

Reactigator

EML 4501, Group 1

Samuel Aplin, Robert Connor, Ryan Hostetter, William Kao, Noah Manera, Bashir Nayeem, Brandon Roberts, Matthew Stephens

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

- **Customer Needs:** the design intends to meet all of the needs specified by the UF Biofoundry
- Autonomous Operation: the design features autonomous operation so that the user can set the conditions and not worry with monitoring the process
- Future Customization: the 3D printable parts allow the design to be customized for future applications if necessary

UF

Reservoir and Pump Subsystem

- Autonomous for 2-week operations
- Luer lock syringe tips

Temperature Control Subsystem

External vapor compression heat exchanger

Display Panel

- Simple UI via LCD touch screen
 - **Emergency Stop**

Tool Delivery Subsystem

- Robotic Arm
- Reconfigurable

Fluid and OD Tool Block

- Polypropylene construction
- Custom fit for robotic grippers

Shaker Subsystem

- Custom Brackets for Standard Well Plate and Tubes
- 12 m/s² Linear Acceleration in 2 Axes

UF

Herbert Wertheim College of Engineering

UF Her

Required Shaking Speed

$$h = \frac{V}{\frac{\pi d^2}{4}} = \frac{90 \ mm^3}{\frac{\pi * 3.5^2 \ mm^2}{4}} = 9.35 \ mm$$
$$\frac{F_c}{F_c} = \frac{2h}{d} = \frac{2 * 9.35 \ mm}{3.5 \ mm} = 5.34$$

$$\frac{\left(D + \frac{d}{y}\right) * n^2}{g} = n^2 * \frac{\left(2 \, mm + \frac{3.5 \, mm}{4}\right) * \left(\frac{2 * \pi \frac{radians}{rotation}}{60 \frac{sec}{min}}\right)^2}{9.8 \frac{m}{s^2} * 1000 \frac{mm}{m}} => n = 1289$$

Table of Variables:

 $V = Working Volume = 90 mm^3$

d = Well Diameter = 3.5 mm

- D = Orbital Shaking Diameter = 2.0 mm
- y = Effective Diameter Factor = 4

h = Height of the Unshaken Liquid

 $F_{C} = Centripetal Force$

 $F_G = Gravitational Force$

n = Rotational Speed

Herbert Wertheim College of Engineering

Shaker Motor Analysis $a_c = n^2 * \frac{D}{2} = \left(1289 \ rpm * \frac{2 * \pi \frac{radians}{rotation}}{60 \frac{sec}{max}}\right)^2 * \frac{2 \ mm}{2} * \frac{1 \ m}{1000 \ mm} = 18.2 \frac{m}{s^2}$ Table of Variables:

7

UF

- n = Angular Velocity = 1289 rpm
- D = Orbital Diameter = 2 mm
- m = Mass of the Load = 2.25 kg
- L = Screw Lead = 0.005 m
- $\eta = Actuator Efficiency = 85\%$
- $J_A = Actuator Inertia = 0.741 kg * mm^2$
- $I_M = Motor Inertia = 6.768 \, kg * mm^2$
- $J_L = Load Inertia$
- $a_{c} = Centripetal Acceleration$
- $\alpha = Angular Acceleration$

T = Peak Required Torque

$$J_L = m * \frac{\left(\frac{L}{2\pi}\right)^2}{\eta} = \frac{2.25 \ kg * \left(\frac{0.005 \ m}{2 * \pi}\right)^2}{0.85} = 1.676 \ kg * mm^2$$

 $J_t = J_m + J_A + J_L = 6.768 \ kg * mm^2 + 0.741 \ kg * mm^2 + 1.676 \ kg * mm^2 = 9.185 \ kg * mm^2$

$$\alpha = \frac{2 * \pi * a_C}{L} = \frac{2 * \pi * 18.2 \frac{m}{s^2}}{0.005 m} = 22896 \frac{rad}{s^2}$$

$$T = \alpha * J_t + \frac{m * g * L}{2 * \pi * \eta} = 22896 \frac{rad}{s^2} * 9.185 \ kg * mm^2 + \frac{2.25 \ kg * 9.8 \frac{m}{s^2} * 0.005 \ m}{2 * \pi * 0.85} = 0.231 \ Nm$$

Chosen Components

Custom Polypropelyne Test Tube Holder

Need 26: Configurations for holding 50 ml and 15 ml Test tubes.

Lin Engineering NEMA 17 Motor

Need 5: 25 Watts each (less than 2% of total power) Need 20: Functions in ambient temperatures of up to 80° C Need 28: Max torque of 0.59 Nm will accelerate plates for optimal mixing

Parker 402XE Linear Actuator

Need 1: Life of over 100,000km (approx. 40 yrs) Need 28: Maximum acceleration of 20 m/s² UF Herbert Wertheim College of Engineering

Department of Mechanical & Aerospace Engineering

Fluid and Optical Density Tool

45° bend in needle allows nutrients to be added to the inner wall of the container to reduce splashing

PharMed BPT tubing provides good chemical resistance and 10,000 hrs. of use.

 $\frac{\min}{0.0191L} * \frac{hrs.}{60\min} * \frac{1 L}{ex} * \frac{1 ex}{day} * \frac{365 days}{year} * 10 years$

= 3184.99 *hrs* < 10,000 *hrs*.

Nutrient and Waste Tanks

- Nutrient Tank
 - o l L total volume
 - Fills 50 mL rack => 8 times
 - Fills Deep 96 plate => 5 times
- Waste Tank
 - o l L total volume
 - Inlet on top to prevent potential back

Luer Lock Couplings

flow

MasterFlex C/L

- Single Channel Pump head with 4 rollers
- Runs from 50 to 300 rpm
 - With 0.06" ID tubing => $53-318 \,\mu L/s$
- Max Operating Pressure = 103.4 kPa

$$\left| \frac{P}{\rho g} + \frac{\alpha \bar{u}^2}{2g} + h \right|_{out} - \left(\frac{P}{\rho g} + \frac{\alpha \bar{u}^2}{2g} + h \right) \right|_{in} = \frac{\dot{W}_{in}}{m g} - H_{lT}$$

• The control volume does not include the pump so there is no work in, the flow rate is constant, we're neglecting minor losses and we're using gauge pressure

$$\Delta h - \frac{P_{required}}{\rho g} = -H_{lT}$$

• We estimate the height change to be 1 ft., $R_{eD} = 249 < 2300$ so we have a laminar flow so our darcy friction factor becomes 0.275 and the tube length is estimated at 2 ft.

$$P_{required} = \rho g \left[f \left(\frac{L}{D} \right) \left(\frac{\overline{u}^2}{2g} \right) + \Delta h \right] = 4.5 \ kPa$$

 $P_{required} < 103.4 \, kPa$

Tool Delivery Subsystem

WidowX 250 Robot Arm by Trossen Robotics

UF 💾

Department of Mechanical & Aerospace Engineering

Tool Delivery Subsystem

3D Printed Custom Grippers allow for interchangeability

90-degree elbow design

OD/FI Subsystem

5050 RGBW LED Bed

- Red 630 nm
- Green 520 nm
- Blue 466 nm
- Cool white 6500k for photobioreactor mode
- 128/326/82/432
 lumens/meter

Optical Density Sensor

- Photoelectric Receiver
- -25 to 80°C operating temperature
- Receives red light (630 nm)

- 280-630 nm range
- 80 mA/W
 - <10 seconds warm up time
- Sensor is 3.65" x 1.60" x 2.46"

UF Herbert Wertheim Co

OD/FI Subsystem

Max light intensity for a single well culture with red light:

$$\frac{16 W}{1000 mm} = \frac{x}{6.96 mm} \qquad \qquad x = 0.11 W$$

$$\eta = \frac{\frac{128 \ lumens}{m}}{\frac{16 \ W}{m}} = \left(\frac{128 \ lm}{m}\right) \left(\frac{m}{16 \ W}\right) = 8 \ lm/W$$

 $\phi = P \eta = (0.11 W)(8 lm/W) = 0.89 lumens$

$$A = \pi r^2 = \pi (3.48 \ mm)^2 = 38.05 \ mm^2 = 3.80 \times 10^{-5} \ m^2$$

$$I_0 = \frac{\phi}{A} = \frac{0.89 \ lm}{3.80 \times 10^{-5} m^2} = 23415.9 \ lux$$

Well plates allow 90% light transmission so

 $I_0 = 23415.9 \ lux \times 0.90 = 21074.31 \ lux$

Doing the same calculation for the photobioreactor mode with 432 lm/m gives 71125.8 lux, which is within the range of direct sunlight and thus, good for illuminating photosynthesis-capable cell cultures

Herbert Wertheim College of Engineering

UF

Department of Mechanical & Aerospace Engineering

Frame and Structure Subassembly

Herbert Wertheim College of Engineering

UF

UF

Department of Mechanical & Aerospace Engineering

Temperature Control Subsystem

$$\Delta E = \dot{Q_{in}} - \dot{Q_{out}} + \dot{W_{in}} - \dot{W_{out}} = \Delta V = mc_{total} \frac{dT}{dt}$$

$$mc_{total} = \sum mc_{solid} + mc_{liquid} + mc_{gas}$$

$$\dot{Q_{in}} = A \times \frac{T_h - T}{\sum R}$$
$$mc_{total} \frac{dT}{dt} = (W_{in} - Q_{out} + \frac{A \times T_h}{\sum R}) - (\frac{A \times T}{\sum R})$$
$$A \frac{dT}{dt} + BT + C = 0$$
$$T(t) = T_{\infty} e^{-\frac{B}{A}t} + C$$

UF

Gas Subsystem Analysis

Bernoulli's equation as a starting point

 $P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$

Derivation of Flow Rate vs System Leakage from Bernoulli's

 $Q = 2610 * A * (dP)^{0.5}$

Area of Leakage and Maintaining Atmosphere Flow Rate Calculation

 $A = L * W = 26.1d * 0.01 * \frac{1}{12^2} = 0.00018125$

 $Q = 2610 * A * (dP)^{0.5} = 2610 * 0.0018125 * (.01)^{0.5} = 0.1495955 \ CFM = 4.2360728 \ LPM$

Purge Flow Rate Calculation

 $Q = 2610 * A * (dP)^{0.5} = 2610 * 0.0018125 * (2.5)^{0.5} = 0.7479770 \ CFM = 21.1803500 \ LPM$

Design Highlights and Features

- Customizable tool delivery system
- Explosion proof flow valves
- Touch screen display
- Robust small diameter shaker
- Large access for cleaning
- Easily accessible electronics
- Simplistic codability
- Small footprint on a desktop

Cost Analysis

Cost Breakup	Total Cost
OTS Cost	\$8949
Raw Cost	\$2160
Manufacturing Labor	\$1073
Assembly Labor	\$112
Energy Consumption	\$4
Total Cost	\$12298

Conclusion

The Reactigator can solve all customer needs and competes with commercial competitors using its autonomous structure and extreme flexibility in customizability according to the user.

Thank You

We would like to thank our corporate sponsors Cummins and Northrop Grumman for their support of this project.