
Q

L)

©

O

INASA-_R-20222
/ /

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

INFORMATION TECHNOLOGY: A TOOL TO CUT HEALTH

CARE COSTS

By

Dr. Ravi Mukkamala, Principal Investigator

Final Report

For the period ended August 31, 1996

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant Number NAG-l-1690

Wayne H. Bryant, Technical Monitor

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, VA 23508-0369

September 1996

;' p

DEPARTMENT OF COMPUTER SCIENCE

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

INFORMATION TECHNOLOGY: A TOOL TO CUT HEALTH

CARE COSTS

By

Dr. Ravi Mukkamala, Principal Investigator

Final Report

For the period ended August 31, 1996

Prepared for

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

Under

Research Grant Number NAG-l-1690

Wayne H. Bryant, Technical Monitor

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, VA 23508-0369

September 1996

Information Technology: A Tool to Cut Health Care Costs

Final Report (NAG-l-1690)

R. Mukkamala K.J. Maly C.M. Overstreet E.C. Foudriat

Department of Computer Science

Old Dominion University

Norfolk, Virginia 23529.

Abstract

We report on the work done as part of the NASA LaRC grant NAG-l-1690. As part

of this effort, we have designed and built a prototype for an integrated medical record

system. MRS (Medical Record System) is written in Tcl/Tk. While the initial version

of the prototype had patient information hard coded into the system, the later versions
used an INGRES database for storing patient information. Currently, we have proposed

an object-oriented model for implementing MRS.
As a result of the initial seed money by NASA LaRC, we have achieved a level of exper-

tise in this area. As a consequence, we have recently been awarded two projects by EVMS

(Eastern Virginia Medical School), CHKD (Children's Hospital of the King's Daughters)

and CPR (Center for Pediatrics Research), all located in Norfolk, Virginia. These projects

involve developing information systems for physicians and medical researchers to enhance

their ability for improved treatment at reduced costs.

1 Introduction

Old Dominion University embarked on a project to see how current computer technology

could be applied to reduce the cost/and or improve the efficiency of health care. Subse-

quent discussions with local hospital officials (Children's Hospital of King's daughters and

Eastern Virginia Medical School) indicated that the health care industry was already well

computerized and getting more so every day. The move to computerize patient records is
also well underway, several standards exist for laboratory records [5] and several groups

are working on standards for other portions of the patient record [1, 3].

Even though doctors realize that the move to electronic records is eventually going to
happen in the near future, they do not relish the thought of giving up their paper records

for the electronic variety. Paper records have many advantages over electronic records:

the ability to display multiple formats; immediate access to required/applicable data; high

resolution for X-rays and the like; unlimited display area; and reasonable confidentiality

and security. To some degree these aspects of a paper record can be equaled by electronic
records and when combined with its strengths such as access to information that is current

and accessible anywhere a terminal exists (on a network, of course); support for a wide

varietyof informationformats(includingaudio/video);andanability to massagedatato
providea differentviewona patient'srecord(e.g. trendanalysis).Thecomputerized
recordbecomesnotonlya databasebut alsoananalysistool.

OneofthemajorcomplaintsthatdoctorshaveaboutthecurrentComputerizedPatient
Recordsystems(CPRs)is theirinabilityto providethesameflexibilitythatapaperrecord
systemprovidesin scanningthedocumentspertainingto a patient.It is commonprac-
ticefor adoctorto quicklyflip througha recordto becomeacquaintedwith thepatient's
medicalhistoryanddeterminewhichfacetsarerelevantto thepatient'scurrentproblems.
Computerizedrecordsmayyetprevailovermanualrecordkeepingmethodsif theyprovide
"one-stop-shopping."Thatis if it is possibleto sparethephysicianfromaccessinginfor-
mationfromseverallocations(chartpulls,phonecalls,fax machines,etc.) theywill be
moreinclinedto useacomputerizedrecord[3,6,8,10].Mostmedicalinformaticssoftware
providesomecapabilitiesto relatepatienthealthdocumentstogetherbut nonehavethe
ability to graphicallydisplaythetheentirepatientrecordandtherelationshipsbetween
eachdocumentin a patientrecord[6,7]. Becauseof thisdeficiency,it wasdecidedto
focusonthis issueanddevelopanapplicationthat allowedcompleteandrapidaccessto a
patient'selectronicmedicalrecord.

Basedonourearlierexperiencein designingdecisionsupportsystems,it wasbelieved
that a similarproblem-orientedorganizationof thepatientrecordandgraphicalinterface
couldbedevelopedto givefreer,quickerandmorecompleteaccessto a patientrecord.
With thisintention,wehavedesignedandprototypedoursystem,MRSorMedicalRecord
System.It wasdecidedto prototypeMRSin anapplicationin aninterpretedlanguage,
Tcl/Tk, in orderto easilyaccomodaterequestedchangesandadditionsmadebyendusers
andotherinterestedparties.

Thisreportdiscussesthemotivationbehindtheproject,someaspectofthedesignand
elaboratesontheuniquefeaturesof theapplication.

2 TCL/TK: The PROTOTYPING TOOL

The current prototype of MRS is implemented using Tcl/Tk, an interpretive language.
Tcl or Tool Control Language is a scripting language that features string, list and array

manipulation functions as well as the usual commands expected from a Unix shell. The

Tcl shell or tclsh can be used like any other Unix shell (e.g., C-shell). An extension to Tcl

which allows it access to GUI widgets and event-driven programming is the Tk toolkit. The
combination of Tcl and Tk is embodied in the wish-shell which, like tclsh, interprets any

commands sent to it. Commands are similar to Unix shell script commands with additional

commands and capabilities that give a C-like flavor.

A unique feature of Tcl/Tk is that the interpreter can have its command set augmented
either through pre-compiled extensions or through user defined procedures that have been

written in C. For example, several extensions are available such as TkPixmap and TkEmacs.

By integrating one or more of these extensions into an interpreter or wish-shell one can gain

the ability to manipulate Pixmaps (TkPixmaps), or incorporate emacs into an application

(TkEmacs). Tcl/Tk is very flexible in that C code can be written by the programmer to

2

providenewcommands.Hence,if speedwererequired,compiledcodecouldreplacealong
interpretedtcl procedure.

LikeotherX-windowapplications,resourcefilescanbeusedto determinetheproperties
ofaTcl/Tkapplication.Tcl/Tkalsoprovidesanauto-loadingfunctionthatsearchesauser
definedlistofpathsforfilescontainingtheprocedureit needs.Tcl/Tk providesdebugging
supportinadditionto errorcontrol.Debugginganddevelopmentismadeeasiersimplyby
thefactthatit isaninterpretedlanguage.

3 SYSTEM DESIGN

Initially, the objective was to provide a front-end viewer for an existing database that would
enable doctors to have better access to an existing computerized patient record system

(CPR). However, in order to successfully integrate the problem-oriented approach to the

CPR, it was realized that an entire medical record system needed to be developed. This

is because there is no way to get or generate problem information from existing records.
Further, a standard means of entering test data would be faster and more accurate than

editing data files. The problem oriented approach, it is hoped, would enable doctors to
track actions taken to diagnose, treat, or maintain a particular problem, and to access all

related documents quickly and to view them.
Our initial ideas for the MRS came from another ODU project called DHC. Essentially,

DHC allowed the description of problems or tasks to be broken down into subproblems,
which in turn could be described and broken down. The problems and subproblems were

graphically displayed with each subproblem in a box and a link (an arrow) made between
the parent problem and its subproblems. Applying this to an CPR would require defining

a problem and subproblems then making links between related documents. One could

display this graphically, giving the doctor an overview of several problems the patient had

experienced in the past and the doctor would be able to zero in on the documents he

wanted to see. Clicking on the icon representing a document would bring up the document

text, picture or audio annotation.
The first version of MRS exposed unforeseen complications during the conceptual phase.

For instance, the use of arrows to link related documents was found to be impractical as

it is possible that a single document were related to several problems or sub-problems. It

would not be long before the number of arrows on a screen would obscure other documents

or make links unclear. Another problem encountered was with the links themselves; there
was no common means of linking documents because the relationship between them varied

due to the content and document type.

Discussions with potential end users (i.e., doctors) on how better to graphically repre-
sent the data resulted in several excellent ideas that were captured in the Zone Concept.

As seen in Figure 4, for example, the Zone Concept can display documents by their type

or temporal status and arrows have been eliminated in favor of using color to represent

links (unfortunately, colors are not visible in Figure 4). Clicking on a problem would in-

stantly colorize all those related to the particular problem. Links would be established

using the single link definition given above. Dynamic linking by keywords can be gener-

"_ g[m

Clerk

Im _mmM

Doctor

Figure 1: Roles supported by MRS

ated by searching all documents and colorizing those with positive hits. If the number of

documents in a column cannot fit the available viewing area, they can be made to overlap.

The zone concept as described above was used to create the graphical interface which is
described below.

4 A Tour Through MRS

The current version of MRS implements the graphical document interface but also includes

many of the functions of the average medical informatics program such as scheduling,

billing, triage, and adding records. MRS was designed with the idea of limiting access to
certain users and with built-in security [4]. Upon start-up, the user is presented with a

screen with four large buttons representing the roles in the hospital supported by MRS

(Figure 1). The user selects an appropriate button and then enters the name and password

to gain access. As part of the security, different roles within the hospital/doctors office are

given different degrees of access. The highest access goes to the doctor who can use all
the functions. The lowest is the patient who can only access his own patient record, fill

out forms (via Visit or First Visit) or check on his billing. Further, within each function,
access to certain features is limited by what position the user occupies. Figure 2 shows the
main menu and the associated choice menu for the doctor. We will now describe some of

the options.

4

W
Billing

Figure 2: Doctor's Main Menu

.......PatientProfile :PatientInformation

:PersonalHealthHistoryPersonalHistory
Medications Insurance

Help Finish

Figure 3: First Visit Options

5

Figure 4: Patient Record Display

4.1 First Visit

A recent trend in medical informatics software is to allow the patient to fill out his/her

own forms directly into the computer [2]. First Visit allows the patient or office personnel

to fill out the forms needed to begin his medical record such as Personal Health History,

and Patient Information (Figure 3). The doctor/nurse/clerk can interview the patient and

type in the answers or the patient can do it himself. During this time the patient will

receive a password so that he can see his medical record using the View Patient Record

option, fill out any forms required for the visit (e.g., a form for describing complaints,
symptoms) using the Visit option, and check on his outstanding balance using the Billing

option. For patients who remember their password, the ability to enter data into forms

allows them quicker service as their complaints enter the system quicker than those who
must be interviewed by a nurse or doctor. Further, paperwork for the hospital or doctor's

office is also reduced, which improves patient-care.

4.2 Triage

This option is used to collect the patient's vital signs and determine the patient's com-

plaints, and history related to his current condition. As such this option is only available
to the nurse and doctor. Currently, the triage option can be called when viewing the pa-

tient record or by selecting it from the intermediate menu. If selected from the intermediate

menu, the doctor must fill in the patient's name first. After 3 letters, the computer looks

upthenamesofexistingpatientsandfillsin theremainderif amatchexists.Whencalled
fromtheViewPatientRecordIconbar,thenameisautomaticallyenteredoncethepatient
hasbeenselectedusingtheSelectPatientoption.Doubleclickingonanyoneof thevital
signs(e.g.weight,temperature) willcauseatrendingchartto bedisplayedofvital signvs
time. Oncethetriagehasbeensavedit cannolongerbeedited.However,thedoctorcan
addto thetriagebycreatinga progressnote.Thetriagedatais insertedintotheprogress
noteautomatically.

4.3 Add Records

The user, most likely a nurse, would like to add documents to a patient record. The

way it is added varies, however, on the form of the document. For instance, a scanned

document such as an X-Ray or consult report can be added by specifying the filename,

date initiated, date received, author, document type (e.g., Progress Note, Form 033) the

associated problem and adding descriptive keywords. A document, such as the one created
in the office, and hence available in electronic form, is added the same way but no keywords

need be entered. During a search, the entire contents of the electronic document will be
searched for keywords. Of course, a title for the file icon must also be entered in both cases.

4.4 View Patient Record

Once this option has been selected, an iconbar appears. The iconbar consists of an entry to

hold the patient name and several buttons that activate various functions. Most functions

such as triage, display patient record, forms and problems will not work until a patient

is selected. Pressing the Select Patient button will bring up a Listbox holding patient

names. Selecting a patient will fill in the Patient: entry of the iconbox. Clicking on triage

brings up the triage screen. If it had been filled out previously by a nurse, the triage data
would appear for the selected patient. This gives the doctor a synopsis of the patient's

current condition and complaints. Clicking on Form brings up the Form Listbox with all

the potential forms the doctor may fill out when examining the patient. Selecting a Form

will bring up the corresponding screen such as a Progress Note or a Form 033 (A standard

insurance billing form).

Selecting Display Patient Record brings up a graphical display of the entire patient
record (Figure 4). Each document of the patient's record is represented as a file icon. A

file icon consists of a rectangle with a descriptive title and a initiation date. Clicking the

2nd mouse button on the title will reveal the key words associated with the document;

doing the same on the date will give the receive date for the document. Double-clicking
with the first mouse button will cause the document to appear whether it be scanned or

in text. General records which are useful to have available at all times, such as Patient

Information, and Current and Temporary Medications are kept in the topmost canvas.

Other records with linkages to problems appear in the lower canvas. The zone concept

described previously was utilized to organize the patient record. Problems are in the first

column(left most column) while, if in the Zone-By-Document mode, each zone contains
any number of the same type of document. For example, in Figure 4, Progress Notes are

seenin the2ndcolumn(or zone).At this time,onlytheZone-By-Documentmodehas
beenimplementedbuta Zone-By-Timeoptionisplanned.

Thedoctorcanquicklylocatethe relateddocumentsto a problembyactivatingthe
ShowLinksfunctionwhichis activatedwhentheShowLinksbuttonis pressed.Once
activated,the cursorcanbeput overa file iconandmousebuttononeclicked.If the
fileiconwasoneof adocumentthentheproblem(s)associatedwith thedocumentchange
color.If it wasaproblemthenallthedocumentsrelatedtothat problemchangecolor.The
doctorknowsinstantlywhichdocumentsarerelevantandshouldbereviewed.Hencein a
matterof 2buttonclicksthedoctorhasnarrowedconsiderablythescopeofhissearch.He
maytheninspectthekeywordsassociatedwiththedocumentorusethetypeofdocument
to guidehimasto whetheror not to viewthedocument.Thisis considerablyfasterand
moreefficientthanbrowsinga paperrecord.

Toshowapatientrecordbetter,theexpandandcompressfunctionsallowtheuserto
spreadthe file iconsout or overlapthem,respectively.Alsotheuserhasthe optionof
decidingwhichdocumentsgoin whatzone.Eachzonehasa pulldownmenuthatisused
to selectthedocumenttype(Zone-By-Documentmode)or date(Zone-By-Timemode)
thatthezonewill represent.Instantly,thezoneschangeto reflecttheuser'spreferences.

4.5 Scheduling

This option is available to the doctor, nurse and clerk but in varying degrees. For instance,

only the doctor has the ability to block off sections of time that he wishes not to see any

patients. All can make appointments for patients, although this will generally fall to the
nurse or clerk. All can examine the schedule either on a dally monthly or yearly basis.

When making an appointment, the user has the ability to visually inspect the schedule and

insert the appointment or he can conduct a search for all the schedulable time slots using

length of time needed and limiting the search to the timeframe that the appointment must
be made.

4.6 Billing

Billing functions given in this option are very simplistic since it is not our intention to
develop the administrative portion of a medical informatics application. If required several

commercial add-on programs can be used. This option is primarily for the clerk; however,

the doctor may wish to inspect/modify the billing data. Data from various entries found

in forms (e.g, the form 033) will be used to compile billing data for each patient. Clerks

can accept payment and subtract from the outstanding balance. As mentioned earlier, the

patient may also access his own billing records in a read-only mode.

5 CONCLUSION

Old Dominion University has implemented a Medical Informatics application called the

Medical Record System (MRS) that introduces a new paradigm to the Computerized Pao

tientRecord.A patient'sproblemsareusedasthebasistoorganizeandlinkthedocuments
in a medicalrecord.Throughtheuseof agraphicalinterfacethepatient'smedicalrecord
canbebrowsedmucheasierthancouldthecorrespondingpaperrecordthusremovinga
majordrawbackto CPR's.Thisworkisnotyet complete,someoptionsstill needto be
implemented;however,in its currentstate,MRShasproventheproblem-orientedconcept
andtheassociatedgraphicalinterfaceto beveryeffective.Furtherdevelopmentisplanned
andprogressshouldberapidgiventheexceptionaleasethat theTcl/Tk _anguagecanbe
usedto implementsupportingdatastructuresandgraphicalinterfaces.

References

[1] Cowey, H. D. and Bernstein, R. (1994). Data Models, Standards and Nomenclatures
for Primary Care: The Data Standards Project. 1994 HIMSS Proceedings, Vol 4, 49-
59.

[2] Cushing, M. (1995) The data entry conundrum. M.D. Computing, 12, (4), 259-261.

[3] Dicks, R.S. and Steen, E.B. (Editors) (1991). Computer-based patient record: An
essential technology for health care. National Academy Press, Washington, D.C.

[4] Donaldson, M.S. and Lohr, K.L. (Editors) (1994). Health data in the information age:
use, disclosure, and privacy. National Academy Press, Washington, D.C.

[5] Hammond, W. E., et al. (1994). Computer Standards: Their Future Within Health
Care Reform. 1994 HIMSS Proceedings, Vol 1, 33-52.

[6] Henkind, S. J. (1994). Physician Involvement in Information Systems: An Overview
of the Issues. 1994 HIMSS Proceedings, Vol 2, 33-41.

[7] Kahn, M.G. (1993). The computer-based patient record and Robert Fulghum's 16
principles. M.D. Computing, 10, (2), 253-261.

[8] Shortliffe, E.H., Perreault, L.E., Widerhold, G., and Fagan, L.M. (1990). Medical
Informatics: Computer Applications in Health care. Addison-Wesley.

[9] Walsh, B. (1995). Using Tcl/Tk. Linux Journal. Feb. 1995, 26-33.

[10] Weed, L.L. (1993). Medical records that guide and teach. M.D. Computing, 10, (2),
100-114.

Old Dominion University
Dept. of Computer Science

1995

i Medical Records System (MRS I

Version 1.2

Clerk Nurse

I

II Ill I I

Figure 1: Roles supported by MRS

Figure 2: Doctor's Main Menu

Figure3: First,VisitOptions

0910_187

7.eoingbyDoc=nent

PmgmssNotes Lab:Reports

Figure 4: Patient, Record Display

_u
ol

I

U

Ol

mm

olm

c_

!

J

.mmq

IiI

¢.,I

c_

r_

i

om

J

i

2
<_

I

em

i

.m

X

Masters Project Report

The Medical Information System GUI Design Project

By William E. Ward, III

Abstract: My master's project consisted primarily of work in the design and

development of a prototype Graphical User Interface (GUI) for the Medical

Information System (MIS). The work consisted of new implementation; correction

of logic, code and performance errors; new methods of source creation; version

coherence management; and incorporation of new code by other students into the

already existing system. Major efforts included code error fixes, appearance and

handling enhancements, porting the existing work from BSD Unix to Solaris (due to

a change in the operating system), and basic research into the requirements for any

future versions of the system, including important considerations for internal data

representation, database management and upkeep, functionality and improvement

concerns, distributed implementation and data issues, and the need to implement

expert systems into the MIS to increase the performance enhancement aspects that

would compel doctors to use system.

Background: Information Technology is rapidly advancing as the field matures and

the benefits of utilizing computers for data storage are realized. The advanced

features inherent in these machines allow data to be shared by users. The

advantages are a more cost effective system and superior service due to the

replacement of the redundancy and inaccuracy inherent to traditional paper and pen

methods. With soaring costs in Health Care becoming an important concern in our

modern society, the need to implement a new form of computer-based medical

record system is crucial. The advantages are many. The doctor, nurse or other

health care professional would be able to search the patient's record for similar

occurrences, for previously seen symptoms of medical problems, or search other

patients' records for similar cases. Medical records could be passed automatically

through expert system filters to diagnose conditions with which the doctor is not

familiar. Billing, a time consuming and costly event, could be streamlined greatly.

Unambiguous medical records could be kept. Researchers could use a

standardized medical record system on a computer database to look at large

populations. Specialized medical tracking could be conducted more efficiently, such

as follow-up immunization, psychological counseling, etc. Insurance payments could

be done online, with instant updates. New medical procedures could be worked into

additional expert systems, standardizing the level of care by allowing step-by-step

patterns for the health professionals to follow. Medical records could be shared

more efficiently with specialists during referrals. Reminders and prompts could be

given to the physician of medical test results. Long term trends could be instantly

pinpointed simply by allowing the computer to plot them graphically, such as weight

fluctuations, blood pressure, etc.

With obvious advantages such as these, it is imperative that the health

physicians begin using this type of system. However, while computers give

2

tremendous advantages, they also have obvious disadvantages: computer interfaces

tend to be more difficult and time consuming for the physician to use during actual

examinations; medical records are not currently in a format that would provide any

of the benefits listed previously; physicians may feel that the expert systems

embedded in these systems would usurp their own expertise; and a current lack of

standard recording methods for the medical community. The problem of a

community-wide recording standard is one that could be readily corrected if a

suitable system were developed. The concern that the system would usurp the

physicians' expertise is obviously a psychological problem beyond the scope of any

pure Computer Science-based research. The problem of format is significant, but

solvable, given the standards of the last concern. Since the inherent difficulty of use

in many computer information systems is the area most likely to provide real impact

on usability, we decided to emphasize our research there.

The difficulties with using a computer system for record keeping primarily

revolve around two key issues: one, the system's interface design is "different" from

the previously used system, requiring training before one becomes proficient; and

two, the system's perceived value-to-effort ratio is low. At Old Dominion University,

both of these issues were examined, and it was felt that the development of a

suitable Graphical User Interface might hold the key to acceptance. We felt that the

acceptance issue would be lessened considerably if the interface could be created

such that: 1.) the amount of retraining was small; 2.) the actual look and feel could

3

be customized to match the health care professional's previous methods; and 3.)

the interface offered real performance enhancement through the standard features

that the system would deliver, (or through hooks for, as yet, undeveloped modules.)

Carl Jolly, a graduate student at ODU, was originally assigned to develop a

prototype of a GUI that will be able to offer a lower learning curve, the ability to

customize, and a powerful feature environment. This prototype was not to be truly

functional; instead, it was designed to show some of the features that could be

incorporated into a fully functional system, as well as to assess changes by

incorporating feedback from the medical community. In May 1995, Carl Jolly

graduated, leaving the project with most areas of the GUI design set and in place.

In April 1995, I was asked to take over for Carl: refining, debugging, and expanding

the existing prototype, while studying areas where the future "Mach 2" may need to

be changed substantially from the existing design.

Work: As I began the project, the most pressing need was for me to learn Tcl/'l'k, the

language in which Carl Jolly had written the project. Since other graduate students

would be requesting assistance from me in using and learning Tcl themselves, I

needed to become an expert relatively quickly. My next major project was Xf, a GUI

interface prototyping tool for Tcl/Tk. After studying the systems and reading the

reference manual and tutorials, I decided that until I was sure that my knowledge

4

was correct, my best approach was to construct a series of small, dummy

applications, rather than experimenting on the actual MIS source code. This phase

lasted one week, at the end of which I was confident that I could safely expand and

debug the existing code. Consequently, I began a rapid process of system testing,

exercising any and all functions and modules that then existed in the system. During

this time, I began to isolate individual errors and areas where improvements could

be performed. I chose, through this phase, to begin debugging some of the source

code errors in light of my understanding of the system performance. The first

significant software bug that I identified during this stage was an error in the handling

of text documents in the patient medical record module. This bug caused the system

to handle all documents as if they were graphical documents, using XV as a viewer.

Since we had a mixed document system, with some graphical and some textual

documents, this was a severe error. An example of the correct code in use can be

seen by opening any Problem description in the Patient Medical Record interface.

At this point, I began expanding the help files for a number of the interface

modules. During discussions with the faculty representing the project, we reached

a consensus that the Physician's Triage interface was inappropriate and that the

audio buttons then in use were unsuitable. I removed the module from the system

and began modification work in Xf toward improving the interface. These

improvements included an additional option to view the Nurse's textual triage report,

as well as hooks for the actual audio library, replacing the titles of the various

5

windows to bdng them in line with the system used by the physicians with which we

were working, creation of a fourth window for the doctor to use, and correction of an

existing error that caused a system crash when an attempt was made to save the

doctor's triage. Immediately after, I replaced the audio icons then in use with new

icons of my creation, giving a more professional look to the entire interface. During

this phase, I determined that some of the documentation for the original source was

incorrect, and a great deal of documentation was simply insufficient for the needs of

maintaining the code. From this time on, I carefully checked the documentation,

correcting errors when discovered, and updating the sparsely, and sometimes

cryptically documented sections.

At this time, the project split into two parts. One part, the data base version,

was to be extensively modified by Mark Carter. He was to incorporate a data base

instead of the flat file structure we had previously been using. The other version

would be based on the original flat file structure. Due to the inherent instability of the

modifications that Mark was making, the frequent and chronic problems with Ingress,

and the difficulty of maintaining integrity of code, it was felt that a dual version

approach, with a reconciliation phase after completion of the database, was

preferable. Consequently, I worked primarily on the flat file version. This decision

led to an unfortunate situation; after Mark finished the database module, he needed

time to study for the diagnostic exam. Afterwards, he and I were never able to

completely reconcile the two versions, although most of the important bug fixes were

6

moved into the database version by November 1995, with some few additions in

December and January. During this phase, I detected another major bug, again in

the Patient Medical Record Interface, specifically in the exact method in which the

patient's Permanent Medical File (the Patient Info, Personal Health History,

Temporary and Permanent Medications, etc.) was handled. Although this sub-

module did not work at that time (a bug in itself), when the sub-module was activated

in a certain method, the read-only attributes of the files and of the source code were

changed, causing a corruption in the module which loads the original patient

information. This was not an obvious effect, but it led to significant problems. I was

fortunate at this phase to have a duplicate copy in the database version of this

section of code with which to replace the corrupted code. Tracking down the cause

of the corruption, however, was not a trivial task, and I actually discovered the cause

by a combination of luck, knowledge of the code, thoughtful contemplation of the

actual step-by-step execution of that module, determination, and serendipity (since

I gave up for a few days and decided to correct the bug causing the Permanent

documents retrieval failure, which led to the module causing the disastrous code

violations.)

Around this period of time, the inadequacies of the internal data representation

of the existing code began to cause serious problems in increasing functionality. In

conference with the faculty members in charge of the project, I repeatedly made the

assertion that the internal data structure was not adequate for further expansion.

7

The faculty advisors decided that since we were only going to prototype an interface,

actual functionality could be sacrificed for the impression of functionality. The

internal data structure as it exists now, is a hodgepodge of arrays and trees,

designed to hold multiple types of information. It is not object oriented, but would

greatly benefit from an object oriented approach. If we create each document as a

discrete object, we could use object oriented data base for storage of the

documents. By combining these objects, we could create a complete patient object.

Databases of this type are widely available and would be more useful than a pure

SQL database such as the one used on this project. By combining an object

oriented approach and an object oriented database, we would have the ability to

expand the domain of the documents nearly endlessly, removing the constraints set

by the initial parameters the original programmer created, allowing us to adapt to

new techniques and technology. Internally, we would need to represent the absolute

type of document, along with some method of viewing or interpreting the data

contained therein. Ideally, for the types of documents with which we have been

working, a good example would be to represent each document as either a scanned

image, data set collection, or textual document, accessed by a graphic viewer, data

interface, or text viewer, respectively, as the methods associated with the

corresponding objects. Building on these simple document type objects, we could

represent the patient's historical data similarly. By using special expert systems

methods tailored to the specific document type (i.e., graphic, data set, or text), we

8

could then associate a particular attribute set for each document. By combining the

attribute sets, we would be able to do associative sets of related documents,

allowing search by subject without regard to document type. This feature could be

extended throughout the patient object, allowing the patient problem logs to be kept

and updated automatically. Patient objects could also be queried using the patient

methods, with higher level objects being built of groups of patient objects. This

method would alleviate many of the problems that are experienced with the existing

data structure, since each module added would build stability, compared to the

existing structure, where each new data item requires an extension of the existing

data structures format, forcing occasional wholesale code changes.

Mark Carter's Masters Project was an attempt to integrate the MIS project with

a database, allowing a more flexible, searchable system of data storage. During the

late summer of 1995, I was asked by Mark to help integrate his work into the existing

internal data structure. Unfortunately, the internal structure's poor design forced

Mark to make some decisions that affected the usefulness of the database. The

original design had a flat file structure, with a series of special purpose files acting

as indexes for the entire structure. These indexes included detailed information on

how to display each document's icon, information about what kind of data the

document represented, the document's author, creation date, active date, a hard-

coded list of relation links, the file path to the document, and a few other

miscellaneous pieces of information. This file structure was deeply embedded into

9

the actual code of the project as a whole, as well. This forced Mark to substitute the

database for the index file, a poor implementation of a database system for this

purpose. Due to the nature of the files, the individual documents were not affected,

and instead remained in the original location, with the only significant change being

the handling of the index file. Realizing this was unsatisfactory, Mark choose to

rebuild the patient information files, which consist of basic information such as name,

address, date of birth, medical insurance, etc., and integrate that file directly into the

database. At this point, Mark asked me to assist in the creation of a series of utilities

that would be integrated into the database version that would allow actual input of

this kind of information, so we would have this data stored internally in the database,

versus the addition of another flat, read-only file. I chose to help design the

interface, using my familiarity with the internal data representation, while Mark

concentrated on reworking the database to accept the input. The initial attempt

proved to be satisfactory from my viewpoint, although Mark later slightly reworked

the interface to make data input somewhat easier.

Shortly after that, Kim Johnson asked me how the data she was preparing

would be indexed in the system so that she could write routines that would allow us

to utilize the data. I mentioned to her that the existing data representation was soon

to be outdated, and that we would be forced to either write a routine that could parse

that data representation into the database format or modify and insert the data by

hand. I suggested that Kim create a parsible index to her data that would be

10

convenient for her while remaining straightforward enough that no special work

would have to be done to translate her data into the new format. She and I decided

on the format her index would take and I relayed that information to Mark. I then

began the modifications that would allow multiple patients to be used in the actual

program. Previously, we simulated multiple patients by allowing the user to select

from a patient list but using the same patient record file for each patient, with the net

result being that all patient cases were identical. The most important modification

performed here was a precedence modification, which allowed the default condition

to remain, namely that the identical patient record would be utilized when no patient

record was available for the patient selected. Although this is not, in general, a good

practice, it allowed us to avoid the null patient case where the patient record did not

exist, but the patient record was requested to be displayed which was causing a

system crash. However, when a patient record did exist, the new system would

bring up that patient's record instead of using the default condition. Kim's data was

now utilizable, and was incorporated into the system.

I began a series of much smaller look and feel modifications to the existing

design. Specifically addressed were a number of issues, such as phone-in visits,

help files, medical diagnosis, nurse's triage, referrals, and consultations, etc. With

the major exception of the nurse's triage, most of these were simply simulations of

functionality. The nurse's triage required no change in the actual internal operation

but was unsatisfactory in the GUI interface presented. I created three different

11

versions of the nurse's triage interface in an attempt to find the one most suitable.

Ultimately, I found a suitable interface that seems powerful enough and efficient

enough for the needs of the project. The smaller look and feel simulations were

relatively easy since I was able to use Xf to prototype a GUI, insert dummy data into

the GUI, and capture an image of it. I then inserted the image into the file structure

in place of existing documents.

Porting the existing code from a BSD Unix environment over into a Solaris

environment was necessary at this time, as well. Although this required little total

code change, it did require a careful revision of the default parameters loaded into

the system during startup. For example, the change to Solaris resulted in a few

irregularities in the default startup positions for some of the existing interface

windows. By changing a series of runtime constants, I was able to shift the windows

into the appropriate locations, resulting in a return to the neat, crisp effect we had

previously achieved. Further efforts at that time included efforts to enlarge the

default size of the Patient Medical History interface, in an attempt to increase the

number of columns displayed to include Billing (unfortunately, the effect was too

crowded, and exceeded the default display size of the monitor.)

In a series of project meetings, the issue was raised by a faculty member on

the committee that there was a need to test the reactions of the existing prototype

with the medical community. We contacted Dr. VanWalkenton, and set up a meeting

with him to ascertain his thoughts on the requirements the system must fulfill. After

12

the meeting, the consensus was that the system must offer expert system diagnosis

and treatment methodology in order to achieve its maximum usefulness. Although

this was outside of the domain of the MACH 1 prototype we were working with, it is

a serious design consideration for the MACH 2 and would be more than suitable for

a series of Masters level projects.

Design Proposal for the Mach I1: Based on the lessons learned from the existing

Mach I prototype, a strawman Mach II design proposal can be advanced. While not

attempting to be totally complete in all design aspects, the strawman proposal easily

allows for a basic framework on which to base further design. Due to the nature of

the actual data, and the ease with which the data can be idealized into groups of

documents or sets of groups of documents, an Object Oriented design is obviously

the logical initial starting point.

On the lowest level, we would have an object type defined as a document

object. Internally, each document object is quite different, with various internal

formats and methods associated with the specific document. In order to avoid

confusion, we will call each actual medical document a datadoc. The actual

datadocs at this time would consist of three main types, with subtypes of each: a

textual datadoc, a graphical datadoc, and a data set datadoc. Externally, we would

wish to be able to use common interfaces on all of the document types, with the

13

exception that a few operations which should only be performed once for each

datadoc ever, such as the relationship matching.

The textual datadoc document objects can be subdivided into a number of

significant different types, including, but not limited to, Nurse's Triage reports,

Consultation Letters, Physician's Progress Notes, Phone messages, Patient Health

History, etc. Each of these would require an internal method set different from each

other, but similar as a group, with the ability to reuse many (but not allT) methods

completely. The external methods of interaction with the document are

straightforward, however, and would be the same for all document objects. We

would expect that one method would be (view <object>), which would display the

selected object regardless of what intemal format the object itself used. For a

textual document, this would mean a viewer that would display the text formatted

appropriately for the actual contents, i.e., a Nurse's Triage viewer for the Nurse's

Triage document, a Progress Note viewer for the Progress Notes, etc., while a

graphical document object would obviously use some form of graphic viewer

appropriate for the exact type of graphic, and a dataset document object would use

some data-type specific plotting method (a simple X-Y graph plotter, for instance, for

something such as a weight vs. time dataset).

Additionally, all document objects would be required to supply information on

the document itself, such as creation date, author, document category (not to be

confused with document type, a document category would be what the document

14

object should be classed as, such as Progress Note, Billing Information, Lab Report,

etc., without regard to the actual content format), and any associated links that may

exist for the document. By using a standardized format, we need only treat each

encapsulated document object identically, after its initial creation, in order to properly

use the datadoc. This has obvious merits in simplifying the main program code, as

well as to aid debugging of that system, since only the methods associated with a

particular datadoc could cause display or compatibility problems for that datadoc.

If we pin down the architecture, we would have the following external methods

for interacting with a previously created object (where asterisks denote multiple

pointers or documents):

• (fetch_author <object> <doc_author>),

• (fetch_cdate <object> <doc_dat>),

• (fetch_category <object> <doccat>),

• (fetch_links <object> <*doc_link_ptr>),

• (fetch tel docs <object> <*linked_list_of_related_documenLnames>),

• (display_descript <object>), and

• (display_doc <object>).

Additionally, we need only two, initially, special external methods:

• (updaterel_docs <object> <*additional_related_documents_ptr>) and

• (delete_doc <object>).

15

All document objects, regardless of the actual datadoc format, would be required to

support these methods. During the creation of a document object, we would

additionally use two single use methods,

• (create_document <object>) and

• (create_links <object>).

This may sound like a complicated set of methods, but it is actually a relatively

simple set of commands, necessary for minimal functionality. They can be grouped

into four categories: Document Creation, Document Deletion, Document Information

Retrieval, and Document Presentation. Document Deletion would be rarely, if ever

used, with the only major document type that would be deleted regularly being for

reminder notices. Notice that no provision is made for document modification other

than the insertion of new links to related documents after the initial creation phase.

To all practical purposes, a document is read-only once completed and added into

the patient record.

The actual syntax and use of the various methods could be defined in the

following ways: fetch_author is designed to get the name of the actual author of the

document in question, fetch_cdate would be used to retrieve the actual creation

date of a document, fetch_category would be used to retrieve a quick summary of

the type of content of the document (not the FORMAT of the document, but rather,

what the contents represent), fetch_links would be used to retrieve the list of

16

document categories the particular document may be related to, such as "General

Health, Asthma," etc. Similarly, fetch_rel_docs would retrieve a list of all

documents, regardless of category, the document might be related to. Note that a

key difference between these two is that fetch_links could be used in principle to

fetch documents that are not in the same group, i.e., documents that are for a

different patient, or that may apply to many patients, such as a medical journal entry

in the database, or a similar symptom group for a different patient.

display_descript would be a singular method designed to simply give a quick

overview of the document. This may be one of the more difficult hand inserted

elements, since it is basically a summary of the document, and must be done

manually during document creation, display_doc is, of course, simply a method

designed to display the native object in a format useable to the physician, be that

format a text viewer, special graphics viewer, or some form of plotting program for

information such as a cardiogram, update_rel_docs is a special command that

allows a document that has just been created to modify an existing document (the

object which the update_rel_docs method is being used on) to point to the newly

created document, or when a document is deleted, to modify the referenced

documents such that no pointers refer to the delete object. Note that not all related

documents should return a pointer back, such as medical journal entries, drug

dosage information, etc, that is appropriate for MANY documents. It is the

17

responsibility of the document creation methods create_document and

create_links and the document deletion method delete_doc to use this method, and

in general it should not be used by any other method or interaction.

create_document is used to create a new document object of the correct type. This

method is inherent in the object type, and not in the object itself, and thus is not

capable of being used by the object itself. Likewise, create_links is inherent in the

create_document method, and may only (normally) be called by

create_document, delete_doc would be used simply to remove and destroy an

object document, along with updating all of the associated pointers referencing it.

Note that some document types, regardless of the fact that they should have this

method available, should never be actually deletable, such as medical journal

listings and articles, etc., that may be pointed at by some documents, but not return

the pointer to that document. Methods could be used which allow for a listing of the

NUMBER of documents pointing to it, however, which may allow the document to be

removed after no documents have pointed to it for some lengthy period of time. This

is simply a refinement of the delete_doc method for those types of documents,

however.

Sets of related document objects could easily be sorted by a number of

methods. The most intuitive would be something similar to the method utilized in the

MACH 1 prototype, where documents are catergorized by what the document

18

content meaning represents, ie., Nurse's Triage, Billing, Consultations, Lab Reports,

etc. However, the ability to organize a particular record based on the set of related

documents should not be ignored. Whereas we can search using the document links

for documents containing any information on a specific subject, by utilizing the

related document method to interact with these documents, we would be able to

categorize by medical problems, similar to the method used in Mach 1.

Unfortunately, as in the Mach 1, we have a significant difficulty in identifying related

documents; whereas simple keyword searches could be used (on textual documents,

at least) to develop the document_links, only an expert or an expert system would

be completely able to categorize ALL related documents. It is obvious that the

Nurse's Triage and the Doctor's Progress Note for a single visit would be related

documents; however, when the doctor orders a test, the system would be required

to generate some new document object immediately in order that the fact a test was

ordered could be documented into the Progress Note. Until the actual Lab Report

Document was returned, the existing object could be used to mark that a test is

pending, and the related PN, Nurse's Triage, etc. However, once a lab report is

returned, the Pending Lab Report Document Object would need to be used to find

out what documents are related to the new document. Those objects could be

updated to the new Lab Report Document, the related_link to the Pending object

could be removed, and the Pending Object could eventually be deleted, with the new

Lab Report in it's place. An interesting point occurs here: do we update the

19

relate_links of old document objects when a new object is created that has a

related_link pointer to the old object? Obviously, this could require extensive

updates. The answer must be yes, however. Since every document has different

criteria as to what it's related documents are (a document may contain information

on more than one problem, which are not related to each other), any document

should be able to be chosen as the source for a related document search. If we

include a special category of document objects that we designate Root Problem, we

could use those objects to determine only the documents pertaining to a problem.

Yet if we do not perform a backward propogation of updating the pointers, we will be

forced to use the most recent objects to find all related documents. The back

propigation of updates allows us to avoid this by updating older documents so that

they can reference newer documents.

All documents relating to a particular patient would make up a superset object

called the Patient Object. Individual Patient Objects represent individual patients.

This allows us to again group the datadocs in an orderly, understandable manner.

This approach does have one potential disadvantage, however, in that care must be

taken to design a series of methods to interact with multiple Patient Objects on a

piecemeal basis if we wish to examine similar situations on separate patients. For

example, if we determine that patient J has an illness that was previously seen in

patient B, we may wish to use information learned from patient B to help in the

treatment of patient J. However, patient B's medical record as a whole is not useful;

20

only the information pertaining to the particular illness is valuable and useful.

Therefore, we must remove part of the patient record to use for comparison

purposes, with a directed search through patient B's record. Obviously, this will not

be a simple task, yet it is one of the areas where the MRS can be most useful for

general upgrading of patient care. Also, how will we determine that both patient B

and patient J have similar illnesses? Some form of relational search index would be

useful, a form of Meta-index of all patient records. This brings up the next level of

objects in our schema, a Meta-patient object for each physcian's database to allow

for an index of related patient objects. However, do we limit it to individual

physcians, or do we expand the Meta-patient object to include all patients in the

database? One approach, limiting the Meta-patient object to just an individual

physcian's patients, has the advantage of securing privacy much more adequately;

however, it limits the number of related patients a physcian can examine for

relationships, as well as only ensuring a standard quality of care for a particular

phycian's patients. A new intern, therefore, would have a very limited database to

work on, and the care from physcian to physcian would differ, even as a particular

physcian's care became more uniform. This may not be desirable, since this could

lead to substandard care becoming the norm for some physcians, instead of

expanding the quality of care to a uniform level for ALL physcians. Current privacy

law may limit the ability to have multiple physcians in the same Meta-patient object

however.

21

Further Research: The MACH 1 prototype has reached the end of its useful

existence as an expandable tool. A MACH 2 prototype has been proposed and will

doubtless be begun if funding is available. Some of the lessons that were learned

from the MACH 1 prototype are directly applicable to the MACH 2. Specific

emphasis should be placed on the data structure internal to the program, the data

base storage requirements, inter-networking, and the refinement of a somewhat

more intuitive interface. These four major issues coupled with the expert system

issue previously mentioned, should drastically effect the design of the MACH 2.

The GUI interface look and feel is suitable for scaling up into a MACH 2

design. Further refinements would be necessary, but the basic design seems

workable. Major emphasis would have to be placed on the internal representation,

however. As it exists at this time, the current internal data representation is almost

completely unworkable; it is unsuitable for expansion, refinement, or actual use, and

serves only as a presentation structure. As mentioned previously on pages 8 and

13, an object oriented approach would be superior. The object oriented approach

would allow new data types to be integrated seamlessly into the existing system,

more rapid construction of data types, higher quality of data handling internal to the

program, and higher confidence of accuracy in the programming code while allowing

the program to be fitted into an object oriented database easily. If the object

oriented database is set up to deliver documents only on demand, but deliver

22

document summaries automatically, then it would be possible to lessen, and

possible cure, any inter-networking problems we may experience.

A major issue at this stage would be the design and incorporation of expert

systems tools into the MACH 2. Since the MACH 2 would have to be designed to

allow these expert systems to be added as they are created, some form of

representation would have to be created during the software architecture creation

phase. It is obvious that some of the expert systems would have to be integrated

into the objects as methods. What is not obvious is how we would integrate the

output from these various methods when the methods themselves, are different in

similar document types such as the methods used in a textual document vs. The

methods used in a graphical document. This is probably not insolvable in general,

and is solvable in specific for this problem, if the architecture design is inclusive of

a common interface for the output. We could then treat each document type

identically, with only the internals of the object requiring information about the actual

data organization. This approach would also allow a modularity in the addition of

new document types as new students become available, with each student creating

the entire object, including the expert system analyzer for the object, as part of a

project. The possibility exists that commercial expert medical systems could be

tailored for this task if desired as well. This approach could conceivably allow the

medical establishment to expand their existing tools as opposed to abandoning the

tools they have already begun using.

23

This paper is a representation of the work I performed to create an, Ingres

based, SQL interface to a Tcl/Tk based Medical Records System prototype.

The work evolved in stages and this presentation will be given as a

chronological depiction of the day by day achievements on the project. Each

day work was performed will be outlined as well as the number of hours

worked and the accomplishments of that day. Any references to code that

was developed will be accompanied by a copy of that code. Finally the total

number of hours spent on the project will be tallied and a short conclusion

will be given.

06/29 - .5 hrs - E-mailed Dr. Mukkamala to set up our first meeting on my

participation in the ongoing MRS project.

06/30 - .5 hrs - Dr. Mukkamala responded and we set up the meeting for

Tuesday July 11 at 1:30pm.

07/07 - .5 hrs - E-mailed Mark Carter and set up a meeting with him

concerning MRS for Monday July 10 at 2:00pm.

07/10 - 6.5 hrs - Met with Mark Carter today to discuss our approach to the

integration of Ingres SQL and MRS. He has already done quite a bit of work

regarding the development of what will be our Ingres relations. It appears as

if there is a Tcl/Tk extension which will enable us to interface directly with

Ingres, but since Ingres was down it was impossible for him to show me any

of the actual commands. I decided to first get the current system working on

my home Linux system so I could rtm certain tests etc. and by the end of this

day I have almost ported the entire system over.

07/11 - 1 hr - Met with Mark, Kim, Bill and Dr. Mukkamala about the course

and goals of the project. Because of my August graduation it was decided

that my goal would be to get the database functionality of the system

completed by August 15th. Bill will look at all of the current fiat file reads

this week to determine the scope of the database implementation. Kim is
going to create additional patient information so we can have more than one

patient active in the system, and Mark will help her with this. I have agreed

to clean up the system, which was a somewhat disorganized mix of

directories and files, into a more concise and straightforward format
(Figure 1).

07/14, 15, 16 - 3 hrs - Cleaned up directories and files, trying to make the
system more navigable. This involved creating new directories and placing
files into these as necessary and changing links within the code to point to my
new hierarchy.

07/18 - 3 hrs - Had a meeting today with Mark and Bill. I installed my
cleaned up version of the system. Ingres is still down so they decided to
work on application code and I decided to attempt to find a fi'eeware version
of Ingres.

07/19, 20 - 3 hrs - Found a ffeeware version of Ingres and installed it on my

Linux system. Everything went well until I discovered that it does not

support SQL but something called EQUEL which will not suit our purpose.

07/21, 22, 23, 24 - 6 hrs - Found a fi'eeware version of SQL called msql or

mini-sql and installed it on my Linux system. It uses a subset of ANSI SQL

but it should be sufficient for our purposes. I have also installed a version of

Tcl/Tk which works with msql and have them up and working with one

another, however, Mark has just informed me that Ingres is now up so I'll put

my msql activities on hold for now.

07/25 - 8 hrs - I met with Mark today to begin working with tclsql. We made

excellent progress but shortly found that there are serious problems with the

Tk interface. Certain events do not process (e.g. buttons don't push, menus

don't pulldown) which leaves it unusable. We spent quite a while seeing if it

had been compiled incorrectly or some other explainable error but we didn't

have much luck. So we sent mail to the guy who developed it in hopes of

getting some answers. There is no way the Tk portion could have even been

tested, as the errors are so obvious. Mark and I decided to meet again on the
27th.

07/27 - 7 hrs - I met with Mark today to continue to investigate our problems.

I decided to go ahead and install msql and tclmsql on the Suns just in case we

can't get tclsql working properly. Once that was done I decided to try and

debug tclsql and maybe see if I could find the problem. This involved

recompiling tclsql, sqlwish, and both Tcl and Tk using the -g option, no small

task. This was very productive ill that I did discovered that while some

events (e.g. scrollbars) worked fine, others did not. I discussed all this with

Mark and he gave me some additional hints about the event handler. I ended

the day with a good grasp of how all the packages compile, but still no

solution to our problem.

07/28 - 10 hrs - Today I went to school to attempt a step by step investigation

of tclsql to try to determine the cause of our problems. Mark and I traded

ideas on how to go about this. I decided to progressively eliminate objects

which makes tclsql and sqlwish different from the standard tclsh and wish.

At one point in this process I had eliminated every object which made the two

sql based programs unique, in essence I created tclsh and wish from tclsql

and sqlwish, and the problems still existed. However, this brought to light the

fact that sqlwish linked in tclApplnit.o while wish linked in tkApplnit.o. We

decided to change the Makefile and link in tkApplnit.o for sqlwish as well,

when I did this everything started working except for the SQL stuff. Since

tclsql was not even supplied with tkApplnit.c I had to grab a copy from the

original Tk release and add the SQL code to make everything work. Once

this was done everything started working great :-).

07/30 - 1 hr - I attempted to do some remote work from home but I did not

have grant authority to the health database so I sent Mark some e-mail to
allow me to use it.

08/01 - 7 hrs - Now that sqlwish works properly I can finally get down to

actually doing some actual coding. First, however there are two things which

I have to do. One, is to create my own testing environment. This includes

copying the entire system to my testing directory and creating the necessary

links for it to run there. Two, there seems to be a great deal of writes to

standard out in the current code. I counted approximately 2,500 lines of

output in the 14,000 or so lines of source code. Unfortunately all these writes

have a tendency to mask any of my own debugging output. So I have had to

try to eliminate as much of these writes as possible. It was almost nine

o'clock before I reduced the output enough where it will not interfere with my

own output. Now I can start to really test the current system to see where

changes need to be made.

08/02 - 6 hrs - Today I created several small test scripts to simulate some of

the current flat file processing which takes place in the system. The format

currently used is so pervasive throughout the system that, in my opinion, it

would be foolhardy to change the data format too drastically. My next step

was to create a new database relation based on the current patient medical

information. Once created my next step was to create some test scripts to

access that data and format it in such a way that the system could understand

it and use it. It was 9pm by the time I reached this point so I decided to leave
it until tomorrow.

08/03 - 5 hrs - Today I initially ran some tests at home on Linux simulating

the current system and what will be the Ingres interface. After many different

tests I was able to create something I felt would work well. I then signed on

to school and uploaded my tests so I could use them with Ingres.

Unfortunately Ingres was down again, so I mailed root and asked if someone

could look at the problem. I kept checking periodically throughout the day

but Ingres never came back up so I decided not to come into school, but

would check on things tomorrow.

08/04 - 4 hrs - Ingres was down most of today but finally came up in the late

afternoon. This enabled me to test those test scripts I had for yesterday.

They worked great with only minor modifications. It was late in the day by

this time so I decided to come in tomorrow and apply the test code to an

actual MRS program and see if it will work.

08/05 - 6 hrs - I went to school today to apply my script SQL code to the first

two indicated areas in MRS (Figure 2). With a small amount of tweaking I

got the code working. Next I found another call that simply requests the

names of the column headers, this fit great into the Ingres methodology since

Ingres makes the colmnn headers the first row of any relation. So far I have

found these three references but I know there are more because the system

doesn't work when I rename the fiat file, meaning that it is still in use. It was

4pm by this time so I decided to go home and research those additional file
references.

08/06 - 6 hrs - Last night I found the remaining references to the patient file

and came to school this morning to integrate them into the code. They differ

from the other accesses in that these process the file one line at a time rather

than the entire file (Figure 3). So I wrote several test scripts to experiment

with how the "cursor" format works within tclsql. My tests went well and I

ended up with code which works very well. The lab was closing by now so I
left to come back tomorrow.

08/07 - 6 hrs - Today I implemented my "cursor" code and it went well

except for a few idiosyncrasies in how this access works. It appears as if the

"SQLfetchCursor" command has to always be used before a row is used,

even though the data is actually fetched beforehand. Dr. Mukkamala came by

the lab today to get an update on the project. He stated my primary and final

goal was to get the system working with one patient relation which contains

all of the patient data. I feel that if I rebuild the patient relation with an ssn

key then I could get this working in perhaps one or two days.

08/08 - 5 hrs - I started making the changes today to implement the one

patient relation scenario. I had to make changes to all of my code so far and

also set up an additional patient's information for testing purposes. I had to

make changes to the patient.index file to use the ssns instead of the original

patient code. To my amazement as soon as the changes were put into place

the code worked the first time. All that remains now is to put additional

patient information in the relation. This should be done by someone who will

be staying with the project, since it requires a greater understanding of how

the entire system works.

I really enjoyed working on the project. It enabled me to get a much greater

tmderstanding of Tcl/Tk and see it's almost unlimited possibilities. Mark and

I had some large hurtles to overcome, especially with tclsql, but we did

overcome them and I think the system has improved immensely.

The total amount of hours spent on this project was: 95

The total amount of hours spent on this paper was: 10
For a total of: 105 hours.

I reduced the following mix of directories and files:

/research/health/tcltk [27]

#book.examples#*

#book.examples#-*

2ndrun/

CIF/

Unique_Globals*

XF.notes*

all_globals*

ibitmap/

book.examples*

c-interface/

data/

data_structures/

dhc.tcl*

dhc.tcl-*

dhctop.tcl*

dhctop.tcl-*

dialogtest.tcl*

dialogtest.tcl-*

examples/

file.test

filestruct.fig*

>la

first_run/

firstvisit.sh*

firstvisit.sh-*

forms/

help/

Ibtest.sh*

Ibtest.sh-*

Ibtest.tcl*

ibtest.tcl-*

makefile*

multiform.sh*

multiform, sh-*

oldtcl/

paper/

patidx.tcl*

patient.idx*

patient_data/

patientinfo.sh*

patientinfo.sh-*

patientinfo.tcl*

patientinfo.tcl-*

pcsi_srch*

phonesystem.sh*

phonesystem.sh-*

phonesystem.tcl*

phonesystem.tcl-*

plans*

prochelp.tcl*

prochelp.tcl-*

replace*

replace-*

repository/

saveproc.tcl*

saveproc.tcl-*

searchbox.tcl*

securdialog.tcl*

securdialog.tcl-*

security/

security.sh*

security.sh-*

security.tcl*

security.tcl-*

shitfile*

sorted Globals*

square*

stinky.sh*

stinky.sh-*

taputils.tcl*

tclGlobal*

tclIndex*

tclsourcefiles/

temp/

temp.tcl*

templ40604*

tkman.tcl*

todo.txt*

trainer/

triage.tcl*

triage.tcl-*

unique_Globals*

uniqueglobals*

view/

wishtest*

Into these more concise and meaningful directories:

/research/health/mrs [30] >la

Medical_Records_System� forms/

bitmap/ help/

build_info/ medical_images/

data/ non_vital_info/

pictures/

tcl-tk-xf_info/

tclsourcefiles/

Figure(l)

These are the first two database calls integrated in the MRS code:

This is the call from Medical_Records_System/canvasops.tcl:
##

The following starts some new database code using Ingres SQL

to access patient data. The database name is currently

doc I index.

##

set size [Lookup_All_Matches_Index problem {"BLANK"}

Spatient(patient_num) patient_med_info docarray]

set format [Lookup_Index_Format patient_med_info]

And this is the first called procedure in tclsourcefiles/index.tcl:

proc Lookup_All_Matches_Index { column key patient_num relation array }

{
upvar $array a

##

The following starts the new database code using Ingres SQL

to access patient data.

##

if { [catch { SQLopendb health } f] I= 0 } { puts $f; return 0 }

#Note '"BLANK"', ingres requires '' to process character data correctly.

SQLselect -noheaders atmp * from $relation where $column='$key' \

and pssn=$patient_num

SQLclosedb

set size [array size atmp]

for {set i i; set k 0 } { $i <= [expr $size/12] } { incr i; incr k } {

for {set j I } { Sj < 12 } { incr j } {

if { $atmp($i,$j) l= "" } {

append a($k) $atmp($i,$j)

if { $j < ll } {

append a($k) ":"

)

}

}

}
set found Sk

return Sfound

}

And this is the second called procedure m tclsourcefiles/mdex.tch

proc Lookup_Index_Format { relation } {

##

The following starts the new database code using Ingres SQL

to access patient data.

##

if { [catch { SQLopendb health } f] I= 0 } { puts Sf; return 0 }

SQLselectRow 0 as * from Srelation

SQLclosedb

set size [array size as]

ii = 0 - i0 total fields always

for {set i 0; set k 0 } { $i < [expr Ssize/12] } { incr i; incr k } {

for {set j i } { $j < 12 } { incr j } {

if { Sas($i,$j) I= "" } {

append b($k) $as($i,$j)

if { $j < ii } {

append b($k) ":"

}
}

}

return $b(0)

Figure (2)

This is the called procedure (file calling procedure was unchanged) in
Medical_Records_System/canvasops.tch

proc Scan_Doe_Index_And_Tag { } {

global gdirlist doc patient debug

eval global Sgdirlist

set relation patient_med_info

##

The following starts some new database code using Ingres SQL

i# to access patient data. The database name is currently

doc i index.

##

if { [catch { SQLopendb health } f] I= 0 } {

puts "$f: Scan_Doc_Index_And_Tag"
return 0

}

SQLdeclareCursor cur

SQLprepareCursor cur select * from $relation where

pssn=$patient(patient_num)

SQLopenCursor cur

SQLdescribeCursor cur dbarray

SQLfetchCursor cur larray; #Get rid of the column names

set dbline 0

set i 0

while { [SQLmoreRows] I= 0 } {

unset dbline

SQLfetchCursor cur dbarray

for {set j 1 } { Sj < 12 } { incr j } {

if { $dbarray($j) I= "" } {

append dbline $dbarray($j)

if { Sj < ii } {

append dbline ":"

}
}

}

set line Sdbline

SQLcloseCursor cur

SQLclosedb

Build problem array (links to relations)

Build_Problem_Array Srelation

)

And this is the other called procedure (called from the above statement)

Medical_Records_System/canvasops.tel

proc Build_Problem_Array { relation } {

global gdirlist doc patient problem

eval global Sgdirlist

##

The following starts some new database code using Ingres SQL

to access patient data. The database name is currently

doc 1 index.

##

if { [catch { SQLopendb health } f] I= 0 } {

puts "$f: Build_Problem_Array"

return 0

}

SQLdeclareCursor curl

SQLprepareCursor curl select * from Srelation where

pssn=$patient(patient_num)

SQLopenCursor curl

SQLdescribeCursor curl larray

SQLfetchCursor curl larray; #Get rid of the column names

set dbline 0

set i 0

while { [SQLmoreRows] I= 0 } {

unset dbline

SQLfetchCursor curl larray

for {set j I } { $j < 12 } { incr j } {

if { $1array($j) I= "" } {

append dbline $1array($j)

if { Sj < ii } {

append dbline ":"

}

}
}

set line Sdbline

}
SQLcloseCursor curl

SQLclosedb

}

Figure (3)

Master's Project Report

Creating a Relational Database Interface for the Health Care Proiect

using Tcl/Tk as the host langua2e.

Mark C. Carter

Advisor: Dr. Mukkamala

Department of Computer Science

Old Dominion University

Norfolk, VA 23508-0162

August 21, 1995

Abstract:

After creating a working prototype of MRS (Medical Record System) for the health

care project it became apparent that this information could be better represented by the

use of a database instead of a traditional file system approach. The database was created

for two main reasons. First of all, it was believed that the use of database concepts will

expedite the future development of the MRS prototype. Secondly, by demonstrating an

SQL interface it would show potential customers that MRS does indeed have the

capability of supporting a "real world" interface. This paper discusses some of the

rationale for implementing the database along with its advantages. The graphical

interfaces that were created for the database along with some examples of using the SQL

commands from within TclFFk are presented. Some potential problems with the current

implementation will also be discussed.

1. Introduction

1.1 Major Reasons for using a Relational Database over a traditional file

processing approach:

With a traditional file system approach, each programmer would define and implement

the files needed to complete a specific task. Several problems arise when the same data

is keep in multiple files. First of all, this redundancy wastes storage space by having to

store the same data repeatedly, which can be a real problem for large databases. Secondly,

it requires more effort to maintain multiple copies and to insure that this common data is

up-to-date in each file. If this is not done then we have inconsistent data within our

system. For example, when a new patient enters there are currently several files which

maintains the patients name and this information must be included in each of these files.

However, in a database approach, there will be only one repository for the data. This

data, can then be accessed by multiple users and can be used to create multiple views of
this data.

In a typical file processing application using PASCAL, COBOL, Tcl/Tk etc.., the file
structure and sometimes the exact location of an attribute within a record are coded into

the program that accesses this data. Some actually require the position and the size of the
data within the record.

In traditional file processing, the actual structure of the files are embedded into the

program, so any changes to the structure of a file will require or may require changing all

programs that access this file. For example, a each file may define its record length, the

number of characters(bytes) in each record, and each item may specify the starting byte

within a record and its length in bytes. In a relational database system, the actual access

is done independent of any specific file in other words all that changes is the description of

our relation. This is a form of a "data model" which provides the user with a "conceptual

representation" of the data that does not include how the data is stored (i.e. hides it from

the user). This is accomplished by keeping the detailed structure and organization of each

file in a catalog. The database user will refer to this conceptual representation or data

model for interpreting information and the actual database management system extracts

the details from the catalog when needed.

1.1.2 Additional Advantages of the Relational database

It will be easier to make changes to a database if more information is needed to be kept

about a particular relation only the definition of the relation is changed not the existing

application code, which would have to be modified in a traditional file processing

application.

It will usuallyrequirelesstimeto developanewapplicationsusingadatabase
approachthanit wouldwith atraditionalfile processingapproachassumingthedatabase
is upandrunningduemainly to theeasyto userelationalinterface.

With adatabasetheinformationisavailableto all usersandthereforeonceanupdateis
appliedto thedatabase,all otheruserswill haveaccessto thisupdatedinformation. This
preventsinconsistencyin ourdata.

2 Entity-Relationship (ER) Diagrams

An Entity-Relationship model, which is a high level conceptual data model, was used

in the initial design of the database. It allowed us to get an understanding of what data

was required and the relationships that exist among this data. However, no formal

requirements specification was given and therefore it soon became evident that the data

would change and the ER diagram could only be used as a starting point and would not be

a unique or definitive solution throughout the development of this project. For example,

this preliminary ER diagram was created using an existing patient record form and

analyzing the information that this form is used to gather; however, this form changed

dramatically in a short period of time based apparently on some doctors preference.

Again, this is not the case with most databases systems which are usually stable, this is

the information is known in advance and is relatively constant throughout the design and

implementation phases. Figure 1. shows the Entity-Relationship diagram used for the

health care project. Due to the large number of attributes and a limited page size only the

most important attributes are shown for each entity.

Relative [

3

Mint

SSN

1

1

Insured_by

Lname To Reason_for Visit
To Closest_relative

1

Patient _'-

I
i

I Pat_med_info

N

Married to

/

(__Employer

1

Insurance

Company

Spouse

addre

Cov_type

Triage_info

vital signs

name triage_nm

Figure 1. Entity-Relationship diagram.
Notes

Need to include "participation" after confirming the "weak entities", keys, etc...

not enough room to show all the attributes!

3 Relational Database Schema

A relational database schema usually contains a set of relations and their corresponding

integrity constraints. We have shown the key constraints, which are keys that must be

unique for every record in any relation instance for that particular schema. We have

enforced the entity integrity constraint; which states that no primary key can be null by

specifying the appropriate INGRES commands while creating the relations. Referential

integrity constraint was not implemented, due mainly to the fact that it's our belief that

INGRES does not support referential integrity. Referential integrity constraint is used to

maintain the consistency among tuples of any two relations. In other, words if a tuple of

one relation refers to another relation then that reference must be to an existing tuple in

that relation. The relational database schema for the health care project is shown in figure
2.

PATIENT_MED_INFO

[ps_lfilename I title]date_init I date_recv]author Iproblem]type]doctype [index [links]keyword

PATIENT

[ssn pname t dob l sex]establish l paddr I pcity]pstate [pzip]hm_phone [marital_stat poccupation

SPOUSE

sp_lsname I saddr [scity]sstate]szip shin_phone]soccupation [

RELATIVE

marne I raddr I rcitytrstate I rzip rhm_phone relation [

EMPLOYER

[_[ename eaddr l ecity estate l ezip wk_phone [

INSURED_BY

[sp__n_lsub_name insur_id I group_id [type]rel to sub left_date]exp_date]iphone l ins_address

REASON_FOR_VISIT

[p__laccident l accid_time l accid_date I work_related ref_physician I

TRIAGE_INFO

[name In I dat---_e I weig ht]temp]pulse [blood_pressure [age [triage_text [

Figure 2. Relational database schema

Some of the previous tables require some further explanation. Others are self

explanatory and any further details can be obtained by viewing the status window from

within the graphical interfaces that already exist for inserting information into these tables

Patient_Med_Infoisanarcroynmfor patientmedicalinformationandits attributesare
describedbelowin Table 1.

PATIENT_MED_INFO

spsfin_ filename title date_init date_recv author problem type]doctype index links keywords

Attribute Name

pssn
filename

title

date_init

date_recv

author

problem

type

Description of Attribute

Stands for patient social security number.

The name of an external fie, the type varies

A short description of the file being referenced by
"filename". Should be less than 30 characters in

order to be displayed properly.

The date the file was created. This is the date that

actually gets displayed in the "main canvas".

This is the date that the document is received by

the hospital.

Creator of the Document.

This is a user defined description of what
information is contained within the file. If the

word "BLANK" is used this will indicate that the

file should be placed in area entitled Patient Base

Document, otherwise is goes into it respective

area (i.e. lab report, consult, clinical resume etc...)

Represents a type of record or report that is being

maintained by MRS. A list of acronyms used for
this attribute follow.

CM - Current Medications

TM - Temporary Medications

PN - Progress Note

PINFO - Patient INFOrmation

PP - Patient Profile

PHH - Personal Health History

PROBLEM - Problem Types
CONSULT - Consultant

LR - Lab Reports

OTHER - other type of forms

Typical Value

123456789

ptrec 1.gif

Patient Information

07/26/93

07/26/93

C. Riley

knee

or

"BLANK"

PINFO

doctype

index_file

links

keywords

AN - ANnotation

CR - Clinical Resume

033 - Billing Information

The type of document being referred too (e.g. a

scanned image or text file etc...) The current

types are being employed. SCANNED, TEXT,

033, PN, TR, AUDIO

This field is always labeled as "BLANK" for

unknown reasons.

Are problems that are related or associated with

this current "problem".

Are those words that are redeemed as important
in the current file.

SCANNED

"BLANK"

patient information
knee

Table 1. A Complete Description of table Patient_Med_Info.

The following code will create all tables described above. The easiest method is to start

INGRES while logged onto the host machine "tsunami" as follows. It is assumed that the

initiator of the following code is a valid INGRES user and has access to a database or has

created a database called "health"

sql health to start INGRES.

head <a file name> This file should the contain following code as a minimum and
tables can be added if desired.

create table patient_med_info

(pssn varchar(15)

filename varchar(20),

title varchar(35),

date_init varchar(15),

date_recv varchar(15),

author varchar(20),

problem varchar(20),

type varchar(20),

doctype varchar(20),

index_file varchar(20),

links varchar(20),

keywords varchar(456)

)

not null not default,

createtablePATIENT
(ssn

pname
dob

SEX

establish

paddr

pcity

pstate

. pzip

phm_phone

marital_stat

poccupation

)

\p\g

varchar(15)

varchar(64),

varchar(15),

varchar(6),

varchar(15),

varchar(64),

varchar(34),

char(4),

varchar(15),

varchar(15),

varchar(15),

varchar(34)

create table SPOUSE

(pssn varchar(15)

sname varchar(84)

saddr varchar(84),

scity varchar(34),

sstate char(4),

szip varchar(15),

shm_phone varchar(15),

soccupation varchar(34)

)

\p\g

create table RELATIVE

(pssn varchar(15)

rname varchar(84)

raddr varchar(84),

rcity varchar(34),

rstate char(4),

rzip varchar(15),

rhm_phone varchar(15),

relationship varchar(34)

)

\p\g

create table EMPLOYER

(pssn varchar(15)

ename varchar(84)

eaddr varchar(84),

not null not default,

not null not default,

not null not default,

not null not default,

not null not default,

not null not default,

not null not default,

ecity
estate

ezip

ephone

)

\p\g

varchar(34),

char(4),

varchar(15),

varchar(15)

create table INSURED BY

(pssn varchar(15)

sub_name varchar(34),

insur_id varchar(34)

group_id varchar(34),

type varchar(34),

tel to sub varchar(34),

eff_date varchar(15),

exp_date varchar(15),

iphone varchar(15),

ins_address varchar(84)

)

\p\g

not null not default,

not null not default,

create table REASON_FOR_VISIT

(pssn varchar(15)

accident varchar(25),

accid_time varchar(15),

accid_date varchar(15),

work_related varchar(15),

ref_physcian varchar(32)

)

\p\g

not null not default,

create table TRIAGE_INFO

(pssn varc har(15)

name varchar(34),

date varch ar(18),

weight varchar(15),

temperature varchar(10),

pulse varchar(7),

blood_pressure varchar(15),

age varchar(7),

triage_text varchar(258)

)

\p\g

not null not default,

4 Tcl (Tool Command Language) interface to SQL (Structured Query

Language).

There were several methods of providing an SQL interface to Tcl/Tk for use with the

health care database. For example, there is existing support already for mini-SQL which

is a stand alone database for employing an SQL commands. Mini-SQL had several major

limitations, for example, only several commands were available for inserting and

retrieving information most of these were very primitive and awkward to use. Most

commands used a type of iterator, which required traversing each record slep by step.

Again, most of the SQL commands did not appear to be standard or at least familiar to me

so this method for supporting an SQL interface was abandoned. The application msqltcl

was reviewed but it suffers the same problems as was discovered with the mini-SQL this

was actually expected because msqltcl was only a Tcl/Tk interface to the mini-SQL
database.

Next, we examined the idea of creating our on interface to INGRES. This idea was

indeed feasible, but it would require an in-depth knowledge of Tcl/Tk and the low-level

calls necessary to access INGRES assuming this is possible. In the process of

implementing this idea we discovered an application which provided the necessary

interface between TclfFk and SQL (see reference [4]).

After installation this application provided two executables. The first was called tclsql

which is a version of "Tcl" that also supports the SQL commands. The second

executable is called sqlwish which is a version of "wish" or "Tk" that also supports the

SQL extensions. This application was ideal because it provided numerous commands as

described below in a standard SQL format. After testing these commands it was evident

that this was an excellent extension to TclFFk. However, even though the SQL commands

seemed to work flawlessly it was later determined that this application was not supporting

other scripts that had previously been written in wish or tclsh. After several days of

debugging and testing it was determined that there where several source code errors and
even makefile errors.

There are three types of commands: general commands, non-cursor commands and
cursor commands.

The general commands are used for opening and closing the database. For example,

the following general commands will open and close a database called health from inside a

TclFFk script.

SQLopendb health

SQLclosedb

Most non-cursor commands return values in a two dimensional Tcl array. These

commands are very similar to the INGRES SQL commands with the exception that the

programmer must specify an array name to hold the returned data. For example, the

following simple commands (Ex.1) will retrieve all attributes from a table called "patient"

10

where the social security number is equal to 123456789 and places them into an array

called keep_it. This example assumes the database is already opened.

Ex.l

SQLselect keep_it * from Patient where pssn--"123456789"

Ex.2 will only insert two values into a relation called patient. This is accomplished by

specifying the attribute names (ssn, pname) along with their corresponding values. Ex.2

can be expanded to include any number of attributes up to the maximum for the given

relation by specifying additional attributes names and their corresponding values.

Ex.2

SQLopendb health

SQLinsert patient (ssn, pname) values ('"11111111 l"','"ZOO'")

SQLcommit

Ex.3

SQLselect -noheaders keep_values * from patient where ssn='" 111111111"'

The previous "selection process" will return all attributes for the patient with the ssn value
of"l11111111".

The following is a print out for Ex.3.

array name = attribute values

keep_values(1,0) = "111111111"

keep_values(1,1) = "ZOO"

keep_values(I,10) = N/A

keep_values(1,11) = N/A

keep_values(I,2) = N/A

keep_values(I,3) = N/A

keep_values(i,4) = N/A

keep_values(i,5) = N/A

keep_values(i,6) = N/A

keep_values(i,7) - N/A

keep_values(I,8) = N/A

keep_values(I,9) = N/A

N/A has been assigned to all values that were not give a specific values during our

previous insertion. This is accomplished automatically by INGRES if no default value is

supplied.

11

Thecursorcommandsallow ausertoefficiently stepthroughtheresultsof aselect
statementonerowat atime.Thecursorcommandsthatreturnavaluewill placetheresult
intoaonedimensionalarray.Ex.4 is anexamplewhichprintsall attributesof atable
calledpatientonerow at atime or in otherwordsonerecordat atime.

Ex.4

SQLopendb health

SQLdeclareCursor cur

SQLprepareCursor cur select * from patient

SQLdescribeCursor cur patient_header

The following will print the header of the table patient.

parray patient_header > means print array named patient_header

The headers for the patient relation as obtained from the preceding print out follows.

array name column names of table patient

patient_header(0) = ssn

patient_header(I) = pname

patient_header(10) = marital_star

patient_header(11) = poccupation

patient_header(2) = dob

patient_header(3)

patient_header(4)

patient_header(5)

patient_header(6)

patient_header(7)

patient_header(8)

patient_header(9)

= sex

= establish

= paddr

= pcity

= pstate

= pzip

= phm_phone

The following will print each row within the table called patient

SQLopenCursor cur

while {[SQLmoreRows] } {

SQLfetchCursor cur one_row

parray one_row

)
SQLclosedb;

The following is a print out for Ex.4.

array name = attribute values

one_row(0) = 123456789

one_row(I) = Mark Carter

one_row(10) = single

one_row(11) = student

one_row(2) = 12/12/66

12

one_row(3) -- male

one_row(4) =

one_row(5) = 1321 Sussex Place

one_row(6) = Norfolk

one_row(7) = VA

one_row(8) = 23508

one_row(9) = 804-489-2997

The following example (Ex.5) code provides a second method

attributes of the patient relation one record at a time.

Ex.5

SQLopendb health

SQLdeclareCursor cur

SQLprepareCursor cur select * from patient

SQLdescribeCursor cur fiind_size

The following code will print each row within the table called patient

SQLopenCursor cur

set size [array size find_size]

SQLfetchCursor cur one_row

while {[SQLmoreRows]} {

for{seti0} {$i<$size} {incri} {

puts "$find size($i)= $one_row($i)"

}
SQLfetchCursor cur one_row

SQLclosedb;

The following is a print out for Ex.5.

attribute name = attribute value

ssn = 123456789

pname = Mark Carter
dob = 12/12/66

sex = male

establish =

paddr = 1321 Sussex Place

pcity = Norfolk

pstate = VA

pzip - 23508

phm_phone = 804-489-2997

marital_star = single

poccupation = student

for printing all of the

13

The following is a complete list of SQL commands currently available. For more detailed

information on each command use the on line help as follows "man" <command name>.

For example, man SQLfetchCursor. The following list was taken from reference [4].

GENERAL TCLSQL COMMANDS

SQLopendb database_name

Open a database inside tcl

SQLdbName

Return the name of the currently open database.

SQLcommit

Commit SQL transactions to the database.

SQLclosedb

Close the open database inside tcl.

NON-CURSOR TCLSQL COMMANDS

Non-cursor tclsql commands use an internal SQL Data Area

(SQLDA) structure. The SQLDA structure is created and ini-

tialized with the first call to SQLexec or SQLselect*. The

SQLDA structure is freed when SQLctosedb is called.

SQLexec result_array sql_statement

Execute an SQL statement inside tcl.

SQLselect [-noheaders] [-l d] result_array select_statement

Execute an SQL select statement inside tcl.

SQLselectRow [- I d] row_number result_array select_statement

Execute a select statement, get a specific row.

SQLcolNamesSelect [-ld] result_array select_statement

Execute a select statement, get the column names.

SQLcolTypesSelect [-ld] result_array select_statement

Execute a select statement, get the column types.

SQLimmediate sql_statement

Execute and SQL command.

SQLdelete sql_delete_statement
Delete a row from a table.

SQLinsert sql_insert_statement
Insert a row into a table.

SQLupdate sql_update_statement

Update columns in a table.

CURSOR TCLSQL COMMANDS

SQLdeclareCursor cursor

Declare an SQL cursor.

SQLprepareCursor cursor sql_statement

14

Setup an internal SQL statement for access from tcl.

SQLdescribeCursor cursor [result_array] [row_indice]

Setup the SQL result area, get the column headers.

SQLopenCursor cursor

Open an SQL cursor for fetching.

SQLisACursor cursor

Return 1 if the cursor exists.

SQLlistCursors result_array [row_indice]
Get the names of all the cursors.

SQLcloseCursor cursor

Close an SQL cursor.

SQLfetchCursor cursor result_array [row_indice]

Fetch a row from an SQL cursor.

SQLmoreRows

Return 1 if there are more rows to fetch from an SQL cursor.

SQLcolNamesCursor cursor result_array [row_indice]

Get the column names of the query associated with a cursor.

SQLcolTypesCursor cursor result_array [row_indice]

Get the column types of the query associated with a cursor.

SQLdeleteCursor table_name cursor

Delete a row from a table.

5 Adding Patient Data

During the patient's first visit to a Dr. he/she will select the icon labeled "First visit"

which will bring up another menu with several options one of these options is entitled

patient information. This interface will allow a user to input all necessary patient

information into an existing database called health. The information requested includes

social security number, name, address, physician who referred you, type of injury and the

patient's responsible party information. One functionality that was added to ease the task

of inputting information was to automatically place the cursor into the adjacent columns

or "entry widget" once the user pressed the enter or tab keys. Another useful feature is

that of a "status window" which will inform the user of the desired action for each entry.

The Figure 3. is a captured image of the interface that will be used by the patient. Even

though this interface was originally designed to be used only by the developers of the

health care project for inputting test data we thought it was actually aesthetically pleasing

enough to be incorporated into the Medical Record System (MRS)

15

Figure 3. Patient Information Interface

6 Requesting Insurance Information

During the patient's first visit he/she will also need to fill out an insurance form

indicating how they will pay for this visit. This is accomplished by selecting the "First

Visit" icon which will bring up another menu with several options one of these options is

entitled insurance information. This interface will allow a user to input all necessary

insurance information into an existing database called health. The information requested

includes subscribers name and whether it's their primary, secondary or other insurer. The

social security number is obtained from the patient information that will already have been

inputted into the database through the patient data interface. This interface has similar

features as the interface for patient information mainly automatically placing the cursor

into the adjacent columns or "entry widget" once the user has pressed the enter or tab key

and providing a "status window". Figure 4. is a captured image of the interface that will

be used by the patient to input their insurance information.

16

Figure 4. Insurance Information form.

7 Triage Information

This interface was redesigned to include such information as data, social security

number and name which will allow for individual triage records for a particular patient to

be retrieved based on a particular date. Features such as "partial key" completion is now

being provided through the database. The partial key feature is implemented as follows

after three letters have been typed a database query for all existing names is done and then

a comparison is made between all these names and the partial key if a unique match occurs

then the remainder of the word is filled in automatically. One small problem about

efficiency, should be mentioned here. It requires some time to retrieve the information

from the database, however, it should be possible to create an index of names. An index

would provide a quick look-up mechanism for frequently used data. This would solve this

problems related to slow data retrieval. Once the information is loaded in to a data

structure within the program quick access can be obtained. The interface for the triage

information is shown in figure 5.

17

Figure 5. Triage Input Form.

8 Adding Records

Adding records option can be seen after selecting "View patient info" and then

selecting Display data. This interface was created to aide in the inclusion of related

documents such as scanned images, charts, x-ray images etc... This interface was originally

to be used under "view Patient Information Display data" only because there was a

reserved "button" called add records. However, it is our belief that this is not the best

place to be adding records because the title implies that you are only able to view data.

This interface was also designed to add additional patient records to the database but it

requires a rather detailed knowledge of the existing code and the relationships that exist

among the data that is to be entered through this interface. Because of these requirements

this interface was not incorporated into MRS. Solutions to this problem are discussed

under the section entitled Problems and Needed Features.

9 Problems and Needed features

It soon became apparent that a problem would occur when new records are added. For

example, the original MRS had all the necessary information for establishing links hard

coded into the program. This was a satisfactory solution for a prototype or demo of a

single patient; however, it was far from being useful in a "real world" application. First, it

appears that some of this information may be redundant or even unnecessary. Information

such as dates and doctor's name may be obtained from other relations. Next, there needs

to be a "selection process" that will enable the user to identify the problem or injury in a

systematic way. For example, if a patient enters the hospital with a knee injury the nurse

or doctor should be able to identify this problem by selecting it from a "list box"

containing common ailments and associated codes. This would prevent the nurse from

naming this injury a "leg" problem and the doctor referring to it as a "knee" problem

which would cause two separate links to be created one for leg and one for the knee.

Furthermore, this entire concept may require re-thinking with this type of selection

process in mind. Another problem is automatically selecting keywords from the triage

text.. There may be an algorithm that will determine keywords based on grammar, but I'm

not aware of any that can accomplish this task. This area requires further research.

18

After creating the patient information interface we tested it by adding data into each of

the fields that we had created. It became apparent that this interface was requesting too

much information, even though, this form had already been reduced substantial from the

original form that we was given. Some of the trivial items could be removed. For

example, the address of your next of kin or employers complete address. At this time we

do not see why a doctor would need this information. Some inquiries into why this

information is required is needed

Before this prototype is released to a beta test site it would require making it more

user friendly by checking data types and bounds on data etc... This will require some time

and was not concerned necessary at this stage in our prototype.

A nice feature would be to include Audio messages for the status windows in addition

to the message actually being displayed. There are numerous other places that Audio can

and should be used for example the progress notes already contain a section requiring

audio to be recorded. AK is an extension to Tcl/Tk which provides audio capabilities to

to a Tcl/Tk application. For more information about AK please see reference [1]

10 Conclusions

The MRS prototype now has a working database that can be accessed through Tcl/Tk.

There are numerous interfaces to the database already. Most of the graphical interfaces

deal with adding to the database. While the data can be retrieved from the database it is

now necessary to think of situations where this is likely or necessary to happen. The SQL

interface provided through Tcl/Tk is simple enough to be used and it supports most of the

SQL commands generally expected or required by any database employing SQL

commands. Several problems and missing features with the existing prototype were

mentioned.

References

1. Ousterhout, John K., "Tcl and the Tk Toolkit". Addision-Wesley publishing

company 1994.

2. Elmasri, Ramez and Navathe B, Shamkant, "Fundamentals of Database Systems.

Benjamin/Cummings, Redwood City, CA 1989.

3. Sven Delmas, paper, "Design and Implementation of a Programming Environment for

Interactive Construction of Graphical User Interfaces. Berlin, 19 March 1993.

4. Hylands, Christopher. www distribution, tclsql version 1.1 - tcl/SQL interface

package, e-mail cxh@eecs.berkeley.edu.

5. Jolly, Carl, Numerous personnel interviews and e-mail correspondences, Summer

1995.

19

