraction divided by another fraction. We finish by performing
the ‘division by a fraction is multiplication by the reciprocal’ trick and then cancel any factors
that we can.

7
2
− 700

221
0.21

=

7
2
· 221

221
− 700

221
· 2

2
21
100

=

1547
442

− 1400
442

21
100

=

147
442
21

100

=
147
442
· 100

21
=

14700
9282

=
350
221

The last step comes from the factorizations 14700 = 42 · 350 and 9282 = 42 · 221.

6Fractionception, perhaps?
7Also called a ‘vinculum’.
8Try it if you don’t believe us.
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4. We are given another compound fraction to simplify and this time both the numerator and
denominator contain fractions. As before, the longest division line acts as a grouping symbol
to separate the numerator from the denominator.

12
5
− 7

24

1 +
(

12
5

)(
7
24

) =

(
12
5
− 7

24

)
(

1 +
(

12
5

)(
7
24

))
Hence, one way to proceed is as before: simplify the numerator and the denominator then
perform the ‘division by a fraction is the multiplication by the reciprocal’ trick. While there is
nothing wrong with this approach, we’ll use our Equivalent Fractions property to rid ourselves
of the ‘compound’ nature of this fraction straight away. The idea is to multiply both the
numerator and denominator by the lowest common denominator of each of the ‘smaller’
fractions - in this case, 24 · 5 = 120.(

12
5
− 7

24

)
(

1 +
(

12
5

)(
7

24

)) =

(
12
5
− 7

24

)
· 120(

1 +
(

12
5

)(
7
24

))
· 120

Equivalent Fractions

=

(
12
5

)
(120)−

(
7
24

)
(120)

(1)(120) +
(

12
5

)(
7

24

)
(120)

Distributive Property

=

12 · 120
5

− 7 · 120
24

120 +
12 · 7 · 120

5 · 24

Multiply fractions

=

12 · 24 ·�5
�5

− 7 · 5 ·��24
��24

120 +
12 · 7 ·�5 ·��24
�5 ·��24

Factor and cancel

=
(12 · 24)− (7 · 5)

120 + (12 · 7)

=
288− 35
120 + 84

=
253
204

Since 253 = 11 · 23 and 204 = 2 · 2 · 3 · 17 have no common factors our result is in lowest
terms which means we are done.
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5. This fraction may look simpler than the one before it, but the negative signs and parentheses
mean that we shouldn’t get complacent. Again we note that the division line here acts as a
grouping symbol. That is,

(2(2) + 1)(−3− (−3))− 5(4− 7)
4− 2(3)

=
((2(2) + 1)(−3− (−3))− 5(4− 7))

(4− 2(3))

This means that we should simplify the numerator and denominator first, then perform the
division last. We tend to what’s in parentheses first, giving multiplication priority over addition
and subtraction.

(2(2) + 1)(−3− (−3))− 5(4− 7)
4− 2(3)

=
(4 + 1)(−3 + 3)− 5(−3)

4− 6

=
(5)(0) + 15
−2

=
15
−2

= −15
2

Properties of Negatives

Since 15 = 3 · 5 and 2 have no common factors, we are done.

6. In this problem, we have multiplication and subtraction. Multiplication takes precedence
so we perform it first. Recall that to multiply fractions, we do not need to obtain common
denominators; rather, we multiply the corresponding numerators together along with the
corresponding denominators. Like the previous example, we have parentheses and negative
signs for added fun!(

3
5

)(
5
13

)
−
(

4
5

)(
−12

13

)
=

3 · 5
5 · 13

− 4 · (−12)
5 · 13

Multiply fractions

=
15
65
− −48

65

=
15
65

+
48
65

Properties of Negatives

=
15 + 48

65
Add numerators

=
63
65

Since 64 = 3 · 3 · 7 and 65 = 5 · 13 have no common factors, our answer 63
65 is in lowest terms

and we are done.

Of the issues discussed in the previous set of examples none causes students more trouble than
simplifying compound fractions. We presented two different methods for simplifying them: one in
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which we simplified the overall numerator and denominator and then performed the division and
one in which we removed the compound nature of the fraction at the very beginning. We encour-
age the reader to go back and use both methods on each of the compound fractions presented.
Keep in mind that when a compound fraction is encountered in the rest of the text it will usually be
simplified using only one method and we may not choose your favorite method. Feel free to use
the other one in your notes.
Next, we review exponents and their properties. Recall that 2 · 2 · 2 can be written as 23 because
exponential notation expresses repeated multiplication. In the expression 23, 2 is called the base
and 3 is called the exponent. In order to generalize exponents from natural numbers to the
integers, and eventually to rational and real numbers, it is helpful to think of the exponent as a
count of the number of factors of the base we are multiplying by 1. For instance,

23 = 1 · (three factors of two) = 1 · (2 · 2 · 2) = 8.

From this, it makes sense that

20 = 1 · (zero factors of two) = 1.

What about 2−3? The ‘−’ in the exponent indicates that we are ‘taking away’ three factors of two,
essentially dividing by three factors of two. So,

2−3 = 1÷ (three factors of two) = 1÷ (2 · 2 · 2) =
1

2 · 2 · 2
=

1
8

.

We summarize the properties of integer exponents below.

Properties of Integer Exponents

Suppose a and b are nonzero real numbers and n and m are integers.

• Product Rules: (ab)n = anbn and anam = an+m.

• Quotient Rules:
(a

b

)n
=

an

bn and
an

am = an−m.

• Power Rule: (an)m = anm.

• Negatives in Exponents: a−n =
1
an .

In particular,
(a

b

)−n
=
(

b
a

)n

=
bn

an and
1

a−n = an.

• Zero Powers: a0 = 1.

Note: The expression 00 is an indeterminate form.a

• Powers of Zero: For any natural number n, 0n = 0.

Note: The expression 0n for integers n ≤ 0 is not defined.
aSee the comment regarding ‘ 0

0 ’ on page 19.
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While it is important the state the Properties of Exponents, it is also equally important to take a
moment to discuss one of the most common errors in Algebra. It is true that (ab)2 = a2b2 (which
some students refer to as ‘distributing’ the exponent to each factor) but you cannot do this sort of
thing with addition. That is, in general, (a + b)2 6= a2 + b2. (For example, take a = 3 and b = 4.) The
same goes for any other powers.
With exponents now in the mix, we can now state the Order of Operations Agreement.

Order of Operations Agreement

When evaluating an expression involving real numbers:

1. Evaluate any expressions in parentheses (or other grouping symbols.)

2. Evaluate exponents.

3. Evaluate multiplication and division as you read from left to right.

4. Evaluate addition and subtraction as you read from left to right.

We note that there are many useful mnemonic device for remembering the order of operations.a

aOur favorite is ‘Please entertain my dear auld Sasquatch.’

For example, 2 + 3 · 42 = 2 + 3 · 16 = 2 + 48 = 50. Where students get into trouble is with
things like −32. If we think of this as 0 − 32, then it is clear that we evaluate the exponent first:
−32 = 0− 32 = 0− 9 = −9. In general, we interpret −an = − (an). If we want the ‘negative’ to also
be raised to a power, we must write (−a)n instead. To summarize, −32 = −9 but (−3)2 = 9.
Of course, many of the ‘properties’ we’ve stated in this section can be viewed as ways to circum-
vent the order of operations. We’ve already seen how the distributive property allows us to simplify
5(2 + x) by performing the indicated multiplication before the addition that’s in parentheses. Sim-
ilarly, consider trying to evaluate 230172 · 2−30169. The Order of Operations Agreement demands
that the exponents be dealt with first, however, trying to compute 230172 is a challenge, even for
a calculator. One of the Product Rules of Exponents, however, allow us to rewrite this product,
essentially performing the multiplication first, to get: 230172−30169 = 23 = 8.
Let’s take a break and enjoy another example.

Example 0.2.2. Perform the indicated operations and simplify.

1.
(4− 2)(2 · 4)− (4)2

(4− 2)2 2. 4(−5)(−5 + 3)−4 + 2(−5)2(−4)(−5 + 3)−5

3.

(
5 · 351

436

)
(

5 · 349

434

) 4.
2
(

5
12

)−1

1−
(

5
12

)−2
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Solution.

1. We begin working inside parentheses then deal with the exponents before working through
the other operations. As we saw in Example 0.2.1, the division here acts as a grouping
symbol, so we save the division to the end.

(4− 2)(2 · 4)− (4)2

(4− 2)2 =
(2)(8)− (4)2

(2)2 =
(2)(8)− 16

4

=
16− 16

4
=

0
4

= 0

2. As before, we simplify what’s in the parentheses first, then work our way through the expo-
nents, multiplication, and finally, the addition.

4(−5)(−5 + 3)−4 + 2(−5)2(−4)(−5 + 3)−5 = 4(−5)(−2)−4 + 2(−5)2(−4)(−2)−5

= 4(−5)
(

1
(−2)4

)
+ 2(−5)2(−4)

(
1

(−2)5

)
= 4(−5)

(
1

16

)
+ 2(25)(−4)

(
1
−32

)
= (−20)

(
1

16

)
+ (−200)

(
1
−32

)
=
−20
16

+
(
−200
−32

)
=
−5 ·�4
4 ·�4

+
−25 ·�8
−4 ·�8

=
−5
4

+
−25
−4

=
−5
4

+
25
4

=
−5 + 25

4

=
20
4

= 5

3. The Order of Operations Agreement mandates that we work within each set of parentheses
first, giving precedence to the exponents, then the multiplication, and, finally the division. The
trouble with this approach is that the exponents are so large that computation becomes a
trifle unwieldy. What we observe, however, is that the bases of the exponential expressions,
3 and 4, occur in both the numerator and denominator of the compound fraction, giving us
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hope that we can use some of the Properties of Exponents (the Quotient Rule, in particular)
to help us out. Our first step here is to invert and multiply. We see immediately that the 5’s
cancel after which we group the powers of 3 together and the powers of 4 together and apply
the properties of exponents.(

5 · 351

436

)
(

5 · 349

434

) =
5 · 351

436 · 434

5 · 349 = �5 · 351 · 434

�5 · 349 · 436 =
351

349 ·
434

436

= 351−49 · 434−36 = 32 · 4−2 = 32 ·
(

1
42

)
= 9 ·

(
1

16

)
=

9
16

4. We have yet another instance of a compound fraction so our first order of business is to rid
ourselves of the compound nature of the fraction like we did in Example 0.2.1. To do this,
however, we need to tend to the exponents first so that we can determine what common
denominator is needed to simplify the fraction.

2
(

5
12

)−1

1−
(

5
12

)−2 =
2
(

12
5

)
1−

(
12
5

)2 =

(
24
5

)
1−

(
122

52

) =

(
24
5

)
1−

(
144
25

)

=

(
24
5

)
· 25(

1− 144
25

)
· 25

=

(
24 · 5 ·�5
�5

)
(

1 · 25− 144 ·��25
��25

) =
120

25− 144

=
120
−119

= −120
119

Since 120 and 119 have no common factors, we are done.

One of the places where the properties of exponents play an important role is in the use of Sci-
entific Notation. The basis for scientific notation is that since we use decimals (base ten nu-
merals) to represent real numbers, we can adjust where the decimal point lies by multiplying by
an appropriate power of 10. This allows scientists and engineers to focus in on the ‘significant’
digits9 of a number - the nonzero values - and adjust for the decimal places later. For instance,
−621 = −6.21 × 102 and 0.023 = 2.3 × 10−2. Notice here that we revert to using the familiar ‘×’
to indicate multiplication.10 In general, we arrange the real number so exactly one non-zero digit
appears to the left of the decimal point. We make this idea precise in the following:

9Awesome pun!
10This is the ‘notable exception’ we alluded to earlier.



30 Prerequisites

Definition 0.7. A real number is written in Scientific Notation if it has the form±n.d1d2 ...×10k

where n is a natural number, d1, d2, etc., are whole numbers, and k is an integer.

On calculators, scientific notation may appear using an ‘E’ or ‘EE’ as opposed to the × symbol.
For instance, while we will write 6.02 × 1023 in the text, the calculator may display 6.02 E 23 or
6.02 EE 23.

Example 0.2.3. Perform the indicated operations and simplify. Write your final answer in scientific
notation, rounded to two decimal places.

1.

(
6.626× 10−34) (3.14× 109)

1.78× 1023 2.
(
2.13× 1053)100

Solution.

1. As mentioned earlier, the point of scientific notation is to separate out the ‘significant’ parts of
a calculation and deal with the powers of 10 later. In that spirit, we separate out the powers
of 10 in both the numerator and the denominator and proceed as follows(

6.626× 10−34) (3.14× 109)
1.78× 1023 =

(6.626)(3.14)
1.78

· 10−34 · 109

1023

=
20.80564

1.78
· 10−34+9

1023

= 11.685 ... · 10−25

1023

= 11.685 ...× 10−25−23

= 11.685 ...× 10−48

We are asked to write our final answer in scientific notation, rounded to two decimal places.
To do this, we note that 11.685 ... = 1.1685 ...× 101, so

11.685 ...× 10−48 = 1.1685 ...× 101 × 10−48 = 1.1685 ...× 101−48 = 1.1685 ...× 10−47

Our final answer, rounded to two decimal places, is 1.17× 10−47.

We could have done that whole computation on a calculator so why did we bother doing any
of this by hand in the first place? The answer lies in the next example.

2. If you try to compute
(
2.13× 1053)100 using most hand-held calculators, you’ll most likely

get an ‘overflow’ error. It is possible, however, to use the calculator in combination with the
properties of exponents to compute this number. Using properties of exponents, we get:
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(
2.13× 1053)100 = (2.13)100 (1053)100

=
(
6.885 ...× 1032) (1053×100)

=
(
6.885 ...× 1032) (105300)

= 6.885 ...× 1032 · 105300

= 6.885 ...× 105332

To two decimal places our answer is 6.88× 105332.

We close our review of real number arithmetic with a discussion of roots and radical notation.
Just as subtraction and division were defined in terms of the inverse of addition and multiplication,
respectively, we define roots by undoing natural number exponents.

Definition 0.8. Let a be a real number and let n be a natural number. If n is odd, then the
principal nth root of a (denoted n

√
a) is the unique real number satisfying

(
n
√

a
)n = a. If n is

even, n
√

a is defined similarly provided a ≥ 0 and n
√

a ≥ 0. The number n is called the index of
the root and the the number a is called the radicand. For n = 2, we write

√
a instead of 2

√
a.

The reasons for the added stipulations for even-indexed roots in Definition 0.8 can be found in
the Properties of Negatives. First, for all real numbers, xeven power ≥ 0, which means it is never
negative. Thus if a is a negative real number, there are no real numbers x with xeven power = a.
This is why if n is even, n

√
a only exists if a ≥ 0. The second restriction for even-indexed roots is

that n
√

a ≥ 0. This comes from the fact that xeven power = (−x)even power, and we require n
√

a to have
just one value. So even though 24 = 16 and (−2)4 = 16, we require 4

√
16 = 2 and ignore −2.

Dealing with odd powers is much easier. For example, x3 = −8 has one and only one real
solution, namely x = −2, which means not only does 3

√
−8 exist, there is only one choice, namely

3
√
−8 = −2. Of course, when it comes to solving x5213 = −117, it’s not so clear that there is one

and only one real solution, let alone that the solution is 5213
√
−117. Such pills are easier to swallow

once we’ve thought a bit about such equations graphically,11 and ultimately, these things come
from the completeness property of the real numbers mentioned earlier.
We list properties of radicals below as a ‘theorem’ since they can be justified using the properties
of exponents.

Theorem 0.1. Properties of Radicals: Let a and b be real numbers and let m and n be natural
numbers. If n

√
a and n

√
b are real numbers, then

• Product Rule: n
√

ab = n
√

a n
√

b

• Quotient Rule: n

√
a
b

=
n
√

a
n
√

b
, provided b 6= 0.

• Power Rule: n
√

am =
(

n
√

a
)m

11See Chapter 3.
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The proof of Theorem 0.1 is based on the definition of the principal nth root and the Properties
of Exponents. To establish the product rule, consider the following. If n is odd, then by definition
n
√

ab is the unique real number such that ( n
√

ab)n = ab. Given that ( n
√

a n
√

b)n = ( n
√

a)n( n
√

b)n = ab
as well, it must be the case that n

√
ab = n

√
a n
√

b. If n is even, then n
√

ab is the unique non-negative
real number such that ( n

√
ab)n = ab. Note that since n is even, n

√
a and n

√
b are also non-negative

thus n
√

a n
√

b ≥ 0 as well. Proceeding as above, we find that n
√

ab = n
√

a n
√

b. The quotient rule is
proved similarly and is left as an exercise. The power rule results from repeated application of the
product rule, so long as n

√
a is a real number to start with. We leave that as an exercise as well.

We pause here to point out one of the most common errors students make when working with
radicals. Obviously

√
9 = 3,

√
16 = 4 and

√
9 + 16 =

√
25 = 5. Thus we can clearly see that

5 =
√

25 =
√

9 + 16 6=
√

9 +
√

16 = 3 + 4 = 7 because we all know that 5 6= 7. The authors urge you
to never consider ‘distributing’ roots or exponents. It’s wrong and no good will come of it because
in general n

√
a + b 6= n

√
a + n
√

b.

Since radicals have properties inherited from exponents, they are often written as such. We define
rational exponents in terms of radicals in the box below.

Definition 0.9. Let a be a real number, let m be an integer and let n be a natural number.

• a
1
n = n
√

a whenever n
√

a is a real number.a

• a
m
n =

(
n
√

a
)m = n

√
am whenever n

√
a is a real number.

aIf n is even we need a ≥ 0.

It would make life really nice if the rational exponents defined in Definition 0.9 had all of the same
properties that integer exponents have as listed on page 26 - but they don’t. Why not? Let’s look
at an example to see what goes wrong. Consider the Product Rule which says that (ab)n = anbn

and let a = −16, b = −81 and n = 1
4 . Plugging the values into the Product Rule yields the equation

((−16)(−81))1/4 = (−16)1/4(−81)1/4. The left side of this equation is 12961/4 which equals 6
but the right side is undefined because neither root is a real number. Would it help if, when it
comes to even roots (as signified by even denominators in the fractional exponents), we ensure
that everything they apply to is non-negative? That works for some of the rules – we leave it as an
exercise to see which ones - but does not work for the Power Rule.

Consider the expression
(
a

2
3
) 3

2 . Applying the usual laws of exponents, we’d be tempted to simplify

this as
(
a

2
3
) 3

2 = a
2
3 ·

3
2 = a1 = a. However, if we substitute a = −1 and apply Definition 0.9, we find

(−1)
2
3 =

(
3
√
−1
)2 = (−1)2 = 1 so that

(
(−1)

2
3
) 3

2 = 1
3
2 =

(√
1
)3 = 13 = 1. Thus in this case we

have
(
a

2
3
) 3

2 6= a even though all of the roots were defined. It is true, however, that
(
a

3
2
) 2

3 = a and
we leave this for the reader to show. The moral of the story is that when simplifying powers of
rational exponents where the base is negative or worse, unknown, it’s usually best to rewrite them
as radicals.12

12Much to Jeff’s chagrin. He’s fairly traditional and therefore doesn’t care much for radicals.



0.2 Real Number Arithmetic 33

Example 0.2.4. Perform the indicated operations and simplify.

1.
−(−4)−

√
(−4)2 − 4(2)(−3)
2(2)

2.

2

(√
3

3

)

1−

(√
3

3

)2

3. ( 3
√
−2− 3

√
−54)2 4. 2

(
9
4
− 3
) 1

3

+ 2
(

9
4

)(
1
3

)(
9
4
− 3
)− 2

3

Solution.

1. We begin in the numerator and note that the radical here acts a grouping symbol,13 so our
first order of business is to simplify the radicand.

−(−4)−
√

(−4)2 − 4(2)(−3)
2(2)

=
−(−4)−

√
16− 4(2)(−3)

2(2)

=
−(−4)−

√
16− 4(−6)

2(2)

=
−(−4)−

√
16− (−24)

2(2)

=
−(−4)−

√
16 + 24

2(2)

=
−(−4)−

√
40

2(2)

As you may recall, 40 can be factored using a perfect square as 40 = 4 · 10 so we use the
product rule of radicals to write

√
40 =

√
4 · 10 =

√
4
√

10 = 2
√

10. This lets us factor a ‘2’
out of both terms in the numerator, eventually allowing us to cancel it with a factor of 2 in the
denominator.

−(−4)−
√

40
2(2)

=
−(−4)− 2

√
10

2(2)
=

4− 2
√

10
2(2)

=
2 · 2− 2

√
10

2(2)
=

2(2−
√

10)
2(2)

= �2(2−
√

10)
�2(2)

=
2−
√

10
2

Since the numerator and denominator have no more common factors,14 we are done.

13The line extending horizontally from the square root symbol ‘
√

is, you guessed it, another vinculum.
14Do you see why we aren’t ‘canceling’ the remaining 2’s?
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2. Once again we have a compound fraction, so we first simplify the exponent in the denomi-
nator to see which factor we’ll need to multiply by in order to clean up the fraction.

2

(√
3

3

)

1−

(√
3

3

)2 =

2

(√
3

3

)

1−

(
(
√

3)2

32

) =

2

(√
3

3

)

1−
(

3
9

)

=

2

(√
3

3

)

1−
(

1 ·�3
3 ·�3

) =

2

(√
3

3

)

1−
(

1
3

)

=

2

(√
3

3

)
· 3(

1−
(

1
3

))
· 3

=

2 ·
√

3 ·�3
�3

1 · 3− 1 ·�3
�3

=
2
√

3
3− 1

= �2
√

3
�2

=
√

3

3. Working inside the parentheses, we first encounter 3
√
−2. While the−2 isn’t a perfect cube,15

we may think of −2 = (−1)(2). Since (−1)3 = −1, −1 is a perfect cube, and we may
write 3

√
−2 = 3

√
(−1)(2) = 3

√
−1 3
√

2 = − 3
√

2. When it comes to 3
√

54, we may write it as
3
√

(−27)(2) = 3
√
−27 3
√

2 = −3 3
√

2. So,

3
√
−2− 3

√
−54 = − 3

√
2− (−3 3

√
2) = − 3

√
2 + 3 3

√
2.

At this stage, we can simplify − 3
√

2 + 3 3
√

2 = 2 3
√

2. You may remember this as being called
‘combining like radicals,’ but it is in fact just another application of the distributive property:

− 3
√

2 + 3 3
√

2 = (−1) 3
√

2 + 3 3
√

2 = (−1 + 3) 3
√

2 = 2 3
√

2.

Putting all this together, we get:

( 3
√
−2− 3

√
−54)2 = (− 3

√
2 + 3 3

√
2)2 = (2 3

√
2)2

= 22( 3
√

2)2 = 4 3
√

22 = 4 3
√

4

Since there are no perfect integer cubes which are factors of 4 (apart from 1, of course), we
are done.

15Of an integer, that is!
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4. We start working in parentheses and get a common denominator to subtract the fractions:

9
4
− 3 =

9
4
− 3 · 4

1 · 4
=

9
4
− 12

4
=
−3
4

Since the denominators in the fractional exponents are odd, we can proceed using the prop-
erties of exponents:

2
(

9
4
− 3
)1/3

+ 2
(

9
4

)(
1
3

)(
9
4
− 3
)−2/3

= 2
(
−3
4

)1/3

+ 2
(

9
4

)(
1
3

)(
−3
4

)−2/3

= 2

(
(−3)1/3

(4)1/3

)
+ 2
(

9
4

)(
1
3

)(
4
−3

)2/3

= 2

(
(−3)1/3

(4)1/3

)
+ 2
(

9
4

)(
1
3

)(
(4)2/3

(−3)2/3

)
=

2 · (−3)1/3

41/3 +
2 · 9 · 1 · 42/3

4 · 3 · (−3)2/3

=
2 · (−3)1/3

41/3 + �2 · 3 ·�3 · 42/3

2 ·�2 ·�3 · (−3)2/3

=
2 · (−3)1/3

41/3 +
3 · 42/3

2 · (−3)2/3

At this point, we could start looking for common denominators but it turns out that these frac-
tions reduce even further. Since 4 = 22, 41/3 = (22)1/3 = 22/3. Similarly, 42/3 = (22)2/3 = 24/3.
The expressions (−3)1/3 and (−3)2/3 contain negative bases so we proceed with caution
and convert them back to radical notation to get: (−3)1/3 = 3

√
−3 = − 3

√
3 = −31/3 and

(−3)2/3 = ( 3
√
−3)2 = (− 3

√
3)2 = ( 3

√
3)2 = 32/3. Hence:

2 · (−3)1/3

41/3 +
3 · 42/3

2 · (−3)2/3 =
2 · (−31/3)

22/3 +
3 · 24/3

2 · 32/3

=
21 · (−31/3)

22/3 +
31 · 24/3

21 · 32/3

= 21−2/3 · (−31/3) + 31−2/3 · 24/3−1

= 21/3 · (−31/3) + 31/3 · 21/3

= −21/3 · 31/3 + 31/3 · 21/3

= 0
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0.2.1 Exercises

In Exercises 1 - 40, perform the indicated operations and simplify.

1. 5− 2 + 3 2. 5− (2 + 3) 3.
2
3
− 4

7
4.

3
8

+
5

12

5.
5− 3
−2− 4

6.
2(−3)

3− (−3)
7.

2(3)− (4− 1)
22 + 1

8.
4− 5.8
2− 2.1

9.
1− 2(−3)
5(−3) + 7

10.
5(3)− 7

2(3)2 − 3(3)− 9
11.

2((−1)2 − 1)
((−1)2 + 1)2

12.
(4− (−2)− 6

(−2)2 − 4

13.
3− 4

9
−2− (−3)

14.
2
3 −

4
5

4− 7
10

15.
2
(4

3

)
1−

(4
3

)2 16.
1−

(5
3

) (3
5

)
1 +

(5
3

) (3
5

)
17.

(
2
3

)−5
18. 3−1 − 4−2 19.

1 + 2−3

3− 4−1 20.
3 · 5100

12 · 598

21.
√

121 22. (
√

2)8 23. 3
√

80 24. 4

√
32
625

25. 641/3 26. (−216)1/3 27. 100001/2 28. (−8)−4/3

29.
√

32 + 42 30.
√

12−
√

75 31. (−8)2/3 − 9−3/2 32.
(
−32

9

)−3/5

33.
√

(3− 4)2 + (5− 2)2
34.

√
(2− (−1))2 +

(1
2 − 3

)2

35.
√

(
√

5− 2
√

5)2 + (
√

18−
√

8)2 36.
−12 +

√
18

21

37.
−2−

√
(2)2 − 4(3)(−1)

2(3)
38.
−(−4) +

√
(−4)2 − 4(1)(−1)
2(1)

39. 2(−5)(−5 + 1)−1 + (−5)2(−1)(−5 + 1)−2 40. 3
√

2(4) + 1 + 3(4)
(1

2

)
(2(4) + 1)−1/2(2)

In Exercises 41 - 48, simplify the algebraic expressions.

41. (y5)9 42. (w−2)−1 43. (3x2)6 44. (16x2)(4x5)

45.
(4x3)(2x5)

6x4 46.
24t3

15t4 ·
5t8

3t6 47.
(ab3c3)2(a2b)3

a−3b2c
48.

u4(uv3)−2(uv )5

v−3(u2v )3
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0.2.2 Answers

1. 6 2. 0 3.
2
21

4.
19
24

5. −1
3

6. −1 7.
3
5

8. 18

9. −7
8

10. Undefined. 11. 0 12. Undefined.

13.
23
9

14. − 4
99

15. −24
7

16. 0

17.
243
32

18.
13
48

19.
9
22

20.
25
4

21. 11 22. 16 23. 2 3
√

10 24. 2
5

4
√

2

25. 4 26. −6 27. 100 28.
1

16

29. 5 30. −3
√

3 31.
107
27

32. −3 5
√

3
8

= −36/5

8

33.
√

10 34.
√

61
2

35.
√

7 36.
−4 +

√
2

7

37. −1 38. 2 +
√

5 39.
15
16

40. 13

41. y45 42. w2 43. 729x12 44. 64x7

45.
4x4

3
46.

8t
3

47. a11b7c5 48.
u
v
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0.3 Linear Equations and Inequalities

In the introduction to this chapter we said that we were going to review “the concepts, skills and
vocabulary we believe are prerequisite to a rigorous, college-level Precalculus course.” So far,
we’ve presented a lot of vocabulary and concepts but we haven’t done much to refresh the skills
needed to survive in the Precalculus wilderness. Thus over the course of the next few sections
we will focus our review on the Algebra skills needed to solve basic equations and inequalities.
In general, equations and inequalities fall into one of three categories: conditional, identity or
contradiction, depending on the nature of their solutions. A conditional equation or inequality is
true for only certain real numbers. For example, 2x + 1 = 7 is true precisely when x = 3, and
w − 3 ≤ 4 is true precisely when w ≤ 7. An identity is an equation or inequality that is true for all
real numbers. For example, 2x − 3 = 1 + x − 4 + x or 2t ≤ 2t + 3. A contradiction is an equation
or inequality that is never true. Examples here include 3x − 4 = 3x + 7 and a− 1 > a + 3.

As you may recall, solving an equation or inequality means finding all of the values of the variable,
if any exist, which make the given equation or inequality true. This often requires us to manipulate
the given equation or inequality from its given form to an easier form. For example, if we’re asked
to solve 3− 2(x − 3) = 7x + 3(x + 1), we get x = 1

2 , but not without a fair amount of algebraic ma-
nipulation. In order to obtain the correct answer(s), however, we need to make sure that whatever
maneuvers we apply are reversible in order to guarantee that we maintain a chain of equivalent
equations or inequalities. Two equations or inequalities are called equivalent if they have the
same solutions. We list these ‘legal moves’ below.

Procedures which Generate Equivalent Equations

• Add (or subtract) the same real number to (from) both sides of the equation.

• Multiply (or divide) both sides of the equation by the same nonzero real number.a

Procedures which Generate Equivalent Inequalities

• Add (or subtract) the same real number to (from) both sides of the equation.

• Multiply (or divide) both sides of the equation by the same positive real number.b

aMultiplying both sides of an equation by 0 collapses the equation to 0 = 0, which doesn’t do anybody any good.
bRemember that if you multiply both sides of an inequality by a negative real number, the inequality sign is

reversed: 3 ≤ 4, but (−2)(3) ≥ (−2)(4).

0.3.1 Linear Equations

The first type of equations we need to review are linear equations as defined below.

Definition 0.10. An equation is said to be linear in a variable X if it can be written in the form
AX = B where A and B are expressions which do not involve X and A 6= 0.
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One key point about Definition 0.10 is that the exponent on the unknown ‘X ’ in the equation is 1,
that is X = X 1. Our main strategy for solving linear equations is summarized below.

Strategy for Solving Linear Equations

In order to solve an equation which is linear in a given variable, say X :

1. Isolate all of the terms containing X on one side of the equation, putting all of the terms
not containing X on the other side of the equation.

2. Factor out the X and divide both sides of the equation by its coefficient.

We illustrate this process with a collection of examples below.

Example 0.3.1. Solve the following equations for the indicated variable. Check your answer.

1. Solve for x : 3x − 6 = 7x + 4 2. Solve for t : 3− 1.7t =
t
4

3. Solve for a:
1

18
(7− 4a) + 2 =

a
3
− 4− a

12
4. Solve for y : 8y

√
3 + 1 = 7−

√
12(5− y )

5. Solve for x :
3x − 1

2
= x
√

50 + 4 6. Solve for y : x(4− y ) = 8y

Solution.

1. The variable we are asked to solve for is x so our first move is to gather all of the terms
involving x on one side and put the remaining terms on the other.1

3x − 6 = 7x + 4
(3x − 6)− 7x + 6 = (7x + 4)− 7x + 6 Subtract 7x , add 6

3x − 7x − 6 + 6 = 7x − 7x + 4 + 6 Rearrange terms
−4x = 10 3x − 7x = (3− 7)x = −4x
−4x
−4

=
10
−4

Divide by the coefficient of x

x = −5
2

Reduce to lowest terms

To check our answer, we substitute x = −5
2 into each side of the orginial equation to see the

equation is satisfied. Sure enough, 3
(
−5

2

)
− 6 = −27

2 and 7
(
−5

2

)
+ 4 = −27

2 .

1In the margin notes, when we speak of operations, e.g.,‘Subtract 7x ,’ we mean to subtract 7x from both sides of
the equation. The ‘from both sides of the equation’ is omitted in the interest of spacing.
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2. In our next example, the unknown is t and we not only have a fraction but also a decimal to
wrangle. Fortunately, with equations we can multiply both sides to rid us of these computa-
tional obstacles:

3− 1.7t =
t
4

40(3− 1.7t) = 40
(

t
4

)
Multiply by 40

40(3)− 40(1.7t) =
40t
4

Distribute

120− 68t = 10t
120 = 10t + 68t Add 68t to both sides
120 = 78t 68t + 10t = (68 + 10)t = 78t
120
78

= t Divide by the coefficient of t

20
13

= t Reduce to lowest terms

To check, we again substitute t = 20
13 into each side of the original equation. We find that

3− 1.7
(20

13

)
= 3−

(17
10

) (20
13

)
= 5

13 and (20/13)
4 = 20

13 ·
1
4 = 5

13 as well.

3. To solve this next equation, we begin once again by clearing fractions. The least common
denominator here is 36:

1
18

(7− 4a) + 2 =
a
3
− 4− a

12

36
(

1
18

(7− 4a) + 2
)

= 36
(

a
3
− 4− a

12

)
Multiply by 36

36
18

(7− 4a) + (36)(2) =
36a

3
− 36(4− a)

12
Distribute

2(7− 4a) + 72 = 12a− 3(4− a) Distribute
14− 8a + 72 = 12a− 12 + 3a

86− 8a = 15a− 12 12a + 3a = (12 + 3)a = 15a
(86− 8a) + 8a + 12 = (15a− 12) + 8a + 12 Add 8a and 12

86 + 12− 8a + 8a = 15a + 8a− 12 + 12 Rearrange terms
98 = 23a 15a + 8a = (15 + 8)a = 23a
98
23

=
23a
23

Divide by the coefficient of a

98
23

= a

The check, as usual, involves substituting a = 98
23 into both sides of the original equation. The

reader is encouraged to work through the (admittedly messy) arithmetic. Both sides work
out to 199

138 .
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4. The square roots may dishearten you but we treat them just like the real numbers they are.
Our strategy is the same: get everything with the variable (in this case y ) on one side, put
everything else on the other and divide by the coefficient of the variable. We’ve added a few
steps to the narrative that we would ordinarily omit just to help you see that this equation is
indeed linear.

8y
√

3 + 1 = 7−
√

12(5− y )

8y
√

3 + 1 = 7−
√

12(5) +
√

12 y Distribute

8y
√

3 + 1 = 7− (2
√

3)5 + (2
√

3)y
√

12 =
√

4 · 3 = 2
√

3

8y
√

3 + 1 = 7− 10
√

3 + 2y
√

3

8y
√

3− 2y
√

3 = 6− 10
√

3 Subtract 1 and 2y
√

3

(8
√

3− 2
√

3)y = 6− 10
√

3 Factor

6y
√

3 = 6− 10
√

3 See note below

y =
6− 10

√
3

6
√

3
Divide by 6

√
3

y =
�2
(

3− 5
√

3
)

�2 · 3
√

3
Factor and cancel

y =
3− 5

√
3

3
√

3

In the list of computations above we marked the row 6y
√

3 = 6 − 10
√

3 with a note. That’s
because we wanted to draw your attention to this line without breaking the flow of the ma-
nipulations. The equation 6y

√
3 = 6− 10

√
3 is in fact linear according to Definition 0.10: the

variable is y , the value of A is 6
√

3 and B = 6−10
√

3. Checking the solution, while not trivial,
is good mental exercise. Each side works out to be 27−40

√
3

3 .

5. Proceeding as before, we simplify radicals and clear denominators. Once we gather all of
the terms containing x on one side and move the other terms to the other, we factor out x to
identify its coefficient then divide to get our answer.

3x − 1
2

= x
√

50 + 4
3x − 1

2
= 5x

√
2 + 4

√
50 = 5

√
2

3x − 1 = 2
(

5x
√

2 + 4
)

Multiply by 2

3x − 1 = 10x
√

2 + 8 Distribute

3x − 10x
√

2 = 9 Subtract 10x
√

2, add 1

(3− 10
√

2)x = 9 Factor x
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Finally, dividing both sides by the coefficient of x , we arrive at

x =
9

3− 10
√

2

The reader is encouraged to check this solution - it isn’t as bad as it looks if you’re careful!
Each side works out to be 12+5

√
2

3−10
√

2
.

6. If we were instructed to solve our last equation for x , we’d be done in one step: divide both
sides by (4 − y ) - assuming 4 − y 6= 0, that is. Alas, we are instructed to solve for y , which
means we have some more work to do.

x(4− y ) = 8y
4x − xy = 8y Distribute

(4x − xy ) + xy = 8y + xy Add xy
4x = (8 + x)y Factor

In order to finish the problem, we need to divide both sides of the equation by the coefficient
of y which in this case is 8+x . Since this expression contains a variable, we need to stipulate
that we may perform this division only if 8 + x 6= 0, or, in other words, x 6= −8. Hence, we
write our solution as:

y =
4x

8 + x
, provided x 6= −8

What happens if x = −8? Substituting x = −8 into the original equation gives (−8)(4−y ) = 8y
or −32 + 8y = 8y . This reduces to −32 = 0, which is a contradiction. This means there is
no solution when x = −8, so we’ve covered all the bases. Checking our answer requires
some Algebra we haven’t reviewed yet in this text, but the necessary skills should be lurking
somewhere in the mathematical mists of your mind. The adventurous reader is invited to

show that both sides work out to
32x
x + 8

.

0.3.2 Linear Inequalities

We now turn our attention to linear inequalities. Unlike linear equations which admit at most one
solution, the solutions to linear inequalities are generally intervals of real numbers. While the
solution strategy for solving linear inequalities is the same as with solving linear equations, we
need to remind ourselves that, should we decide to multiply or divide both sides of an inequality
by a negative number, we need to reverse the direction of the inequality. (See page 38.) In
the example below, we work not only some ‘simple’ linear inequalities in the sense there is only
one inequality present, but also some ‘compound’ linear inequalities which require us to use the
notions of intersection and union.
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Example 0.3.2. Solve the following inequalities for the indicated variable.

1. Solve for x :
7− 8x

2
≥ 4x + 1 2. Solve for y :

3
4
≤ 7− y

2
< 6

3. Solve for t : 2t − 1 ≤ 4− t < 6t + 1 4. Solve for x : 5 +
√

7x ≤ 4x + 1 ≤ 8

5. Solve for w : 2.1− 0.01w ≤ −3 or 2.1− 0.01w ≥ 3

Solution.

1. We begin by clearing denominators and gathering all of the terms containing x to one side
of the inequality and putting the remaining terms on the other.

7− 8x
2

≥ 4x + 1

2
(

7− 8x
2

)
≥ 2(4x + 1) Multiply by 2

�2(7− 8x)
�2

≥ 2(4x) + 2(1) Distribute

7− 8x ≥ 8x + 2
(7− 8x) + 8x − 2 ≥ 8x + 2 + 8x − 2 Add 8x , subtract 2

7− 2− 8x + 8x ≥ 8x + 8x + 2− 2 Rearrange terms
5 ≥ 16x 8x + 8x = (8 + 8)x = 16x

5
16

≥ 16x
16

Divide by the coefficient of x

5
16

≥ x

We get 5
16 ≥ x or, said differently, x ≤ 5

16 . We express this set2 of real numbers as
(
−∞, 5

16

]
.

Though not required to do so, we could partially check our answer by substituting x = 5
16 and

a few other values in our solution set (x = 0, for instance) to make sure the inequality holds.
(It also isn’t a bad idea to choose an x > 5

16 , say x = 1, to see that the inequality doesn’t
hold there.) The only real way to actually show that our answer works for all values in our
solution set is to start with x ≤ 5

16 and reverse all of the steps in our solution procedure to
prove it is equivalent to our original inequality.

2. We have our first example of a ‘compound’ inequality. The solutions to

3
4
≤ 7− y

2
< 6

must satisfy
3
4
≤ 7− y

2
and

7− y
2

< 6

2Using set-builder notation, our ‘set’ of solutions here is {x | x ≤ 5
16}.
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One approach is to solve each of these inequalities separately, then intersect their solution
sets. While this method works (and will be used later for more complicated problems), since
our variable y appears only in the middle expression, we can proceed by essentially working
both inequalities at once:

3
4
≤ 7− y

2
< 6

4
(

3
4

)
≤ 4

(
7− y

2

)
< 4(6) Multiply by 4

�4 · 3
�4
≤ ���

2

4(7− y )
�2

< 24

3 ≤ 2(7− y ) < 24
3 ≤ 14− 2y < 24 Distribute

3− 14 ≤ (14− 2y )− 14 < 24− 14 Subtract 14
−11 ≤ −2y < 10
−11
−2
≥ −2y

−2
>

10
−2

Divide by the coefficient of y
Reverse inequalities

11
2
≥ y > −5

Our final answer is 11
2 ≥ y > −5, or, said differently, −5 < y ≤ 11

2 . In interval notation, this
is
(
−5, 11

2

]
. We could check the reasonableness of our answer as before, and the reader is

encouraged to do so.

3. We have another compound inequality and what distinguishes this one from our previous
example is that ‘t ’ appears on both sides of both inequalities. In this case, we need to create
two separate inequalities and find all of the real numbers t which satisfy both 2t − 1 ≤ 4− t
and 4− t < 6t +1. The first inequality, 2t−1 ≤ 4− t , reduces to 3t ≤ 5 or t ≤ 5

3 . The second
inequality, 4 − t < 6t + 1, becomes 3 < 7t which reduces to t > 3

7 . Thus our solution is all
real numbers t with t ≤ 5

3 and t > 3
7 , or, writing this as a compound inequality, 3

7 < t ≤ 5
3 .

Using interval notation,3 we express our solution as
(3

7 , 5
3

]
.

4. As before, with this inequality we have no choice but to solve each inequality individually and
intersect the solution sets. Starting with the leftmost inequality, we first note that the in the
term

√
7x , the vinculum of the square root extends over the 7 only, meaning the x is not part

of the radicand. In order to avoid confusion, we will write
√

7x as x
√

7.

5 + x
√

7 ≤ 4x + 1
(5 + x

√
7)− 4x − 5 ≤ (4x + 1)− 4x − 5 Subtract 4x and 5

x
√

7− 4x + 5− 5 ≤ 4x − 4x + 1− 5 Rearrange terms
x(
√

7− 4) ≤ −4 Factor
3If we intersect the solution sets of the two individual inequalities, we get the answer, too:

(
−∞, 5

3

]
∩
( 3

7 ,∞
)

=
( 3

7 , 5
3

]
.
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At this point, we need to exercise a bit of caution because the number
√

7 − 4 is negative.4

When we divide by it the inequality reverses:

x(
√

7− 4) ≤ −4

x(
√

7− 4)√
7− 4

≥ −4√
7− 4

Divide by the coefficient of x
Reverse inequalities

x ≥ −4√
7− 4

x ≥ −4
−(4−

√
7)

x ≥ 4
4−
√

7

We’re only half done because we still have the rightmost inequality to solve. Fortunately, that
one seems rather mundane: 4x + 1 ≤ 8 reduces to x ≤ 7

4 without too much incident. Our
solution is x ≥ 4

4−
√

7
and x ≤ 7

4 . We may be tempted to write 4
4−
√

7
≤ x ≤ 7

4 and call it a

day but that would be nonsense! To see why, notice that
√

7 is between 2 and 3 so 4
4−
√

7
is

between 4
4−2 = 2 and 4

4−3 = 4. In particular, we get 4
4−
√

7
> 2. On the other hand, 7

4 < 2.
This means that our ‘solutions’ have to be simultaneously greater than 2 AND less than 2
which is impossible. Therefore, this compound inequality has no solution, which means we
did all that work for nothing.5

5. Our last example is yet another compound inequality but here, instead of the two inequalities
being connected with the conjunction ‘and ’, they are connected with ‘or ’, which indicates
that we need to find the union of the results of each. Starting with 2.1− 0.01w ≤ −3, we get
−0.01w ≤ −5.1, which gives6 w ≥ 510. The second inequality, 2.1 − 0.01w ≥ 3, becomes
−0.01w ≥ 0.9, which reduces to w ≤ −90. Our solution set consists of all real numbers w
with w ≥ 510 or w ≤ −90. In interval notation, this is (−∞,−90] ∪ [510,∞).

4Since 4 < 7 < 9, it stands to reason that
√

4 <
√

7 <
√

9 so 2 <
√

7 < 3.
5Much like how people walking on treadmills get nowhere. Math is the endurance cardio of the brain, folks!
6Don’t forget to flip the inequality!
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0.3.3 Exercises

In Exercises 1 - 24, solve the given linear equation and check your answer.

1. 3x − 4 = 2− 4(x − 3) 2.
3− 2t

4
= 7t + 1 3.

2(w − 3)
5

=
4

15
− 3w + 1

9

4. 2− 3x = 8
9 − x 5. 6

7 − 2x + 6x = 202
7 6. 0.1(x + 2x + 7x) =

8− x
10

7. 3
8 + x

2 = −2x − 37
8 8. 2

5x + 1 = 17
35 + x 9. 1

7x + 3 = −18
35 + 6x

10. 6(−2
3x + 8) = 48 11. −

√
5(4x + 8) = −12

√
5 12. 7(−6

7x − 8) = −74

13.
5w + 3√

8
=
√

2 14. w −
√

11 = 1−
√

11 w 15.
14 + πw

100
= 3.14

16. 0.3y + 0.7y =
√

7− y 17.
20− 4x

4
+ x = 3

(
x − 100

3

)
18.
√

3 t +
√

5 t = t

19. −0.02y + 1000 = 0 20.
49w − 14

7
= 3w−(2−4w) 21. 7− (4− x) =

2x − 3
2

22. 3t
√

7 + 5 = 0 23.
√

50 y =
6−
√

8 y
3

24. 4− (2x + 1) =
x
√

7
9

In equations 25 - 34, solve each equation for the indicated variable.

25. Solve for y : 3x + 2y = 4 26. Solve for x : 3x + 2y = 4

27. Solve for C: F = 9
5C + 32 28. Solve for x : p = −2.5x + 15

29. Solve for y : x(y − 3) = 2y + 1 30. Solve for π: C = 2πr

31. Solve for V : PV = nRT 32. Solve for R: PV = nRT

33. Solve for g: E = mgh 34. Solve for m: E = 1
2mv2

In Exercises 35 - 52, solve the given inequality. Write your answer using interval notation.

35. 3− 4x ≥ 0 36. 2t − 1 < 3− (4t − 3) 37.
7− y

4
≥ 3y + 1

38. 0.05R+1.2 > 0.8−0.25R 39. 7− (2− x) ≤ x + 3 40.
10m + 1

5
≥ 2m − 1

2
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41. x
√

12−
√

3 >
√

3 x +
√

27 42. 2t − 7 ≤ 3
√

18 t 43. 117y ≥ y
√

2− 7y 4
√

8

44. −1
2
≤ 5x − 3 ≤ 1

2
45. −3

2
≤ 4− 2t

10
<

7
6

46. −0.1 ≤ 5− x
3
− 2 < 0.1

47. 2y ≤ 3− y < 7 48. 3x ≥ 4− x ≥ 3 49. 6− 5t >
4t
3
≥ t − 2

50. 2x + 1 ≤ −1 or 2x + 1 ≥ 1 51. 4− x ≤ 0 or 2x + 7 < x 52.
5− 2x

3
> x or 2x + 5 ≥ 1
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0.3.4 Answers

1. x = 18
7 2. t = − 1

30 3. w = 61
33

4. x = 5
9 5. x = 7 6. x = 8

11

7. x = −2 8. x = 6
7 9. x = 3

5

10. x = 0 11. x = 1 12. x = 3

13. w = 1
5 14. w = 1 15. w = 300

π

16. y =
√

7
2 17. x = 35 18. t = 0

19. y = 50000 20. All real numbers. 21. No solution.

22. t = − 5
3
√

7
23. y =

6
17
√

2
24. x =

27
18 +

√
7

25. y =
4− 3x

2
or y = −3

2x + 2 26. x =
4− 2y

3
or x = −2

3y + 4
3

27. C = 5
9 (F − 32) or C = 5

9F − 160
9 28. x =

15− p
2.5

or x = −2
5p + 6.

29. y =
3x + 1
x − 2

, provided x 6= 2. 30. π =
C
2r

, provided r 6= 0.

31. V =
nRT

P
, provided P 6= 0. 32. R =

PV
nT

, provided n 6= 0, T 6= 0.

33. g =
E

mh
, provided m 6= 0, h 6= 0. 34. m =

2E
v2 , provided v2 6= 0 (so v 6= 0).

35.
(
−∞, 3

4

]
36.

(
−∞, 7

6

)
37.

(
−∞, 3

13

]
38.

(
−4

3 ,∞
)

39. No solution. 40. (−∞,∞)

41. (4,∞) 42.
[

7
2− 3√18

,∞
)

43. [0,∞)

44.
[1

2 , 7
10

]
45.

(
−23

6 , 19
2

]
46.

(
−13

10 ,− 7
10

]
47. (−4, 1] 48. {1} = [1, 1] 49.

[
−6, 18

19

)
50. (−∞,−1] ∪ [0,∞) 51. (−∞,−7) ∪ [4,∞) 52. (−∞,∞)
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0.4 Absolute Value Equations and Inequalities

In this section, we review some basic concepts involving the absolute value of a real number x .
There are a few different ways to define absolute value and in this section we choose the following
definition. (Absolute value will be revisited in much greater depth in Section 2.3 where we present
what one can think of as the “precise” definition.)

Definition 0.11. Absolute Value as Distance: For every real number x , the absolute value
of x , denoted |x |, is the distance between x and 0 on the number line. More generally, if x and
c are real numbers, |x − c| is the distance between the numbers x and c on the number line.
As a consequence, we have

|x − c| =

{
−x + c, if x − c < 0

x − c, if x − c ≥ 0
(0.11’)

For example, |5| = 5 and | − 5| = 5, since each is 5 units from 0 on the number line:

distance is 5 units distance is 5 units

−5 −4 −3 −2 −1 0 1 2 3 4 5
Graphically why | − 5| = 5 and |5| = 5

Computationally, the absolute value ‘makes negative numbers positive’, though we need to be a
little cautious with this description. While | − 7| = 7, |5 − 7| 6= 5 + 7. The absolute value acts as
a grouping symbol, so |5 − 7| = | − 2| = 2, which makes sense since 5 and 7 are two units away
from each other on the number line:

distance is 2 units

5 6 7
Graphically why |5− 7| = 2

We list some of the operational properties of absolute value below.

Theorem 0.2. Properties of Absolute Value: Let a, b and x be real numbers and let n be an
integer.a Then

• Product Rule: |ab| = |a||b|

• Power Rule: |an| = |a|n whenever an is defined

• Quotient Rule:
∣∣∣a
b

∣∣∣ =
|a|
|b|

, provided b 6= 0

aSee page 6 if you don’t remember what an integer is.
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The proof of Theorem 0.2 is difficult, but not impossible, using the distance definition of absolute
value or even the ‘it makes negatives positive’ notion. It is, however, much easier if one uses the
“precise” definition given in Section 2.3 so we will revisit the proof then. For now, let’s focus on
how to solve basic equations and inequalities involving the absolute value.

0.4.1 Absolute Value Equations

Thinking of absolute value in terms of distance gives us a geometric way to interpret equations.
For example, to solve |x | = 3, we are looking for all real numbers x whose distance from 0 is 3
units. If we move three units to the right of 0, we end up at x = 3. If we move three units to the left,
we end up at x = −3. Thus the solutions to |x | = 3 are x = ±3.

3 units3 units

−3 0 3
The solutions to |x | = 3 are x = ±3.

Thinking this way gives us the following.

Theorem 0.3. Absolute Value Equations: Suppose A and B are real numbers.

• |A| ≥ 0 for every A, and |A| = 0 if and only if A = 0.

• If B > 0 then |A| = B if and only if A = B or A = −B.

• For B < 0, |A| = B has no solution.

• |A| = |B| if and only if A = B or A = −B.

(That is, if two numbers have the same absolute values, they are either the same
number or exact opposites.)

Theorem 0.3 is our main tool in solving equations involving the absolute value, since it allows us a
way to rewrite such equations as compound linear equations.

Strategy for Solving Equations Involving Absolute Value

In order to solve an equation involving the absolute value of a quantity |A|:

1. Isolate the absolute value on one side of the equation so it has the form |A| = B.

2. Apply Theorem 0.3.

The techniques we use to ‘isolate the absolute value’ are precisely those we used in Section 0.3
to isolate the variable when solving linear equations. Time for some practice.
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Example 0.4.1. Solve each of the following equations.

1. |3x − 1| = 6 2.
3− |y + 5|

2
= 1 3. 3|2t + 1| −

√
5 = 0

4. 4− |5w + 3| = 5 5.
∣∣∣3− x 3

√
12
∣∣∣ = |4x + 1| 6. |t − 1| − 3|t + 1| = 0

Solution.

1. The equation |3x − 1| = 6 is of already in the form |X | = c, so we know 3x − 1 = 6 or
3x − 1 = −6. Solving the former gives us at x = 7

3 and solving the latter yields x = −5
3 .

We may check both of these solutions by substituting them into the original equation and
showing that the arithmetic works out.

2. We begin solving 3−|y+5|
2 = 1 by isolating the absolute value to put it in the form |X | = c.

3− |y + 5|
2

= 1

3− |y + 5| = 2 Multiply by 2
−|y + 5| = −1 Subtract 3
|y + 5| = 1 Divide by −1

At this point, we have y + 5 = 1 or y + 5 = −1, so our solutions are y = −4 or y = −6. We
leave it to the reader to check both answers in the original equation.

3. As in the previous example, we first isolate the absolute value. Don’t let the
√

5 throw you off
- it’s just another real number, so we treat it as such:

3|2t + 1| −
√

5 = 0
3|2t + 1| =

√
5 Add

√
5

|2t + 1| =
√

5
3

Divide by 3

From here, we have that 2t + 1 =
√

5
3 or 2t + 1 = −

√
5

3 . The first equation gives t =
√

5−3
6 while

the second gives t = −
√

5−3
6 thus we list our answers as t = −3±

√
5

6 . The reader should enjoy
the challenge of substituting both answers into the original equation and following through
the arithmetic to see that both answers work.

4. Upon isolating the absolute value in the equation 4− |5w + 3| = 5, we get |5w + 3| = −1. At
this point, we know there cannot be any real solution. By definition, the absolute value is a
distance, and as such is never negative. We write ‘no solution’ and carry on.

5. Our next equation already has the absolute value expressions (plural) isolated, so we work
from the principle that if |x | = |y |, then x = y or x = −y . Thus from

∣∣∣3− x 3
√

12
∣∣∣ = |4x + 1| we

get two equations to solve:

3− x 3
√

12 = 4x + 1, and 3− x 3
√

12 = −(4x + 1)
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Notice that the right side of the second equation is −(4x +1) and not simply −4x +1. Remem-
ber, the expression 4x + 1 represents a single real number so in order to negate it we need
to negate the entire expression −(4x + 1). Moving along, when solving 3 − x 3

√
12 = 4x + 1,

we obtain x = 2
4+ 3√12

and the solution to 3 − x 3
√

12 = −(4x + 1) is x = 4
3√12−4

. As usual, the
reader is invited to check these answers by substituting them into the original equation.

6. We start by isolating one of the absolute value expressions: |t − 1| − 3|t + 1| = 0 gives
|t − 1| = 3|t + 1|. While this resembles the form |x | = |y |, the coefficient 3 in 3|t + 1| prevents
it from being an exact match. Not to worry - since 3 is positive, 3 = |3| so

3|t + 1| = |3||t + 1| = |3(t + 1)| = |3t + 3|.

Hence, our equation becomes |t−1| = |3t +3| which results in the two equations: t−1 = 3t +3
and t − 1 = −(3t + 3). The first equation gives t = −2 and the second gives t = −1

2 . The
reader is encouraged to check both answers in the original equation.

0.4.2 Absolute Value Inequalities

We now turn our attention to solving some basic inequalities involving the absolute value. Suppose
we wished to solve |x | < 3. Geometrically, we are looking for all of the real numbers whose
distance from 0 is less than 3 units. We get −3 < x < 3, or in interval notation, (−3, 3). Suppose
we are asked to solve |x | > 3 instead. Now we want the distance between x and 0 to be greater
than 3 units. Moving in the positive direction, this means x > 3. In the negative direction, this puts
x < −3. Our solutions would then satisfy x < −3 or x > 3. In interval notation, we express this as
(−∞,−3) ∪ (3,∞).

3 units3 units

−3 0 3

3 units3 units

−3 0 3
The solution to |x | < 3 is (−3, 3) The solution to |x | > 3 is (−∞,−3) ∪ (3,∞)

Generalizing this notion, we get the following:

Theorem 0.4. Inequalities Involving Absolute Value.

If B is a real number such that B > 0, then

• |A| < B is equivalent to −B < A < B.

• |A| > B is equivalent to A > B or A < −B.

Recall that |A| ≥ 0 for all values of A. In particular, |A| < B has no solution if B ≤ 0.

If the inequality we’re faced with involves ‘≤’ or ‘≥,’ we can combine the results of Theorem 0.4
with Theorem 0.3 as needed.
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Strategy for Solving Inequalities Involving Absolute Value

In order to solve an inequality involving the absolute value of a quantity |A|:

1. Isolate the absolute value on one side of the inequality.

2. Apply Theorem 0.4.

Example 0.4.2. Solve the following inequalities.

1.
∣∣∣x −√5

∣∣∣ > 1 2.
4− 2|2x + 1|

4
≥ −
√

3

3. |2x − 1| ≤ 3|4− 8x | − 10 4. |2x − 1| ≤ 3|4− 8x | + 10

5. 2 < |x − 1| ≤ 5 6. |10x − 5| + |10− 5x | ≤ 0

Solution.

1. From Theorem 0.4,
∣∣∣x −√5

∣∣∣ > 1 is equivalent to x −
√

5 < −1 or x −
√

5 > 1. Solving this

compound inequality, we get x < −1 +
√

5 or x > 1 +
√

5. Our answer, in interval notation,
is:
(
−∞,−1 +

√
5
)
∪
(

1 +
√

5,∞
)

. As with linear inequalities, we can partially check our
answer by selecting values of x both inside and outside the solution intervals to see which
values of x satisfy the original inequality and which do not.

2. Our first step in solving 4−2|2x+1|
4 ≥ −

√
3 is to isolate the absolute value.

4− 2|2x + 1|
4

≥ −
√

3

4− 2|2x + 1| ≥ −4
√

3 Multiply by 4
−2|2x + 1| ≥ −4− 4

√
3 Subtract 4

|2x + 1| ≤ −4− 4
√

3
−2

Divide by −2, reverse the inequality

|2x + 1| ≤ 2 + 2
√

3 Reduce

Since we’re dealing with ‘≤’ instead of just ‘<,’ we can combine Theorems 0.4 and 0.3 to
rewrite this last inequality as:1 −(2 + 2

√
3) ≤ 2x + 1 ≤ 2 + 2

√
3. Subtracting the ‘1’ across

both inequalities gives −3 − 2
√

3 ≤ 2x ≤ 1 + 2
√

3, which reduces to −3−2
√

3
2 ≤ x ≤ 1+2

√
3

2 .

In interval notation this reads as
[
−3−2

√
3

2 , 1+2
√

3
2

]
.

1Note the use of parentheses: −(2 + 2
√

3) as opposed to −2 + 2
√

3.
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3. There are two absolute values in |2x − 1| ≤ 3|4 − 8x | − 10, so it is unclear how we are to
proceed. However, before jumping in and trying to apply (or misapply) Theorem 0.4, we note
that |4− 8x | = |(−4)(2x − 1)|. Using this, we get:

|2x − 1| ≤ 3|4− 8x | − 10
|2x − 1| ≤ 3|(−4)(2x − 1)| − 10 Factor
|2x − 1| ≤ 3| − 4||2x − 1| − 10 Product Rule
|2x − 1| ≤ 12|2x − 1| − 10

−11|2x − 1| ≤ −10 Subtract 12|2x − 1|

|2x − 1| ≥ 10
11

Divide by −11 and reduce

At this point, we invoke Theorems 0.3 and 0.4 and write the equivalent compound inequality:
2x − 1 ≤ −10

11 or 2x − 1 ≥ 10
11 . We get x ≤ 1

22 or x ≥ 21
22 , which, in interval notation reads(

−∞, 1
22

]
∪
[21

22 ,∞
)
.

4. The inequality |2x − 1| ≤ 3|4 − 8x | + 10 differs from the previous example in exactly one
respect: on the right side of the inequality, we have ‘+10’ instead of ‘−10.’ The steps to
isolate the absolute value here are identical to those in the previous example, but instead of
obtaining |2x − 1| ≥ 10

11 as before, we obtain |2x − 1| ≥ −10
11 . This latter inequality is always

true. (Absolute value is, by definition, a distance and hence always 0 or greater.) Thus our
solution to this inequality is all real numbers, (−∞,∞).

5. To solve 2 < |x−1| ≤ 5, we rewrite it as the compound inequality: 2 < |x−1| and |x−1| ≤ 5.
The first inequality, 2 < |x−1|, can be re-written as |x−1| > 2 so it is equivalent to x−1 < −2
or x − 1 > 2. Thus the solution to 2 < |x − 1| is x < −1 or x > 3, which in interval notation
is (−∞,−1)∪ (3,∞). For |x −1| ≤ 5, we combine the results of Theorems 0.3 and 0.4 to get
−5 ≤ x − 1 ≤ 5 so that −4 ≤ x ≤ 6, or [−4, 6]. Our solution to 2 < |x − 1| ≤ 5 is comprised
of values of x which satisfy both parts of the inequality, so we intersect (−∞,−1) ∪ (3,∞)
with [−4, 6] to get our final answer [−4,−1) ∪ (3, 6].

6. Our first hope when encountering |10x −5|+ |10−5x | ≤ 0 is that we can somehow combine
the two absolute value quantities as we’d done in earlier examples. We leave it to the reader
to show, however, that no matter what we try to factor out of the absolute value quantities,
what remains inside the absolute values will always be different. At this point, we take a step
back and look at the equation in a more general way: we are adding two absolute values
together and wanting the result to be less than or equal to 0. Since the absolute value of
anything is always 0 or greater, there are no solutions to: |10x − 5| + |10 − 5x | < 0. Is
it possible that |10x − 5| + |10 − 5x | = 0? Only if there is an x where |10x − 5| = 0 and
|10− 5x | = 0 at the same time.2 The first equation holds only when x = 1, while the second
holds only when x = 2. Alas, we have no solution.3

2Do you see why?
3Not for lack of trying, however!
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We close this section with an example of how the properties in Theorem 0.2 are used in Calcu-
lus. Here, ‘ε’ is the Greek letter ‘epsilon’ and it represents a positive real number. Those of you
who will be taking Calculus in the future should become very familiar with this type of algebraic
manipulation. ∣∣∣∣8− 4x

3

∣∣∣∣ < ε

|8− 4x |
|3|

< ε Quotient Rule

| − 4(x − 2)|
3

< ε Factor

| − 4||x − 2|
3

< ε Product Rule

4|x − 2|
3

< ε

3
4
· 4|x − 2|

3
<

3
4
· ε Multiply by

3
4

|x − 2| <
3
4
ε
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0.4.3 Exercises

In Exercises 1 - 18, solve the equation.

1. |x | = 6 2. |3t − 1| = 10 3. |4− w | = 7

4. 4− |y | = 3 5. 2|5m + 1| − 3 = 0 6. |7x − 1| + 2 = 0

7.
5− |x |

2
= 1 8. 2

3 |5− 2w | − 1
2 = 5 9. |3t −

√
2| + 4 = 6

10.
|2v + 1| − 3

4
= 1

2 −|2v +1| 11.
|3− 2y | + 4

2
= 2−|3−2y | 12. |x − 5| + |1− 5x | = 0

13. |3t − 2| = |2t + 7| 14. |3x + 1| = |4x | 15. |1−
√

2 y | = |y + 1|

16. |4− x | − |x + 2| = 0 17. |2− 5z| = 5|z + 1| 18.
√

3|w − 1| = 2|w + 1|

In Exercises 19 - 30, solve the inequality. Write your answer using interval notation.

19. |3x − 5| ≤ 4 20. |7t + 2| > 10 21. |2w + 1| − 5 < 0

22. |2− y | − 4 ≥ −3 23. |3z + 5| + 2 < 1 24. 2|7− v | + 4 > 1

25. 3− |x +
√

5| < −3 26. |5t | ≤ |t | + 3 27. |w − 3| < |3− w |

28. 2 ≤ |4− y | < 7 29. 1 < |2w − 9| ≤ 3 30. π > |π − x | ≥ 1
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0.4.4 Answers

1. x = −6 or x = 6 2. t = −3 or t =
11
3

3. w = −3 or w = 11

4. y = −1 or y = 1 5. m = −1
2

or m =
1

10
6. No solution

7. x = −3 or x = 3 8. w = −13
8

or w =
53
8

9. t =
√

2± 2
3

10. v = −1 or v = 0 11. y =
3
2

12. No solution

13. t = −1 or t = 9 14. x = −1
7

or x = 1 15. y = 0 or y =
2√

2− 1

16. x = 1 17. z = − 3
10

18. w =
√

3± 2√
3∓ 2

See footnote4

19.
[1

3 , 3
]

20.
(
−∞,−12

7

)
∪
(8

7 ,∞
)

21. (−3, 2)

22. (−∞, 1] ∪ [3,∞) 23. No solution 24. (−∞,∞)

25. (−∞,−6−
√

5)∪(6−
√

5,∞) 26.
[
−3

4 , 3
4

]
27. No solution

28. (−3, 2] ∪ [6, 11) 29. [3, 4) ∪ (5, 6] 30. (0,π − 1] ∪ [π + 1, 2π)

4That is, w =
√

3 + 2√
3− 2

or w =
√

3− 2√
3 + 2
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0.5 Polynomial Arithmetic

In this section, we review the arithmetic of polynomials. What precisely is a polynomial?

Definition 0.12. A polynomial is a sum of terms each of which is a real number or a real
number multiplied by one or more variables to natural number powers.

Some examples of polynomials are x2 + x
√

3 + 4, 27x2y + 7x
2 and 6. Things like 3

√
x , 4x − 2

x+1 and
13x2/3y2 are not polynomials. (Do you see why not?) Below we review some of the terminology
associated with polynomials.

Definition 0.13. Polynomial Vocabulary

• Constant Terms: Terms in polynomials without variables are called constant terms.

• Coefficient: In non-constant terms, the real number factor in the expression is called the
coefficient of the term.

• Degree: The degree of a non-constant term is the sum of the exponents on the variables
in the term; non-zero constant terms are defined to have degree 0. The degree of a
polynomial is the highest degree of the nonzero terms.

• Like Terms: Terms in a polynomial are called like terms if they have the same variables
each with the same corresponding exponents.

• Simplified: A polynomial is said to be simplified if all arithmetic operations have been
completed and there are no longer any like terms.

• Classification by Number of Terms: A simplified polynomial is called a

– monomial if it has exactly one nonzero term

– binomial if it has exactly two nonzero terms

– trinomial if it has exactly three nonzero terms

For example, x2 + x
√

3 + 4 is a trinomial of degree 2. The coefficient of x2 is 1 and the constant
term is 4. The polynomial 27x2y + 7x

2 is a binomial of degree 3 (x2y = x2y1) with constant term 0.

The concept of ‘like’ terms really amounts to finding terms which can be combined using the
Distributive Property. For example, in the polynomial 17x2y − 3xy2 + 7xy2, −3xy2 and 7xy2 are
like terms, since they have the same variables with the same corresponding exponents. This
allows us to combine these two terms as follows:

17x2y − 3xy2 + 7xy2 = 17x2y + (−3)xy2 + 7xy2 + 17x2y + (−3 + 7)xy2 = 17x2y + 4xy2

Note that even though 17x2y and 4xy2 have the same variables, they are not like terms since in the
first term we have x2 and y = y1 but in the second we have x = x1 and y = y2 so the corresponding
exponents aren’t the same. Hence, 17x2y + 4xy2 is the simplified form of the polynomial.
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There are four basic operations we can perform with polynomials: addition, subtraction, multi-
plication and division. The first three of these operations follow directly from properties of real
number arithmetic and will be discussed together first. Division, on the other hand, is a bit more
complicated and will be discussed separately.

0.5.1 Polynomial Addition, Subtraction and Multiplication.

Adding and subtracting polynomials comes down to identifying like terms and then adding or sub-
tracting the coefficients of those like terms. Multiplying polynomials comes to us courtesy of the
Generalized Distributive Property.

Theorem 0.5. Generalized Distributive Property: To multiply a quantity of n terms by a quan-
tity of m terms, multiply each of the n terms of the first quantity by each of the m terms in the
second quantity and add the resulting n ·m terms together.

In particular, Theorem 0.5 says that, before combining like terms, a product of an n-term poly-
nomial and an m-term polynomial will generate (n · m)-terms. For example, a binomial times a
trinomial will produce six terms some of which may be like terms. Thus the simplified end result
may have fewer than six terms but you will start with six terms.

A special case of Theorem 0.5 is the famous F.O.I.L., listed here:1

Theorem 0.6. F.O.I.L: The terms generated from the product of two binomials: (a + b)(c + d)
can be verbalized as follows “Take the sum of:

• the product of the First terms a and c, ac

• the product of the Outer terms a and d , ad

• the product of the Inner terms b and c, bc

• the product of the Last terms b and d , bd .”

That is, (a + b)(c + d) = ac + ad + bc + bd .

Theorem 0.5 is best proved using the technique known as Mathematical Induction which is covered
in Section 9.3. The result is really nothing more than repeated applications of the Distributive
Property so it seems reasonable and we’ll use it without proof for now. The other major piece of
polynomial multiplication is one of the Power Rules of Exponents from page 26 in Section 0.2,
namely anam = an+m. The Commutative and Associative Properties of addition and multiplication
are also used extensively. We put all of these properties to good use in the next example.

1We caved to peer pressure on this one. Apparently all of the cool Precalculus books have FOIL in them even though
it’s redundant once you know how to distribute multiplication across addition. In general, we don’t like mechanical short-
cuts that interfere with a student’s understanding of the material and FOIL is one of the worst.
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Example 0.5.1. Perform the indicated operations and simplify.

1.
(
3x2 − 2x + 1

)
− (7x − 3) 2. 4xz2 − 3z(xz − x + 4)

3. (2t + 1)(3t − 7) 4.
(

3y − 3
√

2
)(

9y2 + 3 3
√

2y + 3
√

4
)

5.
(

4w − 1
2

)2

6.
[
2(x + h)− (x + h)2]− (2x − x2)

Solution.

1. We begin ‘distributing the negative’ as indicated on page 20 in Section 0.2, then we rearrange
and combine like term:(

3x2 − 2x + 1
)
− (7x − 3) = 3x2 − 2x + 1− 7x + 3 Distribute

= 3x2 − 2x − 7x + 1 + 3 Rearrange terms
= 3x2 − 9x + 4 Combine like terms

Our answer is 3x2 − 9x + 4.

2. Following in our footsteps from the previous example, we first distribute the −3z through,
then rearrange and combine like terms.

4xz2 − 3z(xz − x + 4) = 4xz2 − 3z(xz) + 3z(x)− 3z(4) Distribute
= 4xz2 − 3xz2 + 3xz − 12z Multiply
= xz2 + 3xz − 12z Combine like terms

We get our final answer: xz2 + 3xz − 12z

3. At last, we have a chance to use our F.O.I.L. technique:

(2t + 1)(3t − 7) = (2t)(3t) + (2t)(−7) + (1)(3t) + (1)(−7) F.O.I.L.
= 6t2 − 14t + 3t − 7 Multiply
= 6t2 − 11t − 7 Combine like terms

We get 6t2 − 11t − 7 as our final answer.

4. We use the Generalized Distributive Property here, multiplying each term in the second
quantity first by 3y , then by − 3

√
2:(

3y − 3
√

2
)(

9y2 + 3 3
√

2y + 3
√

4
)

= 3y
(
9y2) + 3y

(
3 3
√

2y
)

+ 3y
(

3
√

4
)

− 3
√

2
(
9y2)− 3

√
2
(

3 3
√

2y
)
− 3
√

2
(

3
√

4
)

= 27y3 + 9y2 3
√

2 + 3y 3
√

4− 9y2 3
√

2− 3y 3
√

4− 3
√

8
= 27y3 + 9y2 3

√
2− 9y2 3

√
2 + 3y 3

√
4− 3y 3

√
4− 2

= 27y3 − 2

To our surprise and delight, this product reduces to 27y3 − 2.
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5. Since exponents do not distribute across powers,2
(
4w − 1

2

)2 6= (4w)2 −
(1

2

)2
. (We know

you knew that.) Instead, we proceed as follows:(
4w − 1

2

)2

=
(

4w − 1
2

)(
4w − 1

2

)
= (4w)(4w) + (4w)

(
−1

2

)
+
(
−1

2

)
(4w) +

(
−1

2

)(
−1

2

)
Distribute

= 16w2 − 2w − 2w +
1
4

Multiply

= 16w2 − 4w +
1
4

Combine like terms

Our (correct) final answer is 16w2 − 4w + 1
4 .

6. Our last example has two levels of grouping symbols. We begin simplifying the quantity
inside the brackets, squaring out the binomial (x + h)2 in the same way we expanded the
square in our last example:

(x + h)2 = (x + h)(x + h) = (x)(x) + (x)(h) + (h)(x) + (h)(h) = x2 + 2xh + h2

When we substitute this into our expression, we envelope it in parentheses, as usual, so we
don’t forget to distribute the negative.[

2(x + h)− (x + h)2]− (2x − x2) =
[
2(x + h)−

(
x2 + 2xh + h2)]− (2x − x2) Substitute

=
[
2x + 2h − x2 − 2xh − h2]− (2x − x2) Distribute

= 2x + 2h − x2 − 2xh − h2 − 2x + x2 Distribute
= 2h − 2xh − h2 Combine like terms

We find no like terms in 2h − 2xh − h2 so we are finished.

We conclude our discussion of polynomial multiplication by showcasing two special products which
happen often enough they should be committed to memory.

Theorem 0.7. Special Products: Let a and b be real numbers:

• Perfect Square: (a + b)2 = a2 + 2ab + b2 and (a− b)2 = a2 − 2ab + b2

• Difference of Two Squares: (a− b)(a + b) = a2 − b2

The formulas in Theorem 0.7 can be verified by working through the multiplication.3

2See the remarks following the Properties of Exponents on 26.
3These are both special cases of F.O.I.L.
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0.5.2 Polynomial Long Division.

We now turn our attention to polynomial long division. Dividing two polynomials follows the same
algorithm, in principle, as dividing two natural numbers so we review that process first. Suppose
we wished to divide 2585 by 79. The standard division tableau is given below.

32
79 2585
−237↓

215
−158

57

In this case, 79 is called the divisor, 2585 is called the dividend, 32 is called the quotient and
57 is called the remainder. We can check our answer by showing:

dividend = (divisor)(quotient) + remainder

or in this case, 2585 = (79)(32) + 57X. We hope that the long division tableau evokes warm, fuzzy
memories of your formative years as opposed to feelings of hopelessness and frustration. If you
experience the latter, keep in mind that the Division Algorithm essentially is a two-step process,
iterated over and over again. First, we guess the number of times the divisor goes into the dividend
and then we subtract off our guess. We repeat those steps with what’s left over until what’s left
over (the remainder) is less than what we started with (the divisor). That’s all there is to it!

The division algorithm for polynomials has the same basic two steps but when we subtract poly-
nomials, we must take care to subtract like terms only. As a transition to polynomial division, let’s
write out our previous division tableau in expanded form.

3 · 10 + 2
7 · 10+9 2 · 103 + 5 · 102 + 8 · 10 + 5

−
(
2 · 103 + 3 · 102 +7 · 10) ↓

2 · 102 + 1 · 10 + 5
−
(
1 · 102 + 5 · 10 +8)

5 · 10 + 7

Written this way, we see that when we line up the digits we are really lining up the coefficients
of the corresponding powers of 10 - much like how we’ll have to keep the powers of x lined up
in the same columns. The big difference between polynomial division and the division of natural
numbers is that the value of x is an unknown quantity. So unlike using the known value of 10,
when we subtract there can be no regrouping of coefficients as in our previous example. (The
subtraction 215 − 158 requires us to ‘regroup’ or ‘borrow’ from the tens digit, then the hundreds
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digit.) This actually makes polynomial division easier.4 Before we dive into examples, we first state
a theorem telling us when we can divide two polynomials, and what to expect when we do so.

Theorem 0.8. Polynomial Division: Let d and p be nonzero polynomials where the degree of
p is greater than or equal to the degree of d . There exist two unique polynomials, q and r , such
that p = d · q + r , where either r = 0 or the degree of r is strictly less than the degree of d .

Essentially, Theorem 0.8 tells us that we can divide polynomials whenever the degree of the divisor
is less than or equal to the degree of the dividend. We know we’re done with the division when
the polynomial left over (the remainder) has a degree strictly less than the divisor. It’s time to walk
through a few examples to refresh your memory.

Example 0.5.2. Perform the indicated division. Check your answer by showing

dividend = (divisor)(quotient) + remainder

1.
(
x3 + 4x2 − 5x − 14

)
÷ (x − 2) 2. (2t + 7)÷ (3t − 4)

3.
(
6y2 − 1

)
÷ (2y + 5) 4.

(
w3)÷ (w2 −

√
2
)

.

Solution.

1. To begin
(
x3 + 4x2 − 5x − 14

)
÷ (x − 2), we divide the first term in the dividend, namely x3,

by the first term in the divisor, namely x , and get x3

x = x2. This then becomes the first term
in the quotient. We proceed as in regular long division at this point: we multiply the entire
divisor, x − 2, by this first term in the quotient to get x2(x − 2) = x3 − 2x2. We then subtract
this result from the dividend.

x2

x−2 x3 + 4x2 −5x−14
−
(
x3−2x2) ↓

6x2 −5x

Now we ‘bring down’ the next term of the quotient, namely −5x , and repeat the process.
We divide 6x2

x = 6x , and add this to the quotient polynomial, multiply it by the divisor (which
yields 6x(x − 2) = 6x2 − 12x) and subtract.

x2 + 6x
x−2 x3 + 4x2 − 5x −14
−
(
x3−2x2) ↓

6x2 − 5x ↓
−
(
6x2−12x) ↓

7x −14

4In our opinion - you can judge for yourself.



64 Prerequisites

Finally, we ‘bring down’ the last term of the dividend, namely −14, and repeat the process.
We divide 7x

x = 7, add this to the quotient, multiply it by the divisor (which yields 7(x − 2) =
7x − 14) and subtract.

x2 + 6x + 7
x−2 x3 + 4x2 − 5x − 14
−
(
x3−2x2)

6x2 − 5x
−
(
6x2−12x)

7x − 14
− (7x −14)

0

In this case, we get a quotient of x2 + 6x + 7 with a remainder of 0. To check our answer, we
compute

(x − 2)
(

x2 + 6x + 7
)

+ 0 = x3 + 6x2 + 7x − 2x2 − 12x − 14 = x3 + 4x2 − 5x − 14X

2. To compute (2t + 7)÷ (3t − 4), we start as before. We find 2t
3t = 2

3 , so that becomes the first
(and only) term in the quotient. We multiply the divisor (3t − 4) by 2

3 and get 2t − 8
3 . We

subtract this from the divided and get 29
3 .

2
3

3t−4 2t + 7

−
(

2t− 8
3

)
29
3

Our answer is 2
3 with a remainder of 29

3 . To check our answer, we compute

(3t − 4)
(

2
3

)
+

29
3

= 2t − 8
3

+
29
3

= 2t +
21
3

= 2t + 7X

3. When we set-up the tableau for
(
6y2 − 1

)
÷ (2y + 5), we must first issue a ‘placeholder’ for

the ‘missing’ y -term in the dividend, 6y2 − 1 = 6y2 + 0y − 1. We then proceed as before.
Since 6y2

2y = 3y , 3y is the first term in our quotient. We multiply (2y +5) times 3y and subtract
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it from the dividend. We bring down the −1, and repeat.

3y − 15
2

2y+5 6y2 + 0y − 1

−
(
6y2 + 15y ) ↓

−15y − 1

−
(
−15y− 75

2

)
73
2

Our answer is 3y − 15
2 with a remainder of 73

2 . To check our answer, we compute:

(2y + 5)
(

3y − 15
2

)
+

73
2

= 6y2 − 15y + 15y − 75
2

+
73
2

= 6y2 − 1X

4. For our last example, we need ‘placeholders’ for both the divisor w2 −
√

2 = w2 + 0w −
√

2
and the dividend w3 = w3 + 0w2 + 0w + 0. The first term in the quotient is w3

w2 = w , and when
we multiply and subtract this from the dividend, we’re left with just 0w2 + w

√
2 + 0 = w

√
2.

w
w2+0w−

√
2 w3 +0w2 + 0w +0
−
(

w3 +0w2−w
√

2
)
↓

0w2 + w
√

2 +0

Since the degree of w
√

2 (which is 1) is less than the degree of the divisor (which is 2), we
are done.5 Our answer is w with a remainder of w

√
2. To check, we compute:(

w2 −
√

2
)

w + w
√

2 = w3 − w
√

2 + w
√

2 = w3 X

5Since 0w2

w2 = 0, we could proceed, write our quotient as w + 0, and move on. . . but even pedants have limits.
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0.5.3 Exercises

In Exercises 1 - 15, expand and combine like terms.

1. (4− 3x) + (3x2 + 2x + 7) 2. t2 + 4t − 2(3− t) 3. q(200− 3q)− (5q + 500)

4. (3y − 1)(2y + 1) 5.
(

3− x
2

)
(2x + 5) 6. −(4t + 3)(t2 − 2)

7. 2(w −
√

5)(w +
√

5) 8. (5a2−3)(25a4 + 15a2 + 9) 9. (x2 − 2x + 3)(x2 + 2x + 3)

10. (
√

7− z)(
√

7 + z) 11. (x − 3
√

5)3 12. (x − 3
√

5)(x2 + x 3
√

5 + 3
√

25)

13. (w − 3)2 − (w2 + 9) 14. (x+h)2−2(x+h)−(x2−2x) 15. (x − 2−
√

5)(x − 2 +
√

5)

In Exercises 16 - 27, perform the indicated division. Check your answer by showing

dividend = (divisor)(quotient) + remainder

16. (5x2 − 3x + 1)÷ (x + 1) 17. (3y2 + 6y − 7)÷ (y − 3)

18. (6w − 3)÷ (2w + 5) 19. (2x + 1)÷ (3x − 4)

20. (t2 − 4)÷ (2t + 1) 21. (w3 − 8)÷ (5w − 10)

22. (2x2 − x + 1)÷ (3x2 + 1) 23. (4y4 + 3y2 + 1)÷ (2y2 − y + 1)

24. w4 ÷ (w3 − 2) 25. (5t3 − t + 1)÷ (t2 + 4)

26. (t3 − 4)÷ (t − 3
√

4) 27. (x2 − 2x − 1)÷ (x − [1−
√

2])

In Exercises 28 - 33 verify the given formula by showing the left hand side of the equation simplifies
to the right hand side of the equation.

28. Perfect Cube: (a + b)3 = a3 + 3a2b + 3ab2 + b3

29. Difference of Cubes: (a− b)(a2 + ab + b2) = a3 − b3

30. Sum of Cubes: (a + b)(a2 − ab + b2) = a3 + b3

31. Perfect Quartic: (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

32. Difference of Quartics: (a− b)(a + b)(a2 + b2) = a4 − b4

33. Sum of Quartics: (a2 + ab
√

2 + b2)(a2 − ab
√

2 + b2) = a4 + b4

34. With help from your classmates, determine under what conditions (a + b)2 = a2 + b2. What
about (a+b)3 = a3 +b3? In general, when does (a+b)n = an +bn for a natural number n ≥ 2?
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0.5.4 Answers

1. 3x2 − x + 11 2. t2 + 6t − 6 3. −3q2 + 195q − 500

4. 6y2 + y − 1 5. −x2 +
7
2

x + 15 6. −4t3 − 3t2 + 8t + 6

7. 2w2 − 10 8. 125a6 − 27 9. x4 + 2x2 + 9

10. 7− z2 11. x3 − 3x2 3
√

5 + 3x 3
√

25− 5 12. x3 − 5

13. −6w 14. h2 + 2xh − 2h 15. x2 − 4x − 1

16. quotient: 5x − 8, remainder: 9 17. quotient: 3y + 15, remainder: 38

18. quotient: 3, remainder: −18 19. quotient:
2
3

, remainder:
11
3

20. quotient:
t
2
− 1

4
, remainder: −15

4
21. quotient:

w2

5
+

2w
5

+
4
5

, remainder: 0

22. quotient:
2
3

, remainder: −x +
1
3

23. quotient: 2y2 + y + 1, remainder: 0

24. quotient: w , remainder: 2w 25. quotient: 5t , remainder: −21t + 1

26. quotient:6 t2 + t 3
√

4 + 2 3
√

2, remainder: 0 27. quotient: x − 1−
√

2, remainder: 0

6Note: 3
√

16 = 2 3
√

2.
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0.6 Factoring

Now that we have reviewed the basics of polynomial arithmetic it’s time to review the basic tech-
niques of factoring polynomial expressions. Our goal is to apply these techniques to help us solve
certain specialized classes of non-linear equations. Given that ‘factoring’ literally means to resolve
a product into its factors, it is, in the purest sense, ‘undoing’ multiplication. If this sounds like
division to you then you’ve been paying attention. Let’s start with a numerical example.

Suppose we are asked to factor 16337. We could write 16337 = 16337 · 1, and while this is
technically a factorization of 16337, it’s probably not an answer the poser of the question would
accept. Usually, when we’re asked to factor a natural number, we are being asked to resolve it
into to a product of so-called ‘prime’ numbers.1 Recall that prime numbers are defined as natural
numbers whose only (natural number) factors are themselves and 1. They are, in essence, the
‘building blocks’ of natural numbers as far as multiplication is concerned. Said differently, we can
build - via multiplication - any natural number given enough primes. So how do we find the prime
factors of 16337? We start by dividing each of the primes: 2, 3, 5, 7, etc., into 16337 until we get
a remainder of 0. Eventually, we find that 16337 ÷ 17 = 961 with a remainder of 0, which means
16337 = 17 · 961. So factoring and division are indeed closely related - factors of a number are
precisely the divisors of that number which produce a zero remainder.2 We continue our efforts
to see if 961 can be factored down further, and we find that 961 = 31 · 31. Hence, 16337 can be
‘completely factored’ as 17 · 312. (This factorization is called the prime factorization of 16337.)

In factoring natural numbers, our building blocks are prime numbers, so to be completely fac-
tored means that every number used in the factorization of a given number is prime. One of the
challenges when it comes to factoring polynomial expressions is to explain what it means to be
‘completely factored’. In this section, our ‘building blocks’ for factoring polynomials are ‘irreducible’
polynomials as defined below.

Definition 0.14. A polynomial is said to be irreducible if it cannot be written as the product of
polynomials of lower degree.

While Definition 0.14 seems straightforward enough, sometimes a greater level of specificity is
required. For example, x2 − 3 = (x −

√
3)(x +

√
3). While x −

√
3 and x +

√
3 are perfectly fine

polynomials, factoring which requires irrational numbers is usually saved for a more advanced
treatment of factoring.3 For now, we will restrict ourselves to factoring using rational coefficients.
So, while the polynomial x2 − 3 can be factored using irrational numbers, it is called irreducible
over the rationals, since there are no polynomials with rational coefficients of smaller degree
which can be used to factor it.4

Since polynomials involve terms, the first step in any factoring strategy involves pulling out factors
which are common to all of the terms. For example, in the polynomial 18x2y3 − 54x3y2 − 12xy2,

1As mentioned in Section 0.2, this is possible, in only one way, thanks to the Fundamental Theorem of Arithmetic.
2We’ll refer back to this when we get to Section 3.2.
3See Section 3.3.
4If this isn’t immediately obvious, don’t worry - in some sense, it shouldn’t be. We’ll talk more about this later.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
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each coefficient is a multiple of 6 so we can begin the factorization as 6(3x2y3 − 9x3y2 − 2xy2).
The remaining coefficients: 3, 9 and 2, have no common factors so 6 was the greatest common
factor. What about the variables? Each term contains an x , so we can factor an x from each
term. When we do this, we are effectively dividing each term by x which means the exponent
on x in each term is reduced by 1: 6x(3xy3 − 9x2y2 − 2y2). Next, we see that each term has a
factor of y in it. In fact, each term has at least two factors of y in it, since the lowest exponent on
y in each term is 2. This means that we can factor y2 from each term. Again, factoring out y2

from each term is tantamount to dividing each term by y2 so the exponent on y in each term is
reduced by two: 6xy2(3xy − 9x2 − 2). Just like we checked our division by multiplication in the
previous section, we can check our factoring here by multiplication, too. 6xy2(3xy − 9x2 − 2) =
(6xy2)(3xy ) − (6xy2)(9x2) − (6xy2)(2) = 18x2y3 − 54x3y2 − 12xy2 X. We summarize how to find
the Greatest Common Factor (G.C.F.) of a polynomial expression below.

Finding the G.C.F. of a Polynomial Expression

• If the coefficients are integers, find the G.C.F. of the coefficients.

NOTE 1: If all of the coefficients are negative, consider the negative as part of the G.C.F..

NOTE 2: If the coefficients involve fractions, get a common denominator, combine numer-
ators, reduce to lowest terms and apply this step to the polynomial in the numerator.

• If a variable is common to all of the terms, the G.C.F. contains that variable to the smallest
exponent which appears among the terms.

For example, to factor −3
5z3 − 6z2, we would first get a common denominator and factor as:

−3
5

z3 − 6z2 =
−3z3 − 30z2

5
=
−3z2(z + 10)

5
= −3z2(z + 10)

5

We now list some common factoring formulas, each of which can be verified by multiplying out the
right side of the equation. While they all should look familiar - this is a review section after all -
some should look more familiar than others since they appeared as ‘special product’ formulas in
the previous section.

Common Factoring Formulas

• Perfect Square Trinomials: a2 + 2ab + b2 = (a + b)2 and a2 − 2ab + b2 = (a− b)2

• Difference of Two Squares: a2 − b2 = (a− b)(a + b)

NOTE: In general, the sum of squares, a2 + b2 is irreducible over the rationals.

• Sum of Two Cubes: a3 + b3 = (a + b)(a2 − ab + b2)

NOTE: In general, a2 − ab + b2 is irreducible over the rationals.

• Difference of Two Cubes: a3 − b3 = (a− b)(a2 + ab + b2)

NOTE: In general, a2 + ab + b2 is irreducible over the rationals.
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Our next example gives us practice with these formulas.

Example 0.6.1. Factor the following polynomials completely over the rationals. That is, write each
polynomial as a product polynomials of lowest degree which are irreducible over the rationals.

1. 18x2 − 48x + 32 2. 64y2 − 1 3. 75t4 + 30t3 + 3t2

4. w4z − wz4 5. 81− 16t4 6. x6 − 64

Solution.

1. Our first step is to factor out the G.C.F. which in this case is 2. To match what is left with
one of the special forms, we rewrite 9x2 = (3x)2 and 16 = 42. Since the ‘middle’ term is
−24x = −2(4)(3x), we see that we have a perfect square trinomial.

18x2 − 48x + 32 = 2(9x2 − 24x + 16) Factor out G.C.F.
= 2((3x)2 − 2(4)(3x) + (4)2)
= 2(3x − 4)2 Perfect Square Trinomial: a = 3x , b = 4

Our final answer is 2(3x − 4)2. To check, we multiply out 2(3x − 4)2 to show that it equals
18x2 − 48x + 32.

2. For 64y2−1, we note that the G.C.F. of the terms is just 1, so there is nothing (of substance)
to factor out of both terms. Since 64y2 − 1 is the difference of two terms, one of which
is a square, we look to the Difference of Squares Formula for inspiration. By identifying
64y2 = (8y )2 and 1 = 12, we get

64y2 − 1 = (8y )2 − 12

= (8y − 1)(8y + 1) Difference of Squares, a = 8y , b = 1

As before, we can check our answer by multiplying out (8y −1)(8y + 1) to show that it equals
64y2 − 1.

3. The G.C.F. of the terms in 75t4 + 30t3 + 3t2 is 3t2, so we factor that out first. We identify what
remains as a perfect square trinomial:

75t4 + 30t3 + 3t2 = 3t2(25t2 + 10t + 1) Factor out G.C.F.
= 3t2((5t)2 + 2(1)(5t) + 12)
= 3t2(5t + 1)2 Perfect Square Trinomial, a = 5t , b = 1

Our final answer is 3t2(5t + 1)2, which the reader is invited to check.

4. For w4z − wz4, we identify the G.C.F. as wz and once we factor it out a difference of cubes
is revealed:

w4z − wz4 = wz(w3 − z3) Factor out G.C.F.
= wz(w − z)(w2 + wz + z2) Difference of Cubes, a = w , b = z

Our final answer is wz(w − z)(w2 + wz + z2). The reader is strongly encouraged to multiply
this out to see that it reduces to w4z − wz4.
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5. The G.C.F. of the terms in 81 − 16t4 is just 1 so there is nothing of substance to factor out
from both terms. With just a difference of two terms, we are limited to fitting this polynomial
into either the Difference of Two Squares or Difference of Two Cubes formula. Since the
variable here is t4, and 4 is a multiple of 2, we can think of t4 = (t2)2. This means that we
can write 16t4 = (4t2)2 which is a perfect square. (Since 4 is not a multiple of 3, we cannot
write t4 as a perfect cube of a polynomial.) Identifying 81 = 92 and 16t4 = (4t2)2, we apply
the Difference of Squares Formula to get:

81− 16t4 = 92 − (4t2)2

= (9− 4t2)(9 + 4t2) Difference of Squares, a = 9, b = 4t2

At this point, we have an opportunity to proceed further. Identifying 9 = 32 and 4t2 = (2t)2,
we see that we have another difference of squares in the first quantity, which we can reduce.
(The sum of two squares in the second quantity cannot be factored over the rationals.)

81− 16t4 = (9− 4t2)(9 + 4t2)
= (32 − (2t)2)(9 + 4t2)
= (3− 2t)(3 + 2t)(9 + 4t2) Difference of Squares, a = 3, b = 2t

As always, the reader is encouraged to multiply out (3−2t)(3+2t)(9+4t2) to check the result.

6. With a G.C.F. of 1 and just two terms, x6 − 64 is a candidate for both the Difference of
Squares and the Difference of Cubes formulas. Notice that we can identify x6 = (x3)2 and
64 = 82 (both perfect squares), but also x6 = (x2)3 and 64 = 43 (both perfect cubes). If we
follow the Difference of Squares approach, we get:

x6 − 64 = (x3)2 − 82

= (x3 − 8)(x3 + 8) Difference of Squares, a = x3 and b = 8

At this point, we have an opportunity to use both the Difference and Sum of Cubes formulas:

x6 − 64 = (x3 − 23)(x3 + 23) Sum/Difference of Cubes
= (x − 2)(x2 + 2x + 22)(x + 2)(x2 − 2x + 22) with a = x and b = 2
= (x − 2)(x + 2)(x2 − 2x + 4)(x2 + 2x + 4) Rearrange factors

From this approach, our final answer is (x − 2)(x + 2)(x2 − 2x + 4)(x2 + 2x + 4).

Following the Difference of Cubes Formula approach, we get

x6 − 64 = (x2)3 − 43

= (x2 − 4)((x2)2 + 4x2 + 42) Difference of Cubes, a = x2, b = 4
= (x2 − 4)(x4 + 4x2 + 16)

At this point, we recognize x2 − 4 as a difference of two squares:

x6 − 64 = (x2 − 22)(x4 + 4x2 + 16)
= (x − 2)(x + 2)(x4 + 4x2 + 16) Difference of Squares, a = x , b = 2
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Unfortunately, the remaining factor x4 + 4x2 + 16 is not a perfect square trinomial - the middle
term would have to be 8x2 for this to work - so our final answer using this approach is
(x − 2)(x + 2)(x4 + 4x2 + 16). This isn’t as factored as our result from the Difference of
Squares approach which was (x − 2)(x + 2)(x2 − 2x + 4)(x2 + 2x + 4). While it is true that
x4 +4x2 +16 = (x2−2x +4)(x2 +2x +4), there is no ‘intuitive’ way to motivate this factorization
at this point.5 The moral of the story? When given the option between using the Difference
of Squares and Difference of Cubes, start with the Difference of Squares. Our final answer
to this problem is (x − 2)(x + 2)(x2 − 2x + 4)(x2 + 2x + 4). The reader is strongly encouraged
to show that this reduces down to x6 − 64 after performing all of the multiplication.

The formulas on page 69, while useful, can only take us so far, so we need to review some more
advanced factoring strategies.

Advanced Factoring Formulas

• ‘un-F.O.I.L.ing’: Given a trinomial Ax2 + Bx + C, try to reverse the F.O.I.L. process.

That is, find a, b, c and d such that Ax2 + Bx + C = (ax + b)(cx + d).

NOTE: This means ac = A, bd = C and B = ad + bc.

• Factor by Grouping: If the expression contains four terms with no common factors
among the four terms, try ‘factor by grouping’:

ac + bc + ad + bd = (a + b)c + (a + b)d = (a + b)(c + d)

The techniques of ‘un-F.O.I.L.ing’ and ‘factoring by grouping’ are difficult to describe in general but
should make sense to you with enough practice. Be forewarned - like all ‘Rules of Thumb’, these
strategies work just often enough to be useful, but you can be sure there are exceptions which will
defy any advice given here and will require some ‘inspiration’ to solve.6 Even though Chapter 3
will give us more powerful factoring methods, we’ll find that, in the end, there is no single algorithm
for factoring which works for every polynomial. In other words, there will be times when you just
have to try something and see what happens.

Example 0.6.2. Factor the following polynomials completely over the integers.7

1. x2 − x − 6 2. 2t2 − 11t + 5 3. 36− 11y − 12y2

4. 18xy2 − 54xy − 180x 5. 2t3 − 10t2 − 3t + 15 6. x4 + 4x2 + 16

5Of course, this begs the question, “How do we know x2 − 2x + 4 and x2 + 2x + 4 are irreducible?” (We were told so
on page 69, but no reason was given.) Stay tuned! We’ll get back to this in due course.

6Jeff will be sure to pepper the Exercises with these.
7This means that all of the coefficients in the factors will be integers. In a rare departure from form, Carl decided to

avoid fractions in this set of examples. Don’t get complacent, though, because fractions will return with a vengeance
soon enough.
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Solution.

1. The G.C.F. of the terms x2 − x − 6 is 1 and x2 − x − 6 isn’t a perfect square trinomial (Think
about why not.) so we try to reverse the F.O.I.L. process and look for integers a, b, c and d
such that (ax + b)(cx + d) = x2− x −6. To get started, we note that ac = 1. Since a and c are
meant to be integers, that leaves us with either a and c both being 1, or a and c both being
−1. We’ll go with a = c = 1, since we can factor8 the negatives into our choices for b and d .
This yields (x + b)(x + d) = x2 − x − 6. Next, we use the fact that bd = −6. The product is
negative so we know that one of b or d is positive and the other is negative. Since b and d
are integers, one of b or d is ±1 and the other is ∓6 OR one of b or d is ±2 and the other is
∓3. After some guessing and checking,9 we find that x2 − x − 6 = (x + 2)(x − 3).

2. As with the previous example, we check the G.C.F. of the terms in 2t2− 11t + 5, determine it
to be 1 and see that the polynomial doesn’t fit the pattern for a perfect square trinomial. We
now try to find integers a, b, c and d such that (at + b)(ct + d) = 2t2 − 11t + 5. Since ac = 2,
we have that one of a or c is 2, and the other is 1. (Once again, we ignore the negative
options.) At this stage, there is nothing really distinguishing a from c so we choose a = 2
and c = 1. Now we look for b and d so that (2t + b)(t + d) = 2t2−11t + 5. We know bd = 5 so
one of b or d is ±1 and the other ±5. Given that bd is positive, b and d must have the same
sign. The negative middle term −11t guides us to guess b = −1 and d = −5 so that we get
(2t − 1)(t − 5) = 2t2 − 11t + 5. We verify our answer by multiplying.10

3. Once again, we check for a nontrivial G.C.F. and see if 36 − 11y − 12y2 fits the pattern of
a perfect square. Twice disappointed, we rewrite 36 − 11y − 12y2 = −12y2 − 11y + 36 for
notational convenience. We now look for integers a, b, c and d such that −12y2−11y +36 =
(ay + b)(cy + d). Since ac = −12, we know that one of a or c is ±1 and the other ±12
OR one of them is ±2 and the other is ±6 OR one of them is ±3 while the other is ±4.
Since their product is −12, however, we know one of them is positive, while the other is
negative. To make matters worse, the constant term 36 has its fair share of factors, too.
Our answers for b and d lie among the pairs ±1 and ±36, ±2 and ±18, ±4 and ±9, or
±6. Since we know one of a or c will be negative, we can simplify our choices for b and
d and just look at the positive possibilities. After some guessing and checking,11 we find
(−3y + 4)(4y + 9) = −12y2 − 11y + 36.

4. Since the G.C.F. of the terms in 18xy2 − 54xy − 180x is 18x , we begin the problem by
factoring it out first: 18xy2 − 54xy − 180x = 18x(y2 − 3y − 10). We now focus our attention
on y2−3y −10. We can take a and c to both be 1 which yields (y + b)(y + d) = y2−3y −10.
Our choices for b and d are among the factor pairs of−10: ±1 and±10 or±2 and±5, where

8Pun intended!
9The authors have seen some strange gimmicks that allegedly help students with this step. We don’t like them so

we’re sticking with good old-fashioned guessing and checking.
10That’s the ‘checking’ part of ’guessing and checking’.
11Some of these guesses can be more ‘educated’ than others. Since the middle term is relatively ‘small,’ we don’t

expect the ‘extreme’ factors of 36 and 12 to appear, for instance.
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one of b or d is positive and the other is negative. We find (y − 5)(y + 2) = y2− 3y − 10. Our
final answer is 18xy2 − 54xy − 180x = 18x(y − 5)(y + 2).

5. Since 2t3 − 10t2 − 3t + 15 has four terms, we are pretty much resigned to factoring by
grouping. The strategy here is to factor out the G.C.F. from two pairs of terms, and see if
this reveals a common factor. If we group the first two terms, we can factor out a 2t2 to get
2t3−10t2 = 2t2(t−5). We now try to factor something out of the last two terms that will leave
us with a factor of (t−5). Sure enough, we can factor out a−3 from both: −3t+15 = −3(t−5).
Hence, we get

2t3 − 10t2 − 3t + 15 = 2t2(t − 5)− 3(t − 5) = (2t2 − 3)(t − 5)

Now the question becomes can we factor 2t2 − 3 over the integers? This would require
integers a, b, c and d such that (at +b)(ct +d) = 2t2−3. Since ab = 2 and cd = −3, we aren’t
left with many options - in fact, we really have only four choices: (2t −1)(t + 3), (2t + 1)(t −3),
(2t−3)(t +1) and (2t +3)(t−1). None of these produces 2t2−3 - which means it’s irreducible
over the integers - thus our final answer is (2t2 − 3)(t − 5).

6. Our last example, x4+4x2+16, is our old friend from Example 0.6.1. As noted there, it is not a
perfect square trinomial, so we could try to reverse the F.O.I.L. process. This is complicated
by the fact that our highest degree term is x4, so we would have to look at factorizations of
the form (x + b)(x3 + d) as well as (x2 + b)(x2 + d). We leave it to the reader to show that
neither of those work. This is an example of where ‘trying something’ pays off. Even though
we’ve stated that it is not a perfect square trinomial, it’s pretty close. Identifying x4 = (x2)2

and 16 = 42, we’d have (x2 + 4)2 = x4 + 8x2 + 16, but instead of 8x2 as our middle term, we
only have 4x2. We could add in the extra 4x2 we need, but to keep the balance, we’d have
to subtract it off. Doing so produces and unexpected opportunity:

x4 + 4x2 + 16 = x4 + 4x2 + 16 + (4x2 − 4x2) Adding and subtracting the same term
= x4 + 8x2 + 16− 4x2 Rearranging terms
= (x2 + 4)2 − (2x)2 Factoring perfect square trinomial
= [(x2 + 4)− 2x ][(x2 + 4) + 2x ] Difference of Squares: a = (x2 + 4), b = 2x
= (x2 − 2x + 4)(x2 + 2x + 4) Rearraging terms

We leave it to the reader to check that neither x2 − 2x + 4 nor x2 + 2x + 4 factor over the
integers, so we are done.

0.6.1 Solving Equations by Factoring

Many students wonder why they are forced to learn how to factor. Simply put, factoring is our main
tool for solving the non-linear equations which arise in many of the applications of Mathematics.12

We use factoring in conjunction with the Zero Product Property of Real Numbers which was first
stated on page 19 and is given here again for reference.

12Also known as ‘story problems’ or ‘real-world examples’.
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The Zero Product Property of Real Numbers: If a and b are real numbers with ab = 0 then
either a = 0 or b = 0 or both.

For example, consider the equation 6x2 +11x = 10. To see how the Zero Product Property is used
to help us solve this equation, we first set the equation equal to zero and then apply the techniques
from Example 0.6.2:

6x2 + 11x = 10
6x2 + 11x − 10 = 0 Subtract 10 from both sides

(2x + 5)(3x − 2) = 0 Factor
2x + 5 = 0 or 3x − 2 = 0 Zero Product Property

a = 2x + 5, b = 3x − 2x = −5
2 or x = 2

3

The reader should check that both of these solutions satisfy the original equation.

It is critical that you see the importance of setting the expression equal to 0 before factoring.
Otherwise, we’d get:

6x2 + 11x = 10
x(6x + 11) = 10 Factor

What we cannot deduce from this equation is that x = 10 or 6x + 11 = 10 or that x = 2 and
6x + 11 = 5, etc.. (It’s wrong and you should feel bad if you do it.) It is precisely because 0 plays
such a special role in the arithmetic of real numbers (as the Additive Identity) that we can assume
a factor is 0 when the product is 0. No other real number has that ability.

We summarize the correct equation solving strategy below.

Strategy for Solving Non-linear Equations

1. Put all of the nonzero terms on one side of the equation so that the other side is 0.

2. Factor.

3. Use the Zero Product Property of Real Numbers and set each factor equal to 0.

4. Solve each of the resulting equations.

Let’s finish the section with a collection of examples in which we use this strategy.

Example 0.6.3. Solve the following equations.

1. 3x2 = 35− 16x 2. t =
1 + 4t2

4
3. (y − 1)2 = 2(y − 1)

4.
w4

3
=

8w3 − 12
12

−w2 − 4
4

5. z(z(18z + 9)− 50) = 25 6. x4 − 8x2 − 9 = 0
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Solution.

1. We begin by gathering all of the nonzero terms to one side getting 0 on the other and then
we proceed to factor and apply the Zero Product Property.

3x2 = 35− 16x
3x2 + 16x − 35 = 0 Add 16x , subtract 35
(3x − 5)(x + 7) = 0 Factor

3x − 5 = 0 or x + 7 = 0 Zero Product Property
x = 5

3 or x = −7

We check our answers by substituting each of them into the original equation. Plugging in
x = 5

3 yields 25
3 on both sides while x = −7 gives 147 on both sides.

2. To solve t = 1+4t2

4 , we first clear fractions then move all of the nonzero terms to one side of
the equation, factor and apply the Zero Product Property.

t =
1 + 4t2

4
4t = 1 + 4t2 Clear fractions (multiply by 4)
0 = 1 + 4t2 − 4t Subtract 4
0 = 4t2 − 4t + 1 Rearrange terms
0 = (2t − 1)2 Factor (Perfect Square Trinomial)

At this point, we get (2t − 1)2 = (2t − 1)(2t − 1) = 0, so, the Zero Product Property gives us
2t − 1 = 0 in both cases.13 Our final answer is t = 1

2 , which we invite the reader to check.

3. Following the strategy outlined above, the first step to solving (y − 1)2 = 2(y − 1) is to gather
the nonzero terms on one side of the equation with 0 on the other side and factor.

(y − 1)2 = 2(y − 1)
(y − 1)2 − 2(y − 1) = 0 Subtract 2(y − 1)
(y − 1)[(y − 1)− 2] = 0 Factor out G.C.F.

(y − 1)(y − 3) = 0 Simplify
y − 1 = 0 or y − 3 = 0

y = 1 or y = 3

Both of these answers are easily checked by substituting them into the original equation.

An alternative method to solving this equation is to begin by dividing both sides by (y − 1)
to simplify things outright. As we saw in Example 0.3.1, however, whenever we divide by

13More generally, given a positive power p, the only solution to X p = 0 is X = 0.
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a variable quantity, we make the explicit assumption that this quantity is nonzero. Thus we
must stipulate that y − 1 6= 0.

(y − 1)2

(y − 1)
=

2(y − 1)
(y − 1)

Divide by (y − 1) - this assumes (y − 1) 6= 0

y − 1 = 2
y = 3

Note that in this approach, we obtain the y = 3 solution, but we ‘lose’ the y = 1 solution.
How did that happen? Assuming y − 1 6= 0 is equivalent to assuming y 6= 1. This is an issue
because y = 1 is a solution to the original equation and it was ‘divided out’ too early. The
moral of the story? If you decide to divide by a variable expression, double check that you
aren’t excluding any solutions.14

4. Proceeding as before, we clear fractions, gather the nonzero terms on one side of the equa-
tion, have 0 on the other and factor.

w4

3
=

8w3 − 12
12

− w2 − 4
4

12
(

w4

3

)
= 12

(
8w3 − 12

12
− w2 − 4

4

)
Multiply by 12

4w4 = (8w3 − 12)− 3(w2 − 4) Distribute
4w4 = 8w3 − 12− 3w2 + 12 Distribute

0 = 8w3 − 12− 3w2 + 12− 4w4 Subtract 4w4

0 = 8w3 − 3w2 − 4w4 Gather like terms
0 = w2(8w − 3− 4w2) Factor out G.C.F.

At this point, we apply the Zero Product Property to deduce that w2 = 0 or 8w −3−4w2 = 0.
From w2 = 0, we get w = 0. To solve 8w − 3 − 4w2 = 0, we rearrange terms and factor:
−4w2 + 8w − 3 = (2w − 1)(−2w + 3) = 0. Applying the Zero Product Property again, we get
2w − 1 = 0 (which gives w = 1

2 ), or −2w + 3 = 0 (which gives w = 3
2 ). Our final answers are

w = 0, w = 1
2 and w = 3

2 . The reader is encouraged to check each of these answers in the
original equation. (You need the practice with fractions!)

5. For our next example, we begin by subtracting the 25 from both sides then work out the
indicated operations before factoring by grouping.

z(z(18z + 9)− 50) = 25
z(z(18z + 9)− 50)− 25 = 0 Subtract 25
z(18z2 + 9z − 50)− 25 = 0 Distribute
18z3 + 9z2 − 50z − 25 = 0 Distribute

9z2(2z + 1)− 25(2z + 1) = 0 Factor
(9z2 − 25)(2z + 1) = 0 Factor

14You will see other examples throughout this text where dividing by a variable quantity does more harm than good.
Keep this basic one in mind as you move on in your studies - it’s a good cautionary tale.
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At this point, we use the Zero Product Property and get 9z2−25 = 0 or 2z + 1 = 0. The latter
gives z = −1

2 whereas the former factors as (3z − 5)(3z + 5) = 0. Applying the Zero Product
Property again gives 3z − 5 = 0 (so z = 5

3 ) or 3z + 5 = 0 (so z = −5
3 .) Our final answers are

z = −1
2 , z = 5

3 and z = −5
3 , each of which good fun to check.

6. The nonzero terms of the equation x4 − 8x2 − 9 = 0 are already on one side of the equation
so we proceed to factor. This trinomial doesn’t fit the pattern of a perfect square so we
attempt to reverse the F.O.I.L.ing process. With an x4 term, we have two possible forms to
try: (ax2 + b)(cx2 + d) and (ax3 + b)(cx + d). We leave it to you to show that (ax3 + b)(cx + d)
does not work and we show that (ax2 + b)(cx2 + d) does.

Since the coefficient of x4 is 1, we take a = c = 1. The constant term is −9 so we know
b and d have opposite signs and our choices are limited to two options: either b and d
come from ±1 and ±9 OR one is 3 while the other is −3. After some trial and error, we get
x4 − 8x2 − 9 = (x2 − 9)(x2 + 1). Hence x4 − 8x2 − 9 = 0 reduces to (x2 − 9)(x2 + 1) = 0.
The Zero Product Property tells us that either x2 − 9 = 0 or x2 + 1 = 0. To solve the former,
we factor: (x − 3)(x + 3) = 0, so x − 3 = 0 (hence, x = 3) or x + 3 = 0 (hence, x = −3).
The equation x2 + 1 = 0 has no (real) solution, since for any real number x , x2 is always 0 or
greater. Thus x2 + 1 is always positive. Our final answers are x = 3 and x = −3. As always,
the reader is invited to check both answers in the original equation.
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0.6.2 Exercises

In Exercises 1 - 30, factor completely over the integers. Check your answer by multiplication.

1. 2x − 10x2 2. 12t5 − 8t3 3. 16xy2 − 12x2y

4. 5(m + 3)2 − 4(m + 3)3 5. (2x −1)(x + 3)−4(2x −1) 6. t2(t − 5) + t − 5

7. w2 − 121 8. 49− 4t2 9. 81t4 − 16

10. 9z2 − 64y4 11. (y + 3)2 − 4y2 12. (x + h)3 − (x + h)

13. y2 − 24y + 144 14. 25t2 + 10t + 1 15. 12x3 − 36x2 + 27x

16. m4 + 10m2 + 25 17. 27− 8x3 18. t6 + t3

19. x2 − 5x − 14 20. y2 − 12y + 27 21. 3t2 + 16t + 5

22. 6x2 − 23x + 20 23. 35 + 2m −m2 24. 7w − 2w2 − 3

25. 3m3 + 9m2 − 12m 26. x4 + x2 − 20 27. (x2 + 1)2 − 4

28. (y2 − 36)3 29. 4(t2 − 1)2 + 3(t2 − 1)− 10 30. (w4 + 3)2 + 2(w4 + 3) + 1

In Exercises 31 - 36, factor completely over the rationals.

31. 1
5x2 − x − 14

5 32. 1
3y2 − 4y + 9 33. 3

4 t2 + 4t + 5
4

34. 12
5 x2 − 46

5 x + 8 35. 35
2 + y − 1

2y2 36. 3t − 6
7 t2 − 9

7

In Exercises 37 - 51, find all rational number solutions. Check your answers.

37. (7x + 3)(x − 5) = 0 38. (2t − 1)2(t + 4) = 0 39. (y2 + 4)(3y2 + y − 10) = 0

40. 4t = t2 41. y + 3 = 2y2 42. 26x = 8x2 + 21

43. 16x4 = 9x2 44. w(6w + 11) = 10 45. 2w2 +5w +2 = −3(2w +1)

46. x2(x − 3) = 16(x − 3) 47. (2t + 1)3 = (2t + 1) 48. a4 + 4 = 6− a2

49.
8t2

3
= 2t + 3 50.

x3 + x
2

=
x2 + 1

3
51.

y4

3
− y2 =

3
2

(y2 + 3)
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0.6.3 Answers

1. 2x(1− 5x) 2. 4t3(3t2 − 2) 3. 4xy (4y − 3x)

4. −(m + 3)2(4m + 7) 5. (2x − 1)(x − 1) 6. (t − 5)(t2 + 1)

7. (w − 11)(w + 11) 8. (7− 2t)(7 + 2t) 9. (3t − 2)(3t + 2)(9t2 + 4)

10. (3z − 8y2)(3z + 8y2) 11. −3(y − 3)(y + 1) 12. (x + h)(x + h−1)(x + h + 1)

13. (y − 12)2 14. (5t + 1)2 15. 3x(2x − 3)2

16. (m2 + 5)2 17. (3− 2x)(9 + 6x + 4x2) 18. t3(t + 1)(t2 − t + 1)

19. (x − 7)(x + 2) 20. (y − 9)(y − 3) 21. (3t + 1)(t + 5)

22. (2x − 5)(3x − 4) 23. (7−m)(5 + m) 24. (−2w + 1)(w − 3)

25. 3m(m − 1)(m + 4) 26. (x − 2)(x + 2)(x2 + 5) 27. (x − 1)(x + 1)(x2 + 3)

28. (y − 6)3(y + 6)3 29. (2t − 3)(2t + 3)(t2 + 1) 30. (w4 + 4)2

31. 1
5 (x − 7)(x + 2) 32. 1

3 (y − 9)(y − 3) 33. 1
4 (3t + 1)(t + 5)

34. 2
5 (2x − 5)(3x − 4) 35. 1

2 (7− y )(5 + y ) 36. 3
7 (−2t + 1)(t − 3)

37. x = −3
7

or x = 5 38. t =
1
2

or t = −4 39. y =
5
3

or y = −2

40. t = 0 or t = 4 41. y = −1 or y =
3
2

42. x =
3
2

or x =
7
4

43. x = 0 or x = ±3
4

44. w = −5
2

or w =
2
3

45. w = −5 or w = −1
2

46. x = 3 or x = ±4 47. t = −1, t = −1
2

, or t = 0 48. a = ±1

49. t = −3
4

or t =
3
2

50. x =
2
3

51. y = ±3
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0.7 Quadratic Equations

In Section 0.6.1, we reviewed how to solve basic non-linear equations by factoring. The astute
reader should have noticed that all of the equations in that section were carefully constructed so
that the polynomials could be factored using the integers. To demonstrate just how contrived the
equations had to be, we can solve 2x2 + 5x −3 = 0 by factoring, (2x −1)(x + 3) = 0, from which we
obtain x = 1

2 and x = −3. If we change the 5 to a 6 and try to solve 2x2 + 6x − 3 = 0, however, we
find that this polynomial doesn’t factor over the integers and we are stuck. It turns out that there
are two real number solutions to this equation, but they are irrational numbers, and our aim in this
section is to review the techniques which allow us to find these solutions.1 In this section, we focus
our attention on quadratic equations.

Definition 0.15. An equation is said to be quadratic in a variable X if it can be written in the
form AX 2 + BX + C = 0 where A, B and C are expressions which do not involve X and A 6= 0.

Think of quadratic equations as equations that are one degree up from linear equations - instead
of the highest power of X being just X = X 1, it’s X 2. The simplest class of quadratic equations to
solve are the ones in which B = 0. In that case, we have the following.

Solving Quadratic Equations by Extracting Square Roots

If c is a real number with c ≥ 0, the solutions to X 2 = c are X = ±
√

c.

Note: If c < 0, X 2 = c has no real number solutions.

There are a couple different ways to see why Extracting Square Roots works, both of which are
demonstrated by solving the equation x2 = 3. If we follow the procedure outlined in the previous
section, we subtract 3 from both sides to get x2 − 3 = 0 and we now try to factor x2 − 3. As
mentioned in the remarks following Definition 0.14, we could think of x2−3 = x2− (

√
3)2 and apply

the Difference of Squares formula to factor x2−3 = (x−
√

3)(x +
√

3). We solve (x−
√

3)(x +
√

3) = 0
by using the Zero Product Property as before by setting each factor equal to zero: x −

√
3 = 0

and x +
√

3 − 0. We get the answers x = ±
√

3. In general, if c ≥ 0, then
√

c is a real number, so
x2 − c = x2 − (

√
c)2 = (x −

√
c)(x +

√
c). Replacing the ‘3’ with ‘c’ in the above discussion gives

the general result.

Another way to view this result is to visualize ‘taking the square root’ of both sides: since x2 = c,√
x2 =

√
c. How do we simplify

√
x2? We have to exercise a bit of caution here. Note that

√
(5)2

and
√

(−5)2 both simplify to
√

25 = 5. In both cases,
√

x2 returned a positive number, since the
negative in −5 was ‘squared away’ before we took the square root. In other words,

√
x2 is x if x

is positive, or, if x is negative, we make x positive - that is,
√

x2 = |x |, the absolute value of x .
So from x2 = 3, we ‘take the square root’ of both sides of the equation to get

√
x2 =

√
3. This

simplifies to |x | =
√

3, which by Theorem 0.3 is equivalent to x =
√

3 or x = −
√

3. Replacing the
‘3’ in the previous argument with ‘c,’ gives the general result.

1While our discussion in this section departs from factoring, we’ll see in Chapter 3 that the same correspondence
between factoring and solving equations holds whether or not the polynomial factors over the integers.
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As you might expect, Extracting Square Roots can be applied to more complicated equations.
Consider the equation below. We can solve it by Extracting Square Roots provided we first isolate
the perfect square quantity:

2
(

x +
3
2

)2

− 15
2

= 0

2
(

x +
3
2

)2

=
15
2

Add
15
2(

x +
3
2

)2

=
15
4

Divide by 2

x +
3
2

= ±
√

15
4

Extract Square Roots

x +
3
2

= ±
√

15
2

Property of Radicals

x = −3
2
±
√

15
2

Subtract
3
2

x = −3±
√

15
2

Add fractions

Let’s return to the equation 2x2 + 6x − 3 = 0 from the beginning of the section. We leave it to the
reader to show that

2
(

x +
3
2

)2

− 15
2

= 2x2 + 6x − 3.

(Hint: Expand the left side.) In other words, we can solve 2x2 + 6x − 3 = 0 by transforming into an
equivalent equation. This process, you may recall, is called ‘Completing the Square.’ We’ll revisit
Completing the Square in Section 2.4 in more generality and for a different purpose but for now
we revisit the steps needed to complete the square to solve a quadratic equation.

Solving Quadratic Equations: Completing the Square

To solve a quadratic equation AX 2 + BX + C = 0 by Completing the Square:

1. Subtract the constant C from both sides.

2. Divide both sides by A, the coefficient of X 2. (Remember: A 6= 0.)

3. Add
(

B
2A

)2
to both sides of the equation. (That’s half the coefficient of X , squared.)

4. Factor the left hand side of the equation as
(

X + B
2A

)2
.

5. Extract Square Roots.

6. Subtract B
2A from both sides.
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To refresh our memories, we apply this method to solve 3x2 − 24x + 5 = 0:

3x2 − 24x + 5 = 0
3x2 − 24x = −5 Subtract C = 5

x2 − 8x = −5
3

Divide by A = 3

x2 − 8x + 16 = −5
3

+ 16 Add
(

B
2A

)2
= (−4)2 = 16

(x − 4)2 =
43
3

Factor: Perfect Square Trinomial

x − 4 = ±
√

43
3

Extract Square Roots

x = 4±
√

43
3

Add 4

At this point, we use properties of fractions and radicals to ‘rationalize’ the denominator:2√
43
3

=

√
43 · 3
3 · 3

=
√

129√
9

=
√

129
3

We can now get a common (integer) denominator which yields:

x = 4±
√

43
3

= 4±
√

129
3

=
12±

√
129

3

The key to Completing the Square is that the procedure always produces a perfect square trino-
mial. To see why this works every single time, we start with AX 2 + BX + C = 0 and follow the
procedure:

AX 2 + BX + C = 0
AX 2 + BX = −C Subtract C

X 2 +
BX
A

= −C
A

Divide by A 6= 0

X 2 +
BX
A

+
(

B
2A

)2

= −C
A

+
(

B
2A

)2

Add
(

B
2A

)2

(Hold onto the line above for a moment.) Here’s the heart of the method - we need to show that

X 2 +
BX
A

+
(

B
2A

)2

=
(

X +
B
2A

)2

To show this, we start with the right side of the equation and apply the Perfect Square Formula
from Theorem 0.7(

X +
B
2A

)2

= X 2 + 2
(

B
2A

)
X +

(
B
2A

)2

= X 2 +
BX
A

+
(

B
2A

)2

X

2Recall that this means we want to get a denominator with rational (more specifically, integer) numbers.
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With just a few more steps we can solve the general equation AX 2 + BX + C = 0 so let’s pick up
the story where we left off. (The line on the previous page we told you to hold on to.)

X 2 +
BX
A

+
(

B
2A

)2

= −C
A

+
(

B
2A

)2

(
X +

B
2A

)2

= −C
A

+
B2

4A2 Factor: Perfect Square Trinomial(
X +

B
2A

)2

= −4AC
4A2 +

B2

4A2 Get a common denominator(
X +

B
2A

)2

=
B2 − 4AC

4A2 Add fractions

X +
B
2A

= ±
√

B2 − 4AC
4A2 Extract Square Roots

X +
B
2A

= ±
√

B2 − 4AC
2A

Properties of Radicals

X = − B
2A
±
√

B2 − 4AC
2A

Subtract
B
2A

X =
−B ±

√
B2 − 4AC
2A

Add fractions.

Lo and behold, we have derived the legendary Quadratic Formula!

Theorem 0.9. Quadratic Formula: The solution to AX 2 + BX + C = 0 with A 6= 0 is:

X =
−B ±

√
B2 − 4AC
2A

We can check our earlier solutions to 2x2 + 6x − 3 = 0 and 3x2 − 24x + 5 = 0 using the Quadratic
Formula. For 2x2 + 6x − 3 = 0, we identify A = 2, B = 6 and C = −3. The quadratic formula gives:

x =
−6±

√
62 − 4(2)(−3)
2(2)

− −6±
√

36 + 24
4

=
−6±

√
60

4

Using properties of radicals (
√

60 = 2
√

15), this reduces to 2(−3±
√

15)
4 = −3±

√
15

2 . We leave it to the
reader to show these two answers are the same as −3±

√
15

2 , as required.3

For 3x2 − 24x + 5 = 0, we identify A = 3, B = −24 and C = 5. Here, we get:

x =
−(−24)±

√
(−24)2 − 4(3)(5)
2(3)

=
24±

√
516

6

Since
√

516 = 2
√

129, this reduces to x = 12±
√

129
3 .

3Think about what −(3±
√

15) is really telling you.
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It is worth noting that the Quadratic Formula applies to all quadratic equations - even ones we
could solve using other techniques. For example, to solve 2x2 + 5x −3 = 0 we identify A = 2, B = 5
and C = −3. This yields:

x =
−5±

√
52 − 4(2)(−3)
2(2)

=
−5±

√
49

4
=
−5± 7

4

At this point, we have x = −5+7
4 = 1

2 and x = −5−7
4 = −12

4 = −3 - the same two answers we obtained
factoring. We can also use it to solve x2 = 3, if we wanted to. From x2 − 3 = 0, we have A = 1,
B = 0 and C = −3. The Quadratic Formula produces

x =
−0±

√
02 − 4(1)(3)
2(1)

=
±
√

12
2

= ±2
√

3
2

= ±
√

3

As this last example illustrates, while the Quadratic Formula can be used to solve every quadratic
equation, that doesn’t mean it should be used. Many times other methods are more efficient. We
now provide a more comprehensive approach to solving Quadratic Equations.

Strategies for Solving Quadratic Equations

• If the variable appears in the squared term only, isolate it and Extract Square Roots.

• Otherwise, put the nonzero terms on one side of the equation so that the other side is 0.

– Try factoring.

– If the expression doesn’t factor easily, use the Quadratic Formula.

The reader is encouraged to pause for a moment to think about why ‘Completing the Square’
doesn’t appear in our list of strategies despite the fact that we’ve spent the majority of the section
so far talking about it.4 Let’s get some practice solving quadratic equations, shall we?

Example 0.7.1. Find all real number solutions to the following equations.

1. 3− (2w − 1)2 = 0 2. 5x − x(x − 3) = 7 3. (y − 1)2 = 2− y + 2
3

4. 5(25− 21x) =
59
4
− 25x2 5. −4.9t2 + 10t

√
3 + 2 = 0 6. 2x2 = 3x4 − 6

Solution.

1. Since 3− (2w−1)2 = 0 contains a perfect square, we isolate it first then extract square roots:

3− (2w − 1)2 = 0
3 = (2w − 1)2 Add (2w − 1)2

±
√

3 = 2w − 1 Extract Square Roots
1±
√

3 = 2w Add 1
1±
√

3
2

= w Divide by 2

4Unacceptable answers include “Jeff and Carl are mean” and “It was one of Carl’s Pedantic Rants”.
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We find our two answers w = 1±
√

3
2 . The reader is encouraged to check both answers by

substituting each into the original equation.5

2. To solve 5x − x(x − 3) = 7, we begin performing the indicated operations and getting one
side equal to 0.

5x − x(x − 3) = 7
5x − x2 + 3x = 7 Distribute
−x2 + 8x = 7 Gather like terms

−x2 + 8x − 7 = 0 Subtract 7

At this point, we attempt to factor and find −x2 + 8x − 7 = (x − 1)(−x + 7). Using the Zero
Product Property, we get x − 1 = 0 or −x + 7 = 0. Our answers are x = 1 or x = 7, both of
which are easy to check.

3. Even though we have a perfect square in (y − 1)2 = 2− y+2
3 , Extracting Square Roots won’t

help matters since we have a y on the other side of the equation. Our strategy here is to
perform the indicated operations (and clear the fraction for good measure) and get 0 on one
side of the equation.

(y − 1)2 = 2− y + 2
3

y2 − 2y + 1 = 2− y + 2
3

Perfect Square Trinomial

3(y2 − 2y + 1) = 3
(

2− y + 2
3

)
Multiply by 3

3y2 − 6y + 3 = 6− 3
(

y + 2
3

)
Distribute

3y2 − 6y + 3 = 6− (y + 2)
3y2 − 6y + 3− 6 + (y + 2) = 0 Subtract 6, Add (y + 2)

3y2 − 5y − 1 = 0

A cursory attempt at factoring bears no fruit, so we run this through the Quadratic Formula
with A = 3, B = −5 and C = −1.

y =
−(−5)±

√
(−5)2 − 4(3)(−1)
2(3)

y =
5±
√

25 + 12
6

y =
5±
√

37
6

Since 37 is prime, we have no way to reduce
√

37. Thus, our final answers are y = 5±
√

37
6 .

The reader is encouraged to supply the details of the challenging verification of the answers.
5It’s excellent practice working with radicals fractions so we really, really want you to take the time to do it.



0.7 Quadratic Equations 87

4. We proceed as before; our aim is to gather the nonzero terms on one side of the equation.

5(25− 21x) =
59
4
− 25x2

125− 105x =
59
4
− 25x2 Distribute

4(125− 105x) = 4
(

59
4
− 25x2

)
Multiply by 4

500− 420x = 59− 100x2 Distribute

500− 420x − 59 + 100x2 = 0 Subtract 59, Add 100x2

100x2 − 420x + 441 = 0 Gather like terms

With highly composite numbers like 100 and 441, factoring seems inefficient at best,6 so we
apply the Quadratic Formula with A = 100, B = −420 and C = 441:

x =
−(−420)±

√
(−420)2 − 4(100)(441)
2(100)

=
420±

√
176000− 176400

200

=
420±

√
0

200

=
420± 0

200

=
420
200

=
21
10

To our surprise and delight we obtain just one answer, x = 21
10 .

5. Our next equation −4.9t2 + 10t
√

3 + 2 = 0, already has 0 on one side of the equation, but
with coefficients like −4.9 and 10

√
3, factoring with integers is not an option. We could make

things a bit easier on the eyes by clearing the decimal (by multiplying through by 10) to get
−49t2 +100t

√
3+20 = 0 but we simply cannot rid ourselves of the irrational number

√
3. The

Quadratic Formula is our only recourse. With A = −49, B = 100
√

3 and C = 20 we get:

6This is actually the Perfect Square Trinomial (10x − 21)2.
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t =
−100

√
3±

√
(100

√
3)2 − 4(−49)(20)

2(−49)

=
−100

√
3±
√

30000 + 3920
−98

=
−100

√
3±
√

33920
−98

=
−100

√
3± 8

√
530

−98

=
2(−50

√
3± 4

√
530)

2(−49)

=
−50
√

3± 4
√

530
−49

Reduce

=
−(−50

√
3± 4

√
530)

49
Properties of Negatives

=
50
√

3∓ 4
√

530
49

Distribute

You’ll note that when we ‘distributed’ the negative in the last step, we changed the ‘±’ to a ‘∓.’
While this is technically correct, at the end of the day both symbols mean ‘plus or minus’,7

so we can write our answers as t = 50
√

3±4
√

530
49 . Checking these answers are a true test of

arithmetic mettle.

6. At first glance, the equation 2x2 = 3x4 − 6 seems misplaced. The highest power of the
variable x here is 4, not 2, so this equation isn’t a quadratic equation - at least not in terms
of the variable x . It is, however, an example of an equation that is quadratic ‘in disguise.’8

We introduce a new variable u to help us see the pattern - specifically we let u = x2. Thus
u2 = (x2)2 = x4. So in terms of the variable u, the equation 2x2 = 3x4 − 6 is 2u = 3u2 − 6.
The latter is a quadratic equation, which we can solve using the usual techniques:

2u = 3u2 − 6
0 = 3u2 − 2u − 6 Subtract 2u

After a few attempts at factoring, we resort to the Quadratic Formula with A = 3, B = −2,

7There are instances where we need both symbols, however. For example, the Sum and Difference of Cubes
Formulas (page 69) can be written as a single formula: a3 ± b3 = (a ± b)(a2 ∓ ab + b2). In this case, all of the ‘top’
symbols are read to give the sum formula; the ‘bottom’ symbols give the difference formula.

8More formally, quadratic in form. Carl likes ‘Quadratics in Disguise’ since it reminds him of the tagline of one of
his beloved childhood cartoons and toy lines.



0.7 Quadratic Equations 89

C = −6 and get:

u =
−(−2)±

√
(−2)2 − 4(3)(−6)
2(3)

=
2±
√

4 + 72
6

=
2±
√

76
6

=
2±
√

4 · 19
6

=
2± 2

√
19

6
Properties of Radicals

=
2(1±

√
19)

2(3)
Factor

=
1±
√

19
3

Reduce

We’ve solved the equation for u, but what we still need to solve the original equation9 - which
means we need to find the corresponding values of x . Since u = x2, we have two equations:

x2 =
1 +
√

19
3

or x2 =
1−
√

19
3

We can solve the first equation by extracting square roots to get x = ±
√

1+
√

19
3 . The second

equation, however, has no real number solutions because 1−
√

19
3 is a negative number. For

our final answers we can rationalize the denominator10 to get:

x = ±

√
1 +
√

19
3

= ±

√
1 +
√

19
3

· 3
3

= ±
√

3 + 3
√

19
3

As with the previous exercise, the very challenging check is left to the reader.

Our last example above, the ‘Quadratic in Disguise’, hints that the Quadratic Formula is applicable
to a wider class of equations than those which are strictly quadratic. We give some general
guidelines to recognizing these beasts in the wild on the next page.

9Or, you’ve solved the equation for ‘you’ (u), now you have to solve it for your instructor (x).
10We’ll say more about this technique in Section 0.9.
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Identifying Quadratics in Disguise
An equation is a ‘Quadratic in Disguise’ if it can be written in the form: AX 2m + BX m + C = 0.
In other words:

• There are exactly three terms, two with variables and one constant term.

• The exponent on the variable in one term is exactly twice the variable on the other term.

To transform a Quadratic in Disguise to a quadratic equation, let u = X m so u2 = (X m)2 = X 2m.
This transforms the equation into Au2 + Bu + C = 0.

For example, 3x6 − 2x3 + 1 = 0 is a Quadratic in Disguise, since 6 = 2 · 3. If we let u = x3, we get
u2 = (x3)2 = x6, so the equation becomes 3u2 − 2u + 1 = 0. However, 3x6 − 2x2 + 1 = 0 is not a
Quadratic in Disguise, since 6 6= 2 · 2. The substitution u = x2 yields u2 = (x2)2 = x4, not x6 as
required. We’ll see more instances of ‘Quadratics in Disguise’ in later sections.

We close this section with a review of the discriminant of a quadratic equation as defined below.

Definition 0.16. The Discriminant: Given a quadratic equation AX 2 + BX + C = 0, the quantity
B2 − 4AC is called the discriminant of the equation.

The discriminant is the radicand of the square root in the quadratic formula:

X =
−B ±

√
B2 − 4AC
2A

It discriminates between the nature and number of solutions we get from a quadratic equation.
The results are summarized below.

Theorem 0.10. Discriminant Theorem: Given a Quadratic Equation AX 2 + BX + C = 0, let
D = B2 − 4AC be the discriminant.

• If D > 0, there are two distinct real number solutions to the equation.

• If D = 0, there is one repeated real number solution.

Note: ‘Repeated’ here comes from the fact that ‘both’ solutions −B±0
2A reduce to − B

2A .

• If D < 0, there are no real solutions.

For example, x2 + x − 1 = 0 has two real number solutions since the discriminant works out to be
(1)2 − 4(1)(−1) = 5 > 0. This results in a ±

√
5 in the Quadratic Formula, generating two different

answers. On the other hand, x2 + x + 1 = 0 has no real solutions since here, the discriminant
is (1)2 − 4(1)(1) = −3 < 0 which generates a ±

√
−3 in the Quadratic Formula. The equation

x2 + 2x + 1 = 0 has discriminant (2)2 − 4(1)(1) = 0 so in the Quadratic Formula we get a ±
√

0 = 0
thereby generating just one solution. More can be said as well. For example, the discriminant of
6x2 − x − 40 = 0 is 961. This is a perfect square,

√
961 = 31, which means our solutions are
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rational numbers. When our solutions are rational numbers, the quadratic actually factors nicely.
In our example 6x2 − x − 40 = (2x + 5)(3x − 8). Admittedly, if you’ve already computed the
discriminant, you’re most of the way done with the problem and probably wouldn’t take the time to
experiment with factoring the quadratic at this point – but we’ll see another use for this analysis of
the discriminant in the next section.11

11Specifically in Example 0.8.1.
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0.7.1 Exercises

In Exercises 1 - 33, find all real solutions. Check your answers, as directed by your instructor.

1. x2 − 44 = 0 2. 5x2 = 32 3. (x − 1)2 + 49 = 0

4. 3
(

x − 1
2

)2

=
5

12
5. 4− (5t + 3)2 = 3 6. 3(y2 − 3)2 − 2 = 10

7. x2 + x − 1 = 0 8. 3w2 = 2− w 9. y (y + 4) = 1

10. x2 − 6x + 9 = 16 11. 4w2 − 4
√

3 w + 3 = 0 12. 9y2 + 6
√

2 y + 2 = 0

13. x2 +
√

2 x − 3
2 = 0 14. x2 + 7x = 0 15. x2 − 6x + 4 = 0

16. 2x2 − 5x − 3 = 0 17. 2
5x2 − 4

5x − 6
5 = 0 18. 3x2 − 4x − 4 = 0

19.
z
2

= 4z2 − 1 20. 0.1v2 + 0.2v = 0.3 21. x2 = x − 1

22. 3− t = 2(t + 1)2 23. (x − 3)2 = x2 + 9 24. (3y − 1)(2y + 1) = 5y

25. w4 + 3w2 − 1 = 0 26. 2x4 + x2 = 3 27. (2− y )4 = 3(2− y )2 + 1

28. 3x4 + 6x2 = 15x3 29. 6p + 2 = p2 + 3p3 30. 10v = 7v3 − v5

31. y2 −
√

8 y =
√

18 y − 1 32. x2
√

3 = x
√

6 +
√

12 33.
v2

3
=

v
√

3
2

+ 1

In Exercises 34 - 42, complete the square and write each expression in the form a(x − p)2 + q.

34. x2 − 10x 35. x2 + x 36. x2 − 1
3x + 1

6

37. x2 + 6x + 6 38. x2 − x − 1 39. 2x2 + 6x + 5

40. 3x2 + 12x + 1 41. 6x2 − 3x + 1 42. 1
3 (x2 − 2x − 5)

43. Prove that for every nonzero number p, x2 + xp + p2 = 0 has no real solutions.

44. Solve for t : −1
2

gt2 + vt + h = 0. Assume g > 0, v ≥ 0 and h ≥ 0.
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0.7.2 Answers

1. x = ±2
√

11 2. x = ±4
√

10
5

3. No real solution.

4. x =
3±
√

5
6

5. t = −4
5

,−2
5

6. y = ±1, ±
√

5

7. x =
−1±

√
5

2
8. w = −1,

2
3

9. y = −2±
√

5

10. x = −1, 7 11. w =
√

3
2

12. y =
−
√

2
3

13. x =
−3
√

2
2

,
√

2
2

14. x = −7, 0 15. x = 3±
√

5

16. x = −1
2

, 3 17. x = −1, 3 18. x = −2
3

, 2

19. z =
1±
√

65
16

20. v = −3, 1 21. No real solution.

22. t =
−5±

√
33

4
23. x = 0 24. y =

2±
√

10
6

25. w = ±
√√

13− 3
2

26. x = ±1 27. y =
4±

√
6 + 2

√
13

2

28. x = 0,
5±
√

17
2

29. p = −1
3

,±
√

2 30. v = 0,±
√

2,±
√

5

31. y =
5
√

2±
√

46
2

32. x =
√

2±
√

10
2

33. v = −
√

3
2

, 2
√

3

34. (x − 5)2 − 25 35. (x + 1
2 )2 − 1

4 36. (x − 1
6 )2 + 5

36

37. (x + 3)2 − 3 38. (x − 1
2 )2 − 5

4 39. 2(x + 3
2 )2 + 1

2

40. 3(x + 2)2 − 11 41. 6(x − 1
4 )2 + 5

8 42. 1
3 (x − 1)2 − 2

43. The discriminant is: D = p2 − 4p2 = −3p2 < 0. Since D < 0, there are no real solutions.

44. t =
v ±

√
v2 + 2gh
g
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0.8 Rational Expressions and Equations

We now turn our attention to rational expressions - that is, algebraic fractions - and equations
which contain them. The reader is encouraged to keep in mind the properties of fractions listed
on page 20 because we will need them along the way. Before we launch into reviewing the basic
arithmetic operations of rational expressions, we take a moment to review how to simplify them
properly. As with numeric fractions, we ‘cancel common factors,’ not common terms. That is, in
order to simplify rational expressions, we first factor the numerator and denominator. For example:

x4 + 5x3

x3 − 25x
6= x4 + 5��x3

��x3 − 25x

but, rather
x4 + 5x3

x3 − 25x
=

x3(x + 5)
x(x2 − 25)

Factor G.C.F.

=
x3(x + 5)

x(x − 5)(x + 5)
Difference of Squares

= ���
x2

x3
���

�(x + 5)
�x(x − 5)����(x + 5)

Cancel common factors

=
x2

x − 5

This equivalence holds provided the factors being canceled aren’t 0. Since a factor of x and a
factor of x + 5 were canceled, x 6= 0 and x + 5 6= 0, so x 6= −5. We usually stipulate this as:

x4 + 5x3

x3 − 25x
=

x2

x − 5
, provided x 6= 0, x 6= −5

While we’re talking about common mistakes, please notice that

5
x2 + 9

6= 5
x2 +

5
9

Just like their numeric counterparts, you don’t add algebraic fractions by adding denominators of
fractions with common numerators - it’s the other way around:1

x2 + 9
5

=
x2

5
+

9
5

It’s time to review the basic arithmetic operations with rational expressions.

1One of the most common errors students make on college Mathematics placement tests is that they forget how to
add algebraic fractions correctly. This places many students into remedial classes even though they are probably ready
for college-level Math. We urge you to really study this section with great care so that you don’t fall into that trap.
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Example 0.8.1. Perform the indicated operations and simplify.

1.
2x2 − 5x − 3

x4 − 4
÷ x2 − 2x − 3

x5 + 2x3 2.
5

w2 − 9
− w + 2

w2 − 9

3.
3

y2 − 8y + 16
+

y + 1
16y − y3 4.

2
4− (x + h)

− 2
4− x

h

5. 2t−3 − (3t)−2 6. 10x(x − 3)−1 + 5x2(−1)(x − 3)−2

Solution.

1. As with numeric fractions, we divide rational expressions by ‘inverting and multiplying’. Be-
fore we get too carried away however, we factor to see what, if any, factors cancel.

2x2 − 5x − 3
x4 − 4

÷ x2 − 2x − 3
x5 + 2x3 =

2x2 − 5x − 3
x4 − 4

· x5 + 2x3

x2 − 2x − 3
Invert and multiply

=
(2x2 − 5x − 3)(x5 + 2x3)

(x4 − 4)(x2 − 2x − 3)
Multiply fractions

=
(2x + 1)(x − 3)x3(x2 + 2)

(x2 − 2)(x2 + 2)(x − 3)(x + 1)
Factor

=
(2x + 1)����(x − 3)x3

���
�(x2 + 2)

(x2 − 2)���
�(x2 + 2)����(x − 3)(x + 1)

Cancel common factors

=
x3(2x + 1)

(x + 1)(x2 − 2)
Provided x 6= 3

The ‘x 6= 3’ is mentioned since a factor of (x−3) was canceled as we reduced the expression.
We also canceled a factor of (x2 + 2). Why is there no stipulation as a result of canceling
this factor? Because x2 + 2 6= 0. (Can you see why?) At this point, we could go ahead and
multiply out the numerator and denominator to get

x3(2x + 1)
(x + 1)(x2 − 2)

=
2x4 + x3

x3 + x2 − 2x − 2

but for most of the applications where this kind of algebra is needed (solving equations, for
instance), it is best to leave things factored. Your instructor will let you know whether to leave
your answer in factored form or not.2

2Speaking of factoring, do you remember why x2 − 2 can’t be factored over the integers?
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2. As with numeric fractions we need common denominators in order to subtract. This is the
case here so we proceed by subtracting the numerators.

5
w2 − 9

− w + 2
w2 − 9

=
5− (w + 2)

w2 − 9
Subtract fractions

=
5− w − 2

w2 − 9
Distribute

=
3− w
w2 − 9

Combine like terms

At this point, we need to see if we can reduce this expression so we proceed to factor. It first
appears as if we have no common factors among the numerator and denominator until we
recall the property of ‘factoring negatives’ from Page 20: 3− w = −(w − 3). This yields:

3− w
w2 − 9

=
−(w − 3)

(w − 3)(w + 3)
Factor

=
−����(w − 3)

��
��(w − 3)(w + 3)

Cancel common factors

=
−1

w + 3
Provided w 6= 3

The stipulation w 6= 3 comes from the cancellation of the (w − 3) factor.

3. In this next example, we are asked to add two rational expressions with different denomina-
tors. As with numeric fractions, we must first find a common denominator. To do so, we start
by factoring each of the denominators.

3
y2 − 8y + 16

+
y + 1

16y − y3 =
3

(y − 4)2 +
y + 1

y (16− y2)
Factor

=
3

(y − 4)2 +
y + 1

y (4− y )(4 + y )
Factor some more

To find the common denominator, we examine the factors in the first denominator and note
that we need a factor of (y − 4)2. We now look at the second denominator to see what other
factors we need. We need a factor of y and (4 + y ) = (y + 4). What about (4 − y )? As
mentioned in the last example, we can factor this as: (4 − y ) = −(y − 4). Using properties
of negatives, we ‘migrate’ this negative out to the front of the fraction, turning the addition
into subtraction. We find the (least) common denominator to be (y − 4)2y (y + 4). We can
now proceed to multiply the numerator and denominator of each fraction by whatever factors
each is missing from their respective denominators to produce equivalent expressions with
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common denominators.

3
(y − 4)2 +

y + 1
y (4− y )(4 + y )

=
3

(y − 4)2 +
y + 1

y (−(y − 4))(y + 4)

=
3

(y − 4)2 −
y + 1

y (y − 4)(y + 4)

=
3

(y − 4)2 ·
y (y + 4)
y (y + 4)

− y + 1
y (y − 4)(y + 4)

· (y − 4)
(y − 4)

Equivalent
Fractions

=
3y (y + 4)

(y − 4)2y (y + 4)
− (y + 1)(y − 4)

y (y − 4)2(y + 4)
Multiply

Fractions

At this stage, we can subtract numerators and simplify. We’ll keep the denominator factored
(in case we can reduce down later), but in the numerator, since there are no common factors,
we proceed to perform the indicated multiplication and combine like terms.

3y (y + 4)
(y − 4)2y (y + 4)

− (y + 1)(y − 4)
y (y − 4)2(y + 4)

=
3y (y + 4)− (y + 1)(y − 4)

(y − 4)2y (y + 4)
Subtract numerators

=
3y2 + 12y − (y2 − 3y − 4)

(y − 4)2y (y + 4)
Distribute

=
3y2 + 12y − y2 + 3y + 4

(y − 4)2y (y + 4)
Distribute

=
2y2 + 15y + 4

y (y + 4)(y − 4)2 Gather like terms

We would like to factor the numerator and cancel factors it has in common with the denom-
inator. After a few attempts, it appears as if the numerator doesn’t factor, at least over the
integers. As a check, we compute the discriminant of 2y2+15y+4 and get 152−4(2)(4) = 193.
This isn’t a perfect square so we know that the quadratic equation 2y2 + 15y + 4 = 0 has ir-
rational solutions. This means 2y2 + 15y + 4 can’t factor over the integers3 so we are done.

4. In this example, we have a compound fraction, and we proceed to simplify it as we did its
numeric counterparts in Example 0.2.1. Specifically, we start by multiplying the numerator
and denominator of the ‘big’ fraction by the least common denominator of the ‘little’ fractions
inside of it - in this case we need to use (4− (x + h))(4− x) - to remove the compound nature
of the ‘big’ fraction. Once we have a more normal looking fraction, we can proceed as we

3See the remarks following Theorem 0.10.
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have in the previous examples.

2
4− (x + h)

− 2
4− x

h
=

(
2

4− (x + h)
− 2

4− x

)
h

· (4− (x + h))(4− x)
(4− (x + h))(4− x)

Equivalent
fractions

=

(
2

4− (x + h)
− 2

4− x

)
· (4− (x + h))(4− x)

h(4− (x + h))(4− x)
Multiply

=

2(4− (x + h))(4− x)
4− (x + h)

− 2(4− (x + h))(4− x)
4− x

h(4− (x + h))(4− x)
Distribute

=

2(((((
(((4− (x + h))(4− x)

((((
((((4− (x + h))

− 2(4− (x + h))����(4− x)
���

�(4− x)
h(4− (x + h))(4− x)

Reduce

=
2(4− x)− 2(4− (x + h))

h(4− (x + h))(4− x)

Now we can clean up and factor the numerator to see if anything cancels. (This why we kept
the denominator factored.)

2(4− x)− 2(4− (x + h))
h(4− (x + h))(4− x)

=
2[(4− x)− (4− (x + h))]

h(4− (x + h))(4− x)
Factor out G.C.F.

=
2[4− x − 4 + (x + h)]
h(4− (x + h))(4− x)

Distribute

=
2[4− 4− x + x + h]
h(4− (x + h))(4− x)

Rearrange terms

=
2h

h(4− (x + h))(4− x)
Gather like terms

=
2�h

�h(4− (x + h))(4− x)
Reduce

=
2

(4− (x + h))(4− x)
Provided h 6= 0

Your instructor will let you know if you are to multiply out the denominator or not.4

5. At first glance, it doesn’t seem as if there is anything that can be done with 2t−3 − (3t)−2

because the exponents on the variables are different. However, since the exponents are
4We’ll keep it factored because in Calculus it needs to be factored.
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negative, these are actually rational expressions. In the first term, the −3 exponent applies
to the t only but in the second term, the exponent −2 applies to both the 3 and the t , as
indicated by the parentheses. One way to proceed is as follows:

2t−3 − (3t)−2 =
2
t3 −

1
(3t)2

=
2
t3 −

1
9t2

We see that we are being asked to subtract two rational expressions with different denomi-
nators, so we need to find a common denominator. The first fraction contributes a t3 to the
denominator, while the second contributes a factor of 9. Thus our common denominator is
9t3, so we are missing a factor of ‘9’ in the first denominator and a factor of ‘t ’ in the second.

2
t3 −

1
9t2 =

2
t3 ·

9
9
− 1

9t2 ·
t
t

Equivalent Fractions

=
18
9t3 −

t
9t3 Multiply

=
18− t

9t3 Subtract

We find no common factors among the numerator and denominator so we are done.

A second way to approach this problem is by factoring. We can extend the concept of the
‘Polynomial G.C.F.’ to these types of expressions and we can follow the same guidelines as
set forth on page 69 to factor out the G.C.F. of these two terms. The key ideas to remember
are that we take out each factor with the smallest exponent and factoring is the same as
dividing. We first note that 2t−3− (3t)−2 = 2t−3−3−2t−2 and we see that the smallest power
on t is −3. Thus we want to factor out t−3 from both terms. It’s clear that this will leave 2 in
the first term, but what about the second term? Since factoring is the same as dividing, we
would be dividing the second term by t−3 which thanks to the properties of exponents is the
same as multiplying by 1

t−3 = t3. The same holds for 3−2. Even though there are no factors
of 3 in the first term, we can factor out 3−2 by multiplying it by 1

3−2 = 32 = 9. We put these
ideas together below.

2t−3 − (3t)−2 = 2t−3 − 3−2t−2 Properties of Exponents

= 3−2t−3(2(3)2 − t1) Factor

=
1
32

1
t3 (18− t) Rewrite

=
18− t

9t3 Multiply

While both ways are valid, one may be more of a natural fit than the other depending on the
circumstances and temperament of the student.
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6. As with the previous example, we show two different yet equivalent ways to approach simpli-
fying 10x(x − 3)−1 + 5x2(−1)(x − 3)−2. First up is what we’ll call the ‘common denominator
approach’ where we rewrite the negative exponents as fractions and proceed from there.

• Common Denominator Approach:

10x(x − 3)−1 + 5x2(−1)(x − 3)−2 =
10x

x − 3
+

5x2(−1)
(x − 3)2

=
10x

x − 3
· x − 3

x − 3
− 5x2

(x − 3)2 Equivalent Fractions

=
10x(x − 3)

(x − 3)2 − 5x2

(x − 3)2 Multiply

=
10x(x − 3)− 5x2

(x − 3)2 Subtract

=
5x(2(x − 3)− x)

(x − 3)2 Factor out G.C.F.

=
5x(2x − 6− x)

(x − 3)2 Distribute

=
5x(x − 6)
(x − 3)2 Combine like terms

Both the numerator and the denominator are completely factored with no common fac-
tors so we are done.

• ‘Factoring Approach’ : In this case, the G.C.F. is 5x(x − 3)−2. Factoring this out of both
terms gives:

10x(x − 3)−1 + 5x2(−1)(x − 3)−2 = 5x(x − 3)−2(2(x − 3)1 − x) Factor

=
5x

(x − 3)2 (2x − 6− x) Rewrite, distribute

=
5x(x − 6)
(x − 3)2 Multiply

As expected, we got the same reduced fraction as before.

Next, we review the solving of equations which involve rational expressions. As with equations
involving numeric fractions, our first step in solving equations with algebraic fractions is to clear
denominators. In doing so, we run the risk of introducing what are known as extraneous solutions
- ‘answers’ which don’t satisfy the original equation. As we illustrate the techniques used to solve
these basic equations, see if you can find the step which creates the problem for us.
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Example 0.8.2. Solve the following equations.

1. 1 +
1
x

= x 2.
t3 − 2t + 1

t − 1
=

1
2

t − 1

3.
3

1− w
√

2
− 1

2w + 5
= 0 4. 3(x2 + 4)−1 + 3x(−1)(x2 + 4)−2(2x) = 0

5. Solve x =
2y + 1
y − 3

for y . 6. Solve
1
f

=
1
S1

+
1
S2

for S1.

Solution.

1. Our first step is to clear the fractions by multiplying both sides of the equation by x . In
doing so, we are implicitly assuming x 6= 0; otherwise, we would have no guarantee that the
resulting equation is equivalent to our original equation.5

1 +
1
x

= x(
1 +

1
x

)
x = (x)x Provided x 6= 0

1(x) +
1
x

(x) = x2 Distribute

x +
x
x

= x2 Multiply

x + 1 = x2

0 = x2 − x − 1 Subtract x , subtract 1

x =
−(−1)±

√
(−1)2 − 4(1)(−1)
2(1)

Quadratic Formula

x =
1±
√

5
2

Simplify

We obtain two answers, x = 1±
√

5
2 . Neither of these are 0 thus neither contradicts our

assumption that x 6= 0. The reader is invited to check both of these solutions.6

5See page 38.
6The check relies on being able to ‘rationalize’ the denominator - a skill we haven’t reviewed yet. (Come back after

you’ve read Section 0.9 if you want to!) Additionally, the positive solution to this equation is the famous Golden Ratio.

http://en.wikipedia.org/wiki/Golden_ratio
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2. To solve the equation, we clear denominators. Here, we need to assume t − 1 6= 0, or t 6= 1.

t3 − 2t + 1
t − 1

=
1
2

t − 1(
t3 − 2t + 1

t − 1

)
· 2(t − 1) =

(
1
2

t − 1
)
· 2(t − 1) Provided t 6= 1

(t3 − 2t + 1)(2����(t − 1))
���

�(t − 1)
=

1
�2

t(�2(t − 1))− 1(2(t − 1)) Multiply, distribute

2(t3 − 2t + 1) = t2 − t − 2t + 2 Distribute
2t3 − 4t + 2 = t2 − 3t + 2 Distribute, combine like terms
2t3 − t2 − t = 0 Subtract t2, add 3t , subtract 2

t(2t2 − t − 1) = 0 Factor
t = 0 or 2t2 − t − 1 = 0 Zero Product Property
t = 0 or (2t + 1)(t − 1) = 0 Factor
t = 0 or 2t + 1 = 0 or t − 1 = 0

t = 0, −1
2

or 1

We assumed that t 6= 1 in order to clear denominators. Sure enough, the ‘solution’ t = 1
doesn’t check in the original equation since it causes division by 0. In this case, we call t = 1
an extraneous solution. Note that t = 1 does work in every equation after we clear denom-
inators. In general, multiplying by variable expressions can produce these ‘extra’ solutions,
which is why checking our answers is always encouraged.7 The other two solutions, t = 0
and t = −1

2 , both work.

3. As before, we begin by clearing denominators. Here, we assume 1− w
√

2 6= 0 (so w 6= 1√
2
)

and 2w + 5 6= 0 (so w 6= −5
2 ).

3
1− w

√
2
− 1

2w + 5
= 0(

3
1− w

√
2
− 1

2w + 5

)
(1− w

√
2)(2w + 5) = 0(1− w

√
2)(2w + 5) w 6= 1√

2
,−5

2

3���
���(1− w
√

2)(2w + 5)

��
���

�
(1− w

√
2)

− 1(1− w
√

2)���
��(2w + 5)

���
��(2w + 5)

= 0 Distribute

3(2w + 5)− (1− w
√

2) = 0

The result is a linear equation in w so we gather the terms with w on one side of the equation

7Contrast this with what happened in Example 0.6.3 when we divided by a variable and ‘lost’ a solution.
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and put everything else on the other. We factor out w and divide by its coefficient.

3(2w + 5)− (1− w
√

2) = 0
6w + 15− 1 + w

√
2 = 0 Distribute

6w + w
√

2 = −14 Subtract 14
(6 +
√

2)w = −14 Factor

w = − 14
6 +
√

2
Divide by 6 +

√
2

This solution is different than our excluded values, 1√
2

and −5
2 , so we keep w = − 14

6+
√

2
as

our final answer. The reader is invited to check this in the original equation.

4. To solve our next equation, we have two approaches to choose from: we could rewrite the
quantities with negative exponents as fractions and clear denominators, or we can factor.
We showcase each technique below.

• Clearing Denominators Approach: We rewrite the negative exponents as fractions and
clear denominators. In this case, we multiply both sides of the equation by (x2 + 4)2,
which is never 0. (Think about that for a moment.) As a result, we need not exclude any
x values from our solution set.

3(x2 + 4)−1 + 3x(−1)(x2 + 4)−2(2x) = 0

3
x2 + 4

+
3x(−1)(2x)

(x2 + 4)2 = 0 Rewrite(
3

x2 + 4
− 6x2

(x2 + 4)2

)
(x2 + 4)2 = 0(x2 + 4)2 Multiply

3���
��: (x2+4)

(x2 + 4)2

��
��(x2 + 4)

− 6x2
���

��(x2 + 4)2

��
���(x2 + 4)2 = 0 Distribute

3(x2 + 4)− 6x2 = 0
3x2 + 12− 6x2 = 0 Distribute

−3x2 = −12 Combine like terms, subtract 12

x2 = 4 Divide by −3
x = ±

√
4 = ±2 Extract square roots

We leave it to the reader to show both x = −2 and x = 2 satisfy the original equation.

• Factoring Approach: Since the equation is already set equal to 0, we’re ready to factor.
Following the guidelines presented in Example 0.8.1, we factor out 3(x2 +4)−2 from both
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terms and look to see if more factoring can be done:

3(x2 + 4)−1 + 3x(−1)(x2 + 4)−2(2x) = 0
3(x2 + 4)−2((x2 + 4)1 + x(−1)(2x)) = 0 Factor

3(x2 + 4)−2(x2 + 4− 2x2) = 0
3(x2 + 4)−2(4− x2) = 0 Gather like terms

3(x2 + 4)−2 = 0 or 4− x2 = 0 Zero Product Property
3

x2 + 4
= 0 or 4 = x2

The first equation yields no solutions (Think about this for a moment.) while the second
gives us x = ±

√
4 = ±2 as before.

5. We are asked to solve this equation for y so we begin by clearing fractions with the stipulation
that y − 3 6= 0 or y 6= 3. We are left with a linear equation in the variable y . To solve this, we
gather the terms containing y on one side of the equation and everything else on the other.
Next, we factor out the y and divide by its coefficient, which in this case turns out to be x−2.
In order to divide by x − 2, we stipulate x − 2 6= 0 or, said differently, x 6= 2.

x =
2y + 1
y − 3

x(y − 3) =
(

2y + 1
y − 3

)
(y − 3) Provided y 6= 3

xy − 3x =
(2y + 1)����(y − 3)
���

�(y − 3)
Distribute, multiply

xy − 3x = 2y + 1
xy − 2y = 3x + 1 Add 3x , subtract 2y
y (x − 2) = 3x + 1 Factor

y =
3x + 1
x − 2

Divide provided x 6= 2

We highly encourage the reader to check the answer algebraically to see where the restric-
tions on x and y come into play.8

6. Our last example comes from physics and the world of photography.9 We take a moment
here to note that while superscripts in mathematics indicate exponents (powers), subscripts
are used primarily to distinguish one or more variables. In this case, S1 and S2 are two
different variables (much like x and y ) and we treat them as such. Our first step is to clear

8It involves simplifying a compound fraction!
9See this article on focal length.

https://en.wikipedia.org/wiki/Focal_length
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denominators by multiplying both sides by fS1S2 - provided each is nonzero. We end up with
an equation which is linear in S1 so we proceed as in the previous example.

1
f

=
1
S1

+
1
S2(

1
f

)
(fS1S2) =

(
1
S1

+
1
S2

)
(fS1S2) Provided f 6= 0, S1 6= 0, S2 6= 0

fS1S2

f
=

fS1S2

S1
+

fS1S2

S2
Multiply, distribute

�fS1S2

�f
=

f��S1S2

��S1

+
fS1��S2

��S2

Cancel

S1S2 = fS2 + fS1

S1S2 − fS1 = fS2 Subtract fS1

S1(S2 − f ) = fS2 Factor

S1 =
fS2

S2 − f
Divide provided S2 6= f

As always, the reader is highly encouraged to check the answer.10

10. . . and see what the restriction S2 6= f means in terms of focusing a camera!
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0.8.1 Exercises

In Exercises 1 - 21, perform the indicated operations and simplify.

1.
x2 − 9

x2 · 3x
x2 − x − 6

2.
t2 − 2t
t2 + 1

÷ (3t2 − 2t − 8) 3.
4y − y2

2y + 1
÷ y2 − 16

2y2 − 5y − 3

4.
x + 1

x2 − 1
÷ x − 1

x + 1
5.

x + 1
6x2 + 17x + 5

· 3x + 1
x + 1 6.

x + y
xy
÷
(

1
x

+
1
y

)

7.
x

3x − 1
− 1− x

3x − 1
8.

2
w − 1

− w2 + 1
w − 1

9.
2− y

3y
− 1− y

3y
+

y2 − 1
3y

10. b +
1

b − 3
− 2 11.

2x
x − 4

− 1
2x + 1

12.
m2

m2 − 4
+

1
2−m

13.

2
x
− 2

x − 1 14.

3
2− h

− 3
2

h
15.

1
x + h

− 1
x

h

16. 3w−1 − (3w)−1 17. −2y−1 + 2(3− y )−2 18. 3(x − 2)−1 − 3x(x − 2)−2

19.
t−1 + t−2

t−3 20.
2(3 + h)−2 − 2(3)−2

h
21. (7− x − h)−1 − (7− x)−1

h

In Exercises 22 - 33, find all real solutions. Be sure to check for extraneous solutions.

22.
x

5x + 4
= 3 23.

3y − 1
y2 + 1

= 1 24.
1

w + 3
+

1
w − 3

=
w2 − 3
w2 − 9

25.
2x

x − 5
= 3 +

1− x
x − 3

26.
2

x − 2
− 2

x + 3
= 1 27. t + 3 +

1
t + 3

= 2

28.
2x + 17

x + 1
= x + 5 29.

t2 − 2t + 1
t3 + t2 − 2t

= 1 30.
−y3 + 4y

y2 − 9
= 4y

31. w +
√

3 =
3w − w3

w −
√

3
32.

2
x
√

2− 1
− 1 =

3
x
√

2 + 1
33.

x2

(1 + x
√

3)2
= 3

In Exercises 34 - 36, use Theorem 0.3 along with the techniques in this section to find all real
solutions.

34.
∣∣∣∣ 3n
n − 1

∣∣∣∣ = 3 35.
∣∣∣∣ 2x
x2 − 1

∣∣∣∣ = 2 36.
∣∣∣∣ 2t
4− t2

∣∣∣∣ =
∣∣∣∣ 2
t − 2

∣∣∣∣
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In Exercises 37 - 42, solve the given equation for the indicated variable.

37. Solve for y :
1− 2y
y + 3

= x 38. Solve for y : x = 3− 2
1− y

39.11 Solve for T2:
V1

T1
=

V2

T2

40. Solve for t0:
t0

1− t0t1
= 2

41. Solve for x :
1

x − v
+

1
x + v

= 5 42. Solve for R: P =
25R

(R + 4)2

11Recall: subscripts on variables have no intrinsic mathematical meaning; they’re just used to distinguish one variable
from another. In other words, treat quantities like ‘V1’ and ‘V2’ as two different variables as you would ‘x ’ and ‘y .’
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0.8.2 Answers

1.
3(x + 3)
x(x + 2)

, x 6= 3 2.
t

(3t + 4)(t2 + 1)
, t 6= 2 3. −y (y − 3)

y + 4
, y 6= −1

2 , 3, 4

4.
x + 1

(x − 1)2 , x 6= −1 5.
1

2x + 5
, x 6= −1

3 6. 1, x 6= 0, y 6= 0

7.
2x − 1
3x − 1

8. −w − 1, w 6= 1 9.
y
3

, y 6= 0

10.
b2 − 5b + 7

b − 3
11.

4x2 + x + 4
(x − 4)(2x + 1)

12.
m + 1
m + 2

, m 6= 2

13. −2
x

, x 6= 1 14.
3

4− 2h
, h 6= 0 15. − 1

x(x + h)
, h 6= 0

16.
8

3w
17. −2(y2 − 7y + 9)

y (y − 3)2 18. − 6
(x − 2)2

19. t2 + t , t 6= 0 20. − 2(h + 6)
9(h + 3)2 , h 6= 0 21.

1
(7− x)(7− x − h)

, h 6= 0

22. x = −6
7

23. y = 1, 2 24. w = −1

25. x =
10
3 26. x =

−1±
√

65
2

27. t = −2

28. x = −6, 2 29. No solution. 30. y = 0,±2
√

2

31. w = −
√

3,−1 32. x = −3
√

2
2

,
√

2 33. x = −
√

3
2

,−
√

3
4

34. n =
1
2

35. x =
1±
√

5
2

,
−1±

√
5

2
36. t = −1

37. y =
1− 3x
x + 2

, y 6= −3 38. y =
x − 1
x − 3

, y 6= 1

39. T2 =
V2T1

V1
, T1 6= 0, T2 6= 0 40. t0 =

2
2t1 + 1

41. x =
1±
√

25v2 + 1
5

, x 6= ±v . 42. R =
(25− 8P)± 5

√
25− 16P

2P
, R 6= −4
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0.9 Radicals and Equations

In this section we review simplifying expressions and solving equations involving radicals. In addi-
tion to the product, quotient and power rules stated in Theorem 0.1 in Section 0.2, we present the
following result which states that nth roots and nth powers more or less ‘undo’ each other.

Theorem 0.11. Simplifying nth powers of nth roots: Suppose n is a natural number, a is a
real number and n

√
a is a real number. Then

• ( n
√

a)n = a

• if n is odd, n
√

an = a; if n is even, n
√

an = |a|.

Since n
√

a is defined so that ( n
√

a)n = a, the first claim in the theorem is just a re-wording of
Definition 0.8. The second part of the theorem breaks down along odd/even exponent lines due to
how exponents affect negatives. To see this, consider the specific cases of 3

√
(−2)3 and 4

√
(−2)4.

In the first case, 3
√

(−2)3 = 3
√
−8 = −2, so we have an instance of when n

√
an = a. The reason that

the cube root ‘undoes’ the third power in 3
√

(−2)3 = −2 is because the negative is preserved when
raised to the third (odd) power. In 4

√
(−2)4, the negative ‘goes away’ when raised to the fourth

(even) power: 4
√

(−2)4 = 4
√

16. According to Definition 0.8, the fourth root is defined to give only
non-negative numbers, so 4

√
16 = 2. Here we have a case where 4

√
(−2)4 = 2 = | − 2|, not −2.

In general, we need the absolute values to simplify n
√

an only when n is even because a negative
to an even power is always positive. In particular,

√
x2 = |x |, not just ‘x ’ (unless we know x ≥ 0.)1

We practice these formulas in the following example.

Example 0.9.1. Perform the indicated operations and simplify.

1.
√

x2 + 1 2.
√

t2 − 10t + 25 3. 3
√

48x14 4. 4

√
πr4

L8

5. 2x 3
√

x2 − 4 +
(

1
( 3
√

x2 − 4)2

)
(2x) 6.

√
(
√

18y −
√

8y )2 + (
√

20−
√

80)2

Solution.

1. We told you back on page 32 that roots do not ‘distribute’ across addition and since x2 + 1
cannot be factored over the real numbers,

√
x2 + 1 cannot be simplified. It may seem silly

to start with this example but it is extremely important that you understand what maneuvers
are legal and which ones are not.2

1If this discussion sounds familiar, see the discussion following Definition 0.9 and the discussion following ‘Extracting
the Square Root’ on page 81.

2You really do need to understand this otherwise horrible evil will plague your future studies in Math. If you say
something totally wrong like

√
x2 + 1 = x + 1 then you may never pass Calculus. PLEASE be careful!



110 Prerequisites

2. Again we note that
√

t2 − 10t + 25 6=
√

t2−
√

10t+
√

25, since radicals do not distribute across
addition and subtraction.3 In this case, however, we can factor the radicand and simplify as√

t2 − 10t + 25 =
√

(t − 5)2 = |t − 5|

Without knowing more about the value of t , we have no idea if t − 5 is positive or negative
so |t − 5| is our final answer.4

3. To simplify 3
√

48x14, we need to look for perfect cubes in the radicand. For the cofficient, we
have 48 = 8 · 6 = 23 · 6. To find the largest perfect cube factor in x14, we divide 14 (the
exponent on x) by 3 (since we are looking for a perfect cube). We get 4 with a remainder of
2. This means 14 = 4 · 3 + 2, so x14 = x4·3+2 = x4·3x2 = (x4)3x2. Putting this altogether gives:

3
√

48x14 = 3
√

23 · 6 · (x4)3x2 Factor out perfect cubes
= 3
√

23 3
√

(x4)3 3
√

6x2 Rearrange factors, Product Rule of Radicals

= 2x4 3
√

6x2

4. In this example, we are looking for perfect fourth powers in the radicand. In the numerator r4

is clearly a perfect fourth power. For the denominator, we take the power on the L, namely
12, and divide by 4 to get 3. This means L8 = L2·4 = (L2)4. We get

4

√
πr4

L12 =
4
√
πr4

4
√

L12
Quotient Rule of Radicals

=
4
√
π

4
√

r4

4
√

(L2)4
Product Rule of Radicals

=
4
√
π|r |
|L2|

Simplify

Without more information about r , we cannot simplify |r | any further. However, we can
simplify |L2|. Regardless of the choice of L, L2 ≥ 0. Actually, L2 > 0 because L is in the
denominator which means L 6= 0. Hence, |L2| = L2. Our answer simplifies to:

4
√
π|r |
|L2|

=
|r | 4
√
π

L2

5. First, we need to obtain a common denominator. Since we can view the first term as having
a denominator of 1, the common denominator is precisely the denominator of the second
term, namely ( 3

√
x2 − 4)2. With common denominators, we proceed to add the two fractions.

3Let t = 1 and see what happens to
√

t2 − 10t + 25 versus
√

t2 −
√

10t +
√

25.
4In general, |t − 5| 6= |t | − |5| and |t − 5| 6= t + 5 so watch what you’re doing!
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Our last step is to factor the numerator to see if there are any cancellation opportunities with
the denominator.

2x 3
√

x2 − 4 +
(

1
( 3
√

x2 − 4)2

)
(2x) = 2x 3

√
x2 − 4 +

2x
( 3
√

x2 − 4)2
Mutiply

= (2x 3
√

x2 − 4) · ( 3
√

x2 − 4)2

( 3
√

x2 − 4)2
+

2x
( 3
√

x2 − 4)2
Equivalent

fractions

=
2x( 3
√

x2 − 4)3

( 3
√

x2 − 4)2
+

2x
( 3
√

x2 − 4)2
Multiply

=
2x(x2 − 4)
( 3
√

x2 − 4)2
+

2x
( 3
√

x2 − 4)2
Simplify

=
2x(x2 − 4) + 2x

( 3
√

x2 − 4)2
Add

=
2x(x2 − 4 + 1)

( 3
√

x2 − 4)2
Factor

=
2x(x2 − 3)
( 3
√

x2 − 4)2

We cannot reduce this any further because x2 − 3 is irreducible over the rational numbers.

6. We begin by working inside each set of parentheses, using the product rule for radicals and
combining like terms.√

(
√

18y −
√

8y )2 + (
√

20−
√

80)2 =
√

(
√

9 · 2y −
√

4 · 2y )2 + (
√

4 · 5−
√

16 · 5)2

=
√

(
√

9
√

2y −
√

4
√

2y )2 + (
√

4
√

5−
√

16
√

5)2

=
√

(3
√

2y − 2
√

2y )2 + (2
√

5− 4
√

5)2

=
√

(
√

2y )2 + (−2
√

5)2

=
√

2y + (−2)2(
√

5)2

=
√

2y + 4 · 5

=
√

2y + 20

To see if this simplifies any further, we factor the radicand:
√

2y + 20 =
√

2(y + 10). Finding
no perfect square factors, we are done.

Theorem 0.11 allows us to generalize the process of ‘Extracting Square Roots’ to ‘Extracting nth

roots’ which in turn allows us to solve equations5 of the form X n = c.
5Well, not entirely. The equation x7 = 1 has seven answers: x = 1 and six complex number solutions.
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Extracting nth roots:

• If c is a real number and n is odd then the real number solution to X n = c is X = n
√

c.

• If c ≥ 0 and n is even then the real number solutions to X n = c are X = ± n
√

c.

Note: If c < 0 and n is even then X n = c has no real number solutions.

Essentially, we solve X n = c by ‘taking the nth root’ of both sides: n
√

X n = n
√

c. Simplifying the left
side gives us just X if n is odd or |X | if n is even. In the first case, X = n

√
c, and in the second,

X = ± n
√

c. Putting this together with the other part of Theorem 0.11, namely ( n
√

a)n = a, gives us a
strategy for solving equations which involve nth and nth roots.

Strategies for Power and Radical Equations

• If the equation involves an nth power and the variable appears in only one term, isolate
the term with the nth power and extract nth roots.

• If the equation involves an nth root and the variable appears in that nth root, isolate the nth

root and raise both sides of the equation to the nth power.

Note: When raising both sides of an equation to an even power, be sure to check for
extraneous solutions.

The note about ‘extraneous solutions’ can be demonstrated by the basic equation:
√

x = −2. This
equation has no solution since, by definition,

√
x ≥ 0 for all real numbers x . However, if we square

both sides of this equation, we get (
√

x)2 = (−2)2 or x = 4. However, x = 4 doesn’t check in the
original equation, since

√
4 = 2, not −2. Once again, the root6 of all of our problems lies in the

fact that a negative number to an even power results in a positive number. In other words, raising
both sides of an equation to an even power does not produce an equivalent equation, but rather,
an equation which may possess more solutions than the original. Hence the cautionary remark
above about extraneous solutions.

Example 0.9.2. Solve the following equations.

1. (5x + 3)4 = 16 2. 1− (5− 2w)3

7
= 9 3. t +

√
2t + 3 = 6

4.
√

2− 3 3
√

2y + 1 = 0 5.
√

4x − 1 + 2
√

1− 2x = 1 6. 4
√

n2 + 2 + n = 0

For the remaining problems, assume that all of the variables represent positive real numbers.7

7. Solve for r : V = 4π
3 (R3 − r3). 8. Solve for v : m =

m0√
1− v2

c2

.

6Pun intended!
7That is, you needn’t worry that you’re multiplying or dividing by 0 or that you’re forgetting absolute value symbols.
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Solution.

1. In our first equation, the quantity containing x is already isolated, so we extract fourth roots.
Since the exponent here is even, when the roots are extracted we need both the positive and
negative roots.

(5x + 3)4 = 16
5x + 3 = ± 4

√
16 Extract fourth roots

5x + 3 = ±2
5x + 3 = 2 or 5x + 3 = −2

x = −1
5

or x = −1

We leave it to the reader that both of these solutions satisfy the original equation.

2. In this example, we first need to isolate the quantity containing the variable w . Here, third
(cube) roots are required and since the exponent (index) is odd, we do not need the ±:

1− (5− 2w)3

7
= 9

− (5− 2w)3

7
= 8 Subtract 1

(5− 2w)3 = −56 Multiply by −7
5− 2w = 3

√
−56 Extract cube root

5− 2w = 3
√

(−8)(7)
5− 2w = 3

√
−8 3
√

7 Product Rule
5− 2w = −2 3

√
7

−2w = −5− 2 3
√

7 Subtract 5

w =
−5− 2 3

√
7

−2
Divide by −2

w =
5 + 2 3

√
7

2
Properties of Negatives

The reader should check the answer because it provides a hearty review of arithmetic.

3. To solve t +
√

2t + 3 = 6, we first isolate the square root, then proceed to square both sides
of the equation. In doing so, we run the risk of introducing extraneous solutions so checking
our answers here is a necessity.

t +
√

2t + 3 = 6√
2t + 3 = 6− t Subtract t

(
√

2t + 3)2 = (6− t)2 Square both sides
2t + 3 = 36− 12t + t2 Perfect Square Trinomial

0 = t2 − 14t + 33 Subtract 2t and 3
0 = (t − 3)(t − 11) Factor
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From the Zero Product Property, we know either t − 3 = 0 (which gives t = 3) or t − 11 = 0
(which gives t = 11). When checking our answers, we find t = 3 satisfies the original
equation, but t = 11 does not.8 So our final answer is t = 3 only.

4. In our next example, we locate the variable (in this case y ) beneath a cube root, so we first
isolate that root and cube both sides.

√
2− 3 3

√
2y + 1 = 0

−3 3
√

2y + 1 = −
√

2 Subtract
√

2

3
√

2y + 1 =
−
√

2
−3

Divide by −3

3
√

2y + 1 =
√

2
3

Properties of Negatives

( 3
√

2y + 1)3 =

(√
2

3

)3

Cube both sides

2y + 1 =
(
√

2)3

33

2y + 1 =
2
√

2
27

2y =
2
√

2
27
− 1 Subtract 1

2y =
2
√

2− 27
27

Subtract fractions

y =
2
√

2− 27
54

Divide by 2
(
multiply by 1

2

)
Since we raised both sides to an odd power, we don’t need to worry about extraneous
solutions but we encourage the reader to check the solution just for the fun of it.

5. In the equation
√

4x − 1 + 2
√

1− 2x = 1, we have not one but two square roots. We begin
by isolating one of the square roots and squaring both sides.
√

4x − 1 + 2
√

1− 2x = 1√
4x − 1 = 1− 2

√
1− 2x Subtract 2

√
1− 2x from both sides

(
√

4x − 1)2 = (1− 2
√

1− 2x)2 Square both sides
4x − 1 = 1− 4

√
1− 2x + (2

√
1− 2x)2 Perfect Square Trinomial

4x − 1 = 1− 4
√

1− 2x + 4(1− 2x)
4x − 1 = 1− 4

√
1− 2x + 4− 8x Distribute

4x − 1 = 5− 8x − 4
√

1− 2x Gather like terms

8It is worth noting that when t = 11 is substituted into the original equation, we get 11 +
√

25 = 6. If the +
√

25 were
−
√

25, the solution would check. Once again, when squaring both sides of an equation, we lose track of ±, which is
what lets extraneous solutions in the door.
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At this point, we have just one square root so we proceed to isolate it and square both sides
a second time.

4x − 1 = 5− 8x − 4
√

1− 2x
12x − 6 = −4

√
1− 2x Subtract 5, add 8x

(12x − 6)2 = (−4
√

1− 2x)2 Square both sides
144x2 − 144x + 36 = 16(1− 2x)
144x2 − 144x + 36 = 16− 32x
144x2 − 112x + 20 = 0 Subtract 16, add 32x
4(36x2 − 28x + 5) = 0 Factor

4(2x − 1)(18x − 5) = 0 Factor some more

From the Zero Product Property, we know either 2x −1 = 0 or 18x −5 = 0. The former gives
x = 1

2 while the latter gives us x = 5
18 . Since we squared both sides of the equation (twice!),

we need to check for extraneous solutions. We find x = 5
18 to be extraneous, so our only

solution is x = 1
2 .

6. As usual, our first step in solving 4
√

n2 + 2 + n = 0 is to isolate the radical. We then proceed
to raise both sides to the fourth power to eliminate the fourth root:

4
√

n2 + 2 + n = 0
4
√

n2 + 2 = −n Subtract n
( 4
√

n2 + 2)4 = (−n)4 Raise both sides to the 4th power
n2 + 2 = n4

0 = n4 − n2 − 2 Subtract n2 and 2
0 = (n2 − 2)(n2 + 1) Factor - ‘Quadratic in Disguise’

At this point, the Zero Product Property gives either n2−2 = 0 or n2 + 1 = 0. From n2−2 = 0,
we get n2 = 2, so n = ±

√
2. From n2 + 1 = 0, we get n2 = −1, which gives no real solutions.9

Since we raised both sides to an even (the fourth) power, we need to check for extraneous
solutions. We find that n = −

√
2 works but n =

√
2 is extraneous.

7. In this problem, we are asked to solve for r . While there are a lot of letters in this equation, r
appears in only one term: r3. Our strategy is to isolate r3 then extract the cube root.

V =
4π
3

(R3 − r3)

3V = 4π(R3 − r3) Multiply by 3
3V = 4πR3 − 4πr3 Distribute

3V − 4πR3 = −4πr3 Subtract 4πR3

9Why is that again?
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3V − 4πR3

−4π
= r3 Divide by −4π

4πR3 − 3V
4π

= r3 Properties of Negatives

3

√
4πR3 − 3V

4π
= r Extract the cube root

The check is, as always, left to the reader and highly encouraged.

8. Our last equation to solve comes from Einstein’s Special Theory of Relativity and relates the
mass of an object to its velocity as it moves.10 We are asked to solve for v which is located in
just one term, namely v2, which happens to lie in a fraction underneath a square root which
is itself a denominator. We have quite a lot of work ahead of us!

m =
m0√

1− v2

c2

m
√

1− v2

c2 = m0 Multiply by
√

1− v2

c2(
m
√

1− v2

c2

)2

= m2
0 Square both sides

m2
(

1− v2

c2

)
= m2

0 Properties of Exponents

m2 − m2v2

c2 = m2
0 Distribute

−m2v2

c2 = m2
0 −m2 Subtract m2

m2v2 = −c2(m2
0 −m2) Multiply by −c2 (c2 6= 0)

m2v2 = −c2m2
0 + c2m2 Distribute

v2 =
−c2m2

0 + c2m2

m2 Divide by m2 (m2 6= 0)

v2 =
c2m2 − c2m2

0

m2 Rearrange

v =

√
c2m2 − c2m2

0

m2 Extract the square root,
remember v > 0

10See this article on the Lorentz Factor.

http://en.wikipedia.org/wiki/Lorentz_factor
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v =

√
c2(m2 −m2

0 )√
m2

Properties of Radicals

v =
|c|
√

m2 −m2
0

|m|

v =
c
√

m2 −m2
0

m
since c > 0 and m > 0

Checking the answer algebraically would earn the reader great honor and respect on the
Algebra battlefield so it is highly recommended.

0.9.1 Rationalizing Denominators and Numerators

In Section 0.7, there were a few instances where we needed to ‘rationalize’ a denominator - that
is, take a fraction with radical in the denominator and re-write it as an equivalent fraction with-
out a radical in the denominator. There are various reasons for wanting to do this, but the most
pressing reason is that rationalizing denominators - and numerators as well - gives us an oppor-
tunity for more practice with fractions and radicals. To help refresh your memory, we rationalize a
denominator and then a numerator below:

1√
2

=
√

2√
2
√

2
=
√

2√
4

=
√

2
2

and
7 3
√

4
3

=
7 3
√

4 3
√

2
3 3
√

2
=

7 3
√

8
3 3
√

2
=

7 · 2
3 3
√

2
=

14
3 3
√

2

In general, if the fraction contains either a single term numerator or denominator with an unde-
sirable nth root, we multiply the numerator and denominator by whatever is required to obtain a
perfect nth power in the radicand that we want to eliminate. If the fraction contains two terms the
situation is somewhat more complicated. To see why, consider the fraction 3

4−
√

5
. Suppose we

wanted to rid the denominator of the
√

5 term. We could try as above and multiply numerator and
denominator by

√
5 but that just yields:

3
4−
√

5
=

3
√

5
(4−

√
5)
√

5
=

3
√

5
4
√

5−
√

5
√

5
=

3
√

5
4
√

5− 5

We haven’t removed
√

5 from the denominator - we’ve just shuffled it over to the other term in the
denominator. As you may recall, the strategy here is to multiply both numerator and denominator
by what’s called the conjugate.

Definition 0.17. Congugate of a Square Root Expression: If a, b and c are real numbers with
c > 0 then the quantities (a + b

√
c) and (a−b

√
c) are conjugates of one another.a Conjugates

multiply according to the Difference of Squares Formula:

(a + b
√

c)(a− b
√

c) = a2 − (b
√

c)2 = a2 − b2c
aAs are (b

√
c − a) and (b

√
c + a): (b

√
c − a)(b

√
c + a) = b2c − a2.
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That is, to get the conjugate of a two-term expression involving a square root, you change the ‘−’
to a ‘+,’ or vice-versa. For example, the conjugate of 4−

√
5 is 4 +

√
5, and when we multiply these

two factors together, we get (4−
√

5)(4 +
√

5) = 42 − (
√

5)2 = 16− 5 = 11. Hence, to eliminate the√
5 from the denominator of our original fraction, we multiply both the numerator and denominator

by the conjugate of 4−
√

5:

3
4−
√

5
=

3(4 +
√

5)
(4−

√
5)(4 +

√
5)

=
3(4 +

√
5)

42 − (
√

5)2
=

3(4 +
√

5)
16− 5

=
12 + 3

√
5

11

What if we had 3
√

5 instead of
√

5? We could try multiplying 4− 3
√

5 by 4 + 3
√

5 to get

(4− 3
√

5)(4 + 3
√

5) = 42 − ( 3
√

5)2 = 16− 3
√

25,

which leaves us with a cube root. What we need to undo the cube root is a perfect cube, which
means we look to the Difference of Cubes Formula for inspiration: a3 − b3 = (a− b)(a2 + ab + b2).
If we take a = 4 and b = 3

√
5, we multiply

(4− 3
√

5)(42 + 4 3
√

5 + ( 3
√

5)2) = 43 + 42 3
√

5 + 4 3
√

5− 42 3
√

5− 4( 3
√

5)2 − ( 3
√

5)3 = 64− 5 = 59

So if we were charged with rationalizing the denominator of 3
4− 3√5

, we’d have:

3
4− 3
√

5
=

3(42 + 4 3
√

5 + ( 3
√

5)2)
(4− 3

√
5)(42 + 4 3

√
5 + ( 3
√

5)2)
=

48 + 12 3
√

5 + 3 3
√

25
59

This sort of thing extends to nth roots since (a− b) is a factor of an − bn for all natural numbers n,
but in practice, we’ll stick with square roots with just a few cube roots thrown in for a challenge.11

Example 0.9.3. Rationalize the indicated numerator or denominator:

1. Rationalize the denominator:
3

3
√

24x2 2. Rationalize the numerator:
√

9 + h − 3
h

Solution.

1. We are asked to rationalize the denominator, which in this case contains a third root. That
means we need to work to create third powers of each of the factors of the radicand. To do
so, we first factor the radicand: 24x2 = 8 · 3 · x2 = 23 · 3 · x2. To obtain third powers, we need

11To see what to do about fourth roots, use long division to find (a4 − b4)÷ (a− b), and apply this to 4− 4
√

5.
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to multiply by 32 · x inside the radical.

2
3
√

24x2
=

2
3
√

23 · 3 · x2

=
2 3
√

32 · x
3
√

23 · 3 · x2 · 3
√

32 · x
Equivalent Fractions

=
2 3
√

32 · x
3
√

23 · 3 · x2 · 32 · x
Product Rule

=
2 3
√

32 · x
3
√

23 · 33 · x3
Properties of Exponents

=
2 3
√

32 · x
2 · 3 · x

Product Rule

= �2
3
√

32 · x
�2 · 3 · x

Reduce

=
3
√

9x
3x

Simplify

2. Here, we are asked to rationalize the numerator. Since it is a two term numerator involving
a square root, we multiply both numerator and denominator by the conjugate of

√
9 + h − 3,

namely
√

9 + h + 3. After simplifying, we find an opportunity to reduce the fraction:
√

9 + h − 3
h

=
(
√

9 + h − 3)(
√

9 + h + 3)
h(
√

9 + h + 3)
Equivalent Fractions

=
(
√

9 + h)2 − 32

h(
√

9 + h + 3)
Difference of Squares

=
(9 + h)− 9

h(
√

9 + h + 3)
Simplify

=
h

h(
√

9 + h + 3)
Simplify

= ���
1

h

�h(
√

9 + h + 3)
Reduce

=
1√

9 + h + 3

We close this section with an awesome example from Calculus.

Example 0.9.4. Simplify the compound fraction

1√
2(x+h)+1

− 1√
2x+1

h
then rationalize the numerator

of the result.
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Solution. We start by multiplying the top and bottom of the ‘big’ fraction by
√

2x + 2h + 1
√

2x + 1.

1√
2(x + h) + 1

− 1√
2x + 1

h
=

1√
2x + 2h + 1

− 1√
2x + 1

h

=

(
1√

2x + 2h + 1
− 1√

2x + 1

)√
2x + 2h + 1

√
2x + 1

h
√

2x + 2h + 1
√

2x + 1

=

((((
(((√

2x + 2h + 1
√

2x + 1

((((
(((√

2x + 2h + 1
−
√

2x + 2h + 1���
��√

2x + 1
���

��√
2x + 1

h
√

2x + 2h + 1
√

2x + 1

=
√

2x + 1−
√

2x + 2h + 1
h
√

2x + 2h + 1
√

2x + 1

Next, we multiply the numerator and denominator by the conjugate of
√

2x + 1 −
√

2x + 2h + 1,
namely

√
2x + 1 +

√
2x + 2h + 1, simplify and reduce:

√
2x + 1−

√
2x + 2h + 1

h
√

2x + 2h + 1
√

2x + 1
=

(
√

2x + 1−
√

2x + 2h + 1)(
√

2x + 1 +
√

2x + 2h + 1)
h
√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

=
(
√

2x + 1)2 − (
√

2x + 2h + 1)2

h
√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

=
(2x + 1)− (2x + 2h + 1)

h
√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

=
2x + 1− 2x − 2h − 1

h
√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

=
−2�h

�h
√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

=
−2√

2x + 2h + 1
√

2x + 1(
√

2x + 1 +
√

2x + 2h + 1)

While the denominator is quite a bit more complicated than what we started with, we have done
what was asked of us. In the interest of full disclosure, the reason we did all of this was to cancel
the original ‘h’ from the denominator. That’s an awful lot of effort to get rid of just one little h, but
you’ll see the significance of this in Calculus.
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0.9.2 Rational Exponents and Equations

Recall the following definition.

Definition 0.18. Let x be a real number, m an integera and n a natural number.

• x
1
n = n
√

x and is defined whenever n
√

x is defined.

• x
m
n =

(
n
√

x
)m = n

√
xm, whenever

(
n
√

x
)m is defined.

aRecall this means m = 0,±1,±2, ...

As discussed in Section 0.2, rational exponents behave very similarly to the usual integer ex-
ponents, but there are exceptions and one has to be careful when attempting to apply the laws
of exponents. For instance, even though (x3/2)2/3 = x , it is not true that (x2/3)3/2 = x . If we
substitute x = −1 and apply Definition 0.18, we find (−1)2/3 =

(
3
√
−1
)2 = (−1)2 = 1 so that(

(−1)2/3)3/2
= 13/2 =

(√
1
)3

= 13 = 1. We see in this case that
(
x2/3)3/2 6= x . In fact,

(
x2/3

)3/2
=
((

3
√

x
)2
)3/2

=
(√(

3
√

x
)2
)3

=
(∣∣ 3
√

x
∣∣)3 =

∣∣∣( 3
√

x
)3
∣∣∣ = |x |

In the play-by-play analysis, we see that when we canceled the 2’s in multiplying 2
3 ·

3
2 , we were,

in fact, attempting to cancel a square with a square root. Recall that
√

x2 = |x |. The moral of
the story is that when simplifying fractional exponents, it’s often best to rewrite them as radicals.
However, in most other cases, rational exponents are preferred.

Example 0.9.5. Solve the following equations.

1. x2/3 = x4/3 − 6 2. 3(2− x)1/3 = x(2− x)−2/3

Solution.

1. To solve x2/3 = x4/3−6, we get 0 on one side and attempt to solve x4/3−x2/3−6 = 0. Since
there are three terms, and the exponent on one of the variable terms, x4/3, is exactly twice
that of the other, x2/3, we have ourselves a ‘quadratic in disguise’ and we can rewrite the
equation as

(
x2/3)2−x2/3−6 = 0. If we let u = x2/3, then in terms of u, we get u2−u−6 = 0.

Solving for u, we obtain u = −2 or u = 3. Replacing x2/3 back in for u, we get x2/3 = −2
or x2/3 = 3. To avoid the trouble we encountered in the discussion following Definition 0.18,
we now convert back to radical notation. By interpreting x2/3 as 3

√
x2 we have 3

√
x2 = −2

or 3
√

x2 = 3. Cubing both sides of these equations results in x2 = −8, which admits no real
solution, or x2 = 27, which gives the solutions x = ±3

√
3.
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2. To solve 3(2− x)1/3 = x(2− x)−2/3, we gather all the nonzero terms on one side and obtain
3(2− x)1/3 − x(2− x)−2/3 = 0. We set r (x) = 3(2− x)1/3 − x(2− x)−2/3. As in the previous
problem, the denominators of the rational exponents are odd, which means (2− x) can take
positive or negative values without concerns. However, the negative exponent on the second
term indicates a denominator. Rewriting r (x) with positive exponents, we obtain

r (x) = 3(2− x)1/3 − x
(2− x)2/3 .

Setting the denominator equal to zero we get (2 − x)2/3 = 0, or 3
√

(2− x)2 = 0. After cubing
both sides, and subsequently taking square roots, we get 2 − x = 0, or x = 2. Hence, x
can only take values in (−∞, 2) ∪ (2,∞). There are two school of thought on how to solve
r (x) = 0 and we demonstrate both.

• Factoring Approach. From r (x) = 3(2 − x)1/3 − x(2 − x)−2/3, we note that the quantity
(2−x) is common to both terms. When we factor out common factors, we factor out the
quantity with the smaller exponent. In this case, since −2

3 < 1
3 , we factor (2 − x)−2/3

from both quantities. While it may seem odd to do so, we need to factor (2−x)−2/3 from
(2− x)1/3, which results in subtracting the exponent −2

3 from 1
3 . We proceed using the

usual properties of exponents.

r (x) = 3(2− x)1/3 − x(2− x)−2/3

= (2− x)−2/3
[
3(2− x)

1
3−(− 2

3 ) − x
]

= (2− x)−2/3 [3(2− x)3/3 − x
]

= (2− x)−2/3 [3(2− x)− x ]
= (2− x)−2/3 (6− 4x)

To solve r (x) = 0, we set (2− x)−2/3 (6− 4x) = 0 and conclude 6− 4x = 0, so x = 3
2 .

• Common Denominator Approach. We rewrite

r (x) = 3(2− x)1/3 − x
(2− x)2/3

=
3(2− x)1/3(2− x)2/3

(2− x)2/3 − x
(2− x)2/3 common denominator

=
3(2− x)

1
3 + 2

3

(2− x)2/3 −
x

(2− x)2/3

=
3(2− x)− x

(2− x)2/3 =
6− 4x

(2− x)2/3

As before, when we set r (x) = 0, we obtain x = 3
2 .
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0.9.3 Exercises

In Exercises 1 - 17, perform the indicated operations and simplify.

1.
√

9x2 2. 3
√

8t3 3.
√

50y6

4. 3
√
−64x3 5.

√
81ab5 6.

√
75x6y

7.

√
54y3√
3y

8.
3
√

54x5

3
√

2x−1
9. 5
√

8w4 · 5
√

12w

10.
√

4t2 + 4t + 1 11.
√

w2 − 16w + 64 12.
√

(
√

12x −
√

3x)2 + 1

13.

√
c2 − v2

c2 14. 3

√
24πr5

L3 15. 4

√
32πε8

ρ12

16.
√

x − x + 1√
x

17. 3
√

1 + t2 +
( 1√

1 + t2

)
(−3t2)

In Exercises 18 - 29, find all real solutions.

18. (2x + 1)3 + 8 = 0 19.
(1− 2y )4

3
= 27 20.

1
1 + 2t3 = 4

21.
√

3x + 1 = 4 22. 5− 3
√

t2 + 1 = 1 23. x + 1 =
√

3x + 7

24. y +
√

3y + 10 = −2 25. 3t +
√

6− 9t = 2 26. 2x − 1 =
√

x + 3

27. w = 4
√

12− w2 28.
√

x − 2 +
√

x − 5 = 3 29.
√

2x + 1 = 3 +
√

4− x

In Exercises 30 - 33, solve each equation for the indicated variable. Assume all quantities repre-
sent positive real numbers.

30. Solve for h: I =
bh3

12
. 31. Solve for a: I0 =

5
√

3a4

16

32. Solve for g: T = 2π
√

L
g 33. Solve for v : L = L0

√
1− v2

c2 .

In Exercises 34 - 46, rationalize the numerator or denominator, and simplify.

34.
1√
3 35.

2
√

6
3

36.
3√

7− 2
37.

4
3−
√

2
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38.
6

2
√

3−
√

10 39.
√

5 + 1
2

40.
6

3
√

24x7
41.

6
3
√

9b2

42.
√

x − 2
x − 4 43.

3
√

x + 1− 2
x − 7

44.
√

x −
√

c
x − c 45.

3
√

x + h − 3
√

x
h

46.
√

2x + 2h + 1−
√

2x + 1
h

In Exercises 47 - 58, find all real solutions of the equation.

47. x
3
2 = 8 48. x

2
3 = 4 49. 4x

3
5 − 1 = 7

50. 5− (4− 2x)
2
3 = 1 51. x

2
7 + 4 = 4x

1
7 52. x

5
3 + 4x

2
3 − 21x−

1
3 = 0

53. (x + 1)
6
5 − (x + 1)

1
5 = 0 54. (x − 1)

3
2 + 4(x − 1)

1
2 = 0 55. 3(x − 2)

4
3 = x(x − 2)

1
3

56. x
7
3 − x

1
3 = 0 57. x

1
2 (x2 − 4) = 0 58. x−

1
2 (x + 5)2 = 0

59. The National Weather Service uses the following formula to calculate the wind chill:

W = 35.74 + 0.6215 Ta − 35.75 V 0.16 + 0.4275 Ta V 0.16,

where W is the wind chill temperature in ◦F, Ta is the air temperature in ◦F, and V is the wind
speed in miles per hour. Note that W is defined only for air temperatures at or lower than
50◦F and wind speeds above 3 miles per hour.

(a) Suppose the air temperature is 42◦ and the wind speed is 7 miles per hour. Find the
wind chill temperature. Round your answer to two decimal places.

(b) Suppose the air temperature is 37◦F and the wind chill temperature is 30◦F. Find the
wind speed. Round your answer to two decimal places.

60. The Cobb-Douglas production model states that the yearly total dollar value of the production
output P in an economy is a function of labor x (the total number of hours worked in a year)
and capital y (the total dollar value of all of the stuff purchased in order to make things).
Specifically, P = axby1−b. By fixing P, we create what’s known as an ‘isoquant’ and we can
then solve for y as a function of x . Assume that the Cobb-Douglas production model for the
country of Sasquatchia is P = 1.25x0.4y0.6. If P = 300 and x = 100, what is y?

http://www.nws.noaa.gov/om/windchill/windchillglossary.shtml
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0.9.4 Answers

1. 3|x | 2. 2t 3. 5
√

2|y3|

4. −4x 5. 9b2
√

ab 6. 5|x |3
√

3y

7. 3
√

2 y 8. 3x2 9. 2w 5
√

3

10. |2t + 1| 11. |w − 8| 12.
√

3x + 1

13.
√

c2 − v2

|c| 14.
2r 3
√

3πr2

L
15.

2ε2 4
√

2π
|ρ3|

16. − 1√
x

17.
3√

1 + t2

18. x = −3
2

19. y = −1, 2 20. t = −
3
√

3
2

21. x = 5 22. t = ±3
√

7 23. x = 3

24. y = −3 25. t = −1
3

,
2
3

26. x =
5 +
√

57
8

27. w =
√

3 28. x = 6 29. x = 4

30. h = 3

√
12I
b

31. a =
2 4
√

I0

4
√

5
√

3

32. g =
4π2L
T 2 33. v =

c
√

L2
0 − L2

L0

34.
√

3
3

35.
4√
6

36.
√

7 + 2 37.
4
7

(3 +
√

2)

38. 6
√

3 + 3
√

10 39.
2√

5− 1 40.
3
√

9x2

x3 41.
2 3
√

3b
b

42.
1√

x + 2
43.

1
( 3
√

x + 1)2 + 2 3
√

x + 1 + 4
44.

1√
x +
√

c

45.
1

( 3
√

x + h)2 + 3
√

x + h 3
√

x + ( 3
√

x)2
46.

2√
2x + 2h + 1 +

√
2x + 1
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47. x = 4 48. x = ±8 49. x = 2 3
√

4

50. x = −2, 6 51. x = 128 52. x = −7, 3

53. x = −1, 0 54. x = 1 55. x = 2, 3

56. x = −1, 0, 1 57. x = 0, 2 58. No solution.

59. (a) W ≈ 37.55◦F.

(b) V ≈ 9.84 miles per hour.

60. First rewrite the model as P = 1.25x
2
5 y

3
5 . Then 300 = 1.25x

2
5 y

3
5 yields y =

(
300

1.25x
2
5

) 5
3

.

If x = 100 then y ≈ 430.21486.



Chapter 1

Relations and Functions

1.1 The Cartesian Coordinate Plane

1.1.1 The Cartesian Coordinate Plane

In order to visualize the pure excitement that is Precalculus, we need to unite Algebra and Geom-
etry. Simply put, we must find a way to draw algebraic things. Let’s start with possibly the greatest
mathematical achievement of all time: the Cartesian Coordinate Plane.1

Imagine two real number lines crossing at a right angle at 0. The horizontal number line is usually
called the x-axis while the vertical number line is usually called the y-axis.2 As with the usual
number line, we imagine these axes extending off indefinitely in both directions.3 Having two
number lines allows us to locate the positions of points off of the number lines as well as points on
the lines themselves.

For example, consider the point P on the next page. To use the numbers on the axes to label this
point, we imagine dropping a vertical line from the x-axis to P and extending a horizontal line from
the y -axis to P. This process is sometimes called ‘projecting’ the point P to the x- (respectively
y -) axis. We then describe the point P using the ordered pair (2,−4). The first number in the
ordered pair is called the abscissa or x-coordinate and the second is called the ordinate or y-
coordinate.4 Taken together, the ordered pair (2,−4) comprise the Cartesian coordinates of the
point P. In practice, the distinction between a point and its coordinates is blurred; for example, we
often speak of ‘the point (2,−4).’ We can think of (2,−4) as instructions on how to reach P from
the origin (0, 0) by moving 2 units to the right and 4 units downwards. Notice that the order in the
ordered pair is important − if we wish to plot the point (−4, 2), we would move to the left 4 units

1So named in honor of René Descartes.
2The labels can vary depending on the context of application.
3Usually extending off towards infinity is indicated by arrows, but here, the arrows are used to indicate the direction

of increasing values of x and y .
4Again, the names of the coordinates can vary depending on the context of the application. If, for example, the

horizontal axis represented time we might choose to call it the t-axis. The first number in the ordered pair would then
be the t-coordinate.

http://en.wikipedia.org/wiki/Descartes
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from the origin and then move upwards 2 units, as below on the right.

x

y

P

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

y

P(2,−4)

(−4, 2)

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

When we speak of the Cartesian Coordinate Plane, we mean the set of all possible ordered pairs
(x , y ) as x and y take values from the real numbers. Below is a summary of important facts about
Cartesian coordinates.

Important Facts about the Cartesian Coordinate Plane

• (a, b) and (c, d) represent the same point in the plane if and only if a = c and b = d .

• (x , y ) lies on the x-axis if and only if y = 0.

• (x , y ) lies on the y -axis if and only if x = 0.

• The origin is the point (0, 0). It is the only point common to both axes.

Example 1.1.1. Plot the following points: A(5, 8), B
(
−5

2 , 3
)
, C(−5.8,−3), D(4.5,−1), E(5, 0),

F (0, 5), G(−7, 0), H(0,−9), O(0, 0).5

Solution. To plot these points, we start at the origin and move to the right if the x-coordinate is
positive; to the left if it is negative. Next, we move up if the y -coordinate is positive or down if it
is negative. If the x-coordinate is 0, we start at the origin and move along the y -axis only. If the
y -coordinate is 0 we move along the x-axis only.

5The letter O is almost always reserved for the origin.
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x

y

A(5, 8)

B
(
−5

2 , 3
)

C(−5.8,−3)

D(4.5,−1)

E(5, 0)

F (0, 5)

G(−7, 0)

H(0,−9)

O(0, 0)
−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

The axes divide the plane into four regions called quadrants. They are labeled with Roman
numerals and proceed counterclockwise around the plane:

x

y

Quadrant I

x > 0, y > 0

Quadrant II

x < 0, y > 0

Quadrant III

x < 0, y < 0

Quadrant IV

x > 0, y < 0

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4
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For example, (1, 2) lies in Quadrant I, (−1, 2) in Quadrant II, (−1,−2) in Quadrant III and (1,−2)
in Quadrant IV. If a point other than the origin happens to lie on the axes, we typically refer to that
point as lying on the positive or negative x-axis (if y = 0) or on the positive or negative y -axis
(if x = 0). For example, (0, 4) lies on the positive y -axis whereas (−117, 0) lies on the negative
x-axis. Such points do not belong to any of the four quadrants.

One of the most important concepts in all of Mathematics is symmetry.6 There are many types of
symmetry in Mathematics, but three of them can be discussed easily using Cartesian Coordinates.

Definition 1.1. Two points (a, b) and (c, d) in the plane are said to be

• symmetric about the x-axis if a = c and b = −d

• symmetric about the y-axis if a = −c and b = d

• symmetric about the origin if a = −c and b = −d

Schematically,

0 x

y

P(x , y )Q(−x , y )

S(x ,−y )R(−x ,−y )

In the above figure, P and S are symmetric about the x-axis, as are Q and R; P and Q are
symmetric about the y -axis, as are R and S; and P and R are symmetric about the origin, as are
Q and S.

Example 1.1.2. Let P be the point (−2, 3). Find the points which are symmetric to P about the:

1. x-axis 2. y -axis 3. origin

Check your answer by plotting the points.

Solution. The figure after Definition 1.1 gives us a good way to think about finding symmetric
points in terms of taking the opposites of the x- and/or y -coordinates of P(−2, 3).

6According to Carl. Jeff thinks symmetry is overrated.
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1. To find the point symmetric about the x-axis, we replace the y -coordinate with its opposite
to get (−2,−3).

2. To find the point symmetric about the y -axis, we replace the x-coordinate with its opposite
to get (2, 3).

3. To find the point symmetric about the origin, we replace the x- and y -coordinates with their
opposites to get (2,−3).

x

y

P(−2, 3)

(−2,−3)

(2, 3)

(2,−3)

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

One way to visualize the processes in the previous example is with the concept of a reflection. If
we start with our point (−2, 3) and pretend that the x-axis is a mirror, then the reflection of (−2, 3)
across the x-axis would lie at (−2,−3). If we pretend that the y -axis is a mirror, the reflection of
(−2, 3) across that axis would be (2, 3). If we reflect across the x-axis and then the y -axis, we
would go from (−2, 3) to (−2,−3) then to (2,−3), and so we would end up at the point symmetric
to (−2, 3) about the origin. We summarize and generalize this process below.

Reflections
To reflect a point (x , y ) about the:

• x-axis, replace y with −y .

• y -axis, replace x with −x .

• origin, replace x with −x and y with −y .

1.1.2 Distance in the Plane

Another important concept in Geometry is the notion of length. If we are going to unite Algebra
and Geometry using the Cartesian Plane, then we need to develop an algebraic understanding of
what distance in the plane means. Suppose we have two points, P (x0, y0) and Q (x1, y1) , in the
plane. By the distance d between P and Q, we mean the length of the line segment joining P with
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Q. (Remember, given any two distinct points in the plane, there is a unique line containing both
points.) Our goal now is to create an algebraic formula to compute the distance between these
two points. Consider the generic situation below on the left.

P (x0, y0)

Q (x1, y1)
d

P (x0, y0)

Q (x1, y1)
d

(x1, y0)

With a little more imagination, we can envision a right triangle whose hypotenuse has length d as
drawn above on the right. From the latter figure, we see that the lengths of the legs of the triangle
are |x1 − x0| and |y1 − y0| so the Pythagorean Theorem gives us

|x1 − x0|2 + |y1 − y0|2 = d2

(x1 − x0)2 + (y1 − y0)2 = d2

(Do you remember why we can replace the absolute value notation with parentheses?) By extract-
ing the square root of both sides of the second equation and using the fact that distance is never
negative, we get

Equation 1.1. The Distance Formula: The distance d between the points P (x0, y0) and
Q (x1, y1) is:

d =
√

(x1 − x0)2 + (y1 − y0)2

It is not always the case that the points P and Q lend themselves to constructing such a triangle.
If the points P and Q are arranged vertically or horizontally, or describe the exact same point, we
cannot use the above geometric argument to derive the distance formula. It is left to the reader in
Exercise 16 to verify Equation 1.1 for these cases.

Example 1.1.3. Find and simplify the distance between P(−2, 3) and Q(1,−3).

Solution.

d =
√

(x1 − x0)2 + (y1 − y0)2

=
√

(1− (−2))2 + (−3− 3)2

=
√

9 + 36
= 3

√
5

So the distance is 3
√

5.

http://en.wikipedia.org/wiki/Pythagorean_Theorem
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Example 1.1.4. Find all of the points with x-coordinate 1 which are 4 units from the point (3, 2).

Solution. We shall soon see that the points we wish to find are on the line x = 1, but for now we’ll
just view them as points of the form (1, y ). Visually,

(1, y )

(3, 2)

x

y

distance is 4 units

2 3

−3

−2

−1

1

2

3

We require that the distance from (3, 2) to (1, y ) be 4. The Distance Formula, Equation 1.1, yields

d =
√

(x1 − x0)2 + (y1 − y0)2

4 =
√

(1− 3)2 + (y − 2)2

4 =
√

4 + (y − 2)2

42 =
(√

4 + (y − 2)2
)2

squaring both sides
16 = 4 + (y − 2)2

12 = (y − 2)2

(y − 2)2 = 12
y − 2 = ±

√
12 extracting the square root

y − 2 = ±2
√

3
y = 2± 2

√
3

We obtain two answers: (1, 2 + 2
√

3) and (1, 2− 2
√

3). The reader is encouraged to think about
why there are two answers.

Related to finding the distance between two points is the problem of finding the midpoint of the
line segment connecting two points. Given two points, P (x0, y0) and Q (x1, y1), the midpoint M of
P and Q is defined to be the point on the line segment connecting P and Q whose distance from
P is equal to its distance from Q.
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P (x0, y0)

Q (x1, y1)

M

If we think of reaching M by going ‘halfway over’ and ‘halfway up’ we get the following formula.

Equation 1.2. The Midpoint Formula: The midpoint M of the line segment connecting
P (x0, y0) and Q (x1, y1) is:

M =
(x0 + x1

2
,
y0 + y1

2

)
If we let d denote the distance between P and Q, we leave it as Exercise 17 to show that the
distance between P and M is d/2 which is the same as the distance between M and Q. This
suffices to show that Equation 1.2 gives the coordinates of the midpoint.

Example 1.1.5. Find the midpoint of the line segment connecting P(−2, 3) and Q(1,−3).

Solution.

M =
(x0 + x1

2
,
y0 + y1

2

)
=
(

(−2) + 1
2

,
3 + (−3)

2

)
=
(
−1

2
,
0
2

)
=
(
−1

2
, 0
)

The midpoint is
(
−1

2 , 0
)
.

We close with a more abstract application of the Midpoint Formula. We will revisit the following
example in Exercise 72 in Section 2.1.

Example 1.1.6. If a 6= b, prove that the line y = x equally divides the line segment with endpoints
(a, b) and (b, a).

Solution. To prove the claim, we use Equation 1.2 to find the midpoint

M =
(

a + b
2

,
b + a

2

)
=
(

a + b
2

,
a + b

2

)
Since the x and y coordinates of this point are the same, we find that the midpoint lies on the line
y = x , as required.



1.1 The Cartesian Coordinate Plane 135

1.1.3 Exercises

1. Plot (approx.) and label the points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0),
F (−8, 4), G(9.2,−7.8) and H(7, 5) in the Cartesian Coordinate Plane given below.

x

y

−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

8

9

2. For each point given in Exercise 1 above

• Identify the quadrant or axis in/on which the point lies.

• Find the point symmetric to the given point about the x-axis.

• Find the point symmetric to the given point about the y -axis.

• Find the point symmetric to the given point about the origin.

In Exercises 3 - 10, find the distance d between the points and the midpoint M of the line segment
which connects them.

3. (1, 2), (−3, 5) 4. (3,−10), (−1, 2)
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5.
(

1
2

, 4
)

,
(

3
2

,−1
)

6.
(
−2

3
,
3
2

)
,
(

7
3

, 2
)

7.
(

24
5

,
6
5

)
,
(
−11

5
,−19

5

)
. 8.

(√
2,
√

3
)

,
(
−
√

8,−
√

12
)

9.
(

2
√

45,
√

12
)

,
(√

20,
√

27
)

. 10. (0, 0), (x , y )

11. Find all of the points of the form (x ,−1) which are 4 units from the point (3, 2).

12. Find all of the points on the y -axis which are 5 units from the point (−5, 3).

13. Find all of the points on the x-axis which are 2 units from the point (−1, 1).

14. Find all of the points of the form (x ,−x) which are 1 unit from the origin.

15. Let’s assume for a moment that we are standing at the origin and the positive y -axis points
due North while the positive x-axis points due East. Our Sasquatch-o-meter tells us that
Sasquatch is 3 miles West and 4 miles South of our current position. What are the coordi-
nates of his position? How far away is he from us? If he runs 7 miles due East what would
his new position be?

16. Verify the Distance Formula 1.1 for the cases when:

(a) The points are arranged vertically. (Hint: Use P(a, y0) and Q(a, y1).)

(b) The points are arranged horizontally. (Hint: Use P(x0, b) and Q(x1, b).)

(c) The points are actually the same point. (You shouldn’t need a hint for this one.)

17. Verify the Midpoint Formula by showing the distance between P(x1, y1) and M and the dis-
tance between M and Q(x2, y2) are both half of the distance between P and Q.

18. Show that the points A, B and C below are the vertices of a right triangle.

(a) A(−3, 2), B(−6, 4), and C(1, 8) (b) A(−3, 1), B(4, 0) and C(0,−3)

19. Find a point D(x , y ) such that the points A(−3, 1), B(4, 0), C(0,−3) and D are the corners
of a square. Justify your answer.

20. The world is not flat.7 Thus the Cartesian Plane cannot possibly be the end of the story.
Discuss with your classmates how you would extend Cartesian Coordinates to represent the
three dimensional world. What would the Distance and Midpoint formulas look like, assuming
those concepts make sense at all?

7There are those who disagree with this statement. Look them up on the Internet some time when you’re bored.
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1.1.4 Answers

1. The required points A(−3,−7), B(1.3,−2), C(π,
√

10), D(0, 8), E(−5.5, 0), F (−8, 4),
G(9.2,−7.8), and H(7, 5) are plotted in the Cartesian Coordinate Plane below.

x

y

A(−3,−7)

B(1.3,−2)

C(π,
√

10)

D(0, 8)

E(−5.5, 0)

F (−8, 4)

G(9.2,−7.8)

H(7, 5)
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2. (a) The point A(−3,−7) is

• in Quadrant III
• symmetric about x-axis with (−3, 7)
• symmetric about y -axis with (3,−7)
• symmetric about origin with (3, 7)

(b) The point B(1.3,−2) is

• in Quadrant IV
• symmetric about x-axis with (1.3, 2)
• symmetric about y -axis with (−1.3,−2)
• symmetric about origin with (−1.3, 2)
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(c) The point C(π,
√

10) is

• in Quadrant I
• symmetric about x-axis with (π,−

√
10)

• symmetric about y -axis with (−π,
√

10)
• symmetric about origin with (−π,−

√
10)

(d) The point D(0, 8) is

• on the positive y -axis
• symmetric about x-axis with (0,−8)
• symmetric about y -axis with (0, 8)
• symmetric about origin with (0,−8)

(e) The point E(−5.5, 0) is

• on the negative x-axis
• symmetric about x-axis with (−5.5, 0)
• symmetric about y -axis with (5.5, 0)
• symmetric about origin with (5.5, 0)

(f) The point F (−8, 4) is

• in Quadrant II
• symmetric about x-axis with (−8,−4)
• symmetric about y -axis with (8, 4)
• symmetric about origin with (8,−4)

(g) The point G(9.2,−7.8) is

• in Quadrant IV
• symmetric about x-axis with (9.2, 7.8)
• symmetric about y -axis with (−9.2,−7.8)

• symmetric about origin with (−9.2, 7.8)

(h) The point H(7, 5) is

• in Quadrant I
• symmetric about x-axis with (7,−5)
• symmetric about y -axis with (−7, 5)
• symmetric about origin with (−7,−5)

3. d = 5, M =
(
−1, 7

2

)
4. d = 4

√
10, M = (1,−4)

5. d =
√

26, M =
(
1, 3

2

)
6. d =

√
37
2 , M =

(5
6 , 7

4

)
7. d =

√
74, M =

(13
10 ,−13

10

)
8. d = 3

√
5, M =

(
−
√

2
2 ,−

√
3

2

)
9. d =

√
83, M =

(
4
√

5, 5
√

3
2

)
10. d =

√
x2 + y2, M =

( x
2 , y

2

)
11. (3 +

√
7,−1), (3−

√
7,−1) 12. (0, 3)

13. (−1 +
√

3, 0), (−1−
√

3, 0) 14.
(√

2
2 ,−

√
2

2

)
,
(
−
√

2
2 ,
√

2
2

)
15. (−3,−4), 5 miles, (4,−4)

18. (a) The distance from A to B is |AB| =
√

13, the distance from A to C is |AC| =
√

52,

and the distance from B to C is |BC| =
√

65. Since
(√

13
)2

+
(√

52
)2

=
(√

65
)2

, we
are guaranteed by the converse of the Pythagorean Theorem that the triangle is a right
triangle.

(b) Show that |AC|2 + |BC|2 = |AB|2

http://en.wikipedia.org/wiki/Pythagorean_theorem#Converse
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1.2 Relations

From one point of view,1 all of Precalculus can be thought of as studying sets of points in the plane.
With the Cartesian Plane now fresh in our memory we can discuss those sets in more detail and
as usual, we begin with a definition.

Definition 1.2. A relation is a set of points in the plane.

Since relations are sets, we can describe them using the techniques presented in Section 0.1. That
is, we can describe a relation verbally, using the roster method, or using set-builder notation. Since
the elements in a relation are points in the plane, we often try to describe the relation graphically or
algebraically as well. Depending on the situation, one method may be easier or more convenient
to use than another. As an example, consider the relation R = {(−2, 1), (4, 3), (0,−3)}. As written,
R is described using the roster method. Since R consists of points in the plane, we follow our
instinct and plot the points. Doing so produces the graph of R.

(−2, 1)

(4, 3)

(0,−3)

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graph of R.

In the following example, we graph a variety of relations.

Example 1.2.1. Graph the following relations.

1. A = {(0, 0), (−3, 1), (4, 2), (−3, 2)} 2. HLS1 = {(x , 3) | − 2 ≤ x ≤ 4}

3. HLS2 = {(x , 3) | − 2 ≤ x < 4} 4. V = {(3, y ) | y is a real number}

5. H = {(x , y ) | y = −2} 6. R = {(x , y ) |1 < y ≤ 3}
1Carl’s, of course.
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Solution.

1. To graph A, we simply plot all of the points which belong to A, as shown below on the left.

2. Don’t let the notation in this part fool you. The name of this relation is HLS1, just like the
name of the relation in number 1 was A. The letters and numbers are just part of its name,
just like the numbers and letters of the phrase ‘King George III’ were part of George’s name.
In words, {(x , 3) | − 2 ≤ x ≤ 4} reads ‘the set of points (x , 3) such that −2 ≤ x ≤ 4.’ All of
these points have the same y -coordinate, 3, but the x-coordinate is allowed to vary between
−2 and 4, inclusive. Some of the points which belong to HLS1 include some friendly points
like: (−2, 3), (−1, 3), (0, 3), (1, 3), (2, 3), (3, 3), and (4, 3). However, HLS1 also contains the
points (0.829, 3),

(
−5

6 , 3
)
, (
√
π, 3), and so on. It is impossible2 to list all of these points,

which is why the variable x is used. Plotting several friendly representative points should
convince you that HLS1 describes the horizontal line segment from the point (−2, 3) up to
and including the point (4, 3).

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of A

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS1

3. HLS2 is hauntingly similar to HLS1. In fact, the only difference between the two is that instead
of ‘−2 ≤ x ≤ 4’ we have ‘−2 ≤ x < 4’. This means that we still get a horizontal line segment
which includes (−2, 3) and extends to (4, 3), but we do not include (4, 3) because of the strict
inequality x < 4. How do we denote this on our graph? It is a common mistake to make the
graph start at (−2, 3) end at (3, 3) as pictured below on the left. The problem with this graph
is that we are forgetting about the points like (3.1, 3), (3.5, 3), (3.9, 3), (3.99, 3), and so forth.
There is no real number that comes ‘immediately before’ 4, so to describe the set of points
we want, we draw the horizontal line segment starting at (−2, 3) and draw an open circle at
(4, 3) as depicted below on the right.

2Really impossible. The interested reader is encouraged to research countable versus uncountable sets.

http://en.wikipedia.org/wiki/Countable_set
http://en.wikipedia.org/wiki/Uncountable_set
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x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

This is NOT the correct graph of HLS2

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of HLS2

4. Next, we come to the relation V , described as the set of points (3, y ) such that y is a real
number. All of these points have an x-coordinate of 3, but the y -coordinate is free to be
whatever it wants to be, without restriction.3 Plotting a few ‘friendly’ points of V should
convince you that all the points of V lie on the vertical line4 x = 3. Since there is no restriction
on the y -coordinate, we put arrows on the end of the portion of the line we draw to indicate
it extends indefinitely in both directions. The graph of V is below on the left.

5. Though written slightly differently, the relation H = {(x , y ) | y = −2} is similar to the relation V
above in that only one of the coordinates, in this case the y -coordinate, is specified, leaving
x to be ‘free’. Plotting some representative points gives us the horizontal line y = −2.

x

y

1 2 3 4

−4

−3

−2

−1

1

2

3

4

The graph of V

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

The graph of H

6. For our last example, we turn to R = {(x , y ) |1 < y ≤ 3}. As in the previous example, x is
free to be whatever it likes. The value of y , on the other hand, while not completely free, is
permitted to roam between 1 and 3 excluding 1, but including 3. After plotting some5 friendly
elements of R, it should become clear that R consists of the region between the horizontal

3We’ll revisit the concept of a ‘free variable’ in Section 2.2.
4Don’t worry, we’ll be refreshing your memory about vertical and horizontal lines in just a moment!
5The word ‘some’ is a relative term. It may take 5, 10, or 50 points until you see the pattern.
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lines y = 1 and y = 3. Since R requires that the y -coordinates be greater than 1, but not
equal to 1, we dash the line y = 1 to indicate that those points do not belong to R.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

The graph of R

The relations V and H in the previous example lead us to our final way to describe relations:
algebraically. We can more succinctly describe the points in V as those points which satisfy the
equation ‘x = 3’. Most likely, you have seen equations like this before. Depending on the context,
‘x = 3’ could mean we have solved an equation for x and arrived at the solution x = 3. In this
case, however, ‘x = 3’ describes a set of points in the plane whose x-coordinate is 3. Similarly, the
relation H above can be described by the equation ‘y = −2’. At some point in your mathematical
upbringing, you probably learned the following.

Equations of Vertical and Horizontal Lines

• The graph of the equation x = a is a vertical line through (a, 0).

• The graph of the equation y = b is a horizontal line through (0, b).

Given that the very simple equations x = a and y = b produced lines, it’s natural to wonder what
shapes other equations might yield. Thus our next objective is to study the graphs of equations in
a more general setting as we continue to unite Algebra and Geometry.

1.2.1 Graphs of Equations

In this section, we delve more deeply into the connection between Algebra and Geometry by fo-
cusing on graphing relations described by equations. The main idea of this section is the following.

The Fundamental Graphing Principle
The graph of an equation is the set of points which satisfy the equation. That is, a point (x , y ) is
on the graph of an equation if and only if x and y satisfy the equation.

Here, ‘x and y satisfy the equation’ means ‘x and y make the equation true’. It is at this point that
we gain some insight into the word ‘relation’. If the equation to be graphed contains both x and
y , then the equation itself is what is relating the two variables. More specifically, in the next two
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examples, we consider the graph of the equation x2 + y3 = 1. Even though it is not specifically
spelled out, what we are doing is graphing the relation R = {(x , y ) | x2 + y3 = 1}. The points (x , y )
we graph belong to the relation R and are necessarily related by the equation x2 + y3 = 1, since it
is those pairs of x and y which make the equation true.

Example 1.2.2. Determine whether or not (2,−1) is on the graph of x2 + y3 = 1.

Solution. We substitute x = 2 and y = −1 into the equation to see if the equation is satisfied.

(2)2 + (−1)3 ?= 1
3 6= 1

Hence, (2,−1) is not on the graph of x2 + y3 = 1.

We could spend hours randomly guessing and checking to see if points are on the graph of the
equation. A more systematic approach is outlined in the following example.

Example 1.2.3. Graph x2 + y3 = 1.

Solution. To efficiently generate points on the graph of this equation, we first solve for y

x2 + y3 = 1
y3 = 1− x2

3
√

y3 = 3
√

1− x2

y = 3
√

1− x2

We now substitute a value in for x , determine the corresponding value y , and plot the resulting
point (x , y ). For example, substituting x = −3 into the equation yields

y = 3
√

1− x2 = 3
√

1− (−3)2 = 3
√
−8 = −2,

so the point (−3,−2) is on the graph. Continuing in this manner, we generate a table of points
which are on the graph of the equation. These points are then plotted in the plane as shown below.

x y (x , y )
−3 −2 (−3,−2)
−2 − 3

√
3 (−2,− 3

√
3)

−1 0 (−1, 0)
0 1 (0, 1)
1 0 (1, 0)
2 − 3

√
3 (2,− 3

√
3)

3 −2 (3,−2)

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3
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Remember, these points constitute only a small sampling of the points on the graph of this equa-
tion. To get a better idea of the shape of the graph, we could plot more points until we feel
comfortable ‘connecting the dots’. Doing so would result in a curve similar to the one pictured
below on the far left.

x

y

−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3

Don’t worry if you don’t get all of the little bends and curves just right − Calculus is where the art of
precise graphing takes center stage. For now, we will settle with our naive ‘plug and plot’ approach
to graphing. If you feel like all of this tedious computation and plotting is beneath you, then you
can reach for a graphing calculator, input the formula as shown above, and graph.

Of all of the points on the graph of an equation, the places where the graph crosses or touches
the axes hold special significance. These are called the intercepts of the graph. Intercepts come
in two distinct varieties: x-intercepts and y -intercepts. They are defined below.

Definition 1.3. Suppose the graph of an equation is given.

• A point on a graph which is also on the x-axis is called an x-intercept of the graph.

• A point on a graph which is also on the y -axis is called an y-intercept of the graph.

In our previous example the graph had two x-intercepts, (−1, 0) and (1, 0), and one y -intercept,
(0, 1). The graph of an equation can have any number of intercepts, including none at all! Since
x-intercepts lie on the x-axis, we can find them by setting y = 0 in the equation. Similarly, since
y -intercepts lie on the y -axis, we can find them by setting x = 0 in the equation. Keep in mind,
intercepts are points and therefore must be written as ordered pairs. To summarize,

Finding the Intercepts of the Graph of an Equation

Given an equation involving x and y , we find the intercepts of the graph as follows:

• x-intercepts have the form (x , 0); set y = 0 in the equation and solve for x .

• y -intercepts have the form (0, y ); set x = 0 in the equation and solve for y .

Another fact which you may have noticed about the graph in the previous example is that it seems
to be symmetric about the y -axis. To actually prove this analytically, we assume (x , y ) is a generic
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point on the graph of the equation. That is, we assume x2 + y3 = 1 is true. As we learned in
Section 1.1, the point symmetric to (x , y ) about the y -axis is (−x , y ). To show that the graph is
symmetric about the y -axis, we need to show that (−x , y ) satisfies the equation x2 + y3 = 1, too.
Substituting (−x , y ) into the equation gives

(−x)2 + (y )3 ?= 1

x2 + y3 X= 1

Since we are assuming the original equation x2 + y3 = 1 is true, we have shown that (−x , y )
satisfies the equation (since it leads to a true result) and hence is on the graph. In this way, we
can check whether the graph of a given equation possesses any of the symmetries discussed in
Section 1.1. We summarize the procedure in the following result.

Testing the Graph of an Equation for Symmetry

To test the graph of an equation for symmetry

• about the y -axis − substitute (−x , y ) into the equation and simplify. If the result is equiv-
alent to the original equation, the graph is symmetric about the y -axis.

• about the x-axis – substitute (x ,−y ) into the equation and simplify. If the result is equiva-
lent to the original equation, the graph is symmetric about the x-axis.

• about the origin - substitute (−x ,−y ) into the equation and simplify. If the result is equiv-
alent to the original equation, the graph is symmetric about the origin.

Intercepts and symmetry are two tools which can help us sketch the graph of an equation analyti-
cally, as demonstrated in the next example.

Example 1.2.4. Find the x- and y -intercepts (if any) of the graph of (x − 2)2 + y2 = 1. Test for
symmetry. Plot additional points as needed to complete the graph.

Solution. To look for x-intercepts, we set y = 0 and solve

(x − 2)2 + y2 = 1
(x − 2)2 + 02 = 1

(x − 2)2 = 1√
(x − 2)2 =

√
1 extract square roots

x − 2 = ±1
x = 2± 1
x = 3, 1

We get two answers for x which correspond to two x-intercepts: (1, 0) and (3, 0). Turning our
attention to y -intercepts, we set x = 0 and solve
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(x − 2)2 + y2 = 1
(0− 2)2 + y2 = 1

4 + y2 = 1
y2 = −3

Since there is no real number which squares to a negative number (Do you remember why?), we
are forced to conclude that the graph has no y -intercepts.

Plotting the data we have so far, we get

(1, 0) (3, 0)

x

y

1 2 3 4
−1

1

Moving along to symmetry, we can immediately dismiss the possibility that the graph is symmetric
about the y -axis or the origin. If the graph possessed either of these symmetries, then the fact that
(1, 0) is on the graph would mean (−1, 0) would have to be on the graph. (Why?) Since (−1, 0)
would be another x-intercept (and we’ve found all of these), the graph can’t have y -axis or origin
symmetry. The only symmetry left to test is symmetry about the x-axis. To that end, we substitute
(x ,−y ) into the equation and simplify

(x − 2)2 + y2 = 1

(x − 2)2 + (−y )2 ?= 1

(x − 2)2 + y2 X= 1

Since we have obtained our original equation, we know the graph is symmetric about the x-axis.
This means we can cut our ‘plug and plot’ time in half: whatever happens below the x-axis is
reflected above the x-axis, and vice-versa. Proceeding as we did in the previous example, we
obtain

x

y

1 2 3 4
−1

1
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A couple of remarks are in order. First, it is entirely possible to choose a value for x which does
not correspond to a point on the graph. For example, in the previous example, if we solve for y as
is our custom, we get

y = ±
√

1− (x − 2)2.

Upon substituting x = 0 into the equation, we would obtain

y = ±
√

1− (0− 2)2 = ±
√

1− 4 = ±
√
−3,

which is not a real number. This means there are no points on the graph with an x-coordinate
of 0. When this happens, we move on and try another point. This is another drawback of the
‘plug-and-plot’ approach to graphing equations. Luckily, we will devote much of the remainder of
this book to developing techniques which allow us to graph entire families of equations quickly.6

Second, it is instructive to show what would have happened had we tested the equation in the last
example for symmetry about the y -axis. Substituting (−x , y ) into the equation yields

(x − 2)2 + y2 = 1

(−x − 2)2 + y2 ?= 1

((−1)(x + 2))2 + y2 ?= 1

(x + 2)2 + y2 ?= 1.

This last equation does not appear to be equivalent to our original equation. However, to actually
prove that the graph is not symmetric about the y -axis, we need to find a point (x , y ) on the graph
whose reflection (−x , y ) is not. Our x-intercept (1, 0) fits this bill nicely, since if we substitute
(−1, 0) into the equation we get

(x − 2)2 + y2 ?= 1
(−1− 2)2 + 02 6= 1

9 6= 1.

This proves that (−1, 0) is not on the graph.

6Without the use of a calculator, if you can believe it!
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1.2.2 Exercises

In Exercises 1 - 20, graph the given relation.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−2, 0), (−1, 1), (−1,−1), (0, 2), (0,−2), (1, 3), (1,−3)}

3. {(m, 2m) |m = 0,±1,±2} 4.
{( 6

k , k
)
| k = ±1,±2,±3,±4,±5,±6

}
5.
{(

n, 4− n2) |n = 0,±1,±2
}

6.
{(√

j , j
)
| j = 0, 1, 4, 9

}
7. {(x ,−2) | x > −4} 8. {(x , 3) | x ≤ 4}

9. {(−1, y ) | y > 1} 10. {(2, y ) | y ≤ 5}

11. {(−2, y ) | − 3 < y ≤ 4} 12. {(3, y ) | − 4 ≤ y < 3}

13. {(x , 2) | − 2 ≤ x < 3} 14. {(x ,−3) | − 4 < x ≤ 4}

15. {(x , y ) | x > −2} 16. {(x , y ) | x ≤ 3}

17. {(x , y ) | y < 4} 18. {(x , y ) | x ≤ 3, y < 2}

19. {(x , y ) | x > 0, y < 4} 20. {(x , y ) | −
√

2 ≤ x ≤ 2
3 , π < y ≤ 9

2}

In Exercises 21 - 30, describe the given relation using either the roster or set-builder method.

21.

x

y

−4 −3 −2 −1 1
−1

1

2

3

4

Relation A

22.

x

y

−1−2−3−4 1 2 3 4

1

2

3

Relation B
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23.

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

Relation C

24.

x

y

−3 −2 −1

−4

−3

−2

−1

1

2

3

Relation D

25.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

Relation E

26.

x

y

−3 −2 −1 1 2 3

1

2

3

4

Relation F

27.

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Relation G

28.

x

y

−4 −3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Relation H
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29.

x

y

−1 1 2 3 4 5
−1

1

2

3

4

5

Relation I

30.

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

Relation J

In Exercises 31 - 36, graph the given line.

31. x = −2 32. x = 3

33. y = 3 34. y = −2

35. x = 0 36. y = 0

Some relations are fairly easy to describe in words or with the roster method but are rather difficult,
if not impossible, to graph. Discuss with your classmates how you might graph the relations given
in Exercises 37 - 40. Please note that in the notation below we are using the ellipsis, . . . , to denote
that the list does not end, but rather, continues to follow the established pattern indefinitely. For
the relations in Exercises 37 and 38, give two examples of points which belong to the relation and
two points which do not belong to the relation.

37. {(x , y ) | x is an odd integer, and y is an even integer.}

38. {(x , 1) | x is an irrational number }

39. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), ...}

40. {... , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), ...}

For each equation given in Exercises 41 - 52:

• Find the x- and y -intercept(s) of the graph, if any exist.

• Follow the procedure in Example 1.2.3 to create a table of sample points on the graph of the
equation.

• Plot the sample points and create a rough sketch of the graph of the equation.

• Test for symmetry. If the equation appears to fail any of the symmetry tests, find a point on
the graph of the equation whose reflection fails to be on the graph as was done at the end of
Example 1.2.4
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41. y = x2 + 1 42. y = x2 − 2x − 8

43. y = x3 − x 44. y = x3

4 − 3x

45. y =
√

x − 2 46. y = 2
√

x + 4− 2

47. 3x − y = 7 48. 3x − 2y = 10

49. (x + 2)2 + y2 = 16 50. x2 − y2 = 1

51. 4y2 − 9x2 = 36 52. x3y = −4

The procedures which we have outlined in the Examples of this section and used in Exercises 41
through 52 all rely on the fact that the equations were “well-behaved”. Not everything in Mathe-
matics is quite so tame, as the following equations will show you. Discuss with your classmates
how you might approach graphing the equations given in Exercises 53 - 56. What difficulties arise
when trying to apply the various tests and procedures given in this section? For more information,
including pictures of the curves, each curve name is a link to its page at www.wikipedia.org. For a
much longer list of fascinating curves, click here.

53. x3 + y3 − 3xy = 0 Folium of Descartes 54. x4 = x2 + y2 Kampyle of Eudoxus

55. y2 = x3 + 3x2 Tschirnhausen cubic 56. (x2 + y2)2 = x3 + y3 Crooked egg

57. With the help of your classmates, find examples of equations whose graphs possess

• symmetry about the x-axis only

• symmetry about the y -axis only

• symmetry about the origin only

• symmetry about the x-axis, y -axis, and origin

Can you find an example of an equation whose graph possesses exactly two of the symme-
tries listed above? Why or why not?

http://en.wikipedia.org/wiki/List_of_curves
http://en.wikipedia.org/wiki/Folium_of_descartes
http://en.wikipedia.org/wiki/Kampyle_of_Eudoxus
http://en.wikipedia.org/wiki/Tschirnhausen_cubic
http://en.wikipedia.org/wiki/Crooked_egg_curve
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1.2.3 Answers

1.

x

y

−3−2−1 1 2 3

1

2

3

4

5

6

7

8

9

2.

x

y

−2 −1 1 2

−3

−2

−1

1

2

3

3.

x

y

−2 −1 1 2
−1

−2

−3

−4

1

2

3

4

4.

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6
−5
−4
−3
−2
−1

1
2
3
4
5
6

5.

x

y

−2 −1 1 2

1

2

3

4

6.

x

y

1 2 3

1
2
3
4
5
6
7
8
9
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7.

x

y

−4 −3 −2 −1 1 2 3 4

−3

−1

8.

x

y

−1−2−3−4 1 2 3 4

1

2

3

9.

x

y

−1 1 2

1

2

3

4

5

6

7

8

10.

x

y

1 2 3

−3

−2

−1

1

2

3

4

5

11.

x

y

−3 −2 −1

−3

−2

−1

1

2

3

4

12.

x

y

1 2 3

−4

−3

−2

−1

1

2

3
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13.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

14.

x

y

−4 −3 −2 −1 1 2 3 4
−1

−2

−3

15.

x

y

1−2 −1

−3

−2

−1

1

2

3

16.

x

y

1 2 3

−3

−2

−1

1

2

3

17.

x

y

−3 −2 −1 1 2 3

1

2

3

4

18.

x

y

1 2 3

−3

−2

−1

1

2

3

19.

x

y

−1 1 2 3

1

2

3

4

20.

x

y

−2 −1 1

1

2

3

4

5
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21. A = {(−4,−1), (−2, 1), (0, 3), (1, 4)} 22. B = {(x , 3) | x ≥ −3}

23. C = {(2, y ) | y > −3} 24. D = {(−2, y ) | − 4 ≤ y < 3}

25. E = {(x , 2) | − 4 < x ≤ 3} 26. F = {(x , y ) | y ≥ 0}

27. G = {(x , y ) | x > −2} 28. H = {(x , y ) | − 3 < x ≤ 2}

29. I = {(x , y ) | x ≥ 0,y ≥ 0} 30. J = {(x , y ) | − 4 < x < 5, −3 < y < 2}

31.

x

y

−3 −2 −1

1

2

3

−1

−2

−3

The line x = −2

32.

x

y

1 2 3

1

2

3

−1

−2

−3

The line x = 3

33.

x

y

−3 −2 −1 1 2 3

1

2

3

The line y = 3

34.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

The line y = −2

35.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

1

2

3

The line x = 0 is the y -axis

36.

x

y

−3 −2 −1 1 2 3
−1

−2

−3

1

2

3

The line y = 0 is the x-axis
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41. y = x2 + 1

The graph has no x-intercepts

y -intercept: (0, 1)

x y (x , y )
−2 5 (−2, 5)
−1 2 (−1, 2)

0 1 (0, 1)
1 2 (1, 2)
2 5 (2, 5)

x

y

−2−1 1 2

1

2

3

4

5

The graph is not symmetric about the
x-axis (e.g. (2, 5) is on the graph but
(2,−5) is not)

The graph is symmetric about the y -axis

The graph is not symmetric about the
origin (e.g. (2, 5) is on the graph but
(−2,−5) is not)

42. y = x2 − 2x − 8

x-intercepts: (4, 0), (−2, 0)

y -intercept: (0,−8)

x y (x , y )
−3 7 (−3, 7)
−2 0 (−2, 0)
−1 −5 (−1,−5)

0 −8 (0,−8)
1 −9 (1,−9)
2 −8 (2,−8)
3 −5 (3,−5)
4 0 (4, 0)
5 7 (5, 7)

x

y

−3−2−1 1 2 3 4 5

−9
−8
−7
−6
−5
−4
−3
−2

1
2
3
4
5
6
7

The graph is not symmetric about the
x-axis (e.g. (−3, 7) is on the graph but
(−3,−7) is not)

The graph is not symmetric about the
y -axis (e.g. (−3, 7) is on the graph but
(3, 7) is not)

The graph is not symmetric about the
origin (e.g. (−3, 7) is on the graph but
(3,−7) is not)
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43. y = x3 − x

x-intercepts: (−1, 0), (0, 0), (1, 0)

y -intercept: (0, 0)

x y (x , y )
−2 −6 (−2,−6)
−1 0 (−1, 0)

0 0 (0, 0)
1 0 (1, 0)
2 6 (2, 6)

x

y

−2−1 1 2

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

The graph is not symmetric about the
x-axis. (e.g. (2, 6) is on the graph but
(2,−6) is not)

The graph is not symmetric about the
y -axis. (e.g. (2, 6) is on the graph but
(−2, 6) is not)

The graph is symmetric about the origin.

44. y = x3

4 − 3x

x-intercepts:
(
±2
√

3, 0
)

, (0, 0)

y -intercept: (0, 0)

x y (x , y )
−4 −4 (−4,−4)
−3 9

4

(
−3, 9

4

)
−2 4 (−2, 4)
−1 11

4

(
−1, 11

4

)
0 0 (0, 0)
1 −11

4

(
1,−11

4

)
2 −4 (2,−4)
3 −9

4

(
3,−9

4

)
4 4 (4, 4)

x

y

−4−3−2−1 1 2 3 4−1

−2

−3

−4

1

2

3

4

The graph is not symmetric about the
x-axis (e.g. (−4,−4) is on the graph but
(−4, 4) is not)

The graph is not symmetric about the
y -axis (e.g. (−4,−4) is on the graph but
(4,−4) is not)

The graph is symmetric about the origin
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45. y =
√

x − 2

x-intercept: (2, 0)

The graph has no y -intercepts

x y (x , y )
2 0 (2, 0)
3 1 (3, 1)
6 2 (6, 2)

11 3 (11, 3)

x

y

1 2 3 4 5 6 7 8 9 10 11

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 1) is on the graph but
(3,−1) is not)

The graph is not symmetric about the
y -axis (e.g. (3, 1) is on the graph but
(−3, 1) is not)

The graph is not symmetric about the
origin (e.g. (3, 1) is on the graph but
(−3,−1) is not)

46. y = 2
√

x + 4− 2

x-intercept: (−3, 0)

y -intercept: (0, 2)

x y (x , y )
−4 −2 (−4,−2)
−3 0 (−3, 0)

−2 2
√

2− 2
(
−2,
√

2− 2
)

−1 2
√

3− 2
(
−2,
√

3− 2
)

0 2 (0, 2)

1 2
√

5− 2
(
−2,
√

5− 2
)

x

y

−4−3−2−1 1 2

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (−4,−2) is on the graph but
(−4, 2) is not)

The graph is not symmetric about the
y -axis (e.g. (−4,−2) is on the graph but
(4,−2) is not)

The graph is not symmetric about the
origin (e.g. (−4,−2) is on the graph but
(4, 2) is not)
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47. 3x − y = 7
Re-write as: y = 3x − 7.

x-intercept: (7
3 , 0)

y -intercept: (0,−7)

x y (x , y )
−2 −13 (−2,−13)
−1 −10 (−1,−10)

0 −7 (0,−7)
1 −4 (1,−4)
2 −1 (2,−1)
3 2 (3, 2)

x

y

−2−1 1 2 3

−13

−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

3

The graph is not symmetric about the
x-axis (e.g. (3, 2) is on the graph but
(3,−2) is not)

The graph is not symmetric about the
y -axis (e.g. (3, 2) is on the graph but
(−3, 2) is not)

The graph is not symmetric about the
origin (e.g. (3, 2) is on the graph but
(−3,−2) is not)

48. 3x − 2y = 10
Re-write as: y = 3x−10

2 .

x-intercepts:
(10

3 , 0
)

y -intercept: (0,−5)

x y (x , y )
−2 −8 (−2,−8)
−1 −13

2

(
−1,−13

2

)
0 −5 (0,−5)
1 −7

2

(
1,−7

2

)
2 −2 (2,−2)

x

y

−3−2−1 1 2 3 4

−9

−8

−7

−6

−5

−4

−3

−2

−1

1

2

The graph is not symmetric about the
x-axis (e.g. (2,−2) is on the graph but
(2, 2) is not)

The graph is not symmetric about the
y -axis (e.g. (2,−2) is on the graph but
(−2,−2) is not)

The graph is not symmetric about the
origin (e.g. (2,−2) is on the graph but
(−2, 2) is not)
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49. (x + 2)2 + y2 = 16
Re-write as y = ±

√
16− (x + 2)2.

x-intercepts: (−6, 0), (2, 0)

y -intercepts:
(

0,±2
√

3
)

x y (x , y )
−6 0 (−6, 0)

−4 ±2
√

3
(
−4,±2

√
3
)

−2 ±4 (−2,±4)

0 ±2
√

3
(

0,±2
√

3
)

2 0 (2, 0)

x

y

−7−6−5−4−3−2−1 1 2 3

−5

−4

−3

−2

−1

1

2

3

4

5

The graph is symmetric about the x-axis

The graph is not symmetric about the
y -axis (e.g. (−6, 0) is on the graph but
(6, 0) is not)

The graph is not symmetric about the
origin (e.g. (−6, 0) is on the graph but
(6, 0) is not)

50. x2 − y2 = 1
Re-write as: y = ±

√
x2 − 1.

x-intercepts: (−1, 0), (1, 0)

The graph has no y -intercepts

x y (x , y )
−3 ±

√
8 (−3,±

√
8)

−2 ±
√

3 (−2,±
√

3)
−1 0 (−1, 0)

1 0 (1, 0)
2 ±

√
3 (2,±

√
3)

3 ±
√

8 (3,±
√

8)

x

y

−3−2−1 1 2 3

−3

−2

−1

1

2

3

The graph is symmetric about the x-axis

The graph is symmetric about the y -axis

The graph is symmetric about the origin
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51. 4y2 − 9x2 = 36

Re-write as: y = ±
√

9x2+36
2 .

The graph has no x-intercepts

y -intercepts: (0,±3)

x y (x , y )

−4 ±3
√

5
(
−4,±3

√
5
)

−2 ±3
√

2
(
−2,±3

√
2
)

0 ±3 (0,±3)

2 ±3
√

2
(

2,±3
√

2
)

4 ±3
√

5
(

4,±3
√

5
)

x

y

−4−3−2−1 1 2 3 4

−7

−6

−5

−4

−3

−2

−1

1

2

3

4

5

6

7

The graph is symmetric about the x-axis

The graph is symmetric about the y -axis

The graph is symmetric about the origin

52. x3y = −4

Re-write as: y = − 4
x3 .

The graph has no x-intercepts

The graph has no y -intercepts

x y (x , y )
−2 1

2 (−2, 1
2 )

−1 4 (−1, 4)
−1

2 32 (−1
2 , 32)

1
2 −32 (1

2 ,−32)
1 −4 (1,−4)
2 −1

2 (2,−1
2 )

x

y

−2 −1 1 2

−32

−4

4

32

The graph is not symmetric about the
x-axis (e.g. (1,−4) is on the graph but
(1, 4) is not)

The graph is not symmetric about the
y -axis (e.g. (1,−4) is on the graph but
(−1,−4) is not)

The graph is symmetric about the origin
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1.3 Introduction to Functions

One of the core concepts in College Algebra is the function. There are many ways to describe a
function and we begin by defining a function as a special kind of relation.

Definition 1.4. A relation in which each x-coordinate is matched with only one y -coordinate is
said to describe y as a function of x .

Example 1.3.1. Which of the following relations describe y as a function of x?

1. R1 = {(−2, 1), (1, 3), (1, 4), (3,−1)} 2. R2 = {(−2, 1), (1, 3), (2, 3), (3,−1)}

Solution. A quick scan of the points in R1 reveals that the x-coordinate 1 is matched with two
different y -coordinates: namely 3 and 4. Hence in R1, y is not a function of x . On the other
hand, every x-coordinate in R2 occurs only once which means each x-coordinate has only one
corresponding y -coordinate. So, R2 does represent y as a function of x .

Note that in the previous example, the relation R2 contained two different points with the same
y -coordinates, namely (1, 3) and (2, 3). Remember, in order to say y is a function of x , we just
need to ensure the same x-coordinate isn’t used in more than one point.1

To see what the function concept means geometrically, we graph R1 and R2 in the plane.

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R1

x

y

−2 −1 1 2 3
−1

1

2

3

4

The graph of R2

The fact that the x-coordinate 1 is matched with two different y -coordinates in R1 presents itself
graphically as the points (1, 3) and (1, 4) lying on the same vertical line, x = 1. If we turn our
attention to the graph of R2, we see that no two points of the relation lie on the same vertical line.
We can generalize this idea as follows

Theorem 1.1. The Vertical Line Test: A set of points in the plane represents y as a function
of x if and only if no two points lie on the same vertical line.

1We will have occasion later in the text to concern ourselves with the concept of x being a function of y . In this case,
R1 represents x as a function of y ; R2 does not.
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It is worth taking some time to meditate on the Vertical Line Test; it will check to see how well you
understand the concept of ‘function’ as well as the concept of ‘graph’.

Example 1.3.2. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x .

x

y

1 2 3
−1

1

2

3

4

The graph of R

x

y

−1 1
−1

1

2

3

4

The graph of S

Solution. Looking at the graph of R, we can easily imagine a vertical line crossing the graph more
than once. Hence, R does not represent y as a function of x . However, in the graph of S, every
vertical line crosses the graph at most once, so S does represent y as a function of x .

In the previous test, we say that the graph of the relation R fails the Vertical Line Test, whereas
the graph of S passes the Vertical Line Test. Note that in the graph of R there are infinitely many
vertical lines which cross the graph more than once. However, to fail the Vertical Line Test, all you
need is one vertical line that fits the bill, as the next example illustrates.

Example 1.3.3. Use the Vertical Line Test to determine which of the following relations describes
y as a function of x .

x

y

−1 1
−1

1

2

3

4

The graph of S1

x

y

−1 1
−1

1

2

3

4

The graph of S2
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Solution. Both S1 and S2 are slight modifications to the relation S in the previous example whose
graph we determined passed the Vertical Line Test. In both S1 and S2, it is the addition of the point
(1, 2) which threatens to cause trouble. In S1, there is a point on the curve with x-coordinate 1 just
below (1, 2), which means that both (1, 2) and this point on the curve lie on the vertical line x = 1.
(See the picture below and the left.) Hence, the graph of S1 fails the Vertical Line Test, so y is
not a function of x here. However, in S2 notice that the point with x-coordinate 1 on the curve has
been omitted, leaving an ‘open circle’ there. Hence, the vertical line x = 1 crosses the graph of S2

only at the point (1, 2). Indeed, any vertical line will cross the graph at most once, so we have that
the graph of S2 passes the Vertical Line Test. Thus it describes y as a function of x .

x

y

−1
−1

1

2

3

4

S1 and the line x = 1

x

y

−1 1
−1

1

2

3

4

The graph of G for Ex. 1.3.4

Suppose a relation F describes y as a function of x . The sets of x- and y -coordinates are given
special names which we define below.

Definition 1.5. Suppose F is a relation which describes y as a function of x .

• The set of the x-coordinates of the points in F is called the domain of F .

• The set of the y -coordinates of the points in F is called the range of F .

We demonstrate finding the domain and range of functions given to us either graphically or via the
roster method in the following example.

Example 1.3.4. Find the domain and range of the function F = {(−3, 2), (0, 1), (4, 2), (5, 2)} and of
the function G whose graph is given above on the right.

Solution. The domain of F is the set of the x-coordinates of the points in F , namely {−3, 0, 4, 5}
and the range of F is the set of the y -coordinates, namely {1, 2}.
To determine the domain and range of G, we need to determine which x and y values occur
as coordinates of points on the given graph. To find the domain, it may be helpful to imagine
collapsing the curve to the x-axis and determining the portion of the x-axis that gets covered. This
is called projecting the curve to the x-axis. Before we start projecting, we need to pay attention
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to two subtle notations on the graph: the arrowhead on the lower left corner of the graph indicates
that the graph continues to curve downwards to the left forever more; and the open circle at (1, 3)
indicates that the point (1, 3) isn’t on the graph, but all points on the curve leading up to that point
are.

project down

project up

x

y

−1 1
−1

1

2

3

4

The graph of G

x

y

−1 1
−1

1

2

3

4

The graph of G

We see from the figure that if we project the graph of G to the x-axis, we get all real numbers less
than 1. Using interval notation, we write the domain of G as (−∞, 1). To determine the range of
G, we project the curve to the y -axis as follows:

project left

project right

x

y

−1 1
−1

1

2

3

4

The graph of G

x

y

−1 1
−1

1

2

3

4

The graph of G

Note that even though there is an open circle at (1, 3), we still include the y value of 3 in our range,
since the point (−1, 3) is on the graph of G. We see that the range of G is all real numbers less
than or equal to 4, or, in interval notation, (−∞, 4].
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All functions are relations, but not all relations are functions. Thus the equations which described
the relations in Section 1.2 may or may not describe y as a function of x . The algebraic rep-
resentation of functions is possibly the most important way to view them so we need a process
for determining whether or not an equation of a relation represents a function. (We delay the
discussion of finding the domain of a function given algebraically until Section 1.4.)

Example 1.3.5. Determine which equations represent y as a function of x .

1. x3 + y2 = 1 2. x2 + y3 = 1 3. x2y = 1− 3y

Solution. For each of these equations, we solve for y and determine whether each choice of x
will determine only one corresponding value of y .

1.
x3 + y2 = 1

y2 = 1− x3√
y2 =

√
1− x3 extract square roots

y = ±
√

1− x3

If we substitute x = 0 into our equation for y , we get y = ±
√

1− 03 = ±1, so that (0, 1) and
(0,−1) are on the graph of this equation. Hence, this equation does not represent y as a
function of x .

2.
x2 + y3 = 1

y3 = 1− x2

3
√

y3 = 3
√

1− x2

y = 3
√

1− x2

For every choice of x , the equation y = 3
√

1− x2 returns only one value of y . Hence, this
equation describes y as a function of x .

3.
x2y = 1− 3y

x2y + 3y = 1
y
(
x2 + 3

)
= 1 factor

y =
1

x2 + 3

For each choice of x , there is only one value for y , so this equation describes y as a function
of x .

We could try to use our graphing calculator to verify our responses to the previous example, but
we immediately run into trouble. The calculator’s “Y=” menu requires that the equation be of the
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form ‘y = some expression of x ’. If we wanted to verify that the first equation in Example 1.3.5
does not represent y as a function of x , we would need to enter two separate expressions into the
calculator: one for the positive square root and one for the negative square root we found when
solving the equation for y . As predicted, the resulting graph shown below clearly fails the Vertical
Line Test, so the equation does not represent y as a function of x .

Thus in order to use the calculator to show that x3 + y2 = 1 does not represent y as a function of x
we needed to know analytically that y was not a function of x so that we could use the calculator
properly. There are more advanced graphing utilities out there which can do implicit function plots,
but you need to know even more Algebra to make them work properly. Do you get the point we’re
trying to make here? We believe it is in your best interest to learn the analytic way of doing things
so that you are always smarter than your calculator.
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1.3.1 Exercises

In Exercises 1 - 12, determine whether or not the relation represents y as a function of x . Find the
domain and range of those relations which are functions.

1. {(−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9)}

2. {(−3, 0), (1, 6), (2,−3), (4, 2), (−5, 6), (4,−9), (6, 2)}

3. {(−3, 0), (−7, 6), (5, 5), (6, 4), (4, 9), (3, 0)}

4. {(1, 2), (4, 4), (9, 6), (16, 8), (25, 10), (36, 12), ...}

5. {(x , y ) | x is an odd integer, and y is an even integer}

6. {(x , 1) | x is an irrational number}

7. {(1, 0), (2, 1), (4, 2), (8, 3), (16, 4), (32, 5), . . . }

8. {... , (−3, 9), (−2, 4), (−1, 1), (0, 0), (1, 1), (2, 4), (3, 9), . . . }

9. {(−2, y ) | − 3 < y < 4} 10. {(x , 3) | − 2 ≤ x < 4}

11. {
(
t , t2) | t is a real number} 12. {

(
t2, t

)
| t is a real number}

In Exercises 13 - 32, determine whether or not the relation represents y as a function of x . Find
the domain and range of those relations which are functions.

13.

x

y

−4 −3 −2 −1 1

−1

1

2

3

4

14.

x

y

−4 −3 −2 −1 1
−1

1

2

3

4
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15.

x

y

−2 −1 1 2

1

2

3

4

5

16.

x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

17.

x

y

1 2 3 4 5 6 7 8 9

1

2

3

18.

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3

4

19.

x

y

−4 −3 −2 −1 1 2 3 4 5

−3

−2

−1

1

2

20.

x

y

−5 −4 −3 −2 −1 1 2 3

−2

−1

1

2

3

4

21.

x

y

−3−2−1 1 2 3

−5
−4
−3
−2
−1

1
2
3
4
5
6
7
8
9

22.

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5
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23.

x

y

−5−4−3−2−1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

24.

x

y

−1 1 2 3 4 5 6

−5

−4

−3

−2

−1

1

2

3

4

5

25.

x

y

−2 −1 1 2

1

2

3

4

26.

x

y

−2 −1 1 2

1

2

3

4

27.

x

y

−2 −1 1 2

1

2

3

4

28.

x

y

−2 −1 1 2

1

2

3

4

29.

x

y

−2 −1 1 2

1

2

−2

−1

30.

x

y

−3 −2 −1 1 2 3

1

2

−2

−1
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31.

x

y

−2 −1 1 2

1

2

−2

−1

32.

x

y

−2 −1 1 2

1

2

−2

−1

In Exercises 33 - 47, determine whether or not the equation represents y as a function of x .

33. y = x3 − x 34. y =
√

x − 2 35. x3y = −4

36. x2 − y2 = 1 37. y =
x

x2 − 9
38. x = −6

39. x = y2 + 4 40. y = x2 + 4 41. x2 + y2 = 4

42. y =
√

4− x2 43. x2 − y2 = 4 44. x3 + y3 = 4

45. 2x + 3y = 4 46. 2xy = 4 47. x2 = y2

48. Explain why the population P of Sasquatch in a given area is a function of time t . What
would be the range of this function?

49. Explain why the relation between your classmates and their email addresses may not be a
function. What about phone numbers and Social Security Numbers?

The process given in Example 1.3.5 for determining whether an equation of a relation represents
y as a function of x breaks down if we cannot solve the equation for y in terms of x . However, that
does not prevent us from proving that an equation fails to represent y as a function of x . What
we really need is two points with the same x-coordinate and different y -coordinates which both
satisfy the equation so that the graph of the relation would fail the Vertical Line Test 1.1. Discuss
with your classmates how you might find such points for the relations given in Exercises 50 - 53.

50. x3 + y3 − 3xy = 0 51. x4 = x2 + y2

52. y2 = x3 + 3x2 53. (x2 + y2)2 = x3 + y3
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1.3.2 Answers

1. Function
domain = {−3, −2, −1, 0, 1, 2 ,3}
range = {0, 1, 4, 9}

2. Not a function

3. Function
domain = {−7,−3, 3, 4, 5, 6}
range = {0, 4, 5, 6, 9}

4. Function
domain = {1, 4, 9, 16, 25, 36, ...}
= {x | x is a perfect square}
range = {2, 4, 6, 8, 10, 12, ...}
= {y | y is a positive even integer}

5. Not a function 6. Function
domain = {x | x is irrational}
range = {1}

7. Function
domain = {x | x = 2n for some whole num-
ber n}
range = {y | y is any whole number}

8. Function
domain = {x | x is any integer}
range = {y | y = n2 for some integer n}

9. Not a function 10. Function
domain = [−2, 4), range = {3}

11. Function
domain = (−∞,∞)
range = [0,∞)

12. Not a function

13. Function
domain = {−4, −3, −2, −1, 0, 1}
range = {−1, 0, 1, 2, 3, 4}

14. Not a function

15. Function
domain = (−∞,∞)
range = [1,∞)

16. Not a function

17. Function
domain = [2,∞)
range = [0,∞)

18. Function
domain = (−∞,∞)
range = (0, 4]

19. Not a function 20. Function
domain = [−5,−3) ∪ (−3, 3)
range = (−2,−1) ∪ [0, 4)
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21. Function
domain = [−2,∞)
range = [−3,∞)

22. Not a function

23. Function
domain = [−5, 4)
range = [−4, 4)

24. Function
domain = [0, 3) ∪ (3, 6]
range = (−4,−1] ∪ [0, 4]

25. Function
domain = (−∞,∞)
range = (−∞, 4]

26. Function
domain = (−∞,∞)
range = (−∞, 4]

27. Function
domain = [−2,∞)
range = (−∞, 3]

28. Function
domain = (−∞,∞)
range = (−∞,∞)

29. Function
domain = (−∞, 0] ∪ (1,∞)
range = (−∞, 1] ∪ {2}

30. Function
domain = [−3, 3]
range = [−2, 2]

31. Not a function 32. Function
domain = (−∞,∞)
range = {2}

33. Function 34. Function 35. Function

36. Not a function 37. Function 38. Not a function

39. Not a function 40. Function 41. Not a function

42. Function 43. Not a function 44. Function

45. Function 46. Function 47. Not a function
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1.4 Function Notation

In Definition 1.4, we described a function as a special kind of relation − one in which each x-
coordinate is matched with only one y -coordinate. In this section, we focus more on the process
by which the x is matched with the y . If we think of the domain of a function as a set of inputs and
the range as a set of outputs, we can think of a function f as a process by which each input x is
matched with only one output y . Since the output is completely determined by the input x and the
process f , we symbolize the output with function notation: ‘f (x)’, read ‘f of x .’ In other words, f (x)
is the output which results by applying the process f to the input x . In this case, the parentheses
here do not indicate multiplication, as they do elsewhere in Algebra. This can cause confusion if
the context is not clear, so you must read carefully. This relationship is typically visualized using a
diagram similar to the one below.

f

x
Domain
(Inputs)

y = f (x)
Range

(Outputs)

The value of y is completely dependent on the choice of x . For this reason, x is often called the
independent variable, or argument of f , whereas y is often called the dependent variable.

As we shall see, the process of a function f is usually described using an algebraic formula.
For example, suppose a function f takes a real number and performs the following two steps, in
sequence

1. multiply by 3

2. add 4

If we choose 5 as our input, in step 1 we multiply by 3 to get (5)(3) = 15. In step 2, we add 4 to
our result from step 1 which yields 15 + 4 = 19. Using function notation, we would write f (5) = 19
to indicate that the result of applying the process f to the input 5 gives the output 19. In general,
if we use x for the input, applying step 1 produces 3x . Following with step 2 produces 3x + 4 as
our final output. Hence for an input x , we get the output f (x) = 3x + 4. Notice that to check our
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formula for the case x = 5, we replace the occurrence of x in the formula for f (x) with 5 to get
f (5) = 3(5) + 4 = 15 + 4 = 19, as required.

Example 1.4.1. Suppose a function g is described by applying the following steps, in sequence

1. add 4

2. multiply by 3

Determine g(5) and find an expression for g(x).

Solution. Starting with 5, step 1 gives 5 + 4 = 9. Continuing with step 2, we get (3)(9) = 27. To
find a formula for g(x), we start with our input x . Step 1 produces x + 4. We now wish to multiply
this entire quantity by 3, so we use a parentheses: 3(x + 4) = 3x + 12. Hence, g(x) = 3x + 12. We
can check our formula by replacing x with 5 to get g(5) = 3(5) + 12 = 15 + 12 = 27X.

Most of the functions we will encounter in College Algebra will be described using formulas like
the ones we developed for f (x) and g(x) above. Evaluating formulas using this function notation is
a key skill for success in this and many other Math courses.

Example 1.4.2. Let f (x) = −x2 + 3x + 4

1. Find and simplify the following.

(a) f (−1), f (0), f (2)

(b) f (2x), 2f (x)

(c) f (x + 2), f (x) + 2, f (x) + f (2)

2. Solve f (x) = 4.

Solution.

1. (a) To find f (−1), we replace every occurrence of x in the expression f (x) with −1

f (−1) = −(−1)2 + 3(−1) + 4
= −(1) + (−3) + 4
= 0

Similarly, f (0) = −(0)2 + 3(0) + 4 = 4, and f (2) = −(2)2 + 3(2) + 4 = −4 + 6 + 4 = 6.

(b) To find f (2x), we replace every occurrence of x with the quantity 2x

f (2x) = −(2x)2 + 3(2x) + 4
= −(4x2) + (6x) + 4
= −4x2 + 6x + 4
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The expression 2f (x) means we multiply the expression f (x) by 2

2f (x) = 2
(
−x2 + 3x + 4

)
= −2x2 + 6x + 8

(c) To find f (x + 2), we replace every occurrence of x with the quantity x + 2

f (x + 2) = −(x + 2)2 + 3(x + 2) + 4
= −

(
x2 + 4x + 4

)
+ (3x + 6) + 4

= −x2 − 4x − 4 + 3x + 6 + 4
= −x2 − x + 6

To find f (x) + 2, we add 2 to the expression for f (x)

f (x) + 2 =
(
−x2 + 3x + 4

)
+ 2

= −x2 + 3x + 6

From our work above, we see f (2) = 6 so that

f (x) + f (2) =
(
−x2 + 3x + 4

)
+ 6

= −x2 + 3x + 10

2. Since f (x) = −x2 + 3x + 4, the equation f (x) = 4 is equivalent to −x2 + 3x + 4 = 4. Solving we
get −x2 + 3x = 0, or x(−x + 3) = 0. We get x = 0 or x = 3, and we can verify these answers
by checking that f (0) = 4 and f (3) = 4.

A few notes about Example 1.4.2 are in order. First note the difference between the answers for
f (2x) and 2f (x). For f (2x), we are multiplying the input by 2; for 2f (x), we are multiplying the
output by 2. As we see, we get entirely different results. Along these lines, note that f (x + 2),
f (x) + 2 and f (x) + f (2) are three different expressions as well. Even though function notation uses
parentheses, as does multiplication, there is no general ‘distributive property’ of function notation.
Finally, note the practice of using parentheses when substituting one algebraic expression into
another; we highly recommend this practice as it will reduce careless errors.

Suppose now we wish to find r (3) for r (x) = 2x
x2−9 . Substitution gives

r (3) =
2(3)

(3)2 − 9
=

6
0

,

which is undefined. (Why is this, again?) The number 3 is not an allowable input to the function
r ; in other words, 3 is not in the domain of r . Which other real numbers are forbidden in this
formula? We think back to arithmetic. The reason r (3) is undefined is because substitution results
in a division by 0. To determine which other numbers result in such a transgression, we set the
denominator equal to 0 and solve
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x2 − 9 = 0
x2 = 9√
x2 =

√
9 extract square roots

x = ±3

As long as we substitute numbers other than 3 and −3, the expression r (x) is a real number.
Hence, we write our domain in interval notation1 as (−∞,−3)∪(−3, 3)∪(3,∞). When a formula for
a function is given, we assume that the function is valid for all real numbers which make arithmetic
sense when substituted into the formula. This set of numbers is often called the implied domain2

of the function. At this stage, there are only two mathematical sins we need to avoid: division by 0
and extracting even roots of negative numbers. The following example illustrates these concepts.

Example 1.4.3. Find the domain3 of the following functions.

1. g(x) =
√

4− 3x 2. h(x) = 5
√

4− 3x

3. f (x) =
2

1− 4x
x − 3

4. F (x) =
4
√

2x + 1
x2 − 1

5. r (t) =
4

6−
√

t + 3
6. I(x) =

3x2

x

Solution.

1. The potential disaster for g is if the radicand4 is negative. To avoid this, we set 4 − 3x ≥ 0.
From this, we get 3x ≤ 4 or x ≤ 4

3 . What this shows is that as long as x ≤ 4
3 , the expression

4− 3x ≥ 0, and the formula g(x) returns a real number. Our domain is
(
−∞, 4

3

]
.

2. The formula for h(x) is hauntingly close to that of g(x) with one key difference − whereas
the expression for g(x) includes an even indexed root (namely a square root), the formula
for h(x) involves an odd indexed root (the fifth root). Since odd roots of real numbers (even
negative real numbers) are real numbers, there is no restriction on the inputs to h. Hence,
the domain is (−∞,∞).

3. In the expression for f , there are two denominators. We need to make sure neither of them
is 0. To that end, we set each denominator equal to 0 and solve. For the ‘small’ denominator,
we get x − 3 = 0 or x = 3. For the ‘large’ denominator

1See the Exercises for Section 1.1.
2or, ‘implicit domain’
3The word ‘implied’ is, well, implied.
4The ‘radicand’ is the expression ‘inside’ the radical.
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1− 4x
x − 3

= 0

1 =
4x

x − 3

(1)(x − 3) =
(

4x
���x − 3

)
��

��(x − 3) clear denominators

x − 3 = 4x

−3 = 3x

−1 = x

So we get two real numbers which make denominators 0, namely x = −1 and x = 3. Our
domain is all real numbers except −1 and 3: (−∞,−1) ∪ (−1, 3) ∪ (3,∞).

4. In finding the domain of F , we notice that we have two potentially hazardous issues: not
only do we have a denominator, we have a fourth (even-indexed) root. Our strategy is to
determine the restrictions imposed by each part and select the real numbers which satisfy
both conditions. To satisfy the fourth root, we require 2x + 1 ≥ 0. From this we get 2x ≥ −1
or x ≥ −1

2 . Next, we round up the values of x which could cause trouble in the denominator
by setting the denominator equal to 0. We get x2 − 1 = 0, or x = ±1. Hence, in order for a
real number x to be in the domain of F , x ≥ −1

2 but x 6= ±1. In interval notation, this set is[
−1

2 , 1
)
∪ (1,∞).

5. Don’t be put off by the ‘t ’ here. It is an independent variable representing a real number, just
like x does, and is subject to the same restrictions. As in the previous problem, we have
double danger here: we have a square root and a denominator. To satisfy the square root,
we need a non-negative radicand so we set t + 3 ≥ 0 to get t ≥ −3. Setting the denominator
equal to zero gives 6 −

√
t + 3 = 0, or

√
t + 3 = 6. Squaring both sides gives t + 3 = 36,

or t = 33. Since we squared both sides in the course of solving this equation, we need to
check our answer.5 Sure enough, when t = 33, 6 −

√
t + 3 = 6 −

√
36 = 0, so t = 33 will

cause problems in the denominator. At last we can find the domain of r : we need t ≥ −3,
but t 6= 33. Our final answer is [−3, 33) ∪ (33,∞).

6. It’s tempting to simplify I(x) = 3x2

x = 3x , and, since there are no longer any denominators,
claim that there are no longer any restrictions. However, in simplifying I(x), we are assuming
x 6= 0, since 0

0 is undefined.6 Proceeding as before, we find the domain of I to be all real
numbers except 0: (−∞, 0) ∪ (0,∞).

It is worth reiterating the importance of finding the domain of a function before simplifying, as
evidenced by the function I in the previous example. Even though the formula I(x) simplifies to

5Do you remember why? Consider squaring both sides to ‘solve’
√

t + 1 = −2.
6More precisely, the fraction 0

0 is an ‘indeterminate form’. Calculus is required to tame such beasts.



1.4 Function Notation 179

3x , it would be inaccurate to write I(x) = 3x without adding the stipulation that x 6= 0. It would be
analogous to not reporting taxable income or some other sin of omission.

1.4.1 Modeling with Functions

The importance of Mathematics to our society lies in its value to approximate, or model real-world
phenomenon. Whether it be used to predict the high temperature on a given day, determine the
hours of daylight on a given day, or predict population trends of various and sundry real and myth-
ical beasts, Mathematics is second only to literacy in the importance of humanity’s development.7

It is important to keep in mind that anytime Mathematics is used to approximate reality, there are
always limitations to the model. For example, suppose grapes are on sale at the local market for
$1.50 per pound. Then one pound of grapes costs $1.50, two pounds of grapes cost $3.00, and
so forth. Suppose we want to develop a formula which relates the cost of buying grapes to the
amount of grapes being purchased. Since these two quantities vary from situation to situation, we
assign them variables. Let c denote the cost of the grapes and let g denote the amount of grapes
purchased. To find the cost c of the grapes, we multiply the amount of grapes g by the price $1.50
dollars per pound to get

c = 1.5g

In order for the units to be correct in the formula, g must be measured in pounds of grapes in which
case the computed value of c is measured in dollars. Since we’re interested in finding the cost c
given an amount g, we think of g as the independent variable and c as the dependent variable.
Using the language of function notation, we write

c(g) = 1.5g

where g is the amount of grapes purchased (in pounds) and c(g) is the cost (in dollars). For
example, c(5) represents the cost, in dollars, to purchase 5 pounds of grapes. In this case, c(5) =
1.5(5) = 7.5, so it would cost $7.50. If, on the other hand, we wanted to find the amount of grapes
we can purchase for $5, we would need to set c(g) = 5 and solve for g. In this case, c(g) = 1.5g,
so solving c(g) = 5 is equivalent to solving 1.5g = 5 Doing so gives g = 5

1.5 = 3.3. This means
we can purchase exactly 3.3 pounds of grapes for $5. Of course, you would be hard-pressed to
buy exactly 3.3 pounds of grapes,8 and this leads us to our next topic of discussion, the applied
domain9 of a function.

Even though, mathematically, c(g) = 1.5g has no domain restrictions (there are no denominators
and no even-indexed radicals), there are certain values of g that don’t make any physical sense.
For example, g = −1 corresponds to ‘purchasing’ −1 pounds of grapes.10 Also, unless the ‘local
market’ mentioned is the State of California (or some other exporter of grapes), it also doesn’t

7In Carl’s humble opinion, of course . . .
8You could get close... within a certain specified margin of error, perhaps.
9or, ‘explicit domain’

10Maybe this means returning a pound of grapes?
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make much sense for g = 500,000,000, either. So the reality of the situation limits what g can be,
and these limits determine the applied domain of g. Typically, an applied domain is stated explicitly.
In this case, it would be common to see something like c(g) = 1.5g, 0 ≤ g ≤ 100, meaning the
number of pounds of grapes purchased is limited from 0 up to 100. The upper bound here, 100
may represent the inventory of the market, or some other limit as set by local policy or law. Even
with this restriction, our model has its limitations. As we saw above, it is virtually impossible to buy
exactly 3.3 pounds of grapes so that our cost is exactly $5. In this case, being sensible shoppers,
we would most likely ‘round down’ and purchase 3 pounds of grapes or however close the market
scale can read to 3.3 without being over. It is time for a more sophisticated example.

Example 1.4.4. The height h in feet of a model rocket above the ground t seconds after lift-off is
given by

h(t) =

{
−5t2 + 100t , if 0 ≤ t ≤ 20

0, if t > 20

1. Find and interpret h(10) and h(60).

2. Solve h(t) = 375 and interpret your answers.

Solution.

1. We first note that the independent variable here is t , chosen because it represents time.
Secondly, the function is broken up into two rules: one formula for values of t between 0
and 20 inclusive, and another for values of t greater than 20. Since t = 10 satisfies the
inequality 0 ≤ t ≤ 20, we use the first formula listed, h(t) = −5t2 +100t , to find h(10). We get
h(10) = −5(10)2 +100(10) = 500. Since t represents the number of seconds since lift-off and
h(t) is the height above the ground in feet, the equation h(10) = 500 means that 10 seconds
after lift-off, the model rocket is 500 feet above the ground. To find h(60), we note that t = 60
satisfies t > 20, so we use the rule h(t) = 0. This function returns a value of 0 regardless
of what value is substituted in for t , so h(60) = 0. This means that 60 seconds after lift-off,
the rocket is 0 feet above the ground; in other words, a minute after lift-off, the rocket has
already returned to Earth.

2. Since the function h is defined in pieces, we need to solve h(t) = 375 in pieces. For 0 ≤ t ≤
20, h(t) = −5t2 + 100t , so for these values of t , we solve −5t2 + 100t = 375. Rearranging
terms, we get 5t2 − 100t + 375 = 0, and factoring gives 5(t − 5)(t − 15) = 0. Our answers
are t = 5 and t = 15, and since both of these values of t lie between 0 and 20, we keep
both solutions. For t > 20, h(t) = 0, and in this case, there are no solutions to 0 = 375. In
terms of the model rocket, solving h(t) = 375 corresponds to finding when, if ever, the rocket
reaches 375 feet above the ground. Our two answers, t = 5 and t = 15 correspond to the
rocket reaching this altitude twice – once 5 seconds after launch, and again 15 seconds after
launch.11

11What goes up . . .
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The type of function in the previous example is called a piecewise-defined function, or ‘piecewise’
function for short. Many real-world phenomena (e.g. postal rates,12 income tax formulas13) are
modeled by such functions.

By the way, if we wanted to avoid using a piecewise function in Example 1.4.4, we could have used
h(t) = −5t2 + 100t on the explicit domain 0 ≤ t ≤ 20 because after 20 seconds, the rocket is on
the ground and stops moving. In many cases, though, piecewise functions are your only choice,
so it’s best to understand them well.

Mathematical modeling is not a one-section topic. It’s not even a one-course topic as is evidenced
by undergraduate and graduate courses in mathematical modeling being offered at many univer-
sities. Thus our goal in this section cannot possibly be to tell you the whole story. What we can
do is get you started. As we study new classes of functions, we will see what phenomena they
can be used to model. In that respect, mathematical modeling cannot be a topic in a book, but
rather, must be a theme of the book. For now, we have you explore some very basic models in the
Exercises because you need to crawl to walk to run. As we learn more about functions, we’ll help
you build your own models and get you on your way to applying Mathematics to your world.

12See the United States Postal Service website http://www.usps.com/prices/first-class-mail-prices.htm
13See the Internal Revenue Service’s website http://www.irs.gov/pub/irs-pdf/i1040tt.pdf
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1.4.2 Exercises

In Exercises 1 - 10, find an expression for f (x) and state its domain.

1. f is a function that takes a real number x and performs the following three steps in the order
given: (1) multiply 2; (2) add 3; (3) divide by 4.

2. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) multiply by 2; (3) divide by 4.

3. f is a function that takes a real number x and performs the following three steps in the order
given: (1) divide by 4; (2) add 3; (3) multiply by 2.

4. f is a function that takes a real number x and performs the following three steps in the order
given: (1) multiply 2; (2) add 3; (3) take the square root.

5. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) multiply 2; (3) take the square root.

6. f is a function that takes a real number x and performs the following three steps in the order
given: (1) add 3; (2) take the square root; (3) multiply by 2.

7. f is a function that takes a real number x and performs the following three steps in the order
given: (1) take the square root; (2) subtract 13; (3) make the quantity the denominator of a
fraction with numerator 4.

8. f is a function that takes a real number x and performs the following three steps in the order
given: (1) subtract 13; (2) take the square root; (3) make the quantity the denominator of a
fraction with numerator 4.

9. f is a function that takes a real number x and performs the following three steps in the order
given: (1) take the square root; (2) make the quantity the denominator of a fraction with
numerator 4; (3) subtract 13.

10. f is a function that takes a real number x and performs the following three steps in the order
given: (1) make the quantity the denominator of a fraction with numerator 4; (2) take the
square root; (3) subtract 13.

In Exercises 11 - 18, use the given function f to find and simplify the following:

• f (3) • f (−1) • f
( 3

2

)
• f (4x) • 4f (x) • f (−x)

• f (x − 4) • f (x)− 4 • f
(
x2
)
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11. f (x) = 2x + 1 12. f (x) = 3− 4x

13. f (x) = 2− x2 14. f (x) = x2 − 3x + 2

15. f (x) =
x

x − 1 16. f (x) =
2
x3

17. f (x) = 6 18. f (x) = 0

In Exercises 19 - 26, use the given function f to find and simplify the following:

• f (2) • f (−2) • f (2a)

• 2f (a) • f (a + 2) • f (a) + f (2)

• f
(2

a

)
• f (a)

2 • f (a + h)

19. f (x) = 2x − 5 20. f (x) = 5− 2x

21. f (x) = 2x2 − 1 22. f (x) = 3x2 + 3x − 2

23. f (x) =
√

2x + 1 24. f (x) = 117

25. f (x) =
x
2 26. f (x) =

2
x

In Exercises 27 - 34, use the given function f to find f (0) and solve f (x) = 0

27. f (x) = 2x − 1 28. f (x) = 3− 2
5x

29. f (x) = 2x2 − 6 30. f (x) = x2 − x − 12

31. f (x) =
√

x + 4 32. f (x) =
√

1− 2x

33. f (x) =
3

4− x 34. f (x) =
3x2 − 12x

4− x2

35. Let f (x) =


x + 5, x ≤ −3√

9− x2, −3 < x ≤ 3
−x + 5, x > 3

Compute the following function values.

(a) f (−4) (b) f (−3) (c) f (3)

(d) f (3.001) (e) f (−3.001) (f) f (2)
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36. Let f (x) =


x2 if x ≤ −1√

1− x2 if −1 < x ≤ 1
x if x > 1

Compute the following function values.

(a) f (4) (b) f (−3) (c) f (1)

(d) f (0) (e) f (−1) (f) f (−0.999)

In Exercises 37 - 62, find the (implied) domain of the function.

37. f (x) = x4 − 13x3 + 56x2 − 19 38. f (x) = x2 + 4

39. f (x) =
x − 2
x + 1

40. f (x) =
3x

x2 + x − 2

41. f (x) =
2x

x2 + 3
42. f (x) =

2x
x2 − 3

43. f (x) =
x + 4

x2 − 36
44. f (x) =

x − 2
x − 2

45. f (x) =
√

3− x 46. f (x) =
√

2x + 5

47. f (x) = 9x
√

x + 3 48. f (x) =
√

7− x
x2 + 1

49. f (x) =
√

6x − 2 50. f (x) =
6√

6x − 2

51. f (x) = 3
√

6x − 2 52. f (x) =
6

4−
√

6x − 2

53. f (x) =
√

6x − 2
x2 − 36

54. f (x) =
3
√

6x − 2
x2 + 36

55. s(t) =
t

t − 8 56. Q(r ) =
√

r
r − 8

57. b(θ) =
θ√
θ − 8

58. A(x) =
√

x − 7 +
√

9− x

59. α(y ) = 3

√
y

y − 8
60. g(v ) =

1

4− 1
v2

61. T (t) =
√

t − 8
5− t

62. u(w) =
w − 8

5−
√

w
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63. The area A enclosed by a square, in square inches, is a function of the length of one of its
sides x , when measured in inches. This relation is expressed by the formula A(x) = x2 for
x > 0. Find A(3) and solve A(x) = 36. Interpret your answers to each. Why is x restricted to
x > 0?

64. The area A enclosed by a circle, in square meters, is a function of its radius r , when mea-
sured in meters. This relation is expressed by the formula A(r ) = πr2 for r > 0. Find A(2)
and solve A(r ) = 16π. Interpret your answers to each. Why is r restricted to r > 0?

65. The volume V enclosed by a cube, in cubic centimeters, is a function of the length of one
of its sides x , when measured in centimeters. This relation is expressed by the formula
V (x) = x3 for x > 0. Find V (5) and solve V (x) = 27. Interpret your answers to each. Why is
x restricted to x > 0?

66. The volume V enclosed by a sphere, in cubic feet, is a function of the radius of the sphere r ,
when measured in feet. This relation is expressed by the formula V (r ) = 4π

3 r3 for r > 0. Find
V (3) and solve V (r ) = 32π

3 . Interpret your answers to each. Why is r restricted to r > 0?

67. The height of an object dropped from the roof of an eight story building is modeled by:
h(t) = −16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground, in feet, t
seconds after the object is dropped. Find h(0) and solve h(t) = 0. Interpret your answers to
each. Why is t restricted to 0 ≤ t ≤ 2?

68. The temperature T in degrees Fahrenheit t hours after 6 AM is given by T (t) = −1
2 t2 + 8t + 3

for 0 ≤ t ≤ 12. Find and interpret T (0), T (6) and T (12).

69. The function C(x) = x2 − 10x + 27 models the cost, in hundreds of dollars, to produce x
thousand pens. Find and interpret C(0), C(2) and C(5).

70. Using data from the Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Use your calculator to find F (0),
F (14) and F (28). Round your answers to two decimal places and interpret your answers to
each.

71. The population of Sasquatch in Portage County can be modeled by the function P(t) = 150t
t+15 ,

where t represents the number of years since 1803. Find and interpret P(0) and P(205).
Discuss with your classmates what the applied domain and range of P should be.

72. For n copies of the book Me and my Sasquatch, a print on-demand company charges C(n)
dollars, where C(n) is determined by the formula

C(n) =


15n if 1 ≤ n ≤ 25

13.50n if 25 < n ≤ 50
12n if n > 50

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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(a) Find and interpret C(20).

(b) How much does it cost to order 50 copies of the book? What about 51 copies?

(c) Your answer to 72b should get you thinking. Suppose a bookstore estimates it will sell
50 copies of the book. How many books can, in fact, be ordered for the same price as
those 50 copies? (Round your answer to a whole number of books.)

73. An on-line comic book retailer charges shipping costs according to the following formula

S(n) =

{
1.5n + 2.5 if 1 ≤ n ≤ 14

0 if n ≥ 15

where n is the number of comic books purchased and S(n) is the shipping cost in dollars.

(a) What is the cost to ship 10 comic books?

(b) What is the significance of the formula S(n) = 0 for n ≥ 15?

74. The cost C (in dollars) to talk m minutes a month on a mobile phone plan is modeled by

C(m) =

{
25 if 0 ≤ m ≤ 1000

25 + 0.1(m − 1000) if m > 1000

(a) How much does it cost to talk 750 minutes per month with this plan?

(b) How much does it cost to talk 20 hours a month with this plan?

(c) Explain the terms of the plan verbally.

75. We have through our examples tried to convince you that, in general, f (a + b) 6= f (a) +
f (b). It has been our experience that students refuse to believe us so we’ll try again with a
different approach. With the help of your classmates, find a function f for which the following
properties are always true.

(a) f (0) = f (−1 + 1) = f (−1) + f (1)

(b) f (5) = f (2 + 3) = f (2) + f (3)

(c) f (−6) = f (0− 6) = f (0)− f (6)

(d) f (a + b) = f (a) + f (b) regardless of what two numbers we give you for a and b.

How many functions did you find that failed to satisfy the conditions above? Did f (x) = x2

work? What about f (x) =
√

x or f (x) = 3x + 7 or f (x) =
1
x

? Did you find an attribute
common to those functions that did succeed? You should have, because there is only one
extremely special family of functions that actually works here. Thus we return to our previous
statement, in general, f (a + b) 6= f (a) + f (b).



1.4 Function Notation 187

1.4.3 Answers

1. f (x) = 2x+3
4

Domain: (−∞,∞)
2. f (x) = 2(x+3)

4 = x+3
2

Domain: (−∞,∞)

3. f (x) = 2
(x

4 + 3
)

= 1
2x + 6

Domain: (−∞,∞)
4. f (x) =

√
2x + 3

Domain:
[
−3

2 ,∞
)

5. f (x) =
√

2(x + 3) =
√

2x + 6
Domain: [−3,∞)

6. f (x) = 2
√

x + 3
Domain: [−3,∞)

7. f (x) = 4√
x−13

Domain: [0, 169) ∪ (169,∞)
8. f (x) = 4√

x−13
Domain: (13,∞)

9. f (x) = 4√
x − 13

Domain: (0,∞)
10. f (x) =

√
4
x − 13 = 2√

x − 13
Domain: (0,∞)

11. For f (x) = 2x + 1

• f (3) = 7 • f (−1) = −1 • f
(3

2

)
= 4

• f (4x) = 8x + 1 • 4f (x) = 8x + 4 • f (−x) = −2x + 1

• f (x − 4) = 2x − 7 • f (x)− 4 = 2x − 3 • f
(
x2) = 2x2 + 1

12. For f (x) = 3− 4x

• f (3) = −9 • f (−1) = 7 • f
(3

2

)
= −3

• f (4x) = 3− 16x • 4f (x) = 12− 16x • f (−x) = 4x + 3

• f (x − 4) = 19− 4x • f (x)− 4 = −4x − 1 • f
(
x2) = 3− 4x2
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13. For f (x) = 2− x2

• f (3) = −7 • f (−1) = 1 • f
(3

2

)
= −1

4

• f (4x) = 2− 16x2 • 4f (x) = 8− 4x2 • f (−x) = 2− x2

• f (x − 4) = −x2 + 8x − 14 • f (x)− 4 = −x2 − 2 • f
(
x2) = 2− x4

14. For f (x) = x2 − 3x + 2

• f (3) = 2 • f (−1) = 6 • f
(3

2

)
= −1

4

• f (4x) = 16x2 − 12x + 2 • 4f (x) = 4x2 − 12x + 8 • f (−x) = x2 + 3x + 2

• f (x − 4) = x2 − 11x + 30 • f (x)− 4 = x2 − 3x − 2 • f
(
x2) = x4 − 3x2 + 2

15. For f (x) = x
x−1

• f (3) = 3
2 • f (−1) = 1

2 • f
(3

2

)
= 3

• f (4x) = 4x
4x−1 • 4f (x) = 4x

x−1 • f (−x) = x
x+1

• f (x − 4) = x−4
x−5 • f (x)− 4 = x

x−1 − 4
= 4−3x

x−1

• f
(
x2) = x2

x2−1

16. For f (x) = 2
x3

• f (3) = 2
27 • f (−1) = −2 • f

(3
2

)
= 16

27

• f (4x) = 1
32x3 • 4f (x) = 8

x3 • f (−x) = − 2
x3

• f (x − 4) = 2
(x−4)3

= 2
x3−12x2+48x−64

• f (x)− 4 = 2
x3 − 4

= 2−4x3

x3

• f
(
x2) = 2

x6

17. For f (x) = 6

• f (3) = 6 • f (−1) = 6 • f
(3

2

)
= 6

• f (4x) = 6 • 4f (x) = 24 • f (−x) = 6

• f (x − 4) = 6 • f (x)− 4 = 2 • f
(
x2) = 6
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18. For f (x) = 0

• f (3) = 0 • f (−1) = 0 • f
(3

2

)
= 0

• f (4x) = 0 • 4f (x) = 0 • f (−x) = 0

• f (x − 4) = 0 • f (x)− 4 = −4 • f
(
x2) = 0

19. For f (x) = 2x − 5

• f (2) = −1 • f (−2) = −9 • f (2a) = 4a− 5

• 2f (a) = 4a− 10 • f (a + 2) = 2a− 1 • f (a) + f (2) = 2a− 6

• f
(2

a

)
= 4

a − 5
= 4−5a

a

• f (a)
2 = 2a−5

2 • f (a + h) = 2a + 2h − 5

20. For f (x) = 5− 2x

• f (2) = 1 • f (−2) = 9 • f (2a) = 5− 4a

• 2f (a) = 10− 4a • f (a + 2) = 1− 2a • f (a) + f (2) = 6− 2a

• f
(2

a

)
= 5− 4

a
= 5a−4

a

• f (a)
2 = 5−2a

2 • f (a + h) = 5− 2a− 2h

21. For f (x) = 2x2 − 1

• f (2) = 7 • f (−2) = 7 • f (2a) = 8a2 − 1

• 2f (a) = 4a2 − 2 • f (a + 2) = 2a2 + 8a + 7 • f (a) + f (2) = 2a2 + 6

• f
(2

a

)
= 8

a2 − 1
= 8−a2

a2

• f (a)
2 = 2a2−1

2 • f (a + h) = 2a2 + 4ah +
2h2 − 1



190 Relations and Functions

22. For f (x) = 3x2 + 3x − 2

• f (2) = 16 • f (−2) = 4 • f (2a) = 12a2 + 6a− 2

• 2f (a) = 6a2 + 6a− 4 • f (a + 2) = 3a2 + 15a + 16 • f (a) + f (2) = 3a2 + 3a + 14

• f
(2

a

)
= 12

a2 + 6
a − 2

= 12+6a−2a2

a2

• f (a)
2 = 3a2+3a−2

2 • f (a+h) = 3a2+6ah+3h2+
3a + 3h − 2

23. For f (x) =
√

2x + 1

• f (2) =
√

5 • f (−2) is not real • f (2a) =
√

4a + 1

• 2f (a) = 2
√

2a + 1 • f (a + 2) =
√

2a + 5 • f (a) + f (2) =
√

2a + 1 +
√

5

• f
(2

a

)
=
√

4
a + 1

=
√

a+4
a

• f (a)
2 =

√
2a+1
2 • f (a + h) =

√
2a + 2h + 1

24. For f (x) = 117

• f (2) = 117 • f (−2) = 117 • f (2a) = 117

• 2f (a) = 234 • f (a + 2) = 117 • f (a) + f (2) = 234

• f
(2

a

)
= 117 • f (a)

2 = 117
2 • f (a + h) = 117

25. For f (x) = x
2

• f (2) = 1 • f (−2) = −1 • f (2a) = a

• 2f (a) = a • f (a + 2) = a+2
2 • f (a) + f (2) = a

2 + 1
= a+2

2

• f
(2

a

)
= 1

a • f (a)
2 = a

4 • f (a + h) = a+h
2
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26. For f (x) = 2
x

• f (2) = 1 • f (−2) = −1 • f (2a) = 1
a

• 2f (a) = 4
a • f (a + 2) = 2

a+2 • f (a) + f (2) = 2
a + 1

= a+2
2

• f
(2

a

)
= a • f (a)

2 = 1
a • f (a + h) = 2

a+h

27. For f (x) = 2x − 1, f (0) = −1 and f (x) = 0 when x = 1
2

28. For f (x) = 3− 2
5x , f (0) = 3 and f (x) = 0 when x = 15

2

29. For f (x) = 2x2 − 6, f (0) = −6 and f (x) = 0 when x = ±
√

3

30. For f (x) = x2 − x − 12, f (0) = −12 and f (x) = 0 when x = −3 or x = 4

31. For f (x) =
√

x + 4, f (0) = 2 and f (x) = 0 when x = −4

32. For f (x) =
√

1− 2x , f (0) = 1 and f (x) = 0 when x = 1
2

33. For f (x) = 3
4−x , f (0) = 3

4 and f (x) is never equal to 0

34. For f (x) = 3x2−12x
4−x2 , f (0) = 0 and f (x) = 0 when x = 0 or x = 4

35. (a) f (−4) = 1 (b) f (−3) = 2 (c) f (3) = 0

(d) f (3.001) = 1.999 (e) f (−3.001) = 1.999 (f) f (2) =
√

5

36. (a) f (4) = 4 (b) f (−3) = 9 (c) f (1) = 0

(d) f (0) = 1 (e) f (−1) = 1 (f) f (−0.999) ≈ 0.0447

37. (−∞,∞) 38. (−∞,∞)

39. (−∞,−1) ∪ (−1,∞) 40. (−∞,−2) ∪ (−2, 1) ∪ (1,∞)

41. (−∞,∞) 42. (−∞,−
√

3) ∪ (−
√

3,
√

3) ∪ (
√

3,∞)

43. (−∞,−6) ∪ (−6, 6) ∪ (6,∞) 44. (−∞, 2) ∪ (2,∞)

45. (−∞, 3] 46.
[
−5

2 ,∞
)
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47. [−3,∞) 48. (−∞, 7]

49.
[1

3 ,∞
)

50.
(1

3 ,∞
)

51. (−∞,∞) 52.
[1

3 , 3
)
∪ (3,∞)

53.
[1

3 , 6
)
∪ (6,∞) 54. (−∞,∞)

55. (−∞, 8) ∪ (8,∞) 56. [0, 8) ∪ (8,∞)

57. (8,∞) 58. [7, 9]

59. (−∞, 8) ∪ (8,∞) 60.
(
−∞,−1

2

)
∪
(
−1

2 , 0
)
∪
(
0, 1

2

)
∪
(1

2 ,∞
)

61. [0, 5) ∪ (5,∞) 62. [0, 25) ∪ (25,∞)

63. A(3) = 9, so the area enclosed by a square with a side of length 3 inches is 9 square inches.
The solutions to A(x) = 36 are x = ±6. Since x is restricted to x > 0, we only keep x = 6.
This means for the area enclosed by the square to be 36 square inches, the length of the
side needs to be 6 inches. Since x represents a length, x > 0.

64. A(2) = 4π, so the area enclosed by a circle with radius 2 meters is 4π square meters. The
solutions to A(r ) = 16π are r = ±4. Since r is restricted to r > 0, we only keep r = 4. This
means for the area enclosed by the circle to be 16π square meters, the radius needs to be 4
meters. Since r represents a radius (length), r > 0.

65. V (5) = 125, so the volume enclosed by a cube with a side of length 5 centimeters is 125
cubic centimeters. The solution to V (x) = 27 is x = 3. This means for the volume enclosed
by the cube to be 27 cubic centimeters, the length of the side needs to 3 centimeters. Since
x represents a length, x > 0.

66. V (3) = 36π, so the volume enclosed by a sphere with radius 3 feet is 36π cubic feet. The
solution to V (r ) = 32π

3 is r = 2. This means for the volume enclosed by the sphere to be 32π
3

cubic feet, the radius needs to 2 feet. Since r represents a radius (length), r > 0.

67. h(0) = 64, so at the moment the object is dropped off the building, the object is 64 feet off of
the ground. The solutions to h(t) = 0 are t = ±2. Since we restrict 0 ≤ t ≤ 2, we only keep
t = 2. This means 2 seconds after the object is dropped off the building, it is 0 feet off the
ground. Said differently, the object hits the ground after 2 seconds. The restriction 0 ≤ t ≤ 2
restricts the time to be between the moment the object is released and the moment it hits
the ground.

68. T (0) = 3, so at 6 AM (0 hours after 6 AM), it is 3◦ Fahrenheit. T (6) = 33, so at noon (6 hours
after 6 AM), the temperature is 33◦ Fahrenheit. T (12) = 27, so at 6 PM (12 hours after 6
AM), it is 27◦ Fahrenheit.
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69. C(0) = 27, so to make 0 pens, it costs14 $2700. C(2) = 11, so to make 2000 pens, it costs
$1100. C(5) = 2, so to make 5000 pens, it costs $2000.

70. F (0) = 16.00, so in 1980 (0 years after 1980), the average fuel economy of passenger
cars in the US was 16.00 miles per gallon. F (14) = 20.81, so in 1994 (14 years after
1980), the average fuel economy of passenger cars in the US was 20.81 miles per gallon.
F (28) = 22.64, so in 2008 (28 years after 1980), the average fuel economy of passenger
cars in the US was 22.64 miles per gallon.

71. P(0) = 0 which means in 1803 (0 years after 1803), there are no Sasquatch in Portage
County. P(205) = 3075

22 ≈ 139.77, so in 2008 (205 years after 1803), there were between 139
and 140 Sasquatch in Portage County.

72. (a) C(20) = 300. It costs $300 for 20 copies of the book.

(b) C(50) = 675, so it costs $675 for 50 copies of the book. C(51) = 612, so it costs $612
for 51 copies of the book.

(c) 56 books.

73. (a) S(10) = 17.5, so it costs $17.50 to ship 10 comic books.

(b) There is free shipping on orders of 15 or more comic books.

74. (a) C(750) = 25, so it costs $25 to talk 750 minutes per month with this plan.

(b) Since 20 hours = 1200 minutes, we substitute m = 1200 and get C(1200) = 45. It costs
$45 to talk 20 hours per month with this plan.

(c) It costs $25 for up to 1000 minutes and 10 cents per minute for each minute over 1000
minutes.

14This is called the ‘fixed’ or ‘start-up’ cost. We’ll revisit this concept on page 199.
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1.5 Function Arithmetic

In the previous section we used the newly defined function notation to make sense of expressions
such as ‘f (x)+2’ and ‘2f (x)’ for a given function f . It would seem natural, then, that functions should
have their own arithmetic which is consistent with the arithmetic of real numbers. The following
definitions allow us to add, subtract, multiply and divide functions using the arithmetic we already
know for real numbers.

Function Arithmetic
Suppose f and g are functions and x is in both the domain of f and the domain of g.a

• The sum of f and g, denoted f + g, is the function defined by the formula

(f + g)(x) = f (x) + g(x)

• The difference of f and g, denoted f − g, is the function defined by the formula

(f − g)(x) = f (x)− g(x)

• The product of f and g, denoted fg, is the function defined by the formula

(fg)(x) = f (x)g(x)

• The quotient of f and g, denoted
f
g

, is the function defined by the formula

(
f
g

)
(x) =

f (x)
g(x)

,

provided g(x) 6= 0.
aThus x is an element of the intersection of the two domains.

In other words, to add two functions, we add their outputs; to subtract two functions, we subtract
their outputs, and so on. Note that while the formula (f + g)(x) = f (x) + g(x) looks suspiciously
like some kind of distributive property, it is nothing of the sort; the addition on the left hand side of
the equation is function addition, and we are using this equation to define the output of the new
function f + g as the sum of the real number outputs from f and g.

Example 1.5.1. Let f (x) = 6x2 − 2x and g(x) = 3− 1
x

.

1. Find (f + g)(−1) 2. Find (fg)(2)

3. Find the domain of g − f then find and simplify a formula for (g − f )(x).
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4. Find the domain of
(g

f

)
then find and simplify a formula for

(g
f

)
(x).

Solution.

1. To find (f + g)(−1) we first find f (−1) = 8 and g(−1) = 4. By definition, we have that (f +
g)(−1) = f (−1) + g(−1) = 8 + 4 = 12.

2. To find (fg)(2), we first need f (2) and g(2). Since f (2) = 20 and g(2) = 5
2 , our formula yields

(fg)(2) = f (2)g(2) = (20)
(5

2

)
= 50.

3. One method to find the domain of g−f is to find the domain of g and of f separately, then find
the intersection of these two sets. Owing to the denominator in the expression g(x) = 3− 1

x ,
we get that the domain of g is (−∞, 0) ∪ (0,∞). Since f (x) = 6x2 − 2x is valid for all real
numbers, we have no further restrictions. Thus the domain of g − f matches the domain of
g, namely, (−∞, 0) ∪ (0,∞).

A second method is to analyze the formula for (g − f )(x) before simplifying and look for the
usual domain issues. In this case,

(g − f )(x) = g(x)− f (x) =
(

3− 1
x

)
−
(

6x2 − 2x
)

,

so we find, as before, the domain is (−∞, 0) ∪ (0,∞).

Moving along, we need to simplify a formula for (g − f )(x). In this case, we get common
denominators and attempt to reduce the resulting fraction. Doing so, we get

(g − f )(x) = g(x)− f (x)

=
(

3− 1
x

)
−
(
6x2 − 2x

)
= 3− 1

x
− 6x2 + 2x

=
3x
x
− 1

x
− 6x3

x
+

2x2

x
get common denominators

=
3x − 1− 6x3 − 2x2

x

=
−6x3 − 2x2 + 3x − 1

x

4. As in the previous example, we have two ways to approach finding the domain of g
f . First,

we can find the domain of g and f separately, and find the intersection of these two sets.
In addition, since

(g
f

)
(x) = g(x)

f (x) , we are introducing a new denominator, namely f (x), so we
need to guard against this being 0 as well. Our previous work tells us that the domain of
g is (−∞, 0) ∪ (0,∞) and the domain of f is (−∞,∞). Setting f (x) = 0 gives 6x2 − 2x = 0
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or x = 0, 1
3 . As a result, the domain of g

f is all real numbers except x = 0 and x = 1
3 , or

(−∞, 0) ∪
(
0, 1

3

)
∪
(1

3 ,∞
)
.

Alternatively, we may proceed as above and analyze the expression
(g

f

)
(x) = g(x)

f (x) before
simplifying. In this case,

(g
f

)
(x) =

g(x)
f (x)

=
3− 1

x
6x2 − 2x

We see immediately from the ‘little’ denominator that x 6= 0. To keep the ‘big’ denominator
away from 0, we solve 6x2 − 2x = 0 and get x = 0 or x = 1

3 . Hence, as before, we find the
domain of g

f to be (−∞, 0) ∪
(
0, 1

3

)
∪
(1

3 ,∞
)
.

Next, we find and simplify a formula for
(g

f

)
(x).

(g
f

)
(x) =

g(x)
f (x)

=
3− 1

x
6x2 − 2x

=
3− 1

x
6x2 − 2x

· x
x

simplify compound fractions

=

(
3− 1

x

)
x(

6x2 − 2x
)

x

=
3x − 1(

6x2 − 2x
)

x

=
3x − 1

2x2(3x − 1)
factor

= ���
��:1

(3x − 1)
2x2
���

��(3x − 1)
cancel

=
1

2x2

Please note the importance of finding the domain of a function before simplifying its expression. In
number 4 in Example 1.5.1 above, had we waited to find the domain of g

f until after simplifying, we’d
just have the formula 1

2x2 to go by, and we would (incorrectly!) state the domain as (−∞, 0)∪(0,∞),
since the other troublesome number, x = 1

3 , was canceled away.
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Next, we turn our attention to the difference quotient of a function.

Definition 1.6. Given a function f , the difference quotient of f is the expression

f (x + h)− f (x)
h

We will revisit this concept in Section 2.1, but for now, we use it as a way to practice function
notation and function arithmetic. For reasons which will become clear in Calculus, ‘simplifying’
a difference quotient means rewriting it in a form where the ‘h’ in the definition of the difference
quotient cancels from the denominator. Once that happens, we consider our work to be done.

Example 1.5.2. Find and simplify the difference quotients for the following functions

1. f (x) = x2 − x − 2 2. g(x) =
3

2x + 1
3. r (x) =

√
x

Solution.

1. To find f (x + h), we replace every occurrence of x in the formula f (x) = x2 − x − 2 with the
quantity (x + h) to get

f (x + h) = (x + h)2 − (x + h)− 2 = x2 + 2xh + h2 − x − h − 2.

So the difference quotient is

f (x + h)− f (x)
h

=

(
x2 + 2xh + h2 − x − h − 2

)
−
(
x2 − x − 2

)
h

=
x2 + 2xh + h2 − x − h − 2− x2 + x + 2

h

=
2xh + h2 − h

h

=
h (2x + h − 1)

h
factor

= �h (2x + h − 1)
�h

cancel

= 2x + h − 1.

2. To find g(x +h), we replace every occurrence of x in the formula g(x) = 3
2x+1 with the quantity

(x + h) to get

g(x + h) =
3

2(x + h) + 1
=

3
2x + 2h + 1

,

which yields
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g(x + h)− g(x)
h

=

3
2x + 2h + 1

− 3
2x + 1

h

=
1
h
·
[

3
2x + 2h + 1

− 3
2x + 1

]
=

1
h
·
[

3(2x + 1)− 3(2x + 2h + 1)
(2x + 2h + 1)(2x + 1)

]
=

6x + 3− 6x − 6h − 3
h(2x + 2h + 1)(2x + 1)

=
−6h

h(2x + 2h + 1)(2x + 1)

=
−6�h

�h(2x + 2h + 1)(2x + 1)
=

−6
(2x + 2h + 1)(2x + 1)

Since we have managed to cancel the original ‘h’ from the denominator, we are done.

3. For r (x) =
√

x , we get r (x + h) =
√

x + h so the difference quotient is

r (x + h)− r (x)
h

=
√

x + h −
√

x
h

In order to cancel the ‘h’ from the denominator, we rationalize the numerator by multiplying
by its conjugate.1

r (x + h)− r (x)
h

=
√

x + h −
√

x
h

=

(√
x + h −

√
x
)

h
·

(√
x + h +

√
x
)

(√
x + h +

√
x
) Multiply by the conjugate.

=

(√
x + h

)2
−
(√

x
)2

h
(√

x + h +
√

x
) Difference of Squares.

=
(x + h)− x

h
(√

x + h +
√

x
)

=
h

h
(√

x + h +
√

x
) =

1√
x + h +

√
x

Since we have removed the original ‘h’ from the denominator, we are done.
1Rationalizing the numerator !? How’s that for a twist!
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As mentioned before, we will revisit difference quotients in Section 2.1 where we will explain them
geometrically. For now, we want to move on to some classic applications of function arithmetic
from Economics and for that, we need to think like an entrepreneur.2

Suppose you are a manufacturer making a certain product.3 Let x be the production level, that is,
the number of items produced in a given time period. It is customary to let C(x) denote the function
which calculates the total cost of producing the x items. The quantity C(0), which represents the
cost of producing no items, is called the fixed cost, and represents the amount of money required
to begin production. Associated with the total cost C(x) is cost per item, or average cost, denoted
C(x) and read ‘C-bar’ of x . To compute C(x), we take the total cost C(x) and divide by the number
of items produced x to get

C(x) =
C(x)

x

On the retail end, we have the price p charged per item. To simplify the dialog and computations in
this text, we assume that the number of items sold equals the number of items produced. From a
retail perspective, it seems natural to think of the number of items sold, x , as a function of the price
charged, p. After all, the retailer can easily adjust the price to sell more product. In the language
of functions, x would be the dependent variable and p would be the independent variable or, using
function notation, we have a function x(p). While we will adopt this convention later in the text, we
will hold with tradition at this point and consider the price p as a function of the number of items
sold, x . That is, we regard x as the independent variable and p as the dependent variable and
speak of the price-demand function, p(x). Hence, p(x) returns the price charged per item when
x items are produced and sold. Our next function to consider is the revenue function, R(x). The
function R(x) computes the amount of money collected as a result of selling x items. Since p(x) is
the price charged per item, we have R(x) = xp(x). Finally, the profit function, P(x) calculates how
much money is earned after the costs are paid. That is, P(x) = (R − C)(x) = R(x)− C(x).

It is high time for an example.

Example 1.5.3. Let x represent the number of dOpi media players (‘dOpis’4) produced and sold
in a typical week. Suppose the cost, in dollars, to produce x dOpis is given by C(x) = 100x +2000,
for x ≥ 0, and the price, in dollars per dOpi, is given by p(x) = 450− 15x for 0 ≤ x ≤ 30.

1. Find and interpret C(0). 2. Find and interpret C(10).

3. Find and interpret p(0) and p(20). 4. Solve p(x) = 0 and interpret the result.

5. Find and simplify expressions for the revenue function R(x) and the profit function P(x).

6. Find and interpret R(0) and P(0). 7. Solve P(x) = 0 and interpret the result.

2Not really, but “entrepreneur” is the buzzword of the day and we’re trying to be trendy.
3Poorly designed resin Sasquatch statues, for example. Feel free to choose your own entrepreneurial fantasy.
4Pronounced ‘dopeys’ . . .
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Solution.

1. We substitute x = 0 into the formula for C(x) and get C(0) = 100(0) + 2000 = 2000. This
means to produce 0 dOpis, it costs $2000. In other words, the fixed (or start-up) costs are
$2000. The reader is encouraged to contemplate what sorts of expenses these might be.

2. Since C(x) = C(x)
x , C(10) = C(10)

10 = 3000
10 = 300. This means when 10 dOpis are produced,

the cost to manufacture them amounts to $300 per dOpi.

3. Plugging x = 0 into the expression for p(x) gives p(0) = 450 − 15(0) = 450. This means no
dOpis are sold if the price is $450 per dOpi. On the other hand, p(20) = 450− 15(20) = 150
which means to sell 20 dOpis in a typical week, the price should be set at $150 per dOpi.

4. Setting p(x) = 0 gives 450 − 15x = 0. Solving gives x = 30. This means in order to sell 30
dOpis in a typical week, the price needs to be set to $0. What’s more, this means that even
if dOpis were given away for free, the retailer would only be able to move 30 of them.5

5. To find the revenue, we compute R(x) = xp(x) = x(450 − 15x) = 450x − 15x2. Since the
formula for p(x) is valid only for 0 ≤ x ≤ 30, our formula R(x) is also restricted to 0 ≤ x ≤ 30.
For the profit, P(x) = (R − C)(x) = R(x) − C(x). Using the given formula for C(x) and the
derived formula for R(x), we get P(x) =

(
450x − 15x2)−(100x+2000) = −15x2+350x−2000.

As before, the validity of this formula is for 0 ≤ x ≤ 30 only.

6. We find R(0) = 0 which means if no dOpis are sold, we have no revenue, which makes
sense. Turning to profit, P(0) = −2000 since P(x) = R(x) − C(x) and P(0) = R(0) − C(0) =
−2000. This means that if no dOpis are sold, more money ($2000 to be exact!) was put into
producing the dOpis than was recouped in sales. In number 1, we found the fixed costs to
be $2000, so it makes sense that if we sell no dOpis, we are out those start-up costs.

7. Setting P(x) = 0 gives −15x2 + 350x − 2000 = 0. Factoring gives −5(x − 10)(3x − 40) = 0
so x = 10 or x = 40

3 . What do these values mean in the context of the problem? Since
P(x) = R(x) − C(x), solving P(x) = 0 is the same as solving R(x) = C(x). This means that
the solutions to P(x) = 0 are the production (and sales) figures for which the sales revenue
exactly balances the total production costs. These are the so-called ‘break even’ points. The
solution x = 10 means 10 dOpis should be produced (and sold) during the week to recoup
the cost of production. For x = 40

3 = 13.3, things are a bit more complicated. Even though
x = 13.3 satisfies 0 ≤ x ≤ 30, and hence is in the domain of P, it doesn’t make sense in the
context of this problem to produce a fractional part of a dOpi.6 Evaluating P(13) = 15 and
P(14) = −40, we see that producing and selling 13 dOpis per week makes a (slight) profit,
whereas producing just one more puts us back into the red. While breaking even is nice, we
ultimately would like to find what production level (and price) will result in the largest profit,
and we’ll do just that . . . in Section 2.4.

5Imagine that! Giving something away for free and hardly anyone taking advantage of it . . .
6We’ve seen this sort of thing before in Section 1.4.1.
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1.5.1 Exercises

In Exercises 1 - 10, use the pair of functions f and g to find the following values if they exist.

• (f + g)(2) • (f − g)(−1) • (g − f )(1)

• (fg)
(1

2

)
•
(

f
g

)
(0) •

(g
f

)
(−2)

1. f (x) = 3x + 1 and g(x) = 4− x 2. f (x) = x2 and g(x) = −2x + 1

3. f (x) = x2 − x and g(x) = 12− x2 4. f (x) = 2x3 and g(x) = −x2 − 2x − 3

5. f (x) =
√

x + 3 and g(x) = 2x − 1 6. f (x) =
√

4− x and g(x) =
√

x + 2

7. f (x) = 2x and g(x) =
1

2x + 1
8. f (x) = x2 and g(x) =

3
2x − 3

9. f (x) = x2 and g(x) =
1
x2 10. f (x) = x2 + 1 and g(x) =

1
x2 + 1

In Exercises 11 - 20, use the pair of functions f and g to find the domain of the indicated function
then find and simplify an expression for it.

• (f + g)(x) • (f − g)(x) • (fg)(x) •
(

f
g

)
(x)

11. f (x) = 2x + 1 and g(x) = x − 2 12. f (x) = 1− 4x and g(x) = 2x − 1

13. f (x) = x2 and g(x) = 3x − 1 14. f (x) = x2 − x and g(x) = 7x

15. f (x) = x2 − 4 and g(x) = 3x + 6 16. f (x) = −x2 + x + 6 and g(x) = x2 − 9

17. f (x) =
x
2

and g(x) =
2
x

18. f (x) = x − 1 and g(x) =
1

x − 1

19. f (x) = x and g(x) =
√

x + 1 20. f (x) =
√

x − 5 and g(x) = f (x) =
√

x − 5

In Exercises 21 - 45, find and simplify the difference quotient
f (x + h)− f (x)

h
for the given function.

21. f (x) = 2x − 5 22. f (x) = −3x + 5

23. f (x) = 6 24. f (x) = 3x2 − x

25. f (x) = −x2 + 2x − 1 26. f (x) = 4x2
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27. f (x) = x − x2 28. f (x) = x3 + 1

29. f (x) = mx + b where m 6= 0 30. f (x) = ax2 + bx + c where a 6= 0

31. f (x) =
2
x

32. f (x) =
3

1− x

33. f (x) =
1
x2 34. f (x) =

2
x + 5

35. f (x) =
1

4x − 3
36. f (x) =

3x
x + 1

37. f (x) =
x

x − 9 38. f (x) =
x2

2x + 1

39. f (x) =
√

x − 9 40. f (x) =
√

2x + 1

41. f (x) =
√
−4x + 5 42. f (x) =

√
4− x

43. f (x) =
√

ax + b, where a 6= 0. 44. f (x) = x
√

x

45. f (x) = 3
√

x . HINT: (a− b)
(
a2 + ab + b2) = a3 − b3

In Exercises 46 - 50, C(x) denotes the cost to produce x items and p(x) denotes the price-demand
function in the given economic scenario. In each Exercise, do the following:

• Find and interpret C(0). • Find and interpret C(10).

• Find and interpret p(5) • Find and simplify R(x).

• Find and simplify P(x). • Solve P(x) = 0 and interpret.

46. The cost, in dollars, to produce x “I’d rather be a Sasquatch” T-Shirts is C(x) = 2x +26, x ≥ 0
and the price-demand function, in dollars per shirt, is p(x) = 30− 2x , 0 ≤ x ≤ 15.

47. The cost, in dollars, to produce x bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(x) = 10x + 100, x ≥ 0 and the price-demand function, in dollars per
bottle, is p(x) = 35− x , 0 ≤ x ≤ 35.

48. The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C(x) = 18x + 240, x ≥ 0 and the price-demand function, in cents per cup, is
p(x) = 90− 3x , 0 ≤ x ≤ 30.

49. The daily cost, in dollars, to produce x Sasquatch Berry Pies C(x) = 3x + 36, x ≥ 0 and the
price-demand function, in dollars per pie, is p(x) = 12− 0.5x , 0 ≤ x ≤ 24.
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50. The monthly cost, in hundreds of dollars, to produce x custom built electric scooters is C(x) =
20x + 1000, x ≥ 0 and the price-demand function, in hundreds of dollars per scooter, is
p(x) = 140− 2x , 0 ≤ x ≤ 70.

In Exercises 51 - 62, let f be the function defined by

f = {(−3, 4), (−2, 2), (−1, 0), (0, 1), (1, 3), (2, 4), (3,−1)}

and let g be the function defined

g = {(−3,−2), (−2, 0), (−1,−4), (0, 0), (1,−3), (2, 1), (3, 2)}

. Compute the indicated value if it exists.

51. (f + g)(−3) 52. (f − g)(2) 53. (fg)(−1)

54. (g + f )(1) 55. (g − f )(3) 56. (gf )(−3)

57.
(

f
g

)
(−2) 58.

(
f
g

)
(−1) 59.

(
f
g

)
(2)

60.
(g

f

)
(−1) 61.

(g
f

)
(3) 62.

(g
f

)
(−3)

Summary of Common Economic Functions

Suppose x represents the quantity of items produced and sold.

• The price-demand function p(x) calculates the price per item.

• The revenue function R(x) calculates the total money collected by selling x items at a
price p(x), R(x) = x p(x).

• The cost function C(x) calculates the cost to produce x items. The value C(0) is called
the fixed cost or start-up cost.

• The average cost function C(x) = C(x)
x calculates the cost per item when making x items.

Here, we necessarily assume x > 0.

• The profit function P(x) calculates the money earned after costs are paid when x items
are produced and sold, P(x) = (R − C)(x) = R(x)− C(x).



204 Relations and Functions

1.5.2 Answers

1. For f (x) = 3x + 1 and g(x) = 4− x

• (f + g)(2) = 9 • (f − g)(−1) = −7 • (g − f )(1) = −1

• (fg)
(1

2

)
= 35

4 •
(

f
g

)
(0) = 1

4
•
(g

f

)
(−2) = −6

5

2. For f (x) = x2 and g(x) = −2x + 1

• (f + g)(2) = 1 • (f − g)(−1) = −2 • (g − f )(1) = −2

• (fg)
(1

2

)
= 0 •

(
f
g

)
(0) = 0 •

(g
f

)
(−2) = 5

4

3. For f (x) = x2 − x and g(x) = 12− x2

• (f + g)(2) = 10 • (f − g)(−1) = −9 • (g − f )(1) = 11

• (fg)
(1

2

)
= −47

16 •
(

f
g

)
(0) = 0 •

(g
f

)
(−2) = 4

3

4. For f (x) = 2x3 and g(x) = −x2 − 2x − 3

• (f + g)(2) = 5 • (f − g)(−1) = 0 • (g − f )(1) = −8

• (fg)
(1

2

)
= −17

16 •
(

f
g

)
(0) = 0 •

(g
f

)
(−2) = 3

16

5. For f (x) =
√

x + 3 and g(x) = 2x − 1

• (f + g)(2) = 3 +
√

5 • (f − g)(−1) = 3 +
√

2 • (g − f )(1) = −1

• (fg)
(1

2

)
= 0 •

(
f
g

)
(0) = −

√
3 •

(g
f

)
(−2) = −5

6. For f (x) =
√

4− x and g(x) =
√

x + 2

• (f + g)(2) = 2 +
√

2 • (f − g)(−1) = −1 +
√

5 • (g − f )(1) = 0

• (fg)
(1

2

)
=
√

35
2 •

(
f
g

)
(0) =

√
2 •

(g
f

)
(−2) = 0
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7. For f (x) = 2x and g(x) = 1
2x+1

• (f + g)(2) = 21
5 • (f − g)(−1) = −1 • (g − f )(1) = −5

3

• (fg)
(1

2

)
= 1

2 •
(

f
g

)
(0) = 0 •

(g
f

)
(−2) = 1

12

8. For f (x) = x2 and g(x) = 3
2x−3

• (f + g)(2) = 7 • (f − g)(−1) = 8
5 • (g − f )(1) = −4

• (fg)
(1

2

)
= −3

8 •
(

f
g

)
(0) = 0 •

(g
f

)
(−2) = − 3

28

9. For f (x) = x2 and g(x) = 1
x2

• (f + g)(2) = 17
4 • (f − g)(−1) = 0 • (g − f )(1) = 0

• (fg)
(1

2

)
= 1 •

(
f
g

)
(0) is undefined. •

(g
f

)
(−2) = 1

16

10. For f (x) = x2 + 1 and g(x) = 1
x2+1

• (f + g)(2) = 26
5 • (f − g)(−1) = 3

2 • (g − f )(1) = −3
2

• (fg)
(1

2

)
= 1 •

(
f
g

)
(0) = 1 •

(g
f

)
(−2) = 1

25

11. For f (x) = 2x + 1 and g(x) = x − 2

• (f + g)(x) = 3x − 1
Domain: (−∞,∞)

• (f − g)(x) = x + 3
Domain: (−∞,∞)

• (fg)(x) = 2x2 − 3x − 2
Domain: (−∞,∞)

•
(

f
g

)
(x) = 2x+1

x−2
Domain: (−∞, 2) ∪ (2,∞)

12. For f (x) = 1− 4x and g(x) = 2x − 1

• (f + g)(x) = −2x
Domain: (−∞,∞)

• (f − g)(x) = 2− 6x
Domain: (−∞,∞)

• (fg)(x) = −8x2 + 6x − 1
Domain: (−∞,∞)

•
(

f
g

)
(x) = 1−4x

2x−1

Domain:
(
−∞, 1

2

)
∪
(1

2 ,∞
)



206 Relations and Functions

13. For f (x) = x2 and g(x) = 3x − 1

• (f + g)(x) = x2 + 3x − 1
Domain: (−∞,∞)

• (f − g)(x) = x2 − 3x + 1
Domain: (−∞,∞)

• (fg)(x) = 3x3 − x2

Domain: (−∞,∞)
•
(

f
g

)
(x) = x2

3x−1

Domain:
(
−∞, 1

3

)
∪
(1

3 ,∞
)

14. For f (x) = x2 − x and g(x) = 7x

• (f + g)(x) = x2 + 6x
Domain: (−∞,∞)

• (f − g)(x) = x2 − 8x
Domain: (−∞,∞)

• (fg)(x) = 7x3 − 7x2

Domain: (−∞,∞)
•
(

f
g

)
(x) = x−1

7
Domain: (−∞, 0) ∪ (0,∞)

15. For f (x) = x2 − 4 and g(x) = 3x + 6

• (f + g)(x) = x2 + 3x + 2
Domain: (−∞,∞)

• (f − g)(x) = x2 − 3x − 10
Domain: (−∞,∞)

• (fg)(x) = 3x3 + 6x2 − 12x − 24
Domain: (−∞,∞)

•
(

f
g

)
(x) = x−2

3
Domain: (−∞,−2) ∪ (−2,∞)

16. For f (x) = −x2 + x + 6 and g(x) = x2 − 9

• (f + g)(x) = x − 3
Domain: (−∞,∞)

• (f − g)(x) = −2x2 + x + 15
Domain: (−∞,∞)

• (fg)(x) = −x4 + x3 + 15x2 − 9x − 54
Domain: (−∞,∞)

•
(

f
g

)
(x) = −x+2

x+3
Domain: (−∞,−3) ∪ (−3, 3) ∪ (3,∞)

17. For f (x) = x
2 and g(x) = 2

x

• (f + g)(x) = x2+4
2x

Domain: (−∞, 0) ∪ (0,∞)
• (f − g)(x) = x2−4

2x
Domain: (−∞, 0) ∪ (0,∞)

• (fg)(x) = 1
Domain: (−∞, 0) ∪ (0,∞)

•
(

f
g

)
(x) = x2

4
Domain: (−∞, 0) ∪ (0,∞)



1.5 Function Arithmetic 207

18. For f (x) = x − 1 and g(x) = 1
x−1

• (f + g)(x) = x2−2x+2
x−1

Domain: (−∞, 1) ∪ (1,∞)
• (f − g)(x) = x2−2x

x−1
Domain: (−∞, 1) ∪ (1,∞)

• (fg)(x) = 1
Domain: (−∞, 1) ∪ (1,∞)

•
(

f
g

)
(x) = x2 − 2x + 1

Domain: (−∞, 1) ∪ (1,∞)

19. For f (x) = x and g(x) =
√

x + 1

• (f + g)(x) = x +
√

x + 1
Domain: [−1,∞)

• (f − g)(x) = x −
√

x + 1
Domain: [−1,∞)

• (fg)(x) = x
√

x + 1
Domain: [−1,∞)

•
(

f
g

)
(x) = x√

x+1
Domain: (−1,∞)

20. For f (x) =
√

x − 5 and g(x) = f (x) =
√

x − 5

• (f + g)(x) = 2
√

x − 5
Domain: [5,∞)

• (f − g)(x) = 0
Domain: [5,∞)

• (fg)(x) = x − 5
Domain: [5,∞)

•
(

f
g

)
(x) = 1

Domain: (5,∞)

21. 2 22. −3

23. 0 24. 6x + 3h − 1

25. −2x − h + 2 26. 8x + 4h

27. −2x − h + 1 28. 3x2 + 3xh + h2

29. m 30. 2ax + ah + b

31.
−2

x(x + h)
32.

3
(1− x − h)(1− x)

33.
−(2x + h)
x2(x + h)2 34.

−2
(x + 5)(x + h + 5)

35.
−4

(4x − 3)(4x + 4h − 3)
36.

3
(x + 1)(x + h + 1)
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37.
−9

(x − 9)(x + h − 9) 38.
2x2 + 2xh + 2x + h

(2x + 1)(2x + 2h + 1)

39.
1√

x + h − 9 +
√

x − 9
40.

2√
2x + 2h + 1 +

√
2x + 1

41.
−4√

−4x − 4h + 5 +
√
−4x + 5

42.
−1√

4− x − h +
√

4− x

43.
a√

ax + ah + b +
√

ax + b 44.
3x2 + 3xh + h2

(x + h)3/2 + x3/2

45.
1

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

46. • C(0) = 26, so the fixed costs are $26.

• C(10) = 4.6, so when 10 shirts are produced, the cost per shirt is $4.60.

• p(5) = 20, so to sell 5 shirts, set the price at $20 per shirt.

• R(x) = −2x2 + 30x , 0 ≤ x ≤ 15

• P(x) = −2x2 + 28x − 26, 0 ≤ x ≤ 15

• P(x) = 0 when x = 1 and x = 13. These are the ‘break even’ points, so selling 1 shirt or
13 shirts will guarantee the revenue earned exactly recoups the cost of production.

47. • C(0) = 100, so the fixed costs are $100.

• C(10) = 20, so when 10 bottles of tonic are produced, the cost per bottle is $20.

• p(5) = 30, so to sell 5 bottles of tonic, set the price at $30 per bottle.

• R(x) = −x2 + 35x , 0 ≤ x ≤ 35

• P(x) = −x2 + 25x − 100, 0 ≤ x ≤ 35

• P(x) = 0 when x = 5 and x = 20. These are the ‘break even’ points, so selling 5 bottles
of tonic or 20 bottles of tonic will guarantee the revenue earned exactly recoups the cost
of production.

48. • C(0) = 240, so the fixed costs are 240¢ or $2.40.

• C(10) = 42, so when 10 cups of lemonade are made, the cost per cup is 42¢.

• p(5) = 75, so to sell 5 cups of lemonade, set the price at 75¢ per cup.

• R(x) = −3x2 + 90x , 0 ≤ x ≤ 30

• P(x) = −3x2 + 72x − 240, 0 ≤ x ≤ 30

• P(x) = 0 when x = 4 and x = 20. These are the ‘break even’ points, so selling 4 cups of
lemonade or 20 cups of lemonade will guarantee the revenue earned exactly recoups
the cost of production.
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49. • C(0) = 36, so the daily fixed costs are $36.

• C(10) = 6.6, so when 10 pies are made, the cost per pie is $6.60.

• p(5) = 9.5, so to sell 5 pies a day, set the price at $9.50 per pie.

• R(x) = −0.5x2 + 12x , 0 ≤ x ≤ 24

• P(x) = −0.5x2 + 9x − 36, 0 ≤ x ≤ 24

• P(x) = 0 when x = 6 and x = 12. These are the ‘break even’ points, so selling 6 pies or
12 pies a day will guarantee the revenue earned exactly recoups the cost of production.

50. • C(0) = 1000, so the monthly fixed costs are 1000 hundred dollars, or $100,000.

• C(10) = 120, so when 10 scooters are made, the cost per scooter is 120 hundred
dollars, or $12,000.

• p(5) = 130, so to sell 5 scooters a month, set the price at 130 hundred dollars, or
$13,000 per scooter.

• R(x) = −2x2 + 140x , 0 ≤ x ≤ 70

• P(x) = −2x2 + 120x − 1000, 0 ≤ x ≤ 70

• P(x) = 0 when x = 10 and x = 50. These are the ‘break even’ points, so selling 10
scooters or 50 scooters a month will guarantee the revenue earned exactly recoups the
cost of production.

51. (f + g)(−3) = 2 52. (f − g)(2) = 3 53. (fg)(−1) = 0

54. (g + f )(1) = 0 55. (g − f )(3) = 3 56. (gf )(−3) = −8

57.
(

f
g

)
(−2) does not exist 58.

(
f
g

)
(−1) = 0 59.

(
f
g

)
(2) = 4

60.
(g

f

)
(−1) does not exist 61.

(g
f

)
(3) = −2 62.

(g
f

)
(−3) = −1

2
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Chapter 2

Linear and Quadratic Functions

2.1 Linear Functions

We now begin the study of families of functions. Our first family, linear functions, are old friends as
we shall soon see. Recall from Geometry that two distinct points in the plane determine a unique
line containing those points, as indicated below.

P (x0, y0)

Q (x1, y1)

To give a sense of the ‘steepness’ of the line, we recall that we can compute the slope of the line
using the formula below.

Equation 2.1. The slope m of the line containing the points P (x0, y0) and Q (x1, y1) is:

m =
y1 − y0

x1 − x0
,

provided x1 6= x0.

A couple of notes about Equation 2.1 are in order. First, don’t ask why we use the letter ‘m’ to
represent slope. There are many explanations out there, but apparently no one really knows for
sure.1 Secondly, the stipulation x1 6= x0 ensures that we aren’t trying to divide by zero. The reader
is invited to pause to think about what is happening geometrically; the anxious reader can skip
along to the next example.

Example 2.1.1. Find the slope of the line containing the following pairs of points, if it exists. Plot
each pair of points and the line containing them.

1See www.mathforum.org or www.mathworld.wolfram.com for discussions on this topic.

http://mathforum.org/dr.math/faq/faq.terms.html
http://mathworld.wolfram.com/Slope.html
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1. P(0, 0), Q(2, 4) 2. P(−1, 2), Q(3, 4)

3. P(−2, 3), Q(2,−3) 4. P(−3, 2), Q(4, 2)

5. P(2, 3), Q(2,−1) 6. P(2, 3), Q(2.1,−1)

Solution. In each of these examples, we apply the slope formula, Equation 2.1.

1. m =
4− 0
2− 0

=
4
2

= 2

P

Q

x

y

1 2 3 4

1

2

3

4

2. m =
4− 2

3− (−1)
=

2
4

=
1
2 P

Q

x

y

−1 1 2 3

1

2

3

4

3. m =
−3− 3

2− (−2)
=
−6
4

= −3
2

P

Q

x

y

−3 −2 −1 1 2 3

−4

−3

−2

−1

1

2

3

4

4. m =
2− 2

4− (−3)
=

0
7

= 0 P Q

x

y

−4 −3 −2 −1 1 2 3 4

1

2

3
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5. m =
−1− 3
2− 2

=
−4
0

, which is undefined

P

Q

x

y

1 2

−3

−2

−1

1

2

3

6. m =
−1− 3
2.1− 2

=
−4
0.1

= −40

P

Q

x

y

1 2

−3

−2

−1

1

2

3

A few comments about Example 2.1.1 are in order. First, for reasons which will be made clear
soon, if the slope is positive then the resulting line is said to be increasing. If it is negative, we
say the line is decreasing. A slope of 0 results in a horizontal line which we say is constant, and
an undefined slope results in a vertical line.2 Second, the larger the slope is in absolute value,
the steeper the line. You may recall from Intermediate Algebra that slope can be described as the
ratio ‘ rise

run ’. For example, in the second part of Example 2.1.1, we found the slope to be 1
2 . We can

interpret this as a rise of 1 unit upward for every 2 units to the right we travel along the line, as
shown below.

‘over 2’

‘up 1’

x

y

−1 1 2 3

1

2

3

4

2Some authors use the unfortunate moniker ‘no slope’ when a slope is undefined. It’s easy to confuse the notions
of ‘no slope’ with ‘slope of 0’. For this reason, we will describe slopes of vertical lines as ‘undefined’.
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Using more formal notation, given points (x0, y0) and (x1, y1), we use the Greek letter delta ‘∆’ to
write ∆y = y1 − y0 and ∆x = x1 − x0. In most scientific circles, the symbol ∆ means ‘change in’.
Hence, we may write

m =
∆y
∆x

,

which describes the slope as the rate of change of y with respect to x . Rates of change abound
in the ‘real world’, as the next example illustrates.

Example 2.1.2. Suppose that two separate temperature readings were taken at the ranger station
on the top of Mt. Sasquatch: at 6 AM the temperature was 24◦F and at 10 AM it was 32◦F.

1. Find the slope of the line containing the points (6, 24) and (10, 32).

2. Interpret your answer to the first part in terms of temperature and time.

3. Predict the temperature at noon.

Solution.

1. For the slope, we have m = 32−24
10−6 = 8

4 = 2.

2. Since the values in the numerator correspond to the temperatures in ◦F, and the values in

the denominator correspond to time in hours, we can interpret the slope as 2 =
2
1

=
2◦ F

1 hour
,

or 2◦F per hour. Since the slope is positive, we know this corresponds to an increasing line.
Hence, the temperature is increasing at a rate of 2◦F per hour.

3. Noon is two hours after 10 AM. Assuming a temperature increase of 2◦F per hour, in two
hours the temperature should rise 4◦F. Since the temperature at 10 AM is 32◦F, we would
expect the temperature at noon to be 32 + 4 = 36◦F.

Now it may well happen that in the previous scenario, at noon the temperature is only 33◦F. This
doesn’t mean our calculations are incorrect, rather, it means that the temperature change through-
out the day isn’t a constant 2◦F per hour. As discussed in Section 1.4.1, mathematical models are
just that: models. The predictions we get out of the models may be mathematically accurate, but
may not resemble what happens in the real world.
In Section 1.2, we discussed the equations of vertical and horizontal lines. Using the concept of
slope, we can develop equations for the other varieties of lines. Suppose a line has a slope of m
and contains the point (x0, y0). Suppose (x , y ) is another point on the line, as indicated below.

(x0, y0)

(x , y )
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Equation 2.1 yields

m =
y − y0

x − x0

m (x − x0) = y − y0

y − y0 = m (x − x0)

We have just derived the point-slope form of a line.3

Equation 2.2. The point-slope form of the line with slope m containing the point (x0, y0) is the
equation y − y0 = m (x − x0).

Example 2.1.3. Write the equation of the line containing the points (−1, 3) and (2, 1).
Solution. In order to use Equation 2.2 we need to find the slope of the line in question so we
use Equation 2.1 to get m = ∆y

∆x = 1−3
2−(−1) = −2

3 . We are spoiled for choice for a point (x0, y0).
We’ll use (−1, 3) and leave it to the reader to check that using (2, 1) results in the same equation.
Substituting into the point-slope form of the line, we get

y − y0 = m (x − x0)

y − 3 = −2
3

(x − (−1))

y − 3 = −2
3

(x + 1)

y − 3 = −2
3

x − 2
3

y = −2
3

x +
7
3

.

We can check our answer by showing that both (−1, 3) and (2, 1) are on the graph of y = −2
3x + 7

3
algebraically, as we did in Section 1.2.1.

In simplifying the equation of the line in the previous example, we produced another form of a
line, the slope-intercept form. This is the familiar y = mx + b form you have probably seen in
Intermediate Algebra. The ‘intercept’ in ‘slope-intercept’ comes from the fact that if we set x = 0,
we get y = b. In other words, the y -intercept of the line y = mx + b is (0, b).

Equation 2.3. The slope-intercept form of the line with slope m and y -intercept (0, b) is the
equation y = mx + b.

Note that if we have slope m = 0, we get the equation y = b which matches our formula for a
horizontal line given in Section 1.2. The formula given in Equation 2.3 can be used to describe all
lines except vertical lines. All lines except vertical lines are functions (Why is this?) so we have
finally reached a good point to introduce linear functions.

3We can also understand this equation in terms of applying transformations to the function I(x) = x . See the
Exercises.
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Definition 2.1. A linear function is a function of the form

f (x) = mx + b,

where m and b are real numbers with m 6= 0. The domain of a linear function is (−∞,∞).

For the case m = 0, we get f (x) = b. These are given their own classification.

Definition 2.2. A constant function is a function of the form

f (x) = b,

where b is real number. The domain of a constant function is (−∞,∞).

Recall that to graph a function, f , we graph the equation y = f (x). Hence, the graph of a linear
function is a line with slope m and y -intercept (0, b); the graph of a constant function is a horizontal
line (a line with slope m = 0) and a y -intercept of (0, b).

Example 2.1.4. Graph the following functions. Identify the slope and y -intercept.

1. f (x) = 3

2. f (x) = 3x − 1

3. f (x) =
3− 2x

4

4. f (x) =
x2 − 4
x − 2

Solution.

1. To graph f (x) = 3, we graph y = 3. This is a horizontal line (m = 0) through (0, 3).

2. The graph of f (x) = 3x − 1 is the graph of the line y = 3x − 1. Comparison of this equation
with Equation 2.3 yields m = 3 and b = −1. Hence, our slope is 3 and our y -intercept is
(0,−1). To get another point on the line, we can plot (1, f (1)) = (1, 2).

x

y

−3 −2 −1 1 2 3

1

2

3

4

f (x) = 3

x

y

−2−1 1 2−1

1

2

3

4

f (x) = 3x − 1

3. At first glance, the function f (x) = 3−2x
4 does not fit the form in Definition 2.1 but after some

rearranging we get f (x) = 3−2x
4 = 3

4 −
2x
4 = −1

2x + 3
4 . We identify m = −1

2 and b = 3
4 . Hence,
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our graph is a line with a slope of −1
2 and a y -intercept of

(
0, 3

4

)
. Plotting an additional point,

we can choose (1, f (1)) to get
(
1, 1

4

)
.

4. If we simplify the expression for f , we get

f (x) =
x2 − 4
x − 2

= �
���(x − 2)(x + 2)
���

�(x − 2)
= x + 2.

If we were to state f (x) = x +2, we would be committing a sin of omission. Remember, to find
the domain of a function, we do so before we simplify! In this case, f has big problems when
x = 2, and as such, the domain of f is (−∞, 2)∪ (2,∞). To indicate this, we write f (x) = x + 2,
x 6= 2. So, except at x = 2, we graph the line y = x + 2. The slope m = 1 and the y -intercept
is (0, 2). A second point on the graph is (1, f (1)) = (1, 3). Since our function f is not defined
at x = 2, we put an open circle at the point that would be on the line y = x + 2 when x = 2,
namely (2, 4).

x

y

−3 −2 −1 1 2 3

1

2

f (x) =
3− 2x

4

x

y

−1 1 2 3

1

2

3

4

f (x) =
x2 − 4
x − 2

The last two functions in the previous example showcase some of the difficulty in defining a linear
function using the phrase ‘of the form’ as in Definition 2.1, since some algebraic manipulations
may be needed to rewrite a given function to match ‘the form’. Keep in mind that the domains of
linear and constant functions are all real numbers (−∞,∞), so while f (x) = x2−4

x−2 simplified to a
formula f (x) = x +2, f is not considered a linear function since its domain excludes x = 2. However,
we would consider

f (x) =
2x2 + 2
x2 + 1

to be a constant function since its domain is all real numbers (Can you tell us why?) and

f (x) =
2x2 + 2
x2 + 1

=
2���

��(
x2 + 1

)
��

���
(
x2 + 1

) = 2

The following example uses linear functions to model some basic economic relationships.
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Example 2.1.5. The cost C, in dollars, to produce x PortaBoy4 game systems for a local retailer
is given by C(x) = 80x + 150 for x ≥ 0.

1. Find and interpret C(10).

2. How many PortaBoys can be produced for $15,000?

3. Explain the significance of the restriction on the domain, x ≥ 0.

4. Find and interpret C(0).

5. Find and interpret the slope of the graph of y = C(x).

Solution.

1. To find C(10), we replace every occurrence of x with 10 in the formula for C(x) to get C(10) =
80(10) + 150 = 950. Since x represents the number of PortaBoys produced, and C(x)
represents the cost, in dollars, C(10) = 950 means it costs $950 to produce 10 PortaBoys
for the local retailer.

2. To find how many PortaBoys can be produced for $15,000, we solve C(x) = 15000, or
80x + 150 = 15000. Solving, we get x = 14850

80 = 185.625. Since we can only produce a
whole number amount of PortaBoys, we can produce 185 PortaBoys for $15,000.

3. The restriction x ≥ 0 is the applied domain, as discussed in Section 1.4.1. In this context,
x represents the number of PortaBoys produced. It makes no sense to produce a negative
quantity of game systems.5

4. We find C(0) = 80(0) + 150 = 150. This means it costs $150 to produce 0 PortaBoys. As
mentioned on page 199, this is the fixed, or start-up cost of this venture.

5. If we were to graph y = C(x), we would be graphing the portion of the line y = 80x + 150 for
x ≥ 0. We recognize the slope, m = 80. Like any slope, we can interpret this as a rate of
change. Here, C(x) is the cost in dollars, while x measures the number of PortaBoys so

m =
∆y
∆x

=
∆C
∆x

= 80 =
80
1

=
$80

1 PortaBoy
.

In other words, the cost is increasing at a rate of $80 per PortaBoy produced. This is often
called the variable cost for this venture.

The next example asks us to find a linear function to model a related economic problem.

4The similarity of this name to PortaJohn is deliberate.
5Actually, it makes no sense to produce a fractional part of a game system, either, as we saw in the previous part of

this example. This absurdity, however, seems quite forgivable in some textbooks but not to us.

http://www.toilets.com
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Example 2.1.6. The local retailer in Example 2.1.5 has determined that the number x of PortaBoy
game systems sold in a week is related to the price p in dollars of each system. When the price
was $220, 20 game systems were sold in a week. When the systems went on sale the following
week, 40 systems were sold at $190 a piece.

1. Find a linear function which fits this data. Use the weekly sales x as the independent variable
and the price p as the dependent variable.

2. Find a suitable applied domain.

3. Interpret the slope.

4. If the retailer wants to sell 150 PortaBoys next week, what should the price be?

5. What would the weekly sales be if the price were set at $150 per system?

Solution.

1. We recall from Section 1.4 the meaning of ‘independent’ and ‘dependent’ variable. Since x is
to be the independent variable, and p the dependent variable, we treat x as the input variable
and p as the output variable. Hence, we are looking for a function of the form p(x) = mx + b.
To determine m and b, we use the fact that 20 PortaBoys were sold during the week when
the price was 220 dollars and 40 units were sold when the price was 190 dollars. Using
function notation, these two facts can be translated as p(20) = 220 and p(40) = 190. Since
m represents the rate of change of p with respect to x , we have

m =
∆p
∆x

=
190− 220

40− 20
=
−30
20

= −1.5.

We now have determined p(x) = −1.5x +b. To determine b, we can use our given data again.
Using p(20) = 220, we substitute x = 20 into p(x) = 1.5x + b and set the result equal to 220:
−1.5(20) + b = 220. Solving, we get b = 250. Hence, we get p(x) = −1.5x + 250. We can
check our formula by computing p(20) and p(40) to see if we get 220 and 190, respectively.
You may recall from page 199 that the function p(x) is called the price-demand (or simply
demand) function for this venture.

2. To determine the applied domain, we look at the physical constraints of the problem. Cer-
tainly, we can’t sell a negative number of PortaBoys, so x ≥ 0. However, we also note that
the slope of this linear function is negative, and as such, the price is decreasing as more
units are sold. Thus another constraint on the price is p(x) ≥ 0. Solving −1.5x + 250 ≥ 0

results in −1.5x ≥ −250 or x ≤ 500
3

= 166.6. Since x represents the number of PortaBoys
sold in a week, we round down to 166. As a result, a reasonable applied domain for p is
[0, 166].
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3. The slope m = −1.5, once again, represents the rate of change of the price of a system with
respect to weekly sales of PortaBoys. Since the slope is negative, we have that the price
is decreasing at a rate of $1.50 per PortaBoy sold. (Said differently, you can sell one more
PortaBoy for every $1.50 drop in price.)

4. To determine the price which will move 150 PortaBoys, we find p(150) = −1.5(150) + 250 =
25. That is, the price would have to be $25.

5. If the price of a PortaBoy were set at $150, we have p(x) = 150, or, −1.5x + 250 = 150.
Solving, we get −1.5x = −100 or x = 66.6. This means you would be able to sell 66
PortaBoys a week if the price were $150 per system.

Not all real-world phenomena can be modeled using linear functions. Nevertheless, it is possible
to use the concept of slope to help analyze non-linear functions using the following.

Definition 2.3. Let f be a function defined on the interval [a, b]. The average rate of change
of f over [a, b] is defined as:

∆f
∆x

=
f (b)− f (a)

b − a

Geometrically, if we have the graph of y = f (x), the average rate of change over [a, b] is the slope of
the line which connects (a, f (a)) and (b, f (b)). This is called the secant line through these points.
For that reason, some textbooks use the notation msec for the average rate of change of a function.
Note that for a linear function m = msec, or in other words, its rate of change over an interval is the
same as its average rate of change.

(a, f (a))

(b, f (b))

y = f (x)

The graph of y = f (x) and its secant line through (a, f (a)) and (b, f (b))

The interested reader may question the adjective ‘average’ in the phrase ‘average rate of change’.
In the figure above, we can see that the function changes wildly on [a, b], yet the slope of the
secant line only captures a snapshot of the action at a and b. This situation is entirely analogous
to the average speed on a trip. Suppose it takes you 2 hours to travel 100 miles. Your average
speed is 100 miles

2 hours = 50 miles per hour. However, it is entirely possible that at the start of your
journey, you traveled 25 miles per hour, then sped up to 65 miles per hour, and so forth. The
average rate of change is akin to your average speed on the trip. Your speedometer measures
your speed at any one instant along the trip, your instantaneous rate of change, and this is one
of the central themes of Calculus.6

6Here we go again...
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When interpreting rates of change, we interpret them the same way we did slopes. In the context
of functions, it may be helpful to think of the average rate of change as:

change in outputs
change in inputs

Example 2.1.7. Recall from page 199, the revenue from selling x units at a price p per unit is
given by the formula R = xp. Suppose we are in the scenario of Examples 2.1.5 and 2.1.6.

1. Find and simplify an expression for the weekly revenue R(x) as a function of weekly sales x .

2. Find and interpret the average rate of change of R(x) over the interval [0, 50].

3. Find and interpret the average rate of change of R(x) as x changes from 50 to 100 and
compare that to your result in part 2.

4. Find and interpret the average rate of change of weekly revenue as weekly sales increase
from 100 PortaBoys to 150 PortaBoys.

Solution.

1. Since R = xp, we substitute p(x) = −1.5x + 250 from Example 2.1.6 to get R(x) = x(−1.5x +
250) = −1.5x2 + 250x . Since we determined the price-demand function p(x) is restricted to
0 ≤ x ≤ 166, R(x) is restricted to these values of x as well.

2. Using Definition 2.3, we get that the average rate of change is

∆R
∆x

=
R(50)− R(0)

50− 0
=

8750− 0
50− 0

= 175.

Interpreting this slope as we have in similar situations, we conclude that for every additional
PortaBoy sold during a given week, the weekly revenue increases $175.

3. The wording of this part is slightly different than that in Definition 2.3, but its meaning is to
find the average rate of change of R over the interval [50, 100]. To find this rate of change,
we compute

∆R
∆x

=
R(100)− R(50)

100− 50
=

10000− 8750
50

= 25.

In other words, for each additional PortaBoy sold, the revenue increases by $25. Note that
while the revenue is still increasing by selling more game systems, we aren’t getting as much
of an increase as we did in part 2 of this example. (Can you think of why this would happen?)

4. Translating the English to the mathematics, we are being asked to find the average rate of
change of R over the interval [100, 150]. We find

∆R
∆x

=
R(150)− R(100)

150− 100
=

3750− 10000
50

= −125.
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This means that we are losing $125 dollars of weekly revenue for each additional PortaBoy
sold. (Can you think why this is possible?)

We close this section with a new look at difference quotients which were first introduced in Section
1.4. If we wish to compute the average rate of change of a function f over the interval [x , x + h],
then we would have

∆f
∆x

=
f (x + h)− f (x)

(x + h)− x
=

f (x + h)− f (x)
h

As we have indicated, the rate of change of a function (average or otherwise) is of great impor-
tance in Calculus.7 Also, we have the geometric interpretation of difference quotients which was
promised to you back on page 199 – a difference quotient yields the slope of a secant line.

7So we are not torturing you with these for nothing.
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2.1.1 Exercises

In Exercises 1 - 10, find both the point-slope form and the slope-intercept form of the line with the
given slope which passes through the given point.

1. m = 3, P(3,−1) 2. m = −2, P(−5, 8)

3. m = −1, P(−7,−1) 4. m = 2
3 , P(−2, 1)

5. m = −1
5 , P(10, 4) 6. m = 1

7 , P(−1, 4)

7. m = 0, P(3, 117) 8. m = −
√

2, P(0,−3)

9. m = −5, P(
√

3, 2
√

3) 10. m = 678, P(−1,−12)

In Exercises 11 - 20, find the slope-intercept form of the line which passes through the given points.

11. P(0, 0), Q(−3, 5) 12. P(−1,−2), Q(3,−2)

13. P(5, 0), Q(0,−8) 14. P(3,−5), Q(7, 4)

15. P(−1, 5), Q(7, 5) 16. P(4,−8), Q(5,−8)

17. P
(1

2 , 3
4

)
, Q

(5
2 ,−7

4

)
18. P

(2
3 , 7

2

)
, Q

(
−1

3 , 3
2

)
19. P

(√
2,−
√

2
)

, Q
(
−
√

2,
√

2
)

20. P
(
−
√

3,−1
)

, Q
(√

3, 1
)

In Exercises 21 - 26, graph the function. Find the slope, y -intercept and x-intercept, if any exist.

21. f (x) = 2x − 1 22. f (x) = 3− x

23. f (x) = 3 24. f (x) = 0

25. f (x) = 2
3x + 1

3 26. f (x) =
1− x

2

27. Find all of the points on the line y = 2x + 1 which are 4 units from the point (−1, 3).

28. Jeff can walk comfortably at 3 miles per hour. Find a linear function d that represents the
total distance Jeff can walk in t hours, assuming he doesn’t take any breaks.

29. Carl can stuff 6 envelopes per minute. Find a linear function E that represents the total
number of envelopes Carl can stuff after t hours, assuming he doesn’t take any breaks.

30. A landscaping company charges $45 per cubic yard of mulch plus a delivery charge of $20.
Find a linear function which computes the total cost C (in dollars) to deliver x cubic yards of
mulch.
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31. A plumber charges $50 for a service call plus $80 per hour. If she spends no longer than 8
hours a day at any one site, find a linear function that represents her total daily charges C
(in dollars) as a function of time t (in hours) spent at any one given location.

32. A salesperson is paid $200 per week plus 5% commission on her weekly sales of x dollars.
Find a linear function that represents her total weekly pay, W (in dollars) in terms of x . What
must her weekly sales be in order for her to earn $475.00 for the week?

33. An on-demand publisher charges $22.50 to print a 600 page book and $15.50 to print a 400
page book. Find a linear function which models the cost of a book C as a function of the
number of pages p. Interpret the slope of the linear function and find and interpret C(0).

34. The Topology Taxi Company charges $2.50 for the first fifth of a mile and $0.45 for each
additional fifth of a mile. Find a linear function which models the taxi fare F as a function of
the number of miles driven, m. Interpret the slope of the linear function and find and interpret
F (0).

35. Water freezes at 0◦ Celsius and 32◦ Fahrenheit and it boils at 100◦C and 212◦F.

(a) Find a linear function F that expresses temperature in the Fahrenheit scale in terms of
degrees Celsius. Use this function to convert 20◦C into Fahrenheit.

(b) Find a linear function C that expresses temperature in the Celsius scale in terms of
degrees Fahrenheit. Use this function to convert 110◦F into Celsius.

(c) Is there a temperature n such that F (n) = C(n)?

36. Legend has it that a bull Sasquatch in rut will howl approximately 9 times per hour when it is
40◦F outside and only 5 times per hour if it’s 70◦F . Assuming that the number of howls per
hour, N, can be represented by a linear function of temperature Fahrenheit, find the number
of howls per hour he’ll make when it’s only 20◦F outside. What is the applied domain of this
function? Why?

37. Economic forces beyond anyone’s control have changed the cost function for PortaBoys to
C(x) = 105x + 175. Rework Example 2.1.5 with this new cost function.

38. In response to the economic forces in Exercise 37 above, the local retailer sets the selling
price of a PortaBoy at $250. Remarkably, 30 units were sold each week. When the systems
went on sale for $220, 40 units per week were sold. Rework Examples 2.1.6 and 2.1.7 with
this new data. What difficulties do you encounter?

39. A local pizza store offers medium two-topping pizzas delivered for $6.00 per pizza plus a
$1.50 delivery charge per order. On weekends, the store runs a ‘game day’ special: if six or
more medium two-topping pizzas are ordered, they are $5.50 each with no delivery charge.
Write a piecewise-defined linear function which calculates the cost C (in dollars) of p medium
two-topping pizzas delivered during a weekend.
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40. A restaurant offers a buffet which costs $15 per person. For parties of 10 or more people, a
group discount applies, and the cost is $12.50 per person. Write a piecewise-defined linear
function which calculates the total bill T of a party of n people who all choose the buffet.

41. A mobile plan charges a base monthly rate of $10 for the first 500 minutes of air time plus
a charge of 15¢ for each additional minute. Write a piecewise-defined linear function which
calculates the monthly cost C (in dollars) for using m minutes of air time.

HINT: You may want to revisit Exercise 74 in Section 1.4

42. The local pet shop charges 12¢ per cricket up to 100 crickets, and 10¢ per cricket there-
after. Write a piecewise-defined linear function which calculates the price P, in dollars, of
purchasing c crickets.

43. The cross-section of a swimming pool is below. Write a piecewise-defined linear function
which describes the depth of the pool, D (in feet) as a function of:

(a) the distance (in feet) from the edge of the shallow end of the pool, d .

(b) the distance (in feet) from the edge of the deep end of the pool, s.

(c) Graph each of the functions in (a) and (b). Discuss with your classmates how to trans-
form one into the other and how they relate to the diagram of the pool.

d ft. s ft.
37 ft.

15 ft.

10 ft.8 ft.

2 ft.

In Exercises 44 - 49, compute the average rate of change of the function over the specified interval.

44. f (x) = x3, [−1, 2] 45. f (x) =
1
x

, [1, 5]

46. f (x) =
√

x , [0, 16] 47. f (x) = x2, [−3, 3]

48. f (x) =
x + 4
x − 3

, [5, 7] 49. f (x) = 3x2 + 2x − 7, [−4, 2]
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In Exercises 50 - 53, compute the average rate of change of the given function over the interval
[x , x + h]. Here we assume [x , x + h] is in the domain of the function.

50. f (x) = x3 51. f (x) =
1
x

52. f (x) =
x + 4
x − 3

53. f (x) = 3x2 + 2x − 7

54. The height of an object dropped from the roof of an eight story building is modeled by:
h(t) = −16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground in feet, t
seconds after the object is dropped. Find and interpret the average rate of change of h over
the interval [0, 2].

55. Using data from Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Find and interpret the average rate
of change of F over the interval [0, 28].

56. The temperature T in degrees Fahrenheit t hours after 6 AM is given by:

T (t) = −1
2

t2 + 8t + 32, 0 ≤ t ≤ 12

(a) Find and interpret T (4), T (8) and T (12).

(b) Find and interpret the average rate of change of T over the interval [4, 8].

(c) Find and interpret the average rate of change of T from t = 8 to t = 12.

(d) Find and interpret the average rate of temperature change between 10 AM and 6 PM.

57. Suppose C(x) = x2 − 10x + 27 represents the costs, in hundreds, to produce x thousand
pens. Find and interpret the average rate of change as production is increased from making
3000 to 5000 pens.

58. With the help of your classmates find several other “real-world” examples of rates of change
that are used to describe non-linear phenomena.

(Parallel Lines) Recall from Intermediate Algebra that parallel lines have the same slope. (Please
note that two vertical lines are also parallel to one another even though they have an undefined
slope.) In Exercises 59 - 64, you are given a line and a point which is not on that line. Find the line
parallel to the given line which passes through the given point.

59. y = 3x + 2, P(0, 0) 60. y = −6x + 5, P(3, 2)

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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61. y = 2
3x − 7, P(6, 0) 62. y =

4− x
3

, P(1,−1)

63. y = 6, P(3,−2) 64. x = 1, P(−5, 0)

(Perpendicular Lines) Recall from Intermediate Algebra that two non-vertical lines are perpendic-
ular if and only if they have negative reciprocal slopes. That is to say, if one line has slope m1 and
the other has slope m2 then m1 · m2 = −1. (You will be guided through a proof of this result in
Exercise 71.) Please note that a horizontal line is perpendicular to a vertical line and vice versa,
so we assume m1 6= 0 and m2 6= 0. In Exercises 65 - 70, you are given a line and a point which is
not on that line. Find the line perpendicular to the given line which passes through the given point.

65. y = 1
3x + 2, P(0, 0) 66. y = −6x + 5, P(3, 2)

67. y = 2
3x − 7, P(6, 0) 68. y =

4− x
3

, P(1,−1)

69. y = 6, P(3,−2) 70. x = 1, P(−5, 0)

71. We shall now prove that y = m1x+b1 is perpendicular to y = m2x+b2 if and only if m1 ·m2 = −1.
To make our lives easier we shall assume that m1 > 0 and m2 < 0. We can also “move” the
lines so that their point of intersection is the origin without messing things up, so we’ll assume
b1 = b2 = 0. (Take a moment with your classmates to discuss why this is okay.) Graphing the
lines and plotting the points O(0, 0) , P(1, m1) and Q(1, m2) gives us the following set up.

P

O

Q

x

y

The line y = m1x will be perpendicular to the line y = m2x if and only if 4OPQ is a right
triangle. Let d1 be the distance from O to P, let d2 be the distance from O to Q and let d3

be the distance from P to Q. Use the Pythagorean Theorem to show that 4OPQ is a right
triangle if and only if m1 ·m2 = −1 by showing d2

1 + d2
2 = d2

3 if and only if m1 ·m2 = −1.
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72. Show that if a 6= b, the line containing the points (a, b) and (b, a) is perpendicular to the line
y = x . (Coupled with the result from Example 1.1.6 on page 134, we have now shown that
the line y = x is a perpendicular bisector of the line segment connecting (a, b) and (b, a).
This means the points (a, b) and (b, a) are symmetric about the line y = x .

73. The function defined by I(x) = x is called the Identity Function. Discuss with your classmates
why this name makes sense.
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2.1.2 Answers

1. y + 1 = 3(x − 3)
y = 3x − 10

2. y − 8 = −2(x + 5)
y = −2x − 2

3. y + 1 = −(x + 7)
y = −x − 8

4. y − 1 = 2
3 (x + 2)

y = 2
3x + 7

3

5. y − 4 = −1
5 (x − 10)

y = −1
5x + 6

6. y − 4 = 1
7 (x + 1)

y = 1
7x + 29

7

7. y − 117 = 0
y = 117

8. y + 3 = −
√

2(x − 0)
y = −

√
2x − 3

9. y − 2
√

3 = −5(x −
√

3)
y = −5x + 7

√
3

10. y + 12 = 678(x + 1)
y = 678x + 666

11. y = −5
3x 12. y = −2

13. y = 8
5x − 8 14. y = 9

4x − 47
4

15. y = 5 16. y = −8

17. y = −5
4x + 11

8 18. y = 2x + 13
6

19. y = −x 20. y =
√

3
3 x

21. f (x) = 2x − 1

slope: m = 2

y -intercept: (0,−1)

x-intercept:
(1

2 , 0
)

x

y

−2 −1 1 2

−3

−2

−1

1

2

3

22. f (x) = 3− x

slope: m = −1

y -intercept: (0, 3)

x-intercept: (3, 0)

x

y

−1 1 2 3 4
−1

1

2

3

4
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23. f (x) = 3

slope: m = 0

y -intercept: (0, 3)

x-intercept: none

x

y

−2 −1 1 2

1

2

3

4

24. f (x) = 0

slope: m = 0

y -intercept: (0, 0)

x-intercept: {(x , 0) | x is a real number}

x

y

−2 −1 1 2
−1

1

25. f (x) = 2
3x + 1

3

slope: m = 2
3

y -intercept:
(
0, 1

3

)
x-intercept:

(
−1

2 , 0
) x

y

−2 1 2
−1

1

2

26. f (x) =
1− x

2
slope: m = −1

2

y -intercept:
(
0, 1

2

)
x-intercept: (1, 0)

x

y

−2 −1 1 2
−1

1

2

27. (−1,−1) and
(11

5 , 27
5

)
28. d(t) = 3t , t ≥ 0.

29. E(t) = 360t , t ≥ 0. 30. C(x) = 45x + 20, x ≥ 0.

31. C(t) = 80t + 50, 0 ≤ t ≤ 8. 32. W (x) = 200+.05x , x ≥ 0 She must make
$5500 in weekly sales.

33. C(p) = 0.035p + 1.5 The slope 0.035 means it costs 3.5¢ per page. C(0) = 1.5 means there
is a fixed, or start-up, cost of $1.50 to make each book.

34. F (m) = 2.25m+2.05 The slope 2.25 means it costs an additional $2.25 for each mile beyond
the first 0.2 miles. F (0) = 2.05, so according to the model, it would cost $2.05 for a trip of
0 miles. Would this ever really happen? Depends on the driver and the passenger, we
suppose.
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35. (a) F (C) = 9
5C + 32 (b) C(F ) = 5

9 (F − 32) = 5
9F − 160

9

(c) F (−40) = −40 = C(−40).

36. N(T ) = − 2
15T + 43

3

Having a negative number of howls makes no sense and since N(107.5) = 0 we can put an
upper bound of 107.5◦F on the domain. The lower bound is trickier because there’s nothing
other than common sense to go on. As it gets colder, he howls more often. At some point
it will either be so cold that he freezes to death or he’s howling non-stop. So we’re going to
say that he can withstand temperatures no lower than −60◦F so that the applied domain is
[−60, 107.5].

39. C(p) =

{
6p + 1.5 if 1 ≤ p ≤ 5

5.5p if p ≥ 6

40. T (n) =

{
15n if 1 ≤ n ≤ 9

12.5n if n ≥ 10

41. C(m) =

{
10 if 0 ≤ m ≤ 500

10 + 0.15(m − 500) if m > 500

42. P(c) =

{
0.12c if 1 ≤ c ≤ 100

12 + 0.1(c − 100) if c > 100

43. (a)

D(d) =


8 if 0 ≤ d ≤ 15

−1
2 d + 31

2 if 15 ≤ d ≤ 27
2 if 27 ≤ d ≤ 37

(b)

D(s) =


2 if 0 ≤ s ≤ 10

1
2 s − 3 if 10 ≤ s ≤ 22

8 if 22 ≤ s ≤ 37

(c)

15 27 37

2

8

y = D(d)

10 22 37

2

8

y = D(s)
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44.
23 − (−1)3

2− (−1)
= 3 45.

1
5 −

1
1

5− 1
= −1

5

46.
√

16−
√

0
16− 0

=
1
4

47.
32 − (−3)2

3− (−3)
= 0

48.
7+4
7−3 −

5+4
5−3

7− 5
= −7

8
49. (3(2)2 + 2(2)− 7)− (3(−4)2 + 2(−4)− 7)

2− (−4)
= −4

50. 3x2 + 3xh + h2 51.
−1

x(x + h)

52.
−7

(x − 3)(x + h − 3)
53. 6x + 3h + 2

54. The average rate of change is h(2)−h(0)
2−0 = −32. During the first two seconds after it is dropped,

the object has fallen at an average rate of 32 feet per second. (This is called the average
velocity of the object.)

55. The average rate of change is F (28)−F (0)
28−0 = 0.2372. During the years from 1980 to 2008,

the average fuel economy of passenger cars in the US increased, on average, at a rate of
0.2372 miles per gallon per year.

56. (a) T (4) = 56, so at 10 AM (4 hours after 6 AM), it is 56◦F. T (8) = 64, so at 2 PM (8 hours
after 6 AM), it is 64◦F. T (12) = 56, so at 6 PM (12 hours after 6 AM), it is 56◦F.

(b) The average rate of change is T (8)−T (4)
8−4 = 2. Between 10 AM and 2 PM, the temperature

increases, on average, at a rate of 2◦F per hour.

(c) The average rate of change is T (12)−T (8)
12−8 = −2. Between 2 PM and 6 PM, the tempera-

ture decreases, on average, at a rate of 2◦F per hour.

(d) The average rate of change is T (12)−T (4)
12−4 = 0. Between 10 AM and 6 PM, the tempera-

ture, on average, remains constant.

57. The average rate of change is C(5)−C(3)
5−3 = −2. As production is increased from 3000 to 5000

pens, the cost decreases at an average rate of $200 per 1000 pens produced (20¢ per pen.)

59. y = 3x 60. y = −6x + 20 61. y = 2
3x − 4

62. y = −1
3x − 2

3 63. y = −2 64. x = −5

65. y = −3x 66. y = 1
6x + 3

2 67. y = −3
2x + 9

68. y = 3x − 4 69. x = 3 70. y = 0
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2.2 Systems of Linear Equations

Up until now, when we concerned ourselves with solving different types of equations there was
only one equation to solve at a time. Given an equation f (x) = g(x), we could check our solutions
geometrically by finding where the graphs of y = f (x) and y = g(x) intersect. The x-coordinates
of these intersection points correspond to the solutions to the equation f (x) = g(x), and the y -
coordinates were largely ignored. If we modify the problem and ask for the intersection points of
the graphs of y = f (x) and y = g(x), where both the solution to x and y are of interest, we have
what is known as a system of equations, usually written as{

y = f (x)
y = g(x)

The ‘curly bracket’ notation means we are to find all pairs of points (x , y ) which satisfy both
equations. In this section we will focus on systems of linear equations in two variables.

Definition 2.4. A linear equation in two variables is an equation of the form a1x + a2y = c
where a1, a2 and c are real numbers and at least one of a1 and a2 is nonzero.

We are using subscripts in Definition 2.4 to indicate different, but fixed, real numbers. For example,
3x − y

2 = 0.1 is a linear equation in two variables with a1 = 3, a2 = −1
2 and c = 0.1. We can also

consider x = 5 to be a linear equation in two variables by identifying a1 = 1, a2 = 0, and c = 5. If a1

and a2 are both 0, then depending on c, we get either an equation which is always true, called an
identity, or an equation which is never true, called a contradiction. (If c = 0, then we get 0 = 0,
which is always true. If c 6= 0, then we’d have 0 6= 0, which is never true.) Even though identities
and contradictions have a large role to play in the upcoming sections, we do not consider them
linear equations. The key to identifying linear equations is to note that the variables involved are to
the first power and that the coefficients of the variables are numbers. Some examples of equations
which are non-linear are x2 + y = 1, xy = 5 and e2x + ln(y ) = 1. We leave it to the reader to explain
why these do not satisfy Definition 2.4. From what we know from Sections 1.2 and 2.1, the graphs
of linear equations are lines. If we couple two or more linear equations together, in effect to find
the points of intersection of two or more lines, we obtain a system of linear equations in two
variables. Our first example discusses some of the basic techniques to solve such equations.

Example 2.2.1. Solve the following systems of equations.

1.
{

2x − y = 1
y = 3

2.
{

3x + 4y = −2
−3x − y = 5

3.

{
x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

4.
{

2x − 4y = 6
3x − 6y = 9

5.
{

6x + 3y = 9
4x + 2y = 12

6.


x − y = 0
x + y = 2

−2x + y = −2
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Solution.

1. Our first system is nearly solved for us. The second equation tells us that y = 3. To find the
corresponding value of x , we substitute this value for y into the the first equation to obtain
2x − 3 = 1, so that x = 2. Our solution to the system is (2, 3). To check this algebraically,
we substitute x = 2 and y = 3 into each equation and see that they are satisfied. We see
2(2) − 3 = 1, and 3 = 3, as required. To check our answer graphically, we graph the lines
2x − y = 1 and y = 3 and verify that they intersect at (2, 3).

2. To solve the second system, we use the addition method to eliminate the variable x . We
take the two equations as given and ‘add equals to equals’ to obtain

3x + 4y = −2
+ (−3x − y = 5)

3y = 3

This gives us y = 1. We now substitute y = 1 into either of the two equations, say−3x−y = 5,
to get −3x − 1 = 5 so that x = −2. Our solution is (−2, 1). Substituting x = −2 and y = 1
into the first equation gives 3(−2) + 4(1) = −2, which is true, and, likewise, when we check
(−2, 1) in the second equation, we get −3(−2)−1 = 5, which is also true. Geometrically, the
lines 3x + 4y = −2 and −3x − y = 5 intersect at (−2, 1).

(2, 3)

x

y

−1 1 2 3 4

1

2

4

2x − y = 1
y = 3

(−2, 1)

x

y

−4 −3 −2 −1

−2

−1

1

2

3x + 4y = −2
−3x − y = 5

3. The equations in the third system are more approachable if we clear denominators. We
multiply both sides of the first equation by 15 and both sides of the second equation by 18 to
obtain the kinder, gentler system {

5x − 12y = 21
4x + 6y = 9

Adding these two equations directly fails to eliminate either of the variables, but we note
that if we multiply the first equation by 4 and the second by −5, we will be in a position to
eliminate the x term



2.2 Systems of Linear Equations 235

20x − 48y = 84
+ (−20x − 30y = −45)

−78y = 39

From this we get y = −1
2 . We can temporarily avoid too much unpleasantness by choosing to

substitute y = −1
2 into one of the equivalent equations we found by clearing denominators,

say into 5x − 12y = 21. We get 5x + 6 = 21 which gives x = 3. Our answer is
(
3,−1

2

)
.

At this point, we have no choice − in order to check an answer algebraically, we must see
if the answer satisfies both of the original equations, so we substitute x = 3 and y = −1

2
into both x

3 −
4y
5 = 7

5 and 2x
9 + y

3 = 1
2 . We leave it to the reader to verify that the solution

is correct. Graphing both of the lines involved with considerable care yields an intersection
point of

(
3,−1

2

)
.

4. An eerie calm settles over us as we cautiously approach our fourth system. Do its friendly
integer coefficients belie something more sinister? We note that if we multiply both sides of
the first equation by 3 and the both sides of the second equation by −2, we are ready to
eliminate the x

6x − 12y = 18
+ (−6x + 12y = −18)

0 = 0

We eliminated not only the x , but the y as well and we are left with the identity 0 = 0. This
means that these two different linear equations are, in fact, equivalent. In other words, if an
ordered pair (x , y ) satisfies the equation 2x − 4y = 6, it automatically satisfies the equation
3x −6y = 9. One way to describe the solution set to this system is to use the roster method1

and write {(x , y ) |2x − 4y = 6}. While this is correct (and corresponds exactly to what’s
happening graphically, as we shall see shortly), we take this opportunity to introduce the
notion of a parametric solution to a system. Our first step is to solve 2x − 4y = 6 for one
of the variables, say y = 1

2x − 3
2 . For each value of x , the formula y = 1

2x − 3
2 determines

the corresponding y -value of a solution. Since we have no restriction on x , it is called a
free variable. We let x = t , a so-called ‘parameter’, and get y = 1

2 t − 3
2 . Our set of

solutions can then be described as
{(

t , 1
2 t − 3

2

)
| −∞ < t <∞

}
.2 For specific values of t ,

we can generate solutions. For example, t = 0 gives us the solution
(
0,−3

2

)
; t = 117 gives

us (117, 57), and while we can readily check each of these particular solutions satisfy both
equations, the question is how do we check our general answer algebraically? Same as

1See Section 1.2 for a review of this.
2Note that we could have just as easily chosen to solve 2x − 4y = 6 for x to obtain x = 2y + 3. Letting y be the

parameter t , we have that for any value of t , x = 2t + 3, which gives {(2t + 3, t) | −∞ < t <∞}. There is no one correct
way to parameterize the solution set, which is why it is always best to check your answer.
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always. We claim that for any real number t , the pair
(
t , 1

2 t − 3
2

)
satisfies both equations.

Substituting x = t and y = 1
2 t − 3

2 into 2x − 4y = 6 gives 2t − 4
(1

2 t − 3
2

)
= 6. Simplifying,

we get 2t − 2t + 6 = 6, which is always true. Similarly, when we make these substitutions in
the equation 3x − 6y = 9, we get 3t − 6

(1
2 t − 3

2

)
= 9 which reduces to 3t − 3t + 9 = 9, so it

checks out, too. Geometrically, 2x −4y = 6 and 3x −6y = 9 are the same line, which means
that they intersect at every point on their graphs. The reader is encouraged to think about
how our parametric solution says exactly that.

(
3, − 1

2

) x

y

−1 1 2 4 5 6 7

−4

−3

−2

−1

1

x
3 −

4y
5 = 7

5
2x
9 + y

3 = 1
2

x

y

1 2 3 4
−1

1

2

2x − 4y = 6
3x − 6y = 9
(Same line.)

5. Multiplying both sides of the first equation by 2 and the both sides of the second equation by
−3, we set the stage to eliminate x

12x + 6y = 18
+ (−12x − 6y = −36)

0 = −18

As in the previous example, both x and y dropped out of the equation, but we are left with
an irrevocable contradiction, 0 = −18. This tells us that it is impossible to find a pair (x , y )
which satisfies both equations; in other words, the system has no solution. Graphically, the
lines 6x + 3y = 9 and 4x + 2y = 12 are distinct and parallel, so they do not intersect.

6. We can begin to solve our last system by adding the first two equations

x − y = 0
+ (x + y = 2)

2x = 2

which gives x = 1. Substituting this into the first equation gives 1 − y = 0 so that y = 1. We
seem to have determined a solution to our system, (1, 1). While this checks in the first two
equations, when we substitute x = 1 and y = 1 into the third equation, we get−2(1)+(1) = −2
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which simplifies to the contradiction −1 = −2. Graphing the lines x − y = 0, x + y = 2, and
−2x + y = −2, we see that the first two lines do, in fact, intersect at (1, 1), however, all three
lines never intersect at the same point simultaneously, which is what is required if a solution
to the system is to be found.

x

y

1 2

−3
−2
−1

1
2
3
4
5
6

6x + 3y = 9
4x + 2y = 12

x

y

−1

1

y − x = 0
y + x = 2

−2x + y = −2

A few remarks about Example 2.2.1 are in order. It is clear that some systems of equations have
solutions, and some do not. Those which have solutions are called consistent, those with no
solution are called inconsistent. We also distinguish the two different types of behavior among
consistent systems. Those which admit free variables are called dependent; those with no free
variables are called independent.3 Using this new vocabulary, we classify numbers 1, 2 and
3 in Example 2.2.1 as consistent independent systems, number 4 is consistent dependent, and
numbers 5 and 6 are inconsistent.4 The system in 6 above is called overdetermined, since we
have more equations than variables.5 Not surprisingly, a system with more variables than equa-
tions is called underdetermined. While the system in number 6 above is overdetermined and
inconsistent, there exist overdetermined consistent systems (both dependent and independent)
and we leave it to the reader to think about what is happening algebraically and geometrically in
these cases.

3In the case of systems of linear equations, regardless of the number of equations or variables, consistent inde-
pendent systems have exactly one solution. The reader is encouraged to think about why this is the case for linear
equations in two variables. Hint: think geometrically.

4The adjectives ‘dependent’ and ‘independent’ apply only to consistent systems – they describe the type of solutions.
Is there a free variable (dependent) or not (independent)?

5If we think if each variable being an unknown quantity, then ostensibly, to recover two unknown quantities, we need
two pieces of information - i.e., two equations. Having more than two equations suggests we have more information
than necessary to determine the values of the unknowns. While this is not necessarily the case, it does explain the
choice of terminology ‘overdetermined’.
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We close this section with a standard ‘mixture’ type application of systems of linear equations.

Example 2.2.2. Lucas needs to create 500 milliliters (mL) of a 50% acid solution. He has stock
solutions of 30% and 80% acid. Set-up and solve a system of linear equations which determines
the amount of the stock solutions which would produce the required solution.
Solution. We are after two unknowns, the amount (in mL) of the 30% stock solution (which we’ll
call x) and the amount (in mL) of the 80% stock solution (which we’ll call y ). We now need to
determine some relationships between the two variables. Our goal is to produce 500 milliliters of a
50% acid solution. This product has two defining characteristics. First, it must be 500 mL; second,
it must be 50% acid. We take each of these qualities in turn. First, the total volume of 500 mL
must be the sum of the contributed volumes of the two stock solutions. That is

amount of 30% stock solution + amount of 80% stock solution = 500 mL

Using our defined variables, this reduces to x + y = 500. Next, we need to make sure the final
solution is 50% acid. Since 50% of 500 mL is 250 mL, the final solution must contain 250 mL of
acid. We have

amount of acid in 30% stock solution + amount of acid 80% stock solution = 250 mL

The amount of acid in x mL of 30% stock is 0.30x and the amount of acid in y mL of 80% solution
is 0.80y . We have 0.30x +0.80y = 250. Converting to fractions,6 our system of equations becomes{

x + y = 500
3

10x + 4
5y = 250

which we can solve by elimination or substitution. We choose to eliminate y and multiply the first
equation by −4

5 to obtain

−4
5x − 4

5y = −400

+
( 3

10x + 4
5y = 250

)
−1

2x = −150

which gives x = 300 and y = 200. This means that to produce 500 mL of a 50% acid solution, we
need 300 mL of the 30% stock solution and 200 mL of the 80% stock solution.

6We do this only because we believe students can use all of the practice with fractions they can get!
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2.2.1 Exercises

In Exercises 1 - 14, solve the given system using substitution and/or elimination. Check your
answers both algebraically and graphically.

1.
{

x + 2y = 5
x = 6

2.
{

2y − 3x = 1
y = −3

3.

{ x+2y
4 = −5

3x−y
2 = 1

4.

{
2
3x − 1

5y = 3
1
2x + 3

4y = 1

5.

{
1
2x − 1

3y = −1

2y − 3x = 6
6.

{
x + 4y = 6

1
12x + 1

3y = 1
2

7.

{
3y − 3

2x = −15
2

1
2x − y = 3

2

8.

{
5
6x + 5

3y = −7
3

−10
3 x − 20

3 y = 10

9.
{
−5x + y = 17

x + y = 5
10.

{
2x − 3y = −3.2− 0.2x + 0.1y

x = 0.6x − y + 8.8

11.
{ 2

13x + 2y = −2(y + 1)
− 3

13x = −5(6− y )
12.

{
2x + 5y = 25 + 4.5x

27 + 10y = 3.75x + 4y

13.
{
πx + πy = 62

y = x + 10 14.

{ √
3(x − y ) + 1 =

√
3(x + y )

2x + 6√
3
y =

√
3 + 1

15. A football game was played between Penn State and Ohio State. The two teams scored a
total of 45 points, and Penn State won by a margin of 19 points. How many points did Ohio
State score?

16. In Section 2.1, Exercise 35, we learned that the temperature C in Celcius degrees can be
expressed in terms of the temperature F in Farenheit degrees: C = 5

9 (F − 32). For what
temperature is the value in both scales the same?

17. The admission fee at a movie theater is $8 for children and $12 for adults. On a certain
showing, there are 280 visitors and the theater collects $2520 through admission fees. How
many adults visited the movie theater during that showing?

18. If five pencils and two notebooks together cost $7.20, and one pencil and four notebooks
together cost $9, how much does a bundle of 3 pencils and 3 notebooks cost?

19. Two customers buy the same kind of bread and milk at the same store. The first customer
is charged $11 for a loaf of bread and two gallons of milk, while the second customer is
charged $12.50 for three loaves of bread and one gallon of milk. Find the price for a loaf of
bread and that for a gallon of milk at this store.
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20. A local buffet charges $7.50 per person for the basic buffet and $9.25 for the deluxe buffet
(which includes crab legs.) If 27 diners went out to eat and the total bill was $227.00 before
taxes, how many chose the basic buffet and how many chose the deluxe buffet?

21. A restaurant sells two sizes of orders of french fries. On Monday, they sold 5 large orders of
fries and 3 small orders of fries for a sales total of $33. On Tuesday, they sold 4 large orders
of fries and 6 small orders of fries for a sales total of $39. How much would a customer pay
for one small order and one large order of fries?

22. At The Old Home Fill’er Up and Keep on a-Truckin’ Cafe, Mavis mixes two different types of
coffee beans to produce a house blend. The first type costs $3 per pound and the second
costs $8 per pound. How much of each type does Mavis use to make 50 pounds of a blend
which costs $6 per pound?

23. Skippy has a total of $10, 000 to split between two investments. One account offers 3%
simple interest, and the other account offers 8% simple interest. For tax reasons, he can
only earn $500 in interest the entire year. How much money should Skippy invest in each
account to earn $500 in interest for the year?

24. A 10% salt solution is to be mixed with pure water to produce 75 gallons of a 3% salt solution.
How much of each is needed?

25. You are trying to make 100 mL of a 62% acid solution using stock solutions at 50% and 80%,
respectively. How much of each solution is needed?

26. A 60% orange juice drink is to be mixed with a 10% orange juice drink to obtain 30 gallons
of a mixture that is 40% orange juice. How much of each drink is needed?

27. Twelve years ago my father was twice as old as I was, and two years ago our combined age
was 110. How old is my father now?

28. The length of a rectangle is 10
√

2 inches more than its width. The perimeter of the rectangle
is 56

√
2 inches. Find the area of the rectangle.

29. A piece of wire 124 cm long is cut into two pieces, and each piece is then bent into a circle.
The radius of one of the two circles is 10 cm greater than the radius of the other. Find the
radius of the smaller circle. (Recall that the circumference of a circle of radius r is 2πr .)

30. In a certain piggy bank there are only nickels and quarters. Their combined value is $9.15
and their combined weight is one pound. Ninety nickels weigh one pound. Eighty quarters
weigh one pound. How many nickels are there in the piggy bank?
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2.2.2 Answers

1. Solution
(
6,−1

2

)
2. Solution

(
−7

3 ,−3
)

3. Solution
(
−16

7 ,−62
7

)
4. Solution

(49
12 ,−25

18

)
5. Solution

(
t , 3

2 t + 3
)

for all real numbers t
6. Solution (6− 4t , t)

for all real numbers t

7. No solution 8. No solution

9. Solution (−2, 7) 10. Solution (7, 6)

11. Solution (845,−33) 12. Solution (76, 43)

13. Solution (31
π − 5, 31

π + 5) 14. Solution (
√

3
2 ,
√

3
6 )

15. Ohio State scored 13 points.

16. −40 C ◦ = −40 F ◦.

17. 70 adults.

18. A bundle of 3 pencils and 3 notebooks costs $8.10.

19. A loaf of bread costs $2.80 and a gallon of milk costs $4.10.

20. 13 chose the basic buffet and 14 chose the deluxe buffet.

21. A customer would pay $8.

22. Mavis needs 20 pounds of $3 per pound coffee and 30 pounds of $8 per pound coffee.

23. Skippy needs to invest $6000 in the 3% account and $4000 in the 8% account.

24. 22.5 gallons of the 10% solution and 52.5 gallons of pure water.

25. 60 mL of the 50% stock solution and 40 mL of the 80% stock solution.

26. 18 gallons of the 60% orange juice drink and 12 gallons of the 10% orange juice drink.

27. My father is 72 years old now.

28. 342 square inches.

29. 31−5π
π cm.

30. There are 63 nickels in the piggy bank.
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2.4 Quadratic Functions

You may recall studying quadratic equations in Intermediate Algebra. In this section, we review
those equations in the context of our next family of functions: the quadratic functions.

Definition 2.5. A quadratic function is a function of the form

f (x) = ax2 + bx + c,

where a, b and c are real numbers with a 6= 0. The domain of a quadratic function is (−∞,∞).

The most basic quadratic function is f (x) = x2, whose graph appears below. Its shape should look
familiar from Intermediate Algebra – it is called a parabola. The point (0, 0) is called the vertex
of the parabola. In this case, the vertex is a relative minimum and is also where the absolute
minimum value of f can be found.

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f (x) = x2

Much like many of the absolute value functions in Section 2.3, knowing the graph of f (x) = x2

enables us to graph an entire family of quadratic functions using transformations.

Example 2.4.1. Graph the following functions starting with the graph of f (x) = x2 and using trans-
formations. Find the vertex, state the range and find the x- and y -intercepts, if any exist.

1. g(x) = (x + 2)2 − 3 2. h(x) = −2(x − 3)2 + 1

Solution.

1. Since g(x) = (x + 2)2−3 = f (x + 2)−3, Theorem 1.7 instructs us to first subtract 2 from each
of the x-values of the points on y = f (x). This shifts the graph of y = f (x) to the left 2 units
and moves (−2, 4) to (−4, 4), (−1, 1) to (−3, 1), (0, 0) to (−2, 0), (1, 1) to (−1, 1) and (2, 4)
to (0, 4). Next, we subtract 3 from each of the y -values of these new points. This moves
the graph down 3 units and moves (−4, 4) to (−4, 1), (−3, 1) to (−3,−2), (−2, 0) to (−2, 3),
(−1, 1) to (−1,−2) and (0, 4) to (0, 1). We connect the dots in parabolic fashion to get



2.4 Quadratic Functions 243

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f (x) = x2 −−−−−−−−−−−−→

(−4, 1)

(−3,−2)

(−2,−3)

(−1,−2)

(0, 1)

x

y

−4 −3 −2 −1

−3

−1

1

g(x) = f (x + 2)− 3 = (x + 2)2 − 3

From the graph, we see that the vertex has moved from (0, 0) on the graph of y = f (x)
to (−2,−3) on the graph of y = g(x). This sets [−3,∞) as the range of g. We see that
the graph of y = g(x) crosses the x-axis twice, so we expect two x-intercepts. To find
these, we set y = g(x) = 0 and solve. Doing so yields the equation (x + 2)2 − 3 = 0, or
(x + 2)2 = 3. Extracting square roots gives x + 2 = ±

√
3, or x = −2 ±

√
3. Our x-intercepts

are (−2 −
√

3, 0) ≈ (−3.73, 0) and (−2 +
√

3, 0) ≈ (−0.27, 0). The y -intercept of the graph,
(0, 1) was one of the points we originally plotted, so we are done.

2. Following Theorem 1.7 once more, to graph h(x) = −2(x − 3)2 + 1 = −2f (x − 3) + 1, we first
start by adding 3 to each of the x-values of the points on the graph of y = f (x). This effects a
horizontal shift right 3 units and moves (−2, 4) to (1, 4), (−1, 1) to (2, 1), (0, 0) to (3, 0), (1, 1)
to (4, 1) and (2, 4) to (5, 4). Next, we multiply each of our y -values first by −2 and then add 1
to that result. Geometrically, this is a vertical stretch by a factor of 2, followed by a reflection
about the x-axis, followed by a vertical shift up 1 unit. This moves (1, 4) to (1,−7), (2, 1) to
(2,−1), (3, 0) to (3, 1), (4, 1) to (4,−1) and (5, 4) to (5,−7).

(−2, 4)

(−1, 1)

(0, 0)

(1, 1)

(2, 4)

x

y

−2 −1 1 2

1

2

3

4

f (x) = x2 −−−−−−−−−−−−→

(1,−7)

(2,−1)

(3, 1)

(4,−1)

(5,−7)

x

y

1 2 3 4 5

−6

−5

−4

−3

−2

−1

1

h(x) = −2f (x − 3) + 1
= −2(x − 3)2 + 1

The vertex is (3, 1) which makes the range of h (−∞, 1]. From our graph, we know that
there are two x-intercepts, so we set y = h(x) = 0 and solve. We get −2(x − 3)2 + 1 = 0
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which gives (x − 3)2 = 1
2 . Extracting square roots1 gives x − 3 = ±

√
2

2 , so that when we add

3 to each side,2 we get x = 6±
√

2
2 . Hence, our x-intercepts are

(
6−
√

2
2 , 0

)
≈ (2.29, 0) and(

6+
√

2
2 , 0

)
≈ (3.71, 0). Although our graph doesn’t show it, there is a y -intercept which can

be found by setting x = 0. With h(0) = −2(0− 3)2 + 1 = −17, we have that our y -intercept is
(0,−17).

A few remarks about Example 2.4.1 are in order. First note that neither the formula given for
g(x) nor the one given for h(x) match the form given in Definition 2.5. We could, of course,
convert both g(x) and h(x) into that form by expanding and collecting like terms. Doing so, we find
g(x) = (x +2)2−3 = x2 +4x +1 and h(x) = −2(x−3)2 +1 = −2x2 +12x−17. While these ‘simplified’
formulas for g(x) and h(x) satisfy Definition 2.5, they do not lend themselves to graphing easily.
For that reason, the form of g and h presented in Example 2.4.2 is given a special name, which
we list below, along with the form presented in Definition 2.5.

Definition 2.6. Standard and General Form of Quadratic Functions: Suppose f is a
quadratic function.

• The general form of the quadratic function f is f (x) = ax2 + bx + c, where a, b and c are
real numbers with a 6= 0.

• The standard form of the quadratic function f is f (x) = a(x − h)2 + k , where a, h and k
are real numbers with a 6= 0.

It is important to note at this stage that we have no guarantees that every quadratic function can
be written in standard form. This is actually true, and we prove this later in the exposition, but for
now we celebrate the advantages of the standard form, starting with the following theorem.

Theorem 2.1. Vertex Formula for Quadratics in Standard Form: For the quadratic function
f (x) = a(x − h)2 + k , where a, h and k are real numbers with a 6= 0, the vertex of the graph of
y = f (x) is (h, k ).

We can readily verify the formula given Theorem 2.1 with the two functions given in Example 2.4.1.
After a (slight) rewrite, g(x) = (x + 2)2− 3 = (x − (−2))2 + (−3), and we identify h = −2 and k = −3.
Sure enough, we found the vertex of the graph of y = g(x) to be (−2,−3). For h(x) = −2(x−3)+1,
no rewrite is needed. We can directly identify h = 3 and k = 1 and, sure enough, we found the
vertex of the graph of y = h(x) to be (3, 1).

To see why the formula in Theorem 2.1 produces the vertex, consider the graph of the equation
y = a(x − h)2 + k . When we substitute x = h, we get y = k , so (h, k ) is on the graph. If x 6= h, then
x −h 6= 0 so (x −h)2 is a positive number. If a > 0, then a(x −h)2 is positive, thus y = a(x −h)2 + k
is always a number larger than k . This means that when a > 0, (h, k ) is the lowest point on the
graph and thus the parabola must open upwards, making (h, k ) the vertex. A similar argument

1and rationalizing denominators!
2and get common denominators!
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shows that if a < 0, (h, k ) is the highest point on the graph, so the parabola opens downwards,
and (h, k ) is also the vertex in this case.
Alternatively, we can apply the machinery in Section 1.7. Since the vertex of y = x2 is (0, 0), we
can determine the vertex of y = a(x − h)2 + k by determining the final destination of (0, 0) as it
is moved through each transformation. To obtain the formula f (x) = a(x − h)2 + k , we start with
g(x) = x2 and first define g1(x) = ag(x) = ax2. This is results in a vertical scaling and/or reflection.3

Since we multiply the output by a, we multiply the y -coordinates on the graph of g by a, so the point
(0, 0) remains (0, 0) and remains the vertex. Next, we define g2(x) = g1(x − h) = a(x − h)2. This
induces a horizontal shift right or left h units4 moves the vertex, in either case, to (h, 0). Finally,
f (x) = g2(x) + k = a(x − h)2 + k which effects a vertical shift up or down k units5 resulting in the
vertex moving from (h, 0) to (h, k ).
In addition to verifying Theorem 2.1, the arguments in the two preceding paragraphs have also
shown us the role of the number a in the graphs of quadratic functions. The graph of y = a(x −
h)2 + k is a parabola ‘opening upwards’ if a > 0, and ‘opening downwards’ if a < 0. Moreover,
the symmetry enjoyed by the graph of y = x2 about the y -axis is translated to a symmetry about
the vertical line x = h which is the vertical line through the vertex.6 This line is called the axis of
symmetry of the parabola and is dashed in the figures below.

vertex
a > 0

vertex

a < 0

Graphs of y = a(x − h)2 + k .

Without a doubt, the standard form of the function, coupled with the machinery in Section 1.7,
allows us to list the attributes of the graphs of such functions quickly and elegantly. What remains
to be shown, however, is the fact that every quadratic function can be written in standard form. To
convert a quadratic function given in general form into standard form, we employ the ancient rite
of ‘Completing the Square’. We remind the reader how this is done in our next example.

Example 2.4.2. Convert the functions below from general form to standard form. Find the vertex,
axis of symmetry and any x- or y -intercepts. Graph each function and determine its range.

1. f (x) = x2 − 4x + 3. 2. g(x) = 6− x − x2

3Just a scaling if a > 0. If a < 0, there is a reflection involved.
4Right if h > 0, left if h < 0.
5Up if k > 0, down if k < 0
6You should use transformations to verify this!
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Solution.

1. To convert from general form to standard form, we complete the square.7 First, we verify
that the coefficient of x2 is 1. Next, we find the coefficient of x , in this case −4, and take half
of it to get 1

2 (−4) = −2. This tells us that our target perfect square quantity is (x − 2)2. To
get an expression equivalent to (x − 2)2, we need to add (−2)2 = 4 to the x2 − 4x to create
a perfect square trinomial, but to keep the balance, we must also subtract it. We collect the
terms which create the perfect square and gather the remaining constant terms. Putting it
all together, we get

f (x) = x2 − 4x + 3 (Compute 1
2 (−4) = −2.)

=
(
x2 − 4x + 4− 4

)
+ 3 (Add and subtract (−2)2 = 4 to (x2 + 4x).)

=
(
x2 − 4x + 4

)
− 4 + 3 (Group the perfect square trinomial.)

= (x − 2)2 − 1 (Factor the perfect square trinomial.)

Of course, we can always check our answer by multiplying out f (x) = (x − 2)2 − 1 to see
that it simplifies to f (x) = x2 − 4x − 1. In the form f (x) = (x − 2)2 − 1, we readily find the
vertex to be (2,−1) which makes the axis of symmetry x = 2. To find the x-intercepts, we
set y = f (x) = 0. We are spoiled for choice, since we have two formulas for f (x). Since we
recognize f (x) = x2 − 4x + 3 to be easily factorable,8 we proceed to solve x2 − 4x + 3 = 0.
Factoring gives (x − 3)(x − 1) = 0 so that x = 3 or x = 1. The x-intercepts are then (1, 0) and
(3, 0). To find the y -intercept, we set x = 0. Once again, the general form f (x) = x2 − 4x + 3
is easiest to work with here, and we find y = f (0) = 3. Hence, the y -intercept is (0, 3). With
the vertex, axis of symmetry and the intercepts, we get a pretty good graph without the need
to plot additional points. We see that the range of f is [−1,∞) and we are done.

2. To get started, we rewrite g(x) = 6− x − x2 = −x2 − x + 6 and note that the coefficient of x2

is −1, not 1. This means our first step is to factor out the (−1) from both the x2 and x terms.
We then follow the completing the square recipe as above.

g(x) = −x2 − x + 6

= −
[
x2 + x

]
+ 6

= −
[
x2 + x +

1
4
− 1

4

]
+ 6

= −
(

x2 + x +
1
4

)
+

1
4

+ 6

= −
(

x +
1
2

)2

+
25
4

7If you forget why we do what we do to complete the square, start with a(x −h)2 + k , multiply it out, step by step, and
then reverse the process.

8Experience pays off, here!
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From g(x) = −
(
x + 1

2

)2
+ 25

4 , we get the vertex to be
(
−1

2 , 25
4

)
and the axis of symmetry to

be x = −1
2 . To get the x-intercepts, we opt to set the given formula g(x) = 6 − x − x2 = 0.

Solving, we get x = −3 and x = 2 , so the x-intercepts are (−3, 0) and (2, 0). Setting x = 0,
we find g(0) = 6, so the y -intercept is (0, 6). Plotting these points gives us the graph below.
We see that the range of g is

(
−∞, 25

4

]
.
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g(x) = 6− x − x2

With Example 2.4.2 fresh in our minds, we are now in a position to show that every quadratic
function can be written in standard form. We begin with f (x) = ax2 + bx + c, assume a 6= 0, and
complete the square in complete generality.

f (x) = ax2 + bx + c

= a
[
x2 +

b
a

x
]

+ c (Factor out coefficient of x2 from x2 and x .)

= a
[
x2 +

b
a

x +
b2

4a2 −
b2

4a2

]
+ c

= a
(

x2 +
b
a

x +
b2

4a2

)
− a

(
b2

4a2

)
+ c (Group the perfect square trinomial.)

= a
(

x +
b
2a

)2

+
4ac − b2

4a
(Factor and get a common denominator.)

Comparing this last expression with the standard form, we identify (x − h) with
(

x + b
2a

)
so that

h = − b
2a . Instead of memorizing the value k = 4ac−b2

4a , we see that f
(
− b

2a

)
= 4ac−b2

4a . As such, we



248 Linear and Quadratic Functions

have derived a vertex formula for the general form. We summarize both vertex formulas in the box
at the top of the next page.

Equation 2.4. Vertex Formulas for Quadratic Functions: Suppose a, b, c, h and k are real
numbers with a 6= 0.

• If f (x) = a(x − h)2 + k , the vertex of the graph of y = f (x) is the point (h, k ).

• If f (x) = ax2 + bx + c, the vertex of the graph of y = f (x) is the point
(
− b

2a , f
(
− b

2a

))
.

There are two more results which can be gleaned from the completed-square form of the general
form of a quadratic function,

f (x) = ax2 + bx + c = a
(

x +
b
2a

)2
+

4ac − b2

4a

We have seen that the number a in the standard form of a quadratic function determines whether
the parabola opens upwards (if a > 0) or downwards (if a < 0). We see here that this number
a is none other than the coefficient of x2 in the general form of the quadratic function. In other
words, it is the coefficient of x2 alone which determines this behavior. The second treasure is a
re-discovery of the quadratic formula.

Equation 2.5. The Quadratic Formula: If a, b and c are real numbers with a 6= 0, then the
solutions to ax2 + bx + c = 0 are

x =
−b ±

√
b2 − 4ac

2a
.

Assuming the conditions of Equation 2.5, the solutions to ax2 + bx + c = 0 are precisely the zeros
of f (x) = ax2 + bx + c. Since

f (x) = ax2 + bx + c = a
(

x +
b
2a

)2

+
4ac − b2

4a

the equation ax2 + bx + c = 0 is equivalent to

a
(

x +
b
2a

)2

+
4ac − b2

4a
= 0.

Solving gives

a
(

x +
b
2a

)2

= −4ac − b2

4a(
x +

b
2a

)2

=
b2 − 4ac

4a2
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x +
b
2a

= ±

√
b2 − 4ac

4a2

x +
b
2a

= ±
√

b2 − 4ac
2a

x = − b
2a
±
√

b2 − 4ac
2a

x =
−b ±

√
b2 − 4ac

2a

In our discussions of domain, we were warned against having negative numbers underneath the
square root. Given that

√
b2 − 4ac is part of the Quadratic Formula, we will need to pay special

attention to the radicand b2 − 4ac. It turns out that the quantity b2 − 4ac plays a critical role in
determining the nature of the solutions to a quadratic equation. It is given a special name.

Definition 2.7. If a, b and c are real numbers with a 6= 0, then the discriminant of the quadratic
equation ax2 + bx + c = 0 is the quantity b2 − 4ac.

The discriminant ‘discriminates’ between the kinds of solutions we get from a quadratic equation.
These cases, and their relation to the discriminant, are summarized below.

Theorem 2.2. Discriminant Trichotomy: Let a, b and c be real numbers with a 6= 0.

• If b2 − 4ac < 0, the equation ax2 + bx + c = 0 has no real solutions.

• If b2 − 4ac = 0, the equation ax2 + bx + c = 0 has exactly one real solution.

• If b2 − 4ac > 0, the equation ax2 + bx + c = 0 has exactly two real solutions.

The proof of Theorem 2.2 stems from the position of the discriminant in the quadratic equation,
and is left as a good mental exercise for the reader. The next example exploits the fruits of all of
our labor in this section thus far.

Example 2.4.3. Recall that the profit (defined on page 199) for a product is defined by the equation
Profit = Revenue− Cost, or P(x) = R(x)− C(x). In Example 2.1.7 the weekly revenue, in dollars,
made by selling x PortaBoy Game Systems was found to be R(x) = −1.5x2 + 250x with the
restriction (carried over from the price-demand function) that 0 ≤ x ≤ 166. The cost, in dollars, to
produce x PortaBoy Game Systems is given in Example 2.1.5 as C(x) = 80x + 150 for x ≥ 0.

1. Determine the weekly profit function P(x).

2. Graph y = P(x). Include the x- and y -intercepts as well as the vertex and axis of symmetry.

3. Interpret the zeros of P.

4. Interpret the vertex of the graph of y = P(x).
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5. Recall that the weekly price-demand equation for PortaBoys is p(x) = −1.5x + 250, where
p(x) is the price per PortaBoy, in dollars, and x is the weekly sales. What should the price
per system be in order to maximize profit?

Solution.

1. To find the profit function P(x), we subtract

P(x) = R(x)− C(x) =
(
−1.5x2 + 250x

)
− (80x + 150) = −1.5x2 + 170x − 150.

Since the revenue function is valid when 0 ≤ x ≤ 166, P is also restricted to these values.

2. To find the x-intercepts, we set P(x) = 0 and solve −1.5x2 + 170x − 150 = 0. The mere
thought of trying to factor the left hand side of this equation could do serious psychological
damage, so we resort to the quadratic formula, Equation 2.5. Identifying a = −1.5, b = 170,
and c = −150, we obtain

x =
−b ±

√
b2 − 4ac

2a

=
−170±

√
1702 − 4(−1.5)(−150)

2(−1.5)

=
−170±

√
28000

−3
=

170± 20
√

70
3

We get two x-intercepts:
(

170−20
√

70
3 , 0

)
and

(
170+20

√
70

3 , 0
)

. To find the y -intercept, we set
x = 0 and find y = P(0) = −150 for a y -intercept of (0,−150). To find the vertex, we use
the fact that P(x) = −1.5x2 + 170x − 150 is in the general form of a quadratic function and
appeal to Equation 2.4. Substituting a = −1.5 and b = 170, we get x = − 170

2(−1.5) = 170
3 .

To find the y -coordinate of the vertex, we compute P
(170

3

)
= 14000

3 and find that our vertex
is
(170

3 , 14000
3

)
. The axis of symmetry is the vertical line passing through the vertex so it is

the line x = 170
3 . To sketch a reasonable graph, we approximate the x-intercepts, (0.89, 0)

and (112.44, 0), and the vertex, (56.67, 4666.67). (Note that in order to get the x-intercepts
and the vertex to show up in the same picture, we had to scale the x-axis differently than
the y -axis. This results in the left-hand x-intercept and the y -intercept being uncomfortably
close to each other and to the origin in the picture.)
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3. The zeros of P are the solutions to P(x) = 0, which we have found to be approximately 0.89
and 112.44. As we saw in Example 1.5.3, these are the ‘break-even’ points of the profit
function, where enough product is sold to recover the cost spent to make the product. More
importantly, we see from the graph that as long as x is between 0.89 and 112.44, the graph
y = P(x) is above the x-axis, meaning y = P(x) > 0 there. This means that for these
values of x , a profit is being made. Since x represents the weekly sales of PortaBoy Game
Systems, we round the zeros to positive integers and have that as long as 1, but no more
than 112 game systems are sold weekly, the retailer will make a profit.

4. From the graph, we see that the maximum value of P occurs at the vertex, which is approx-
imately (56.67, 4666.67). As above, x represents the weekly sales of PortaBoy systems,
so we can’t sell 56.67 game systems. Comparing P(56) = 4666 and P(57) = 4666.5, we
conclude that we will make a maximum profit of $4666.50 if we sell 57 game systems.

5. In the previous part, we found that we need to sell 57 PortaBoys per week to maximize profit.
To find the price per PortaBoy, we substitute x = 57 into the price-demand function to get
p(57) = −1.5(57) + 250 = 164.5. The price should be set at $164.50.

Our next example is another classic application of quadratic functions.

Example 2.4.4. Much to Donnie’s surprise and delight, he inherits a large parcel of land in Ashtab-
ula County from one of his (e)strange(d) relatives. The time is finally right for him to pursue his
dream of farming alpaca. He wishes to build a rectangular pasture, and estimates that he has
enough money for 200 linear feet of fencing material. If he makes the pasture adjacent to a stream
(so no fencing is required on that side), what are the dimensions of the pasture which maximize
the area? What is the maximum area? If an average alpaca needs 25 square feet of grazing area,
how many alpaca can Donnie keep in his pasture?
Solution. It is always helpful to sketch the problem situation, so we do so below.

w

l

wpasture

river

We are tasked to find the dimensions of the pasture which would give a maximum area. We let
w denote the width of the pasture and we let l denote the length of the pasture. Since the units
given to us in the statement of the problem are feet, we assume w and l are measured in feet. The
area of the pasture, which we’ll call A, is related to w and l by the equation A = wl . Since w and l
are both measured in feet, A has units of feet2, or square feet. We are given the total amount of
fencing available is 200 feet, which means w + l + w = 200, or, l + 2w = 200. We now have two
equations, A = wl and l +2w = 200. In order to use the tools given to us in this section to maximize
A, we need to use the information given to write A as a function of just one variable, either w or
l . This is where we use the equation l + 2w = 200. Solving for l , we find l = 200 − 2w , and we
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substitute this into our equation for A. We get A = wl = w(200− 2w) = 200w − 2w2. We now have
A as a function of w , A(w) = 200w − 2w2 = −2w2 + 200w .

Before we go any further, we need to find the applied domain of A so that we know what values
of w make sense in this problem situation.9 Since w represents the width of the pasture, w > 0.
Likewise, l represents the length of the pasture, so l = 200− 2w > 0. Solving this latter inequality,
we find w < 100. Hence, the function we wish to maximize is A(w) = −2w2 + 200w for 0 < w <
100. Since A is a quadratic function (of w), we know that the graph of y = A(w) is a parabola.
Since the coefficient of w2 is −2, we know that this parabola opens downwards. This means that
there is a maximum value to be found, and we know it occurs at the vertex. Using the vertex
formula, we find w = − 200

2(−2) = 50, and A(50) = −2(50)2 + 200(50) = 5000. Since w = 50 lies in the
applied domain, 0 < w < 100, we have that the area of the pasture is maximized when the width
is 50 feet. To find the length, we use l = 200 − 2w and find l = 200 − 2(50) = 100, so the length
of the pasture is 100 feet. The maximum area is A(50) = 5000, or 5000 square feet. If an average
alpaca requires 25 square feet of pasture, Donnie can raise 5000

25 = 200 average alpaca.

9Donnie would be very upset if, for example, we told him the width of the pasture needs to be −50 feet.
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2.4.1 Exercises

In Exercises 1 - 15, graph the quadratic function. Find the x- and y -intercepts, if any exist. If the
function is given in general form, convert it into standard form f (x) = a(x − h)2 + k . Find the range.
Identify the vertex and the axis of symmetry, and determine whether the vertex yields a maximum
or minimum.

1. f (x) = x2 + 2 2. f (x) = −(x + 2)2 3. f (x) = x2 − 2x − 8

4. f (x) = −2(x + 1)2 + 4 5. f (x) = 2x2 − 4x − 1 6. f (x) = −3x2 + 4x − 7

7. f (x) = x2 − 4x 8. f (x) = x2 + 2x 9. f (x) = 2x2 − 6x + 4

10. f (x) = x2 − 8x + 16 11. f (x) = x2 + x + 1 12. f (x) = −3x2 + 5x + 4

13. f (x) = 1
2x2 + 3x + 5

2 14. f (x) = −1
2x2 + x − 2 15. f (x) = 1

3x2 + 2x + 3

In Exercises 16 - 20, the cost and price-demand functions are given for different scenarios. For
each scenario,

• Find the profit function P(x).

• Find the number of items which need to be sold in order to maximize profit.

• Find the maximum profit.

• Find the price to charge per item in order to maximize profit.

• Find and interpret break-even points.

16. The cost, in dollars, to produce x “I’d rather be a Sasquatch” T-Shirts is C(x) = 2x +26, x ≥ 0
and the price-demand function, in dollars per shirt, is p(x) = 30− 2x , 0 ≤ x ≤ 15.

17. The cost, in dollars, to produce x bottles of 100% All-Natural Certified Free-Trade Organic
Sasquatch Tonic is C(x) = 10x + 100, x ≥ 0 and the price-demand function, in dollars per
bottle, is p(x) = 35− x , 0 ≤ x ≤ 35.

18. The cost, in cents, to produce x cups of Mountain Thunder Lemonade at Junior’s Lemonade
Stand is C(x) = 18x + 240, x ≥ 0 and the price-demand function, in cents per cup, is
p(x) = 90− 3x , 0 ≤ x ≤ 30.

19. The daily cost, in dollars, to produce x Sasquatch Berry Pies is C(x) = 3x + 36, x ≥ 0 and
the price-demand function, in dollars per pie, is p(x) = 12− 0.5x , 0 ≤ x ≤ 24.

20. The monthly cost, in hundreds of dollars, to produce x custom built electric scooters is
C(x) = 20x + 1000, x ≥ 0 and the price-demand function, in hundreds of dollars per scooter,
is p(x) = 140− 2x , 0 ≤ x ≤ 70.
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21. The International Silver Strings Submarine Band holds a bake sale each year to fund their
trip to the National Sasquatch Convention. It has been determined that the cost in dollars
of baking x cookies is C(x) = 0.1x + 25 and that the demand function for their cookies is
p = 10− .01x . How many cookies should they bake in order to maximize their profit?

22. Using data from Bureau of Transportation Statistics, the average fuel economy F in miles
per gallon for passenger cars in the US can be modeled by F (t) = −0.0076t2 + 0.45t + 16,
0 ≤ t ≤ 28, where t is the number of years since 1980. Find and interpret the coordinates of
the vertex of the graph of y = F (t).

23. The temperature T , in degrees Fahrenheit, t hours after 6 AM is given by:

T (t) = −1
2

t2 + 8t + 32, 0 ≤ t ≤ 12

What is the warmest temperature of the day? When does this happen?

24. Suppose C(x) = x2 − 10x + 27 represents the costs, in hundreds, to produce x thousand
pens. How many pens should be produced to minimize the cost? What is this minimum
cost?

25. Skippy wishes to plant a vegetable garden along one side of his house. In his garage, he
found 32 linear feet of fencing. Since one side of the garden will border the house, Skippy
doesn’t need fencing along that side. What are the dimensions of the garden which will
maximize the area of the garden? What is the maximum area of the garden?

26. In the situation of Example 2.4.4, Donnie has a nightmare that one of his alpaca herd fell into
the river and drowned. To avoid this, he wants to move his rectangular pasture away from
the river. This means that all four sides of the pasture require fencing. If the total amount of
fencing available is still 200 linear feet, what dimensions maximize the area of the pasture
now? What is the maximum area? Assuming an average alpaca requires 25 square feet of
pasture, how many alpaca can he raise now?

27. What is the largest rectangular area one can enclose with 14 inches of string?

28. The height of an object dropped from the roof of an eight story building is modeled by h(t) =
−16t2 + 64, 0 ≤ t ≤ 2. Here, h is the height of the object off the ground, in feet, t seconds
after the object is dropped. How long before the object hits the ground?

29. The height h in feet of a model rocket above the ground t seconds after lift-off is given by
h(t) = −5t2 + 100t , for 0 ≤ t ≤ 20. When does the rocket reach its maximum height above
the ground? What is its maximum height?

30. Carl’s friend Jason participates in the Highland Games. In one event, the hammer throw, the
height h in feet of the hammer above the ground t seconds after Jason lets it go is modeled
by h(t) = −16t2 + 22.08t + 6. What is the hammer’s maximum height? What is the hammer’s
total time in the air? Round your answers to two decimal places.

http://www.bts.gov/publications/national_transportation_statistics/html/table_04_23.html
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31. Assuming no air resistance or forces other than the Earth’s gravity, the height above the
ground at time t of a falling object is given by s(t) = −4.9t2 + v0t + s0 where s is in meters, t is
in seconds, v0 is the object’s initial velocity in meters per second and s0 is its initial position
in meters.

(a) What is the applied domain of this function?

(b) Discuss with your classmates what each of v0 > 0, v0 = 0 and v0 < 0 would mean.

(c) Come up with a scenario in which s0 < 0.

(d) Let’s say a slingshot is used to shoot a marble straight up from the ground (s0 = 0) with
an initial velocity of 15 meters per second. What is the marble’s maximum height above
the ground? At what time will it hit the ground?

(e) Now shoot the marble from the top of a tower which is 25 meters tall. When does it hit
the ground?

(f) What would the height function be if instead of shooting the marble up off of the tower,
you were to shoot it straight DOWN from the top of the tower?

32. The two towers of a suspension bridge are 400 feet apart. The parabolic cable10 attached to
the tops of the towers is 10 feet above the point on the bridge deck that is midway between
the towers. If the towers are 100 feet tall, find the height of the cable directly above a point
of the bridge deck that is 50 feet to the right of the left-hand tower.

33. Find all of the points on the line y = 1− x which are 2 units from (1,−1).

34. Let L be the line y = 2x + 1. Find a function D(x) which measures the distance squared from
a point on L to (0, 0). Use this to find the point on L closest to (0, 0).

35. With the help of your classmates, show that if a quadratic function f (x) = ax2 + bx + c has
two real zeros then the x-coordinate of the vertex is the midpoint of the zeros.

In Exercises 36 - 41, solve the quadratic equation for the indicated variable.

36. x2 − 10y2 = 0 for x 37. y2 − 4y = x2 − 4 for x 38. x2 −mx = 1 for x

39. y2 − 3y = 4x for y 40. y2 − 4y = x2 − 4 for y 41. −gt2 + v0t + s0 = 0 for t
(Assume g 6= 0.)

10The weight of the bridge deck forces the bridge cable into a parabola and a free hanging cable such as a power
line does not form a parabola. We shall see in Exercise 35 in Section 6.5 what shape a free hanging cable makes.
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2.4.2 Answers

1. f (x) = x2 + 2
No x-intercepts
y -intercept (0, 2)

Range: [2,∞)
Vertex (0, 2) is a minimum
Axis of symmetry x = 0

2. f (x) = −(x + 2)2

x-intercept (−2, 0)
y -intercept (0,−4)

Range: (−∞, 0]
Vertex (−2, 0) is a maximum
Axis of symmetry x = −2

3. f (x) = (x − 1)2 − 9
x-intercepts (−2, 0) and (4, 0)
y -intercept (0,−8)

Range: [−9,∞)
Vertex (1,−9) is a minimum
Axis of symmetry x = 1

4. f (x) = −2(x + 1)2 + 4
x-intercepts (−1−

√
2, 0) & (−1 +

√
2, 0)

y -intercept (0, 2)

Range: (−∞, 4]
Vertex (−1, 4) is a maximum
Axis of symmetry x = −1

5. f (x) = 2(x − 1)2 − 3
x-intercepts

(
2−
√

6
2 , 0

)
&
(

2+
√

6
2 , 0

)
y -intercept (0,−1)

Range: [−3,∞)
Vertex (1,−3) is a minimum
Axis of symmetry x = 1

6. f (x) = −3
(
x − 2

3

)2 − 17
3

No x-intercepts
y -intercept (0,−7)

Range:
(
−∞,−17

3

]
Vertex

(2
3 ,−17

3

)
is a maximum

Axis of symmetry x = 2
3

7. f (x) = (x − 2)2 − 4
x-intercepts (0, 0) & (4, 0)
y -intercept (0, 0)

Range: [−4,∞)
Vertex (2,−4) is a minimum
Axis of symmetry x = 2

8. f (x) = (x + 1)2 − 1
x-intercepts (−2, 0) & (0, 0)
y -intercept (0, 0)

Range: [−1,∞)
Vertex (−1,−1) is a minimum
Axis of symmetry x = −1

9. f (x) = 2(x − 3
2 )2 − 1

2
x-intercepts (1, 0) & (2, 0)
y -intercept (0, 4)

Range: [−1
2 ,∞)

Vertex
(3

2 ,−1
2

)
is a minimum

Axis of symmetry x = 3
2

10. f (x) = (x − 4)2

x-intercept (4, 0)
y -intercept (0, 16)

Range: [0,∞)
Vertex (4, 0) is a minimum
Axis of symmetry x = 4
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11. f (x) =
(
x + 1

2

)2
+ 3

4
No x-intercepts
y -intercept (0, 1)

Range:
[3

4 ,∞
)

Vertex
(
−1

2 , 3
4

)
is a minimum

Axis of symmetry x = −1
2

12. f (x) = −3
(
x − 5

6

)2 + 73
12

x-intercepts
(

5−
√

73
6 , 0

)
&
(

5+
√

73
6 , 0

)
y -intercept (0, 4)

Range:
(
−∞, 73

12

]
Vertex

(5
6 , 73

12

)
is a maximum

Axis of symmetry x = 5
6

13. f (x) = 1
2 (x + 3)2 − 2

x-intercepts (−5, 0) & (−1, 0)
y -intercept (0, 5

2 )

Range: [−2,∞)
Vertex (−3,−2) is a minimum
Axis of symmetry x = −3

14. f (x) = −1
2 (x − 1)2 − 3

2
No x-intercepts
y -intercept (0,−2)

Range: (−∞,−3
2 ]

Vertex
(
1,−3

2

)
is a maximum

Axis of symmetry x = 1

15. f (x) = 1
3 (x + 3)2

x-intercept (−3, 0)
y -intercept (0, 3)

Range: [0,∞)
Vertex (−3, 0) is a minimum
Axis of symmetry x = −3

16. • P(x) = −2x2 + 28x − 26, for 0 ≤ x ≤ 15.

• 7 T-shirts should be made and sold to maximize profit.

• The maximum profit is $72.

• The price per T-shirt should be set at $16 to maximize profit.

• The break even points are x = 1 and x = 13, so to make a profit, between 1 and 13
T-shirts need to be made and sold.

17. • P(x) = −x2 + 25x − 100, for 0 ≤ x ≤ 35

• Since the vertex occurs at x = 12.5, and it is impossible to make or sell 12.5 bottles of
tonic, maximum profit occurs when either 12 or 13 bottles of tonic are made and sold.

• The maximum profit is $56.

• The price per bottle can be either $23 (to sell 12 bottles) or $22 (to sell 13 bottles.) Both
will result in the maximum profit.

• The break even points are x = 5 and x = 20, so to make a profit, between 5 and 20
bottles of tonic need to be made and sold.

18. • P(x) = −3x2 + 72x − 240, for 0 ≤ x ≤ 30

• 12 cups of lemonade need to be made and sold to maximize profit.

• The maximum profit is 192¢ or $1.92.

• The price per cup should be set at 54¢ per cup to maximize profit.
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• The break even points are x = 4 and x = 20, so to make a profit, between 4 and 20
cups of lemonade need to be made and sold.

19. • P(x) = −0.5x2 + 9x − 36, for 0 ≤ x ≤ 24

• 9 pies should be made and sold to maximize the daily profit.

• The maximum daily profit is $4.50.

• The price per pie should be set at $7.50 to maximize profit.

• The break even points are x = 6 and x = 12, so to make a profit, between 6 and 12 pies
need to be made and sold daily.

20. • P(x) = −2x2 + 120x − 1000, for 0 ≤ x ≤ 70

• 30 scooters need to be made and sold to maximize profit.

• The maximum monthly profit is 800 hundred dollars, or $80,000.

• The price per scooter should be set at 80 hundred dollars, or $8000 per scooter.

• The break even points are x = 10 and x = 50, so to make a profit, between 10 and 50
scooters need to be made and sold monthly.

21. 495 cookies

22. The vertex is (approximately) (29.60, 22.66), which corresponds to a maximum fuel economy
of 22.66 miles per gallon, reached sometime between 2009 and 2010 (29 – 30 years after
1980.) Unfortunately, the model is only valid up until 2008 (28 years after 1908.) So, at this
point, we are using the model to predict the maximum fuel economy.

23. 64◦ at 2 PM (8 hours after 6 AM.)

24. 5000 pens should be produced for a cost of $200.

25. 8 feet by 16 feet; maximum area is 128 square feet.

26. 50 feet by 50 feet; maximum area is 2500 feet; he can raise 100 average alpacas.

27. The largest rectangle has area 12.25 square inches.

28. 2 seconds.

29. The rocket reaches its maximum height of 500 feet 10 seconds after lift-off.

30. The hammer reaches a maximum height of approximately 13.62 feet. The hammer is in the
air approximately 1.61 seconds.

31. (a) The applied domain is [0,∞).

(d) The height function is this case is s(t) = −4.9t2 + 15t . The vertex of this parabola
is approximately (1.53, 11.48) so the maximum height reached by the marble is 11.48
meters. It hits the ground again when t ≈ 3.06 seconds.
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(e) The revised height function is s(t) = −4.9t2 + 15t + 25 which has zeros at t ≈ −1.20
and t ≈ 4.26. We ignore the negative value and claim that the marble will hit the ground
after 4.26 seconds.

(f) Shooting down means the initial velocity is negative so the height functions becomes
s(t) = −4.9t2 − 15t + 25.

32. Make the vertex of the parabola (0, 10) so that the point on the top of the left-hand tower
where the cable connects is (−200, 100) and the point on the top of the right-hand tower is
(200, 100). Then the parabola is given by p(x) = 9

4000x2 + 10. Standing 50 feet to the right of
the left-hand tower means you’re standing at x = −150 and p(−150) = 60.625. So the cable
is 60.625 feet above the bridge deck there.

33.

(
3−
√

7
2

,
−1 +

√
7

2

)
,

(
3 +
√

7
2

,
−1−

√
7

2

)

34. D(x) = x2 + (2x + 1)2 = 5x2 + 4x + 1, D is minimized when x = −2
5 , so the point on y = 2x + 1

closest to (0, 0) is
(
−2

5 , 1
5

)
36. x = ±y

√
10 37. x = ±(y − 2) 38. x =

m ±
√

m2 + 4
2

39. y =
3±
√

16x + 9
2

40. y = 2± x 41. t =
v0 ±

√
v2

0 + 4gs0

2g
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