Old Dominion University Research foundation

o @

NASA-LR-2012223

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

INFORMATION TECHNOLOGY: A TOOL TO CUT HEALTH
CARE COSTS

By

Dr. Ravi Mukkamala, Principal Investigator

Final Report
For the period ended August 31, 1996

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under
Research Grant Number NAG-1-1690
Wayne H. Bryant, Technical Monitor

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, VA 23508-0369

September 1996

o @

DEPARTMENT OF COMPUTER SCIENCE
COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY
NORFOLK, VIRGINIA 23529

INFORMATION TECHNOLOGY: A TOOL TO CUT HEALTH
CARE COSTS

By

Dr. Ravi Mukkamala, Principal Investigator

Final Report
For the period ended August 31, 1996

Prepared for

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-0001

Under
Research Grant Number NAG-1-1690
Wayne H. Bryant, Technical Monitor

Submitted by the

Old Dominion University Research Foundation
P.O. Box 6369

Norfolk, VA 23508-0369

September 1996

Information Technology: A Tool to Cut Health Care Costs

Final Report (NAG-1-1690)

R. Mukkamala K.J. Maly C. M. Overstreet E. C. Foudriat
Department of Computer Science
Old Dominion University
Norfolk, Virginia 23529.

Abstract

We report on the work done as part of the NASA LaRC grant NAG-1-1690. As part
of this effort, we have designed and built a prototype for an integrated medical record
system. MRS (Medical Record System) is written in Tcl/Tk. While the initial version
of the prototype had patient information hard coded into the system, the later versions
used an INGRES database for storing patient information. Currently, we have proposed
an object-oriented model for implementing MRS.

As a result of the initial seed money by NASA LaRC, we have achieved a level of exper-
tise in this area. As a consequence, we have recently been awarded two projects by EVMS
(Eastern Virginia Medical School), CHKD (Children’s Hospital of the King’s Daughters)
and CPR (Center for Pediatrics Research), all located in Norfolk, Virginia. These projects
involve developing information systems for physicians and medical researchers to enhance
their ability for improved treatment at reduced costs.

1 Introduction

Old Dominion University embarked on a project to see how current computer technology
could be applied to reduce the cost/and or improve the efficiency of health care. Subse-
quent discussions with local hospital officials (Children’s Hospital of King’s daughters and
Eastern Virginia Medical School) indicated that the health care industry was already well
computerized and getting more so every day. The move to computerize patient records is
also well underway, several standards exist for laboratory records [5] and several groups
are working on standards for other portions of the patient record [1, 3].

Even though doctors realize that the move to electronic records is eventually going to
happen in the near future, they do not relish the thought of giving up their paper records
for the electronic variety. Paper records have many advantages over electronic records:
the ability to display multiple formats; immediate access to required/applicable data; high
resolution for X-rays and the like; unlimited display area; and reasonable confidentiality
and security. To some degree these aspects of a paper record can be equaled by electronic
records and when combined with its strengths such as access to information that is current
and accessible anywhere a terminal exists (on a network, of course); support for a wide

variety of information formats (including audio/video); and an ability to massage data to
provide a different view on a patient’s record (e.g. trend analysis). The computerized
reccrd becomes not only a database but also an analysis tool.

One of the major complaints that doctors have about the current Computerized Patient
Record systems (CPRs) is their inability to provide the same flexibility that a paper record
system provides in scanning the documents pertaining to a patient. It is common prac-
tice for a doctor to quickly flip through a record to become acquainted with the patient’s
medical history and determine which facets are relevant to the patient’s current problems.
Computerized records may yet prevail over manual record keeping methods if they provide
“one-stop-shopping.” That is if it is possible to spare the physician from accessing infor-
mation from several locations (chart pulls, phone calls, fax machines, etc.) they will be
more inclined to use a computerized record (3, 6, 8, 10]. Most medical informatics software
provide some capabilities to relate patient health documents together but none have the
ability to graphically display the the entire patient record and the relationships between
each document in a patient record [6, 7]. Because of this deficiency, it was decided to
focus on this issue and develop an application that allowed complete and rapid access to a
patient’s electronic medical record.

Based on our earlier experience in designing decision support systems, it was believed
that a similar problem-oriented organization of the patient record and graphical interface
could be developed to give freer, quicker and more complete access to a patient record.
With this intention, we have designed and prototyped our system, MRS or Medical Record
System. It was decided to prototype MRS in an application in an interpreted language,
Tcl/ Tk, in order to easily accomodate requested changes and additions made by end users
and other interested parties.

This report discusses the motivation behind the project, some aspect of the design and
elaborates on the unique features of the application.

2 TCL/TK: The PROTOTYPING TOOL

The current prototype of MRS is implemented using Tcl/Tk, an interpretive language.
Tcl or Tool Control Language is a scripting language that features string, list and array
manipulation functions as well as the usual commands expected from a Unix shell. The
Tecl shell or telsh can be used like any other Unix shell (e.g., C-shell). An extension to Tcl
which allows it access to GUI widgets and event-driven programming is the Tk toolkit. The
combination of Tcl and Tk is embodied in the wish-shell which, like tclsh, interprets any
commands sent to it. Commands are similar to Unix shell script commands with additional
commands and capabilities that give a C-like flavor.

A unique feature of Tcl/Tk is that the interpreter can have its command set augmented
either through pre-compiled extensions or through user defined procedures that have been
written in C. For example, several extensions are available such as TkPixmap and TkEmacs.
By integrating one or more of these extensions into an interpreter or wish-shell one can gain
the ability to manipulate Pixmaps (TkPixmaps), or incorporate emacs into an application
(TkEmacs). Tcl/Tk is very flexible in that C code can be written by the programmer to

provide new commands. Hence, if speed were required, compiled code could replace a long
interpreted tcl procedure.

Like other X-window applications, resource files can be used to determine the properties
of a Tcl/ Tk application. Tcl/Tk also provides an auto-loading function that searches a user
defined list of paths for files containing the procedure it needs. Tcl/Tk provides debugging
support in addition to error control. Debugging and development is made easier simply by
the fact that it is an interpreted language. -

3 SYSTEM DESIGN

Initially, the objective was to provide a front-end viewer for an existing database that would
enable doctors to have better access to an existing computerized patient record system
(CPR). However, in order to successfully integrate the problem-oriented approach to the
CPR, it was realized that an entire medical record system needed to be developed. This
is because there is no way to get or generate problem information from existing records.
Further, a standard means of entering test data would be faster and more accurate than
editing data files. The problem oriented approach, it is hoped, would enable doctors to
track actions taken to diagnose, treat, or maintain a particular problem, and to access all
related documents quickly and to view them.

Our initial ideas for the MRS came from another ODU project called DHC. Essentially,
DHC allowed the description of problems or tasks to be broken down into subproblems,
which in turn could be described and broken down. The problems and subproblems were
graphically displayed with each subproblem in a box and a link (an arrow) made between
the parent problem and its subproblems. Applying this to an CPR would require defining
a problem and subproblems then making links between related documents. One could
display this graphically, giving the doctor an overview of several problems the patient had
experienced in the past and the doctor would be able to zero in on the documents he
wanted to see. Clicking on the icon representing a document would bring up the document
text, picture or audio annotation.

The first version of MRS exposed unforeseen complications during the conceptual phase.
For instance, the use of arrows to link related documents was found to be impractical as
it is possible that a single document were related to several problems or sub-problems. It
would not be long before the number of arrows on a screen would obscure other documents
or make links unclear. Another problem encountered was with the links themselves; there
was no common means of linking documents because the relationship between them varied
due to the content and document type.

Discussions with potential end users (i.e., doctors) on how better to graphically repre-
sent the data resulted in several excellent ideas that were captured in the Zone Concept.
As seen in Figure 4, for example, the Zone Concept can display documents by their type
or temporal status and arrows have been eliminated in favor of using color to represent
links (unfortunately, colors are not visible in Figure 4). Clicking on a problem would in-
stantly colorize all those related to the particular problem. Links would be established
using the single link definition given above. Dynamic linking by keywords can be gener-

Old Dominion University
Dept. of Computer Science
1995

Medical Records System (MRS)

Version 1.2

Dodor Patient

Figure 1: Roles supported by MRS

ated by searching all documents and colorizing those with positive hits. If the number of
documents in a column cannot fit the available viewing area, they can be made to overlap.
The zone concept as described above was used to create the graphical interface which is
described below.

4 A Tour Through MRS

The current version of MRS implements the graphical document interface but also includes
many of the functions of the average medical informatics program such as scheduling,
billing, triage, and adding records. MRS was designed with the idea of limiting access to
certain users and with built-in security [4]. Upon start-up, the user is presented with a
screen with four large buttons representing the roles in the hospital supported by MRS
(Figure 1). The user selects an appropriate button and then enters the name and password
to gain access. As part of the security, different roles within the hospital/doctors office are
given different degrees of access. The highest access goes to the doctor who can use all
the functions. The lowest is the patient who can only access his own patient record, fill
out forms (via Visit or First Visit) or check on his billing. Further, within each function,
access to certain features is limited by what position the user occupies. Figure 2 shows the
main menu and the associated choice menu for the doctor. We will now describe some of

the options.

FirstVisit © Triage Add Records

View Patient Pecord [12 Scheduling
Billin

Fetum 1o Main Memi

Figure 2: Doctor’s Main Menu
Welcome Lo Firs! \isit - These ar soie of the forms

sistance if you nes
L ety buitdan

Patient Profile Patient_Information

Personal Healh History - Personal Hisory
Medications Insurance

I
Help Finish

Figure 3: First Visit Options

[ET T T LU EIVE LT Zoning by Decument

Pauent Base Docwnents Canpva Actions
e omas M o g foltapse Haelp

A Docament Shaw 1inks }
Qe

£ wp i Reset Print Canvas

Frotteat ; v §Consuits v JCiinical Resums

Physical™ “UALITEC™ ot “Cinicat Resume pg T of
UM, Tost~
‘VITE/II - ‘DT20/94” ‘DS/ORISE ™
“Pode rewmovel” f potor
oS/ B0 “OT/P0/e” “OS/DE N o
“Nolr resovel” “Phene Message”™
“DI/TE IO hr2elle i “OFr/OISOF
“Protéem— Gonornl Nealth™ “Amoe”
el le 2 ‘ORIOA/E
“hmoe”
TOS/I8/9E
;”.;..; P —
"OSOIIE

Figure 4: Patient Record Display

4.1 First Visit

A recent trend in medical informatics software is to allow the patient to fill out his/her
own forms directly into the computer [2]. First Visit allows the patient or office personnel
to fill out the forms needed to begin his medical record such as Personal Health History,
and Patient Information (Figure 3). The doctor/nurse/clerk can interview the patient and
type in the answers or the patient can do it himself. During this time the patient will
receive a password so that he can see his medical record using the View Patient Record
option, fill out any forms required for the visit (e.g., a form for describing complaints,
symptoms) using the Visit option, and check on his outstanding balance using the Billing
option. For patients who remember their password, the ability to enter data into forms
allows them quicker service as their complaints enter the system quicker than those who
must be interviewed by a nurse or doctor. Further, paperwork for the hospital or doctor’s
office is also reduced, which improves patient-care.

4.2 'Triage

This option is used to collect the patient’s vital signs and determine the patient’s com-
plaints, and history related to his current condition. As such this option is only available
to the nurse and doctor. Currently, the triage option can be called when viewing the pa-
tient record or by selecting it from the intermediate menu. If selected from the intermediate
menu, the doctor must fill in the patient’s name first. After 3 letters, the computer looks

up the names of existing patients and fills in the remainder if a match exists. When called
from the View Patient Record Iconbar, the name is automatically entered once the patient
has been selected using the Select Patient option. Double clicking on any one of the vital
signs (e.g. weight, temperature) will cause a trending chart to be displayed of vital sign vs
time . Once the triage has been saved it can no longer be edited. However, the doctor can
add to the triage by creating a progress note. The triage data is inserted into the progress
note automatically.

4.3 Add Records

The user, most likely a nurse, would like to add documents to a patient record. The
way it is added varies, however, on the form of the document. For instance, a scanned
document such as an X-Ray or consult report can be added by specifying the filename,
date initiated, date received, author, document type (e.g., Progress Note, Form 033) the
associated problem and adding descriptive keywords. A document, such as the one created
in the office, and hence available in electronic form, is added the same way but no keywords
need be entered. During a search, the entire contents of the electronic document will be
searched for keywords. Of course, a title for the file icon must also be entered in both cases.

4.4 View Patient Record

Once this option has been selected, an iconbar appears. The iconbar consists of an entry to
hold the patient name and several buttons that activate various functions. Most functions
such as triage, display patient record, forms and problems will not work until a patient
is selected. Pressing the Select Patient button will bring up a Listbox holding patient
names. Selecting a patient will fill in the Patient: entry of the iconbox. Clicking on triage
brings up the triage screen. If it had been filled out previously by a nurse, the triage data
would appear for the selected patient. This gives the doctor a synopsis of the patient’s
current condition and complaints. Clicking on Form brings up the Form Listbox with all
the potential forms the doctor may fill out when examining the patient. Selecting a Form
will bring up the corresponding screen such as a Progress Note or a Form 033 (A standard
insurance billing form).

Selecting Display Patient Record brings up a graphical display of the entire patient
record (Figure 4). Each document of the patient’s record is represented as a file icon. A
file icon consists of a rectangle with a descriptive title and a initiation date. Clicking the
2nd mouse button on the title will reveal the key words associated with the document;
doing the same on the date will give the receive date for the document. Double-clicking
with the first mouse button will cause the document to appear whether it be scanned or
in text. General records which are useful to have available at all times, such as Patient
Information, and Current and Temporary Medications are kept in the topmost canvas.
Other records with linkages to problems appear in the lower canvas. The zone concept
described previously was utilized to organize the patient record. Problems are in the first
column(left most column) while, if in the Zone-By-Document mode, each zone contains
any number of the same type of document. For example, in Figure 4, Progress Notes are

seen in the 2nd column (or zone). At this time, only the Zone-By-Document mode has
been implemented but a Zone-By-Time option is planned.

The doctor can quickly locate the related documents to a problem by activating the
Show Links function which is activated when the Show Links button is pressed. Once
activated, the cursor can be put over a file icon and mouse button one clicked. If the
file icon was one of a document then the problem(s) associated with the document change
color. If it was a problem then all the documents related to that problem change color. The
doctor knows instantly which documents are relevant and should be reviewed. Hence in a
matter of 2 button clicks the doctor has narrowed considerably the scope of his search. He
may then inspect the keywords associated with the document or use the type of document
to guide him as to whether or not to view the document. This is considerably faster and
more efficient than browsing a paper record.

To show a patient record better, the expand and compress functions allow the user to
spread the file icons out or overlap them, respectively. Also the user has the option of
deciding which documents go in what zone. Each zone has a pull down menu that is used
to select the document type (Zone-By-Document mode) or date (Zone-By-Time mode)
that the zone will represent. Instantly, the zones change to reflect the user’s preferences.

4.5 Scheduling

This option is available to the doctor, nurse and clerk but in varying degrees. For instance,
only the doctor has the ability to block off sections of time that he wishes not to see any
patients. All can make appointments for patients, although this will generally fall to the
nurse or clerk. All can examine the schedule either on a daily monthly or yearly basis.
When making an appointment, the user has the ability to visually inspect the schedule and
insert the appointment or he can conduct a search for all the schedulable time slots using
length of time needed and limiting the search to the timeframe that the appointment must
be made.

4.6 Billing

Billing functions given in this option are very simplistic since it is not our intention to
develop the administrative portion of a medical informatics application. If required several
commercial add-on programs can be used. This option is primarily for the clerk; however,
the doctor may wish to inspect/modify the billing data. Data from various entries found
in forms (e.g, the form 033) will be used to compile billing data for each patient. Clerks
can accept payment and subtract from the outstanding balance. As mentioned earlier, the
patient may also access his own billing records in a read-only mode.

5 CONCLUSION

Old Dominion University has implemented a Medical Informatics application called the
Medical Record System (MRS) that introduces a new paradigm to the Computerized Pa-

tient Record. A patient’s problems are used as the basis to organize and link the documents
in a medical record. Through the use of a graphical interface the patient’s medical record
can be browsed much easier than could the corresponding paper record thus removing a
major drawback to CPR’s. This work is not yet complete, some options still need to be
implemented; however, in its current state, MRS has proven the problem-oriented concept
and the associated graphical interface to be very effective. Further development is planned
and progress should be rapid given the exceptional ease that the Tcl/Tk language can be
used to implement supporting data structures and graphical interfaces.

References

[1}
(2]
[3]
[4)
[5]
[6]
[7]
(8]

(9]
[10}

Cowey, H. D. and Bernstein, R. (1994). Data Models, Standards and Nomenclatures
for Primary Care: The Data Standards Project. 1994 HIMSS Proceedings, Vol 4, 49-
59.

Cushing, M. (1995) The data entry conundrum. M.D. Computing, 12, (4), 259-261.

Dicks, R.S. and Steen, E.B. {Editors) (1991). Computer-based patient record: An
essential technology for health care. National Academy Press, Washington, D.C.

Donaldson, M.S. and Lohr, K.L. (Editors) (1994). Health data in the information age:
use, disclosure, and privacy. National Academy Press, Washington, D.C.

Hammond, W. E., et al. (1994). Computer Standards: Their Future Within Health
Care Reform. 1994 HIMSS Proceedings, Vol 1, 33-52.

Henkind, S. J. (1994). Physician Involvement in Information Systems: An Overview
of the Issues. 1994 HIMSS Proceedings, Vol 2, 33-41.

Kahn, M.G. (1993). The computer-based patient record and Robert Fulghum’s 16
principles. M.D. Computing, 10, (2), 253-261.

Shortliffe, E.H., Perreault, L.E., Widerhold, G., and Fagan, L.M. (1990). Medical
Informatics: Computer Applications in Health care. Addison-Wesley.

Walsh, B. (1995). Using Tcl/Tk. Linux Journal. Feb. 1995, 26-33.

Weed, L.L. (1993). Medical records that guide and teach. M.D. Computing, 10, (2),
100-114.

Old Dominion University
Dept. of Computer Science
1995
Medical Records System (MRS)

Version 1.2

Figure 1: Roles supported by MRS

e e e

Biling

CRetumio ManMew

Figure 2: Doctor’s Main Menu

; Welcome to First sit - These are some of the fomis
- hatyou will e o il out b et s el you
| easier, Remember s very important atyou
ry e s complete a5 possil, Pease aska Nurse
- or Clrk or asistance ifyou need hel (o press
te el hutton)

O S e o LI

Medlcatlons) lnsu e

Figure 3: First Visit Options

Patient Base éﬂtwnents

Persona Health Hitory 1

05/0481

AT

"Prodlem- Artbritis” "General Physical” "UA/CBC” “Orthopedic Consult pt 17 | | “Clinical Restme pg | of
“UA/Dibedies Test”

WY DAY RN 0906/%”
eI ,
b | Podiew- K" "Mole remondl” "UA/Diabetes” "Orthopedic Consult pl2” | | "Chnica Resume p 2 of
‘ Krivi
2 i W AN N8
; UV Test” ‘
E "Probem- hole” “Mole remonel” "Cytopathology Aot Gyneox | "Dermatology Coasal” "Phone Messape”
i Hoalth uvey Biests”

: RN B | KU o
"Hoalth survey § tests p
"Probieie- General et ¢ "Rnee” "Dermopatiology rport”
I “Dermopathofogy report”
i WS i
Dermopathology report”
/MII IIEKG”
MLY0TE W
Ilmn
B

Figure 4: Patient Record Display

RNdeadjen
dueansuf pue guiy

saseqeje(]/S|00 |, 19Y)0 [J}IM sdjea3aju]

ADEJINU] JO UoHBZILOISN))

SUDBIA] UOISIDI(] PIULIOJU-A[[N,] ‘YUI)SISUO))

Ayjen) 29 swiL], ul SSAUIANIYYIL 2A0adwuf SALLDACIO

S[RUOISSAJOIJ [BIIPIA IO

--Danﬁﬂu 2 d\w;\ﬂ:hl_ NACTIIT_TITNTCOTI NN 7T

» 10150} — T— , ,
:m;r I .gzg,.

]ﬂ sower] ¢

esIny

s

WD)SAS PIOIN [BIPIA

q§ UlRR oY) 03 186N SUINSI USYJ UINIDE EIWET) - NUSY 03 UlMay

uweaioe dyoy syyy sherderp - dyeny -
ueaise
®Y3 w0lj AOpUTA oY) 2w91D TTIA @qestn &f aopurp Aeydstp
uatIeg oy STIYA uoIng STyl Buryosfes amopura Leyderp
P1oosy juejjeq yestydesb ey dn ebutiq c1yd - plodey juatieq Aeydstg

‘uoeids L1l e) IOHW AOpUIa Y3 3aowel .—Wd’ dn 8T A0OputA Oﬂﬂﬁu.ﬁ
o943 o1tya utebe uoj3ng eberry eyy buryseres pedejderp aq
TIIA v3ep a3 €36Ix0 ouo JT 'ano T1tj Aew nok yorys usaiae
abeyiy uerq e dn 7ind PuUe STyl 03ROTPUT [TIA xoq bojerp
® punoj jt auou jy wyep sberizeyy put) o3 spew s jdwajye
uv justjed asu ® pe3IaTae eaey nok v - juetied pejaatae
413821109 ey 103 ueide eBetiy ey shetdetp uoIng cryr - eberay
‘€p10201 19Y/CTY €8000% 03
10p10 ut Isixe jenw Juatied y ejuatjwd jJueiind Jo sty
1*3133qeydie v burdeydsip xoq sty e 396 111a no& pi0dea
-ou\-mc A9FA URd NOL 08 Fayjoue 329798 03 yeta Nok 3t
Inq padetdetp oq Apeestn 1714 oweu justaed v eyy Ayyewiou - Juetyed 30e7es -

suotjouny buraoroj eyl eseaoe Awm nok 1eq uost eyy uy

o3 1

o3 diey oy e

1RqUOIE
1xo jladas wg Beap gy 2 -t ™ Hp-atnapy

(o SRR TR

e, ues: T,

RS i) 0 Wy

Buyng

pioaay Juslied MalA

U ot .)

i

v

| spiooay ppy . - abeyy .

WIDJSAS PJIOIIY [CIPIIA

-uonsabuad woy ssapns sys pue il
40204 Uiy € Bupnau sj ays vopied sy Aq pajeaasdifie 5| ued Yol pue spLe Jo Awsiy sey !
ened ..Ea._.t osp 8§ i._ apIsnpy n..xe_ 40S PR BN Iepeat] ..a..eu J8A8S JO n.ﬁ.....s”. .:o:a... :

WID)SAS PIOIIN [CIIPIIA

i Sufay faoue) __ ton

P Giihinsiis deacs

e oo s ast s 10 A AU T SOC NS R T 4

i—l 12—l g s v— o o a)] b '-.‘l Il - ——— 4.0 &y P g R okt
vl T T e .ﬁl R
:-:alncifil]._xi.-xi;s&..w_i. RN A .o.xu.:.n!u.xlnlll

1e)1a] msue)

eyol ssauboy
aquasaud §
££0 uuoj §

‘uonsaBuod wouy taeyns sys puell
499} uBpy ® Buuuna 5y eus “wonuod Jey Aq pejenaBie s) ued Jupf pue spiapse jo Asysy sey
.:o:& ‘juasedde ospe s ured sjasnyy “sjuo| a0s pue syTepEsy ‘1jin03 s8A6g o supeyduwiod yueped il

e St .(i...J.I.av...l Viege t{n(nf—m..«.cl TSNS A ? Pt S T A 2R v A aase BN
u - & L . 0

eI

L H 35;::;2 139108

e sz R R T TR IR M Tt g

Ly-v0-LL

i ueandy

| A IEE s AN evmi)

,.::c k

WA)SAS PI0IIY JCIIPIIA

LOB/BIE,

YW} pisus D - ueapqold],,

T dsgsay g heame oy,

M/,

158} § Kowmre gireoy),
H0cu0) Abopomenag, | loosuio ydy &&2.!319.)

..08s/21skQ,

OO - WIpgard,

~$6/02/4Q, 08/8/80.

~ 3 YNEV0D NPIIOYVO.,

~JRAOUIRI 8104, ~OBUN - WNQOL],,

L48sP0/SA.

~He0/¢Q. .fe/ta,

~1 ¥ gaswo) dpedoypig,, JENShyd 2039,

sy _.l = N:_E»i

T s

e b o e

, e e
SAUT) :,Ax_mw EaE:EQ E& ,

ENVS: VUNA VPSR

, .;.2«__8 o I | | 2SR s petiad | | 4 Luosshs sy roctsed

:uea eGm :;;E

WIDISAS PIOIIY [BIIPIIA]

~H/ra/sa,

Loy,

L n/8a. LHEI0L/S0.,

. oouy, ~INZ.,
i oo g,
..40dx1 &boroymdowsag),,
LY, Hodas ibooypedowssg,, | | qwesy paawss -wargany,
“dajeay g dsams yywons, .
~Hes w0 Abojopeansg,, oAAOWL 2004y, l00s0d 5)y kBojoymdat3,, . OIOW -3q0d,

LAV, 08/ BIIE,

e/, 08/24780,

L0828 sE0.

S/ 0VEA. «48/0240, ~06/98/5Q, S/ PO/SQ,

103 6d sunrsay proypug, « 3 yosuoD padogpp,, 1[PROMRL BjOPy,,

5Es02/40. E&/9210. Bt
AS2L SHIIIAIVN,,
.2 ¥ swog spadoyyio,, AONEhGY praw D), v J82/VA,.

$910H num_mo:___w suoday ge-
0 Ot v 10 3 30 h_l_n.q.l,lnle.n?H«n..«.lﬂ.J.Iﬂ.ul.H.w-ril». frissinatrid

£6/%2/40

Do NUOYY Jodpec)

WR)SAS PI0IIY [BIIPIIA

Aoyeanisay ., §
dn moios umpredisog aunnoy 2'wzA
pauuajuodun ‘Aoueufiang ¢ 2LA

e e R __,.g:ﬂfﬁmc)

amuesn
g) josa)sajoD
vig ewiunrp oooe o1z R T wna ewAumnn T To00E
SYW] BpSING .) 20D 00°'0¢
digewn oooe zooie RROEEE Hna ooec
Asdoig i ooor o0SLS R vy 00°0C
CIAT) Q0 €1266 g S| epising . 3
Wwaned patsyyersy ‘w3 . KRR 00'0¢

1B OF Ba\NGA Y Sampasayy -

00 04 RN HIWUN IR
$6/20/50 .38 s

PR et 3 e st Mo Akt e s Pt AP s A e e S b e et e

111] s:.Es Nopdat ﬂ.:aé,sii fer $seS-0tk (yog): e. saf B TON Nm a:
" , o aucuﬁl %Ec.m Emcm_

WIR)SAS PIOIIY [BIIPIJA]

:ES .:.:a._ 0 Al) £1¢ o4l (EE B T T KRR psapIwn) s
Cmounyd e ontreid spnequg i Weys e m souer 1Q ._.or_.zﬁo*
, z»i wniey o ‘ TNy ¢ [p— 1
SEELI3 PO S TVLENELULEE 50000 U BR Y are e D AR T e Tt r Ly T DLE AT 2 O h PRI AT] o TR AN B I
ROV | 0. <0, suoneowery (RS LN
Py 4033y
‘lm 22 u—
AV
‘Bupgosaad s§ 94 JEUM JNSUOD 0) OYM ‘Bxew o) suerd By SIS8) BUM SI0DBI J0JI0P Bll Ew._; sispLy
i Hawean . : N
ﬂ quo13N
w 22 n
AVid
poieua oprre sy spiy upely - ssacoud wlinoy)
Sp) SPM028 10)30p B Bsaym azexl B) SpL N8 ‘pagguasaxd asam sBiup upep1ad Aym ‘(sisoubem sepapsed € yno apu]
k{ o) 8:5!.. 20)) pauuopied a1em 5158} Aym SUOSERI SEPINDY “BIaY seoh weyd .:c.:_awEn_no:ma:. an S— ..e:ﬂu::n:_. ,
L WSS
¥ quoldy
lw 22 n_
AV
“¥XE) Y %W j
| ca__uaa SN W) wosuad B0 Bwos BABY _.5 UORBIOUUN OHIB U8 W PN0D BuQ “asay off pmom n_aczaa_e !::Eo:_o B]
N s siseubep ; Lo
FiEEE T TS SO S S BN ok st L SO A R e e
[2L
_w 222 _
AVW
uog saBuod weuy sssjins eys pue 18Aa) yliyy e Bupnau s) BYs -uopIPUOD 431 Aq pajeaasfife si uped yof pre spyyLre MW

—o »..Ba_: aa._ .:u:m& -:5&.3 en_c n_ ued 8)asnpg “sinof esos pue o_.uu_.no._ _.==eu 843A8S _e (3 ed
. Swowund RN TR

"

iglﬂ_! ! ‘wa
..... | Eiazsm 4 dwag’ s oby B ,_,,,,.:.;s,.zsﬁi

.,.)l\«i){i)?llx&is jsio}tf\f\lll}%;i{t%‘

R

' : : SN [o : [Lo . :
e i P N PRV I R . N N | . S

5...4) . [. Y R [S FERH :.ch.w 2
T T TO PTUT AT T RATITIT AR A IR TR e S TR T TS o (Y PRI AT) T 3 T TG e T TR T T T ey $1 R TT ER T e Fl/giﬁqac;%g&lﬂ. PRIy

. Moy ssaliod @)

WI)SAS PIOINY [BIIPIN

Masters Project Report

The Medical Information System GUI Design Project

By William E. Ward, lli

Abstract: My master's project consisted primarily of work in the design and
development of a prototype Graphical User Interface (GU!) for the Medical
Information System (MIS). The work consisted of new implementation: correction
of logic, code and performance errors; new methods of source creation; version
coherence management; and incorporation of new code by other students into the
already existing system. Major efforts included code error fixes, appearance and
handling enhancements, porting the existing work from BSD Unix to Solaris (due to
a change in the operating system), and basic research into the requirements for any
future versions of the system, including important considerations for internal data
representation, database management and upkeep, functionality and improvement
concerns, distributed implementation and data issues, and the need to implement
expert systems into the MIS to increase the performance enhancement aspects that

would compel doctors to use system.

Background: Information Technology is rapidly advancing as the field matures and
the benefits of utilizing computers for data storage are realized. The advanced
features inherent in these machines allow data to be shared by users. The
advantages are a more cost effective system and superior service due to the

replacement of the redundancy and inaccuracy inherent to traditional paper and pen

methods. With soaring costs in Health Care becoming an important concern in our
modern society, the need to implement a new form of computer-based medical
record system is crucial. The advantages are many. The doctor, nurse or other
health care professional would be able to search the patient’s record for similar
occurrences, for previously seen symptoms of medical problems, or search other
patients’ records for similar cases. Medical records could be passed automatically
through expert system filters to diagnose conditions with which the doctor is not
familiar. Billing, a time consuming and costly event, could be streamlined greatly.
Unambiguous medical records could be kept. Researchers could use a
standardized medical record system on a computer database to look at large
populations. Specialized medical tracking could be conducted more efficiently, such
as follow-up immunization, psychological counseling, etc. Insurance payments could
be done online, with instant updates. New medical procedures could be worked into
additional expert systems, standardizing the level of care by allowing step-by-step
patterns for the health professionals to follow. Medical records could be shared
more efficiently with specialists during referrals. Reminders and prompts could be
given to the physician of medical test results. Long term trends could be instantly
pinpointed simply by allowing the computer to plot them graphically, such as weight
fluctuations, blood pressure, etc.

With obvious advantages such as these, it is imperative that the health

physicians begin using this type of system. However, while computers give

2

tremendous advantages, they also have obvious disadvantages: computer interfaces
tend to be more difficult and time consuming for the physician to use during actual
examinations; medical records are not currently in a format that would provide any
of the benefits listed previously; physicians may feel that the expert systems
embedded in these systems would usurp their own expertise; and a current lack of
standard recording methods for the medical community. The problem of a
community-wide recording standard is one that could be readily corrected if a
suitable system were developed. The concern that the system would usurp the
physicians' expertise is obviously a psychological problem beyond the scope of any
pure Computer Science-based research. The problem of format is significant, but
solvable, given the standards of the last concem. Since the inherent difficulty of use
in many computer information systems is the area most likely to provide real impact
on usability, we decided to emphasize our research there.

The difficulties with using a computer system for record keeping primarily
revolve around two key issues: one, the system’s interface design is “different” from
the previously used system, requiring training before one becomes proficient; and
two, the system’s perceived value-to-effort ratio is low. At Old Dominion University,
both of these issues were examined, and it was felt that the development of a
suitable Graphical User Interface might hold the key to acceptance. We felt that the
acceptance issue would be lessened considerably if the interface could be created

such that: 1.) the amount of retraining was small; 2.) the actual look and feel could

3

be customized to match the health care professional’s previous methods; and 3.)
the interface offered real performance enhancement through the standard features
that the system would deliver, (or through hooks for, as yet, undeveloped modules.)
Carl Jolly, a graduate student at ODU, was originally assigned to develop a
prototype of a GUI that will be able to offer a lower learning curve, the ability to
customize, and a powerful feature environment. This prototype was not to be truly
functional; instead, it was designed to show some of the features that could be
incorporated into a fully functional system, as well as to assess changes by
incorporating feedback from the medical community. In May 1995, Carl Jolly
graduated, leaving the project with most areas of the GUI design set and in place.
In April 1995, | was ésked to take over for Carl: refining, debugging, and expanding
the existing prototype, while studying areas where the future “Mach 2” may need to

be changed substantially from the existing design.

Work: As | began the project, the most pressing need was for me to leam Tci/Tk, the
language in which Carl Jolly had written the project. Since other graduate students
would be requesting assistance from me in using and learning Tcl themselves, |
needed to become an expert relatively quickly. My next major project was Xf, a GUI
interface prototyping tool for Tcl/Tk. After studying the systems and reading the

reference manual and tutorials, | decided that until | was sure that my knowledge

was correct, my best approach was to construct a series of small, dummy
applications, rather than experimenting on the actual MIS source code. This phase
lasted one week, at the end of which | was confident that | could safely expand and
debug the existing code. Consequently, | began a rapid process of system testing,
exercising any and all functions and modules that then existed in the system. During
this time, | began to isolate individual errors and areas where improvements could
be performed. | chose, through this phase, to begin debugging some of the source
code errors in light of my understanding of the system performance. The first
significant software bug that | identified during this stage was an error in the handling
of text documents in the patient medical record module. This bug caused the system
to handle all documents as if they were graphical documents, using XV as a viewer.
Since we had a mixed document system, with some graphical and some textual
documents, this was a severe error. An example of the correct code in use can be
seen by opening any Problem description in the Patient Medical Record interface.

At this point, | began expanding the help files for a number of the interface
modules. During discussions with the faculty representing the project, we reached
a consensus that the Physician’s Triage interface was inappropriate and that the
audio buttons then in use were unsuitable. | removed the module from the system
and began modification work in Xf toward improving the interface. These
improvements included an additional option to view the Nurse’s textual triage report,

as well as hooks for the actual audio library, replacing the tities of the various

5

windows to bring them in line with the system used by the physicians with which we
were working, creation of a fourth window for the doctor to use, and correction of an
existing error that caused a system crash when an attempt was made to save the
doctor’s triage. Immediately after, | replaced the audio icons then in use with new
icons of my creation, giving a more professional look to the entire interface. During
this phase, | determined that some of the documentation for the original source was
incorrect, and a great deal of documentation was simply insufficient for the needs of
maintaining the code. From this time on, | carefully checked the documentation,
correcting errors when discovered, and updating the sparsely, and sometimes
cryptically documented sections.

At this time, the project split into two parts. One part, the data base version,
was to be extensively modified by Mark Carter. He was to incorporate a data base
instead of the flat file structure we had previously been using. The other version
would be based on the original flat file structure. Due to the inherent instability of the
modifications that Mark was making, the frequent and chronic problems with Ingress,
and the difficulty of maintaining integrity of code, it was felt that a dual version
approach, with a reconciliation phase after completion of the database, was
preferable. Consequently, | worked primarily on the flat file version. This decision
led to an unfortunate situation; after Mark finished the database module, he needed
time to study for the diagnostic exam. Afterwards, he and | were never able to

completely reconcile the two versions, although most of the important bug fixes were

6

moved into the database version by November 1995, with some few additions in
December and January. During this phase, | detected another major bug, again in
the Patient Medical Record Interface, specifically in the exact method in which the
patient's Permanent Medical File (the Patient Info, Personal Health History,
Temporary and Permanent Medications, etc.) was handled. Although this sub-
module did not work at that time (a bug in itself), when the sub-module was activated
in a certain method, the read-only attributes of the files and of the source code were
changed, causing a corruption in the module which loads the original patient
information. This was not an obvious effect, but it led to significant problems. | was
fortunate at this phase to have a duplicate copy in the database version of this
section of code with which to replace the corrupted code. Tracking down the cause
of the corruption, however, was not a trivial task, and | actually discovered the cause
by a combination of luck, knowledge of the code, thoughtful contemplation of the
actual step-by-step execution of that module, determination, and serendipity (since
| gave up for a few days and decided to correct the bug causing the Permanent
documents retrieval failure, which led to the module causing the disastrous code
violations.)

Around this period of time, the inadequacies of the intemal data representation
of the existing code began to cause serious problems in increasing functionality. In
conference with the faculty members in charge of the project, | repeatedly made the

assertion that the internal data structure was not adequate for further expansion.

7

The faculty advisors decided that since we were only going to prototype an interface,
actual functionality could be sacrificed for the impression of functionality. The
internal data structure as it exists now, is a hodgepodge of arrays and trees,
designed to hold multiple types of information. It is not object oriented, but would
greatly benefit from an object oriented approach. If we create each document as a
discrete object, we could use object oriented data base for storage of the
documents. By combining these objects, we could create a complete patient object.
Databases of this type are widely available and would be more useful than a pure
SQL database such as the one used on this project. By combining an object
oriented approach and an object oriented database, we would have the ability to
expand the domain of the documents nearly endlessly, removing the constraints set
by the initial parameters the original programmer created, allowing us to adapt to
new techniques and technology. Intemnally, we would need to represent the absolute
type of document, along with some method of viewing or interpreting the data
contained therein. Ideally, for the types of documents with which we have been
working, a good example would be to represent each document as either a scanned
image, data set collection, or textual document, accessed by a graphic viewer, data
interface, or text viewer, respectively, as the methods associated with the
corresponding objects. Building on these simple document type objects, we could
represent the patient’s historical data similarly. By using special expert systems

methods tailored to the specific document type (i.e., graphic, data set, or text), we

could then associate a particular attribute set for each document. By combining the
attribute sets, we would be able to do associative sets of related documents,
allowing search by subject without regard to document type. This feature could be
extended throughout the patient object, allowing the patient problem logs to be kept
and updated automatically. Patient objects could also be queried using the patient
methods, with higher level objects being built of groups of patient objects. This
method would alleviate many of the problems that are experienced with the existing
data structure, since each module added would build stability, compared to the
existing structure, where each new data item requires an extension of the existing
data structures format, forcing occasional wholesale code changes.

Mark Carter's Masters Project was an attempt to integrate the MIS project with
a database, allowing a more flexible, searchable system of data storage. During the
late summer of 1995, | was asked by Mark to help integrate his work into the existing
internal data structure. Unfortunately, the internal structure’s poor design forced
Mark to make some decisions that affected the usefulness of the database. The
original design had a flat file structure, with a series of special purpose files acting
as indexes for the enﬁre structure. These indexes included detailed information on
how to display each document'’s icon, information about what kind of data the
document represented, the document’s author, creation date, active date, a hard-
coded list of relation links, the file path to the document, and a few other

miscellaneous pieces of information. This file structure was deeply embedded into

9

the actual code of the project as a whole, as well. This forced Mark to substitute the
database for the index file, a poor implementation of a database system for this
purpose. Due to the nature of the files, the individual documents were not affected,
and instead remained in the original location, with the only significant change being
the handling of the index file. Realizing this was unsatisfactory, Mark choose to
rebuild the patient information files, which consist of basic information such as name,
address, date of birth, medical insurance, etc., and integrate that file directly into the
database. At this point, Mark asked me to assist in the creation of a series of utilities
that would be integrated into the database version that would allow actual input of
this kind of information, so we would have this data stored internally in the database,
versus the addition of another flat, read-only file. | chose to help design the
interface, using my familiarity with the internal data representation, while Mark
concentrated on reworking the database to accept the input. The initial attempt
proved to be satisfactory from my viewpoint, although Mark later slightly reworked
the interface to make data input somewhat easier.

Shortly after that, Kim Johnson asked me how the data she was preparing
would be indexed in the system so that she could write routines that would allow us
to utilize the data. | mentioned to her that the existing data representation was soon
to be outdated, and that we would be forced to either write a routine that could parse
that data representation into the database format or modify and insert the data by

hand. | suggested that Kim create a parsible index to her data that would be

10

convenient for her while remaining straightforward enough that no special work
would have to be done to translate her data into the new format. She and | decided
on the format her index would take and | relayed that information to Mark. | then
began the modifications that would allow multiple patients to be used in the actual
program. Previously, we simulated multiple patients by allowing the user to select
from a patient list but using the same patient record file for each patient, with the net
result being that all patient cases were identical. The most important modification
performed here was a precedence modification, which allowed the default condition
to remain, namely that the identical patient record would be utilized when no patient
record was available for the patient selected. Although this is not, in general, a good
practice, it allowed us to avoid the null patient case where the patient record did not
exist, but the patient record was requested to be displayed which was causing a
system crash. However, when a patient record did exist, the new system would
bring up that patient’s record instead of using the default condition. Kim's data was
now utilizable, and was incorporated into the system.

| began a series of much smaller look and feel modifications to the existing
design. Specifically addressed were a number of issues, such as phone-in visits,
help files, medical diagnosis, nurse’s triage, referrals, and consultations, etc. With
the major exception of the nurse’s triage, most of these were simply simulations of
functionality. The nurse’s triage required no change in the actual internal operation

but was unsatisfactory in the GUI interface presented. [created three different

1

versions of the nurse’s triage interface' in an attempt to find the one most suitable.
Ultimately, | found a suitable interface that seems powerful enough and efficient
enough for the needs of the project. The smaller look and feel simulations were
relatively easy since | was able to use Xf to prototype a GUI, insert dummy data into
the GUI, and capture an image of it. | then inserted the image into the file structure
in place of existing documents.

Porting the existing code from a BSD Unix environment over into a Solaris
environment was necessary at this time, as well. Although this required little total
code change, it did require a careful revision of the default parameters loaded into
the system during startup. For example, the change to Solaris resulted in a few
irregularities in the default startup positions for some of the existing interface
windows. By changing a series of runtime constants, | was able to shift the windows
into the appropriate locations, resulting in a return to the neat, crisp effect we had
previously achieved. Further efforts at that time included efforts to enlarge the
default size of the Patient Medical History interface, in an attempt to increase the
number of columns displayed to include Billing (unfortunately, the effect was too
crowded, and exceeded the default display size of the monitor.)

In a series of project meetings, the issue was raised by a faculty member on
the committee that there was a need to test the reactions of the existing prototype
with the medical community. We contacted Dr. VanWalkenton, and set up a meeting

with him to ascertain his thoughts on the requirements the system must fulfill. After

12

the meeting, the consensus was that the system must offer expert system diagnosis
and treatment methodology in order to achieve its maximum usefulness. Although
this was outside of the domain of the MACH 1 prototype we were working with, it is
a serious design consideration for the MACH 2 and would be more than suitable for

a series of Masters level projects.

Design Proposal for the Mach II: Based on the lessons learned from the existing
Mach | prototype, a strawman Mach |l design proposal can be advanced. While not
attempting to be totally complete in all design aspects, the strawman proposal easily
allows for a basic framework on which to base further design. Due to the nature of
the actual data, and the ease with which the data can be idealized into groups of
documents or sets of groups of documents, an Object Oriented design is obviously
the logical initial starting point.

On the lowest level, we would have an object type defined as a document
object. Internally, each document object is quite different, with various internal
formats and methods associated with the specific document. In order to avoid
confusion, we will cali each actual medical document a datadoc. The actual
datadocs at this time would consist of three main types, with subtypes of each: a
textual datadoc, a graphical datadoc, and a data set datadoc. Externally, we would

wish to be able to use common interfaces on all of the document types, with the

13

exception that a few operations which should only be performed once for each
datadoc ever, such as the relationship matching.

The textual datadoc document objects can be subdivided into a number of
significant different types, ihcluding, but not limited to, Nurse’'s Triage reports,
Consultation Letters, Physician’s Progress Notes, Phone messages, Patient Health
History, etc. Each of these would require an internal method set different from each
other, but similar as a group, with the ability to reuse many (but not all!) methods
completely. The external methods of interaction with the document are'
straightforward, however, and would be the same for all document objects. We
would expect that one method would be (view <object>), which would display the
selected object regardless of what internal format the object itself used. For a
textual document, this would mean a viewer that would display the text formatted
appropriately for the actual contents, i.e., a Nurse’s Triage viewer for the Nurse’s
Triage document, a Progress Note viewer for the Progress Notes, etc., while a
graphical document object would obviously use some form of graphic viewer
appropriate for the exact type of graphic, and a dataset document object would use
some data-type specific plotting method (a simple X-Y graph plotter, for instance, for
something such as a weight vs. time dataset).

Additionally, all document objects would be required to supply information on
the document itself, such as creation date, author, document category (not to be

confused with document type, a document category would be what the document

14

object should be classed as, such as Progress Note, Billing Information, Lab Report,
etc., without regard to the actual content format), and any associated links that may
exist for the document. By using a standardized format, we need only treat each
encapsulated document object identically, after its initial creation, in order to properly
use the datadoc. This has obvious merits in simplifying the main program code, as
well as to aid debugging of that system, since only the methods associated with a

particular datadoc could cause display or compatibility problems for that datadoc.

If we pin down the architecture, we would have the following external methods
for interacting with a previously created object (where asterisks denote multiple
pointers or documents):

¢ (fetch_author <object> <doc_author>),

¢ (fetch_cdate <object> <doc_dat>),

¢ (fetch_category <object> <doc_cat>),

¢ (fetch_links <object> <*doc_link_ptr>),

¢ (fetch_rel_docs <object> <*linked_list_of_related_document_names>),

¢ (display_descript <object>), and

¢ (display_doc <object>).

Additionally, we need only two, initially, special external methods:

¢ (update_rel_docs <object> <*additional_related_documents_ptr>) and

¢ (delete_doc <object>).

15

All document objects, regardless of the actual datadoc format, would be required to
support these methods. During the creation of a document object, we would
additionally use two single use methods,

¢ (create_document <object>) and

¢ (create_links <object>).

This may sound like a complicated set of methods, but it is actually a relatively
simple set of commands, necessary for minimal functionality. They can be grouped
into four categories: Document Creation, Document Deletion, Document Information
Retrieval, and Document Presentation. Document Deletion would be rarely, if ever
used, with the only major document type that would be deleted regularly being for
reminder notices. Notice that no provision is made for document modification other
than the insertion of new links to related documents after the initial creation phase.
To all practical purposes, a document is read-only once completed and added into
the patient record.

The actual syntax and use of the various methods could be defined in the
following ways: fetch_author is designed to get the name of the actual author of the
document in question. fetch_cdate would be used to retrieve the actual creation
date of a document. fetch_category would be used to retrieve a quick summary of
the type of content of the document (not the FORMAT of the document, but rather,

what the contents represent). fetch_links would be used to retrieve the list of

16

document categories the particular document may be related to, such as “General
Health,” “Asthma,” etc. Similarly, fetch_rel_docs would retrieve a list of all
documents, regardless of category, the document might be related to. Note that a
key difference between these two is that fetch_links could be used in principle to
fetch documents that are not in the same group, i.e., documents that are for a
different patient, or that may apply to many patients, such as a medical journal entry
in the database, or a similar symptom group for a different patient.
display_descript would be a singular method designed to simply give a quick
overview of the document. This may be one of the more difficult hand inserted
elements, since it is basically a summary of the document, and must be done
manually during document creation. display_doc is, of course, simply a method
designed to display the native object in a format useable to the physician, be that
format a text viewer, special graphics viewer, or some form of plotting program for
information such as a cardiogram. update_rel_docs is a special command that
allows a document that has just been created to modify an existing document (the
object which the update_rel_docs method is being used on) to point to the newly
created document, or when a document is deleted, to modify the referenced
documents such that no pointers refer to the delete object. Note that not all related
documents should return a pointer back, such as medical journal entries, drug

dosage information, etc, that is appropriate for MANY documents. It is the

17

responsibility of the document creation methods create_document and
create__links and the document deletion method delete_doc to use this method, and
in general it should not be used by any other method or interaction.
create_document is used to create a new document object of the comrect type. This
method is inherent in the object type, and not in the object itself, and thus is not
capable of being used by the object itself. Likewise, create_links is inherent in the
create_document method, and may only (normally) be called by
create_document. delete_doc would be used simply to remove and destroy an
object document, along with updating all of the associated pointers referencing it.
Note that some document types, regardiess of the fact that they should have this
method available, should never be actually deletable, such as medical journal
listings and articles, etc., that may be pointed at by some documents, but not return
the pointer to that document. Methods could be used which allow for a listing of the
NUMBER of documents pointing to it, however, which may allow the document to be
removed after no documents have pointed to it for some lengthy period of time. This
is simply a refinement of the delete_doc method for those types of documents,
however.

Sets of related document objects could easily be sorted by a number of
methods. The most intuitive would be something similar to the method utilized in the

MACH 1 prototype, where documents are catergorized by what the document

18

content meaning represents, ie., Nurse’s Triage, Billing, Consultations, Lab Reports,
etc. However, the ability to organize a particular record based on the set of related
documents should not be ignored. Whereas we can search using the document links
for documents containing any information on a specific subject, by utilizing the
related document method to interact with these documents, we would be able to
categorize by medical problems, similar to the method used in Mach 1.
Unfortunately, as in the Mach 1, we have a significant difficulty in identifying related
documents; whereas simple keyword searches could be used (on textual documents,
at least) to develop the document_links, only an expert or an expert system would
be completely able to categorize ALL related documents. It is obvious that the
Nurse's Triage and the Doctor’s Progress Note for a single visit would be related
documents; however, when the doctor orders a test, the system would be required
to generate some new document object immediately in order that the fact a test was
ordered could be documented into the Progress Note. Until the actual Lab Report
Document was returned, the existing object could be used to mark that a test is
pending, and the related PN, Nurse’s Triage, etc. However, once a lab report is
returned, the Pending Lab Report Document Object would need to be used to find
out what documents are related to the new document. Those objects could be
updated to the new Lab Report Document, the related_link to the Pending object
could be removed, and the Pending Object could eventually be deleted, with the new

Lab Report in it's place. An interesting point occurs here: do we update the

19

relate_links of old document objects when a new object is created that has a
related_link pointer to the old object? Obviously, this could require extensive
updates. The answer must be yes, however. Since every document has different
criteria as to what it's related documents are (a document may contain information
on more than one problem, which are not related to each other), any document
should be able to be chosen as the source for a related document search. If we
include a special category of document objects that we designate Root Problem, we
could use those objects to determine only the documents pertaining to a problem.
Yet if we do not perform a backward propogation of updating the pointers, we will be
forced to use the most recent objects to find all related documents. The back
propigation of updates allows us to avoid this by updating older documents so that
they can reference newer documents.

All documents relating to a particular patient would make up a superset object
called the Patient Object. Individual Patient Objects represent individual patients.
This allows us to again group the datadocs in an orderly, understandable manner.
This approach does have one potential disadvantage, however, in that care must be
taken to design a series of methods to interact with multiple Patient Objects on a
piecemeal basis if we wish to examine similar situations on separate patients. For
example, if we determine that patient J has an illness that was previously seen in
patient B, we may wish to use information learned from patient B to help in the

treatment of patient J. However, patient B's medical record as a whole is not useful;

20

only the information pertaining to the particular iliness is valuable and useful.
Therefore, we must remove part of the patient record to use for comparison
purposes, with a directed search through patient B’s record. Obviously, this will not
be a simple task, yet it is one of the areas where the MRS can be most useful for
general upgrading of patient care. Also, how will we determine that both patient B
and patient J have similar illnesses? Some form of relational search index would be
useful, a form of Meta-index of all patient records. This brings up the next level of
objects in our schema, a Meta-patient object for each physcian’s database to allow
for an index of related patient objects. However, do we limit it to individual
physcians, or do we expand the Meta-patient object to include all patients in the
database? One approach, limiting the Meta-patient object to just an individual
physcian’s patients, has the advantage of securing privacy much more adequately;
however, it limits the number of related patients a physcian can examine for
relationships, as well as only ensuring a standard quality of care for a particular
phycian’s patients. A new intemn, therefore, would have a very limited database to
work on, and the care from physcian to physcian would differ, even as a particular
physcian’s care became more uniform. This may not be desirable, since this could
lead to substandard care becoming the norm for some physcians, instead of
expanding the quality of care to a uniform level for ALL physcians. Current privacy
law may limit the ability to have multiple physcians in the same Meta-patient object

however.

21

Further Research: The MACH 1 prototype has reached the end of its useful
existence as an expandable tool. A MACH 2 prototype has been proposed and will
doubtless be begun if funding is available. Some of the lessons that were learned
from the MACH 1 prototype are directly applicable to the MACH 2. Specific
emphasis should be placed on the data structure internal to the program, the data
base storage requirements, inter-networking, and the refinement of a somewhat
more intuitive interface. These four major issues coupled with the expert system
issue previously mentioned, should drastically effect the design of the MACH 2.
The GUI interface look and feel is suitable for scaling up into a MACH 2
design. Further refinements would be necessary, but the basic design seems
workable. Major emphasis would have to be placed on the internal representation,
however. As it exists at this time, the current internal data representation is almost
completely unworkable; it is unsuitable for expansion, refinement, or actual use, and
serves only as a presentation structure. As mentioned previously on pages 8 and
13, an object oriented approach would be superior. The object oriented approach
would allow new data types to be integrated seamlessly into the existing system,
more rapid construction of data types, higher quality of data handling internal to the
program, and higher confidence of accuracy in the programming code while allowing
the program to be fitted into an object oriented database easily. If the object

oriented database is set up to deliver documents only on demand, but deliver

22

document summaries automatically, then it would be possible to lessen, and
possible cure, any inter-networking problems we may experience.

A major issue at this stage would be the design and incorporation of expert
systems tools into the MACH 2. Since the MACH 2 would have to be designed to
allow these expert systems to be added as they are created, some form of
representation would have to be created during the software architecture creation
phase. It is obvious that some of the expert systems would have to be integrated
into the objects as methods. What is not obvious is how we would integrate the
output from these various methods when the methods themselves, are different in
similar document types such as the methods used in a textual document vs. The
methods used in a graphical document. This is probably not insolvable in general,
and is solvable in specific for this problem, if the architecture design is inclusive of
a common interface for the output. We could then treat each document type
identically, with only the intemals of the object requiring information abput the actual
data organization. This approach would also allow a modularity in the addition of
new document types as new students become available, with each student creating
the entire object, including the expert system analyzer for the object, as part of a
project. The possibility exists that commercial expert medical systems could be
tailored for this task if desired as well. This approach could conceivably allow the
medical establishment to expand their existing tools as opposed to abandoning the

tools they have already begun using.

23

An SOL interface
Sfor a Tcl/Tk
Medical Records System
Prototype

Submitted by
Basil P. Stieffen

CS697 Independent Study
Summer 1995
Dr. Ravi Mukkamala

This paper is a representation of the work I performed to create an, Ingres
based, SQL interface to a Tcl/Tk based Medical Records System prototype.
The work evolved in stages and this presentation will be given as a
chronological depiction of the day by day achievements on the project. Each
day work was performed will be outlined as well as the number of hours
worked and the accomplishments of that day. Any references to code that
was developed will be accompanied by a copy of that code. Finally the total
number of hours spent on the project will be tallied and a short conclusion
will be given.

06/29 - .5 hrs - E-mailed Dr. Mukkamala to set up our first meeting on my
participation in the ongoing MRS project.

06/30 - .5 hrs - Dr. Mukkamala responded and we set up the meeting for
Tuesday July 11 at 1:30pm.

07/07 - .5 hrs - E-mailed Mark Carter and set up a meeting with him
concerning MRS for Monday July 10 at 2:00pm.

07/10 - 6.5 hrs - Met with Mark Carter today to discuss our approach to the
integration of Ingres SQL and MRS. He has already done quite a bit of work
regarding the development of what will be our Ingres relations. It appears as
if there is a Tcl/Tk extension which will enable us to interface directly with
Ingres, but since Ingres was down it was impossible for him to show me any
of the actual commands. I decided to first get the current system working on
my home Linux system so I could run certain tests etc. and by the end of this
day I have almost ported the entire system over.

07/11 - 1 hr - Met with Mark, Kim, Bill and Dr. Mukkamala about the course
and goals of the project. Because of my August graduation it was decided
that my goal would be to get the database functionality of the system
completed by August 15th. Bill will look at all of the current flat file reads
this week to determine the scope of the database implementation. Kim is
going to create additional patient information so we can have more than one
patient active in the system, and Mark will help her with this. I have agreed
to clean up the system, which was a somewhat disorganized mix of
directories and files, into a more concise and straightforward format

(Figure 1).

07/14, 15, 16 - 3 hrs - Cleaned up directories and files, trying to make the
system more navigable. This involved creating new directories and placing
files into these as necessary and changing links within the code to point to my
new hierarchy.

07/18 - 3 hrs - Had a meeting today with Mark and Bill. 1 installed my
cleaned up version of the system. Ingres is still down so they decided to
work on application code and I decided to attempt to find a freeware version
of Ingres.

07/19, 20 - 3 hrs - Found a freeware version of Ingres and installed it on my
Linux system. Everything went well until I discovered that it does not
support SQL but something called EQUEL which will not suit our purpose.

07/21, 22, 23, 24 - 6 hrs - Found a freeware version of SQL called msql or
mini-sql and installed it on my Linux system. It uses a subset of ANSI SQL
but it should be sufficient for our purposes. I have also installed a version of
Tcl/Tk which works with msql and have them up and working with one
another, however, Mark has just informed me that Ingres is now up so I'll put
my msql activities on hold for now.

07/25 - 8 hrs - I met with Mark today to begin working with tclsql. We made
excellent progress but shortly found that there are serious problems with the
Tk interface. Certain events do not process (e.g. buttons don't push, menus
don't pulldown) which leaves it unusable. We spent quite a while seeing if it
had been compiled incorrectly or some other explainable error but we didn't
have much luck. So we sent mail to the guy who developed it in hopes of
getting some answers. There is no way the Tk portion could have even been
tested, as the errors are so obvious. Mark and I decided to meet again on the
27th.

07/27 - 7 hrs - I met with Mark today to continue to investigate our problems.
I decided to go ahead and install msql and tclmsql on the Suns just in case we
can't get tclsql working properly. Once that was done I decided to try and
debug tclsql and maybe see if I could find the problem. This involved
recompiling tclsql, sqlwish, and both Tcl and Tk using the -g option, no small
task. This was very productive in that I did discovered that while some
events (e.g. scrollbars) worked fine, others did not. I discussed all this with

Mark and he gave me some additional hints about the event handler. I ended
the day with a good grasp of how all the packages compile, but still no
solution to our problem.

07/28 - 10 hrs - Today I went to school to attempt a step by step investigation
of tclsql to try to determine the cause of our problems. Mark and I traded
ideas on how to go about this. I decided to progressively eliminate objects
which makes tclsql and sqlwish different from the standard tclsh and wish.
At one point in this process I had eliminated every object which made the two
sql based programs unique, in essence I created tclsh and wish from tclsql
and sqlwish, and the problems still existed. However, this brought to light the
fact that sqlwish linked in tclApplnit.o while wish linked in tkAppInit.o. We
decided to change the Makefile and link in tkApplnit.o for sqlwish as well,
when I did this everything started working except for the SQL stuff. Since
tclsql was not even supplied with tkApplnit.c I had to grab a copy from the
original Tk release and add the SQL code to make everything work. Once
this was done everything started working great :-).

07/30 - 1 hr - I attempted to do some remote work from home but I did not
have grant authority to the health database so I sent Mark some e-mail to
allow me to use it.

08/01 - 7 hrs - Now that sqlwish works properly I can finally get down to
actually doing some actual coding. First, however there are two things which
I have to do. One, is to create my own testing environment. This includes
copying the entire system to my testing directory and creating the necessary
links for it to run there. Two, there seems to be a great deal of writes to
standard out in the current code. I counted approximately 2,500 lines of
output in the 14,000 or so lines of source code. Unfortunately all these writes
have a tendency to mask any of my own debugging output. So I have had to
try to eliminate as much of these writes as possible. It was almost nine
o'clock before I reduced the output enough where it will not interfere with my
own output. Now I can start to really test the current system to see where
changes need to be made.

08/02 - 6 hrs - Today I created several small test scripts to simulate some of
the current flat file processing which takes place in the system. The format
currently used is so pervasive throughout the system that, in my opinion, it
would be foolhardy to change the data format too drastically. My next step

was to create a new database relation based on the current patient medical
information. Once created my next step was to create some test scripts to
access that data and format it in such a way that the system could understand
it and use it. It was 9pm by the time I reached this point so I decided to leave
it until tomorrow.

08/03 - 5 hrs - Today I initially ran some tests at home on Linux simulating
the current system and what will be the Ingres interface. After many different
tests [was able to create something I felt would work well. I then signed on
to school and uploaded my tests so I could use them with Ingres.
Unfortunately Ingres was down again, so [mailed root and asked if someone
could look at the problem. I kept checking periodically throughout the day
but Ingres never came back up so I decided not to come into school, but
would check on things tomorrow.

08/04 - 4 hrs - Ingres was down most of today but finally came up in the late
afternoon. This enabled me to test those test scripts I had for yesterday.
They worked great with only minor modifications. It was late in the day by
this time so I decided to come in tomorrow and apply the test code to an
actual MRS program and see if it will work.

08/05 - 6 hrs - I went to school today to apply my script SQL code to the first
two indicated areas in MRS (Figure 2). With a small amount of tweaking I
got the code working. Next I found another call that simply requests the
names of the column headers, this fit great into the Ingres methodology since
Ingres makes the column headers the first row of any relation. So far I have
found these three references but I know there are more because the system
doesn't work when I rename the flat file, meaning that it is still in use. It was
4pm by this time so I decided to go home and research those additional file
references.

08/06 - 6 hrs - Last night I found the remaining references to the patient file
and came to school this moming to integrate them into the code. They differ
from the other accesses in that these process the file one line at a time rather
than the entire file (Figure 3). So I wrote several test scripts to experiment
with how the "cursor” format works within tclsql. My tests went well and 1
ended up with code which works very well. The lab was closing by now so I
left to come back tomorrow.

08/07 - 6 hrs - Today I implemented my "cursor" code and it went well
except for a few idiosyncrasies in how this access works. It appears as if the
"SQLfetchCursor" command has to always be used before a row is used,
even though the data is actually fetched beforehand. Dr. Mukkamala came by
the lab today to get an update on the project. He stated my primary and final
goal was to get the system working with one patient relation which contains
all of the patient data. I feel that if I rebuild the patient relation with an ssn
key then I could get this working in perhaps one or two days.

08/08 - 5 hrs - I started making the changes today to implement the one
patient relation scenario. I had to make changes to all of my code so far and
also set up an additional patient's information for testing purposes. I had to
make changes to the patient.index file to use the ssns instead of the original
patient code. To my amazement as soon as the changes were put into place
the code worked the first time. All that remains now is to put additional
patient information in the relation. This should be done by someone who will
be staying with the project, since it requires a greater understanding of how
the entire system works.

I really enjoyed working on the project. It enabled me to get a much greater
understanding of Tcl/Tk and see it's almost unlimited possibilities. Mark and
I had some large hurtles to overcome, especially with tclsql, but we did
overcome them and I think the system has improved immensely.

The total amount of hours spent on this project was: 95
The total amount of hours spent on this paper was: 10
For a total of: 105 hours.

I reduced the following mix of directories and files:

/research/health/tcltk [27] >la

#book.examples#* first run/ pcei_srch* shitfilex*
#book.examples#~* firstvisit.sh* phonesystem.sh¥* sorted_Globals*
2ndrun/ firstvisit.sh™* phonesystem.sh™* square*

CIF/ forms/ phonesystem.tcl* stinky.sh*
Unique_Globals* help/ phonesystem.tcl™* stinky.sh™*
XF.notes* lbtest.sh* plans* taputils.tcl*
all globals* lbtest.sh™* prochelp.tcl* tclGlobalx*
bitmap/ lbtest.tcl* prochelp.tcl™* tclIndex*
book.examples* lbtest.tcl™* replace* tclsourcefiles/
c-interface/ makefilex* replace™ * temp/

data/ multiform.sh* repository/ temp.tcl*
data_structures/ multiform.sh™* saveproc.tcl* templ40604*
dhc.tcl* oldtcl/ saveproc.tcl™* tkman.tcl*
dhc.tcl™* paper/ searchbox.tcl* todo.txt*
dhctop.tcl* patidx.tcl~* securdialog.tcl* trainer/
dhctop.tcl™* patient.idx* securdialog.tcl™* triage.tcl*
dialogtest.tclx* patient_data/ security/ triage.tcl™*
dialogtest.tcl™* patientinfo.sh* security.sh* unique_Globals*
examples/ patientinfo.sh™* security.sh™* uniqueglobals¥*
file.test patientinfo.tcl* security.tcl* view/
filestruct.fig* patientinfo.tcl™* security.tcl™* wishtest*

Into these more concise and meaningful directories:

/research/health/mrs [30] >la

Medical Records_System/ forms/ pictures/

bitmap/ help/ tcl-tk-xf_info/
build_info/ medical_ images/ tclsourcefiles/

data/ non_vital info/

Figure (1)

These are the first two database calls integrated in the MRS code:

This is the call from Medical Records_System/canvasops.tcl:
FHEEEEEE R AL H R R E R R LR R LR LR E R LR R R R LR EH AL HE 4
The following starts some new database code using Ingres SQL

to access patient data. The database name is currently

doc_1_index.

FEF R ER R AR AR AR R AR AR LR R R R R LR E R EA R ##

set size [Lookup All Matches_ Index problem {"BLANK"}
$patient (patient_num) patient_med_info docarray]

set format [Lookup_ Index Format patient med_info]

And this is the first called procedure in tclsourcefiles/index.tcl:

proc Lockup All Matches Index { column key patient_num relation array }

{

upvar $Sarray a

FEEREF R AR EE R AR EEE SRR R R A LR R BB ES R LR LR R R LR E1F
The following starts the new database code using Ingres SQL

to access patient data.

FHEFFEER R EE R AR R AR A F R R R R R R R LR R R R R R LR R R R E AR # 4

if { (catch { sSQLopendb health } £] I= 0 } { puts $f; return 0 }

#Note '"BLANK"', ingres requires '’ to process character data correctly.
SQLselect -noheaders atmp * from $relation where S$column='S$key' \

and pssn=$patient num
SQLclosedb

set size [array size atmp]
for {set i 1; set k 0 } { $i <= [expr $size/l12) } { incr i; incr k } {
for {set j 1 } { $j <12 } { incr j } {
if { Satmp($i,$j) 1= "" } {
append a(S$k) Satmp($i,$3)
if { §3 <11} {
append a(S$k) ":"

}
}

}
set found Sk

return $found

}

And this is the second called procedure in tclsourcefiles/index.tcl:
proc Lookup Index_ Format { relation } ({

 ddaddadaddaddaddaliddd i dddad gt il g g ddsididddd
The following starts the new database code using Ingres SQL

to access patient data.

 idaaddddad il ddd gl a it ididdiided il

if { [catch { sSQLopendb health } £] != 0 } { puts S$f; return 0 }

SQLselectRow 0 as * from Srelation
SQLclosedb

set size [array size as]

11 = 0 - 10 total fields always
for {set i O0; set kK 0 } { $i < [expr $size/l2] } { incr i; incr k } {
for {set j 1 } { $j < 12 } { incr j } {
if { sas($i,$3) 1= "") {
append b($k) Sas($i,$3)
if { $3 <11) ¢
append b(Sk) ":"

}

return $b(0)

}
Figure (2)

Thus 1s the called procedure (the calling procedure was unchanged) in
Medical Records_System/canvasops.tcl:

proc Scan_Doc_Index_And_Tag { } {
global gdirlist doc patient debug
eval global $gdirlist

set relation patient med_info

FREEEE LR AR L F R LB LR R LR 1R L L 1L R L H# 1 44
The following starts some new database code using Ingres SQL

to access patient data. The database name is currently

doc_1_index.

FHELERE LR LR R R R L LR R LR L LR AL E L E R L EH 1S

if { [catch { SQLopendb health } £ } i= 0 } {
puts "$f: Scan_Doc_Index_ And_Tag"
return O

}

SQLdeclareCursor cur

SQLprepareCursor cur select * from $relation where
pssn=$patient (patient_num)

SQLopenCursor cur

SQLdescribeCursor cur dbarray

SQLfetchCursor cur larray; #Get rid of the column names

set dbline O
set i O
while { [SQLmoreRows] != 0 } {
unset dbline
SQLfetchCursor cur dbarray
for {set 3 1 } { $J <12 } { incr j } {
if { Sdbarray($j) != "" } {
append dbline Sdbarray($j)
if { $3 <11} {
append dbline ":"
}

}

set line S$dbline

SQLcloseCursor cur
SQLclosedb

Build problem array (links to relations)
Build_Problem Array Srelation

}

And this is the other called procedure (called from the above statement)
Medical Records_System/canvasops.tcl

proc Build_Problem Array { relation } {
global gdirlist doc patient problem
eval global $gdirlist

FREREEEREEEEHE R LR E SRR R AR FEE SRR LR LR R RS E R EH R L E1 4
The following starts some new database code using Ingres SQL

to access patient data. The database name is currently

doc_1_index.

et

if { [(catch { SQLopendb health } f] != 0 } {
puts "$f: Build_Problem Array"
return O

}

SQLdeclareCursor curl

SQLprepareCursor curl select * from $relation where
pssn=$patient (patient num)

SQLopenCursor curl

SQLdescribeCursor curl larray

SQLfetchCursor curl larray; #Get rid of the column names

set dbline O
set i O
while { [SQLmoreRows] != 0 } {
unset dbline
SQLfetchCursor curl larray
for {set § 1 } { $3 <12 } { incr j } {
if { Slarray($j) = "" } {
append dbline $larray($j)
if { §) <11} {
append dbline ":"
}

set line $dbline

}
SQLcloseCursor curl

SQLclosedb
}

Figure (3)

Master’s Project Report

Creating a Relational Database Interface for the Health Care Project
using Tcl/Tk as the host language.

Mark C. Carter
Adyvisor: Dr. Mukkamala
Department of Computer Science
Old Dominion University
Norfolk, VA 23508-0162

August 21, 1995

Abstract:

After creating a working prototype of MRS (Medical Record System) for the health
care project it became apparent that this information could be better represented by the
use of a database instead of a traditional file system approach. The database was created
for two main reasons. First of all, it was believed that the use of database concepts will
expedite the future development of the MRS prototype. Secondly, by demonstrating an
SQL interface it would show potential customers that MRS does indeed have the
capability of supporting a “real world™ interface. This paper discusses some of the
rationale for implementing the database along with its advantages. The graphical
interfaces that were created for the database along with some examples of using the SQL
commands from within Tcl/Tk are presented. Some potential problems with the current
implementation will also be discussed.

1. Introduction

1.1 Major Reasons for using a Relational Database over a traditional file
processing approach:

With a traditional file system approach, each programmer would define and implement
the files needed to complete a specific task. Several problems arise when the same data
is keep in multiple files. First of all, this redundancy wastes storage space by having to
store the same data repeatedly, which can be a real problem for large databases. Secondly,
it requires more effort to maintain multiple copies and to insure that this common data is
up-to-date in each file. If this is not done then we have inconsistent data within our
system. For example, when a new patient enters there are currently several files which
maintains the patients name and this information must be included in each of these files.
However, in a database approach, there will be only one repository for the data. This
data, can then be accessed by multiple users and can be used to create multiple views of
this data.

In a typical file processing application using PASCAL, COBOL , Tcl/Tk etc... the file
structure and sometimes the exact location of an attribute within a record are coded into
the program that accesses this data. Some actually require the position and the size of the
data within the record.

In traditional file processing, the actual structure of the files are embedded into the
program, so any changes to the structure of a file will require or may require changing all
programs that access this file. For example, a each file may define its record length, the
number of characters(bytes) in each record, and each item may specify the starting byte
within a record and its length in bytes. In a relational database system, the actual access
is done independent of any specific file in other words all that changes is the description of
our relation. This is a form of a “data model” which provides the user with a “conceptual
representation” of the data that does not include how the data is stored (i.e. hides it from
the user). This is accomplished by keeping the detailed structure and organization of each
file in a catalog. The database user will refer to this conceptual representation or data
model for interpreting information and the actual database management system extracts
the details from the catalog when needed.

1.1.2 Additional Advantages of the Relational database

It will be easier to make changes to a database if more information is needed to be kept
about a particular relation only the definition of the relation is changed not the existing
application code, which would have to be modified in a traditional file processing
application.

It will usually require less time to develop a new applications using a database
approach than it would with a traditional file processing approach assuming the database
is up and running due mainly to the easy to use relational interface.

With a database the information is available to all users and therefore once an update is
applied to the database, all other users will have access to this updated information. This
prevents inconsistency in our data .

2 Entity-Relationship (ER) Diagrams

An Entity-Relationship model , which is a high level conceptual data model, was used
in the initial design of the database. It allowed us to get an understanding of what data
was required and the relationships that exist among this data. However, no formal
requirements specification was given and therefore it soon became evident that the data
would change and the ER diagram could only be used as a starting point and would not be
a unique or definitive solution throughout the development of this project . For example,
this preliminary ER diagram was created using an existing patient record form and
analyzing the information that this form is used to gather; however, this form changed
dramatically in a short period of time based apparently on some doctors preference.
Again, this 1s not the case with most databases systems which are usually stable , this is
the information is known in advance and is relatively constant throughout the design and
implementation phases. Figure 1. shows the Entity-Relationship diagram used for the
health care project. Due to the large number of attributes and a limited page size only the
most important attributes are shown for each entity.

Clype > (Date > @ork_related> CAddresd
C Name

Accident/Illness

&>

Relative

Reason_for
Visit

4 To Closest_relative
»

@ : @ Pat_med_info

w @ @ To Reason_for Visit

Related

Documents

Patient
!
e
N Works_for Employer ;
Married_to 1 1

Insurance

Company

Triage_info

vital signs

Fa g

Figure 1. Entity-Relationship diagram.

Effect_date

Notes
Need to include “participation” after confirming the “weak entities” , keys, etc...
not enough room to show all the attributes!

3 Relational Database Schema

A relational database schema usually contains a set of relations and their corresponding
integrity constraints. We have shown the key constraints, which are keys that must be
unique for every record in any relation instance for that particular schema. We have
enforced the entity integrity constraint; which states that no primary key can be null by
specifying the appropriate INGRES commands while creating the relations. Referential
integrity constraint was not implemented, due mainly to the fact that it’s our belief that
INGRES does not support referential integrity. Referential integrity constraint is used to
maintain the consistency among tuples of any two relations. In other, words if a tuple of
one relation refers to another relation then that reference must be to an existing tuple in

that relation. The relational database schema for the health care project is shown in figure
2

P

PATIENT_MED_INFO
]pssn[ﬁlename llitle [date_init Idate_recv Iauthor |problem JtypeT doctype Iindex [links [keyword

PATIENT
Ls_i_n Ipname [dob]sex]establish [paddrlpcity |pstate]pzipﬁ1m_phonelmarita]_stat | poccupation

SPOUSE

[pssn[sname [saddr [scity [sstate lszip Tshm_phone lsoccupation|

RELATIVE

[pssn] rname lraddr [rcity[rstate |rzip]rhm_phone lrelation |

EMPLOYER

Ipssn] ename Ieaddr |ecity |estate |ezip]wk_phonel

INSURED_BY
[pss_nlsub_nameJinsur_id |group_id ltype Irel_to_sub [eff_date lexp_date]iphone |ins_address

REASON_FOR_VISIT

[l;s—sg[accident Iaccid_time [accid_date lwork_relatcd |ref__physician|

TRIAGE_INFO

[name I pssn I date | weight] temp l pulse l blood_pressure I age I triage_textj

Figure 2. Relational database schema

Some of the previous tables require some further explanation. Others are self
explanatory and any further details can be obtained by viewing the status window from
within the graphical interfaces that already exist for inserting information into these tables

Patient_Med_Info is an arcroynm for patient medical information and its attributes are
described below in Table 1.

PATIENT_MED_INFO

[gs_sg] filename |title ldate_init |date_recv [author | problem Itype Idoctype iindex |links]ke.‘/words

Attribute Name | Description of Attribute Typical Value
pssn Stands for patient social security number. 123456789
filename The name of an external file, the type varies ptrecl.gif

title A short description of the file being referenced by | Patient Information

“filename”. Should be less than 30 characters in
order to be displayed properly.

date_init The date the file was created. This is the date that | 07/26/93
actually gets displayed in the “main canvas”.

date_recv This is the date that the document is received by 07/26/93
the hospital.

author Creator of the Document. C. Riley
problem This is a user defined description of what knee
information is contained within the file. If the or

word “BLANK? is used this will indicate that the | “BLANK”
file should be placed in area entitled Patient Base
Document, otherwise is goes into it respective

area (i.e. lab report, consult, clinical resume etc...)

type Represents a type of record or report that is being | PINFO
maintained by MRS. A list of acronyms used for
this attribute follow.

CM - Current Medications

TM - Temporary Medications

PN - Progress Note

PINFO - Patient INFOrmation

PP - Patient Profile

PHH - Personal Health History

PROBLEM - Problem Types

CONSULT - Consultant

LR - Lab Reports

OTHER - other type of forms

doctype

index_file

links

keywords

AN - ANnotation
CR - Clinical Resume
033 - Billing Information

The type of document being referred too (e.g. a

scanned image or text file etc...) The current
types are being employed. SCANNED, TEXT,
033, PN, TR, AUDIO

This field is always labeled as “BLANK” for
unknown reasons.

Are problems that are related or associated with
this current “problem”.

Are those words that are redeemed as important
in the current file.

SCANNED

“BLANK”

knee
or “BLANK”

patient information
knee

Table 1. A Complete Description of table Patient_Med_Info.

The following code will create all tables described above. The easiest method is to start
INGRES while logged onto the host machine “tsunami” as follows. It is assumed that the
initiator of the following code is a valid INGRES user and has access to a database or has
created a database called ‘“health”

sql health to start INGRES.

\read <a file name> This file should the contain following code as a minimum and

tables can be added if desired.

create table patient_med_info

(pssn
filename
title
date_init
date_recv
author
problem
type
doctype
index_file
links
keywords

varchar(15) not null not default,
varchar(20),
varchar(35),
varchar(15),
varchar(15),
varchar(20),
varchar(20),
varchar(20),
varchar(20),
varchar(20),
varchar(20),
varchar(456)

create table PATIENT

)

(ssn
pname
dob

sex
establish
paddr
peity
pstate

.pzip

phm_phone
marital_stat
poccupation

\p\g

varchar(15)
varchar(64),
varchar(15),
varchar(6),
varchar(15),
varchar(64),
varchar(34),
char(4),
varchar(15),
varchar(15),
varchar(15),
varchar(34)

create table SPOUSE

)

(pssn

sname
saddr

scity

sstate

szip
shm_phone
soccupation

\p\g

varchar(15)
varchar(84)
varchar(84),
varchar(34),
char(4),
varchar(15),
varchar(15),
varchar(34)

create table RELATIVE

)

(pssn
rmame

raddr

rcity

rstate

IZip
rhm_phone
relationship

\p\g

varchar(15)
varchar(84)
varchar(84),
varchar(34),
char(4),

varchar(15),
varchar(15),
varchar(34)

create table EMPLOYER

(pssn varchar(15)
ename varchar(84)
eaddr varchar(84),

not null not default,

not null not default,
not null not default,

not null not default,
not null not default,

not null not default,
not null not default,

ecity varchar(34),

estate char(4),
ezip varchar(15),
ephone varchar(15)
)
\p\g

create table INSURED BY
(pssn varchar(15) not null not default,
sub_name varchar(34),
insur_id varchar(34) not null not default,
group_id varchar(34),
type varchar(34),
rel_to_sub varchar(34),
eff date varchar(15),
exp_date varchar(15),
iphone varchar(15),
ins_address varchar(84)

)

\p\g

create table REASON_FOR_VISIT
(pssn varchar(15) not null not default,
accident varchar(25),

accid_time varchar(15),

accid_date varchar(15),

work_related varchar(15),

ref_physcian varchar(32)
)

\p\g

create table TRIAGE_INFO
(pssn varchar(15) not null not default,
name varchar(34),
date varchar(18),
weight varchar(15),
temperature varchar(10),
pulse varchar(7),
blood_pressure varchar(15),
age varchar(7),
triage_text varchar(258)

)

\p\g

4 Tcl (Tool Command Language) interface to SQL (Structured Query
Language).

There were several methods of providing an SQL interface to Tcl/Tk for use with the
health care database. For example, there is existing support already for mini-SQL which
is a stand alone database for employing an SQL commands. Mini-SQL had several major
limitations, for example, only several commands were available for inserting and
retrieving information most of these were very primitive and awkward to use. Most
commands used a type of iterator, which required traversing each record step by step.
Again, most of the SQL commands did not appear to be standard or at least familiar to me
so this method for supporting an SQL interface was abandoned. The application msqltcl
was reviewed but i1t suffers the same problems as was discovered with the mini-SQL this
was actually expected because msgltcl was only a Tcl/Tk interface to the mini-SQL
database.

Next, we examined the idea of creating our on interface to INGRES. This idea was
indeed feasible , but it would require an in-depth knowledge of Tcl/Tk and the low-level
calls necessary to access INGRES assuming this is possible. In the process of
implementing this idea we discovered an application which provided the necessary
interface between Tcl/Tk and SQL (see reference [4]).

After installation this application provided two executables . The first was called tclsql
which is a version of *“Tcl” that also supports the SQL commands. The second
executable is called sqlwish which is a version of “wish” or “Tk” that also supports the
SQL extensions. This application was ideal because it provided numerous commands as
described below in a standard SQL format. After testing these commands it was evident
that this was an excellent extension to Tcl/Tk. However, even though the SQL commands
seemed to work flawlessly it was later determined that this application was not supporting
other scripts that had previously been written in wish or tclsh . After several days of
debugging and testing it was determined that there where several source code errors and
even makefile errors.

There are three types of commands: general commands, non-cursor commands and
cursor commands.

The general commands are used for opening and closing the database. For example,
the following general commands will open and close a database called health from inside a
Tcl/Tk script.

SQLopendb health
SQLclosedb

Most non-cursor commands return values in a two dimensional Tcl array. These
commands are very similar to the INGRES SQL commands with the exception that the
programmer must specify an array name to hold the returned data. For example, the
following simple commands (Ex.1) will retrieve all attributes from a table called “patient”

10

where the social security number is equal to 123456789 and places them into an array
called keep_it. This example assumes the database is already opened.

Ex.1
SQLselect keep_it * from Patient where pssn=*“123456789"

Ex.2 will only insert two values into a relation called patient. This is accomplished by
specifying the attribute names (ssn, pname) along with their corresponding values. Ex.2
can be expanded to include any number of attributes up to the maximum for the given
relation by specifying additional attributes names and their corresponding values.

Ex.2

SQLopendb health

SQLinsert patient (ssn, pname) values ("111111111™,"Z00")
SQLcommit

Ex.3
SQLselect -noheaders keep_values * from patient where ssn=""111111111"

The previous “‘selection process” will return all attributes for the patient with the ssn value
of “I11111111".

The following is a print out for Ex.3 .

array name = attribute values
keep_values(1,0) ="111111111"
keep_values(1,1) ="Z00O"
keep_values(1,10) = N/A
keep_values(1,11) = N/A
keep_values(1,2) =N/A
keep_values(1,3) = N/A
keep_values(1,4) = N/A
keep_values(1,5) = N/A
keep_values(1,6) = N/A
keep_values(1,7) = N/A
keep_values(1,8) = N/A
keep_values(1,9) = N/A

N/A has been assigned to all values that were not give a specific values during our

previous insertion. This is accomplished automatically by INGRES if no default value is
supplied.

11

The cursor commands allow a user to efficiently step through the results of a select
statement one row at a time. The cursor commands that return a value will place the result
into a one dimensional array. Ex.4 is an example which prints all attributes of a table
called patient one row at a time or in other words one record at a time.

Ex.4

SQLopendb health

SQLdeclareCursor cur

SQLprepareCursor cur select * from patient
SQLdescribeCursor cur patient_header

The following will print the header of the table patient.
parray patient_header ----- > means print array named patient_header

The headers for the patient relation as obtained from the preceding print out follows.
array name column names of table patient
patient_header(0) = ssn

patient_header(1) = pname

patient_header(10) = marital_stat

patient_header(11) = poccupation

patient_header(2) = dob

patient_header(3) = sex

patient_header(4) = establish

patient_header(5) = paddr

patient_header(6) = pcity

patient_header(7) = pstate

patient_header(8) = pzip

patient_header(9) = phm_phone

The following will print each row within the table called patient

SQLopenCursor cur

while {[SQLmoreRows]} {
SQLfetchCursor cur one_row
parray one_row

}
SQLclosedb;

The following is a print out for Ex.4.
array name = attribute values
one_row(0) = 123456789
one_row(1l) = Mark Carter
one_row(10) = single

one_row(11) = student

one_row(2) = 12/12/66

12

one_row(3) = male

one_row(4) =

one_row(5) = 1321 Sussex Place
one_row(6) = Norfolk
one_row(7) = VA

one_row(8) = 23508
one_row(9) = 804-489-2997

The following example (Ex.S) code provides a second method for printing all of the
attributes of the patient relation one record at a time.

Ex.S

SQLopendb health

SQLdeclareCursor cur

SQLprepareCursor cur select * from patient
SQLdescribeCursor cur find_size

The following code will print each row within the table called patient
SQLopenCursor cur
set size [array size find_size]
SQLfetchCursor cur one_row
while {[SQLmoreRows]} {
for { seti0} { $i< $size } {incri} {
puts "$find_size($1) = $one_row($i)"
}

SQLfetchCursor cur one_row

)
SQLclosedb;

The following is a print out for Ex.5.
attribute name = attribute value

ssn = 123456789

pname = Mark Carter
dob = 12/12/66

sex = male

establish =

paddr = 1321 Sussex Place
pcity = Norfolk

pstate = VA

pzip = 23508

phm_phone = 804-489-2997
marital_stat = single
poccupation = student

13

The following is a complete list of SQL commands currently available. For more detailed
information on each command use the on line help as follows “man” <command name>.
For example, man SQLfetchCursor. The following list was taken from reference [4].

GENERAL TCLSQL COMMANDS
SQLopendb database_name
Open a database inside tcl
SQLdbName
Return the name of the currently open database.
SQLcommit
Commit SQL transactions to the database.
SQLclosedb
Close the open database inside tcl.

NON-CURSOR TCLSQL COMMANDS
Non-cursor tclsgl commands use an internal SQL Data Area
(SQLDA) structure. The SQLDA structure is created and ini-
tialized with the first call to SQLexec or SQLselect*. The
SQLDA structure is freed when SQLclosedb is called.

SQLexec result_array sql_statement
Execute an SQL statement inside tcl.
SQLselect [-noheaders] [-1d] result_array select_statement
Execute an SQL select statement inside tcl.
SQLselectRow [-1d] row_number result_array select_statement
Execute a select statement, get a specific row.
SQLcolNamesSelect [-1d] result_array select_statement
Execute a select statement, get the column names.
SQLcolTypesSelect [-1d] result_array select_statement
Execute a select statement, get the column types.
SQLimmediate sql_statement
Execute and SQL command.
SQLdelete sql_delete_statement
Delete a row from a table.
SQLinsert sql_insert_statement
Insert a row into a table.
SQLupdate sql_update_statement
Update columns in a table.

CURSOR TCLSQL COMMANDS

SQLdeclareCursor cursor
Declare an SQL cursor.
SQLprepareCursor cursor sql_statement

Setup an internal SQL statement for access from tcl.
SQLdescribeCursor cursor [result_array] [row_indice]

Setup the SQL result area, get the column headers.
SQLopenCursor cursor

Open an SQL cursor for fetching.
SQLisACursor cursor

Return 1 if the cursor exists.
SQLIistCursors result_array [row_indice]

Get the names of all the cursors.
SQLcloseCursor cursor

Close an SQL cursor.
SQLfetchCursor cursor result_array [row_indice]

Fetch a row from an SQL cursor.
SQLmoreRows

Return 1 if there are more rows to fetch from an SQL cursor.
SQLcolNamesCursor cursor result_array [row_indice]

Get the column names of the query associated with a cursor.
SQLcolTypesCursor cursor result_array [row_indice]

Get the column types of the query associated with a cursor.
SQLdeleteCursor table_name cursor

Delete a row from a table.

5 Adding Patient Data

During the patient’s first visit to a Dr. he/she will select the icon labeled “First visit”
which will bring up another menu with several options one of these options is entitled
patient information. This interface will allow a user to input all necessary patient
information into an existing database called health. The information requested includes
social security number, name , address, physician who referred you, type of injury and the
patient’s responsible party information. One functionality that was added to ease the task
of inputting information was to automatically place the cursor into the adjacent columns
or “entry widget” once the user pressed the enter or tab keys. Another useful feature is
that of a “status window” which will inform the user of the desired action for each entry.
The Figure 3. is a captured image of the interface that will be used by the patient. Even
though this interface was originally designed to be used only by the developers of the
health care project for inputting test data we thought it was actually aesthetically pleasing
enough to be incorporated into the Medical Record System (MRS)

Please Enter Patient Information

Palient Her pate of gre: |G
Slreet Aditruss: — Oty m State: . A Cole " Marlad Xladus:

|

Home Telephone No. © — Qucuption (Indicate if Student): ~ Eraplayiat by: — i

H

v Tepnone o, - RN o s S s R R . B v N
Eormepmm—— e ——— ey e Y)

Ploase Enter Responsible Party information

nex;w';nsmk; arty Hagne: S i
sinwt Auldress: ” PR N Honer Fhube: Ho. — \
occupaton: TN rviovea by i
Vark Teleptione Ho. — Employer's Street Addness: — City: “ Slate: . f _
viame of Hext of ker: | EEERRNSNENNONE Hotationsip: Fetopnone Huier: R

Was aiy Accidont invotved? | o5 1T Vs, Date of fpury: — {noe uf bgury Was 1 YAk Retated? | Ve

Figure 3. Patient Information Interface

6 Requesting Insurance Information

During the patient’s first visit he/she will also need to fill out an insurance form
indicating how they will pay for this visit. This is accomplished by selecting the “First
Visit” icon which will bring up another menu with several options one of these options is
entitled insurance information. This interface will allow a user to input all necessary
insurance information into an existing database called health. The information requested
includes subscribers name and whether it’s their primary, secondary or other insurer. The
social security number is obtained from the patient information that will already have been
inputted into the database through the patient data interface. This interface has similar
features as the interface for patient information mainly automatically placing the cursor
into the adjacent columns or “entry widget” once the user has pressed the enter or tab key
and providing a “status window”. Figure 4. is a captured image of the interface that will
be used by the patient to input their insurance information.

16

Please Enter Insurance Information

TYPE OF
INSURANCE

LGV Subseri I 10, NN Group
© Refationship To Subseriber: |GG rrr pate: RN <. Date:
Telephone Ho. [T Insurance Malling Address:

Subscriber Name: (MM o EEEREERREN
Retationship To Subseriber: TGRS rer. pate: RN . Date:
Teiephone o, JENEGTNREIEEEEEEEEES Insurance Mailing Address:

SECONDARY

Subseriber tiame: [N 0 o DR G
Relationship Te Subscriber: [ENIREENRIRIRE v nae: GEETTREEEEE 0. Date:
Telephone Ho. — Insurance Mailing Address:

Figure 4. Insurance Information form.

7 Triage Information

This interface was redesigned to include such information as data, social security
number and name which will allow for individual triage records for a particular patient to
be retrieved based on a particular date. Features such as “partial key” completion is now
being provided through the database. The partial key feature is implemented as follows
after three letters have been typed a database query for all existing names is done and then
a comparison is made between all these names and the partial key if a unique match occurs
then the remainder of the word is filled in automatically. One small problem about
efficiency, should be mentioned here. It requires some time to retrieve the information
from the database, however, it should be possible to create an index of names. An index
would provide a quick look-up mechanism for frequently used data. This would solve this
problems related to slow data retrieval. Once the information is loaded in to a data
structure within the program quick access can be obtained. The interface for the triage
information is shown in figure 5.

Help

Figure 5. Triage Input Form.

8 Adding Records

Adding records option can be seen after selecting “View patient info” and then
selecting Display data. This interface was created to aide in the inclusion of related
documents such as scanned images, charts, x-ray images etc... This interface was originally
to be used under “view Patient Information Display data” only because there was a
reserved “button” called add records. However, it is our belief that this is not the best
place to be adding records because the title implies that you are only able to view data.
This interface was also designed to add additional patient records to the database but it
requires a rather detailed knowledge of the existing code and the relationships that exist
among the data that is to be entered through this interface. Because of these requirements
this interface was not incorporated into MRS. Solutions to this problem are discussed
under the section entitled Problems and Needed Features.

9 Problems and Needed features

It soon became apparent that a problem would occur when new records are added. For
example, the original MRS had all the necessary information for establishing links hard
coded into the program. This was a satisfactory solution for a prototype or demo of a
single patient; however, it was far from being useful in a *“real world” application. First, it
appears that some of this information may be redundant or even unnecessary. Information
such as dates and doctor’s name may be obtained from other relations. Next, there needs
to be a “selection process” that will enable the user to identify the problem or injury in a
systematic way. For example, if a patient enters the hospital with a knee injury the nurse
or doctor should be able to identify this problem by selecting it from a “list box”
containing common ailments and associated codes. This would prevent the nurse from
naming this injury a “leg” problem and the doctor referring to it as a “knee” problem
which would cause two separate links to be created one for leg and one for the knee.

Furthermore , this entire concept may require re-thinking with this type of selection
process in mind. Another problem is automatically selecting keywords from the triage
text.. There may be an algorithm that will determine keywords based on grammar, but I'm
not aware of any that can accomplish this task. This area requires further research.

18

After creating the patient information interface we tested it by adding data into each of
the fields that we had created. It became apparent that this interface was requesting too
much information, even though, this form had already been reduced substantial from the
original form that we was given. Some of the trivial items could be removed. For
example, the address of your next of kin or employers complete address. At this time we
do not see why a doctor would need this information. Some inquiries into why this
information is required is needed

Before this prototype is released to a beta test site it would require making it more
user friendly by checking data types and bounds on data etc... This will require some time
and was not concerned necessary at this stage in our prototype.

A nice feature would be to include Audio messages for the status windows in addition
to the message actually being displayed. There are numerous other places that Audio can
and should be used for example the progress notes already contain a section requiring
audio to be recorded. AK is an extension to Tcl/Tk which provides audio capabilities to
to a Tcl/Tk application. For more information about AK please see reference [1]

10 Conclusions

The MRS prototype now has a working database that can be accessed through Tcl/Tk.
There are numerous interfaces to the database already. Most of the graphical interfaces
deal with adding to the database. While the data can be retrieved from the database it is
now necessary to think of situations where this is likely or necessary to happen. The SQL
interface provided through Tcl/Tk is simple enough to be used and it supports most of the
SQL commands generally expected or required by any database employing SQL
commands. Several problems and missing features with the existing prototype were
mentioned.

References

1. Ousterhout, John K., “Tcl and the Tk Toolkit”. Addision-Wesley publishing
company 1994.

[N

_ Elmasri, Ramez and Navathe B, Shamkant, “Fundamentals of Database Systems.
Benjamin/Cummings, Redwood City, CA 1989.

3. Sven Delmas, paper, “Design and Implementation of a Programming Environment for
Interactive Construction of Graphical User Interfaces. Berlin, 19 March 1993.

4. Hylands, Christopher. www distribution, tclsgl version 1.1 - tcl/SQL interface
package, e-mail cxh@eecs.berkeley.edu.
5. Jolly, Carl, Numerous personnel interviews and e-mail correspondences, Summer

1995.

