Chapter 2

Motion in One Dimension

Dynamics and Kinematics

- Dynamics is a branch of physics involving the motion of an object
- Kinematics is a part of dynamics
- In kinematics, you are interested in the description of motion
- Not concerned with the cause of the motion

Quantities in Motion

- Any motion of an object involves four concepts
- Position of the object
- Displacement of the object
- Velocity of the object
- Acceleration of the oblect
- All these quantities generally may change with time

Position change=motion

- Position is defined as a coordinate in a reference frame
- Motion is change of position with time
- In this chapter we discuss motion in one dimension, along a straight line
- usually select along

$$
x \text { - or } y \text {-axis }
$$

Displacement

- Defined as the change in position
- $\Delta x \equiv x_{f}-x_{i}$
- f stands for final and i stands for initial
- usually use Δy if vertical
- In principle, may select X-axis as vertical if want, the name does not matter
- Units are meters (m) in SI

Vector and Scalar Quantities

- Vector quantities have both magnitude (size) and direction
- For notation of vectors usually use bold and an arrow over the letter: A
- Displacement is a vector, pointing from initial position to final
- + or - sign is sufficient to show the direction of vectors for one dimensional motion, considered in this chapter: since we consider only one dimensional
+ means vector pointing in the same direction as a selected axis, - means pointing opposite to axis
$-\longleftarrow \quad \longrightarrow$
- Scalar quantities are described by magnitude only (no direction)

Displacement Isn't Distance

- The displacement of an object is not the same as the distance it travels
- Example: Throw a ball straight up and then catch it at the same point you released it
- The distance is twice the height
- The displacement is zero

Speed

- The average speed of an object is defined as the total distance traveled divided by the total time elapsed

Average speed $=$ total distance total time

$$
\mathrm{v}=\frac{\mathrm{d}}{\mathrm{t}}
$$

- Speed is a scalar quantity, has no direction
- SI units are m/s

Velocity

- The average velocity is rate at which the displacement occurs

$$
\mathrm{v}_{\text {average }}=\frac{\Delta \mathrm{x}}{\Delta \mathrm{t}}=\frac{\mathrm{X}_{\mathrm{f}}-\mathrm{X}_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}
$$

- Usually select $t_{i}=0$
- Velocity is a vector (has a direction, same as displacement)

Velocity continued

- Direction of average velocity will be the same as the direction of the displacement (time interval is always positive)
. + or - is sufficient to show the direction
- Units of velocity are m/s (SI)
- Other units (e.g. ft/s) may be given in a problem, but generally will need to be converted to these

Speed vs. Velocity

Q2006 Brooks/Cole - Thomson

- Cars on both paths have the same average velocity since they had the same displacement in the same time interval
- The car on the blue path will have a greater average speed since the distance it traveled is larger

Graphical Interpretation of Velocity

- Velocity can be determined from a position-time graph
- Average velocity equals the slope of the line joining the initial and final positions
- An object moving with a constant velocity will have a graph that is a straight line

Average Velocity, Constant

- The straight line indicates constant velocity
- The slope of the line is the value of the average velocity, use
$v_{\text {average }}=\frac{\Delta X}{\Delta t}=\frac{X_{f}-X_{i}}{t_{f}-t_{i}}$

Average Velocity, Non Constant

- The average velocity is the slope of the blue line joining two points, use

Instantaneous Velocity

- The limit of the average velocity as the time interval becomes very short, approaching zero

$$
V \equiv \equiv_{\Delta t \rightarrow 0} \frac{\Delta x}{\Delta t}
$$

- The instantaneous velocity indicates the velocity at every point of time

Instantaneous Velocity on a Graph

- The slope of the line tangent to the position-vs.-time graph is defined to be the instantaneous velocity at that time
- The instantaneous speed is defined as the magnitude of the instantaneous velocity
Instantaneous velocity=slope of the tangent

$$
\text { Slope }=v
$$

Acceleration

- When velocity changes with time (e.g. increasing or decreasing), an acceleration is present (is non-zero)
- Acceleration is the rate of change of the velocity:

$$
\overline{\mathrm{a}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}
$$

- Units are $\mathrm{m} / \mathrm{s}^{2}$ (SI)
- Instantaneous acceleration is the limit of the average acceleration as the time interval goes to zero.
- Uniform acceleration means that acceleration $a=$ const (not changing with time)
- Acceleration is a vector quantity (has direction, may be positive or negative for motion along a straight line)

Acceleration in case of uniform (constant) Velocity

- Uniform velocity (shown by red arrows maintaining the same size)
- Acceleration equals zero, since $\Delta v=0$

$$
\overline{\mathrm{a}}=\frac{\Delta \mathrm{v}}{\Delta \mathrm{t}}=\frac{\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}}{\mathrm{t}_{\mathrm{f}}-\mathrm{t}_{\mathrm{i}}}
$$

Velocity and Acceleration are vectors! Both have directions, may be positive or negative!

- When the sign of the velocity and the acceleration are the same (either positive or negative), then the speed is increasing
- When the sign of the velocity and the acceleration are in the opposite directions, the speed is decreasing

Velocity and Acceleration: constant acceleration in the same direction as velocity

a

- Velocity and acceleration are in the same direction
- Acceleration is uniform (blue arrows maintain the same length)
- Velocity is increasing (red arrows are getting longer)

Velocity and Acceleration: case of opposite directions

a

- Acceleration and velocity are in opposite directions
- Velocity is positive and acceleration is negative (axis goes from left to right)
- Acceleration is uniform (blue arrows maintain the same length)
- Velocity is decreasing (red arrows are getting shorter)

Graphical Interpretation of Acceleration

- Average acceleration is the slope of the line connecting the initial and final velocities on a velocitytime graph
- Instantaneous acceleration is the slope of the tangent to the curve of the velocity-time graph

Average Acceleration

Most important equations for Chapter 2 as summarized in your book

TABLE 2.4

Equations for Motion in a Straight Line Under Constant Acceleration
Equation
$v=v_{0}+a t \quad$ Velocity as a function of time
$\Delta x=v_{0} t+\frac{1}{2} a t^{2} \quad$ Displacement as a function of time
$v^{2}=v_{0}^{2}+2 a \Delta x \quad$ Velocity as a function of displacement
Note: Motion is along the x-axis. At $t=0$, the velocity of the particle is v_{0}.

Kinematic Equations (discussion)

- Used in situations with uniform acceleration for motion along straight line

$$
\begin{aligned}
& v=v_{0}+a t \\
& \Delta x=\overline{v t}=\frac{1}{2}\left(v_{0}+v\right) t \\
& \Delta x=v_{0} t+\frac{1}{2} a t^{2} \quad \text { (alternative formula for } \Delta x \text {) } \\
& v^{2}=v_{0}^{2}+2 a \Delta x
\end{aligned}
$$

Notes on the equations (1)

$$
\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{at}
$$

- Shows velocity as a function of acceleration and time
- Use when you don't know and aren't asked to find the displacement

Graphical Interpretation of the Equation $v=v_{o}+$ at

Notes on the equasions (2)
 $$
\Delta \mathrm{x}=\mathrm{v}_{\text {aveage }} \mathrm{t}=\left(\frac{\mathrm{v}_{0}+\mathrm{v}_{\mathrm{f}}}{2}\right) \mathrm{t}
$$

- Gives displacement as a function of velocity and time
- Use when you don't know and aren't asked for the acceleration

Notes on the equations (3)

$$
\Delta x=v_{0} t+\frac{1}{2} a t^{2}
$$

- Gives displacement as a function of time, velocity and acceleration
- Use when you don't know and aren't asked to find the final velocity

Notes on the equations (4)

$$
v^{2}=v_{o}^{2}+2 a \Delta x
$$

- Gives velocity as a function of acceleration and displacement
- Use when you don't know and aren't asked for the time

Problem-Solving Hints

- Read the problem
- Draw a diagram
- Choose a coordinate system, label initial and final points, indicate a positive direction for velocities and accelerations
- Label all quantities, be sure all the units are consistent
- Convert if necessary
- Choose the appropriate kinematic equation (or N equations for N unknowns)

Problem-Solving Hints, cont

- Solve for the unknowns
- You may have to solve two equations for two unknowns etc.
- Check your results
- Estimate and compare
- Check units
- Use common sense! If the result does not make sense it is likely incorrect

Free Fall

- All objects moving under the influence of gravity only are said to be in free fall
- All objects falling near the earth's surface fall with a constant acceleration

Galileo Galilei

- 1564-1642
- Galileo formulated the laws that govern the motion of objects in free fall
- Verified the laws by experiments: dropping objects from the leaning tower in Pisa, Italy
- "Father" of experimental science, understood that it is not enough just to think...

Acceleration due to

Gravity

- Acceleration due to gravity is usually noted as g
- Magnitude of $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$
- When estimating, use $\mathrm{g} \approx 10 \mathrm{~m} / \mathrm{s}^{2}$
- g is always directed downward
- toward the center of the earth
- Ignoring air resistance and assuming gravity doesn't vary with altitude over short vertical distances, acceleration in free fall is equal to $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ and does not change

Free Fall - an object dropped with zero initial velocity

- Initial velocity is zero
- Use the kinematic equations
- Usually use y instead of x since vertical
- Let up be positive direction of y
- Acceleration is negative (since opposite to the direction of y-axis)

$$
\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

Free Fall - an object thrown downward

- $\mathrm{a}=\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$
- Initial velocity $\neq 0$
- With upward being positive, initial velocity will be negative

Free Fall -- object thrown upward

- Initial velocity is upward, so positive
- The instantaneous velocity at the maximum height is zero
- $a=g=-9.80 \mathrm{~m} / \mathrm{s}^{2}$ everywhere in the motion

Thrown upward, useful hints

- In case distance up and down the same:
- Then $\mathrm{t}_{\text {up }}=\mathrm{t}_{\text {down }}$
- And the final velocity $v=-v_{0}$
- This is "obvious" from the symmetry of going up and down
- Also may be directly calculated from kinematic equations

Non-symmetrical Free Fall

- For understanding helps to divide the motion into segments
- Possibilities include:
- Upward and downward portions
- The symmetrical portion back to the release point and then the non-symmetrical portion

Combination Motion (an example)

- first stage: rocket acceleration +gravity
- gravity only afterwards

