

Non-Electrolyte solutions

- \qquad - solution is one where the solute particles do not dissociate to any degree when then are dissolved in the solvent
- This is usually in a covalent compound

Colligative Properties

- physical properties of solutions
that are affected only by the number of particles NOT the identity of the solute
- They include

1. Vapor Pressure \qquad
2. Boiling Point \qquad
3. Freezing Point \qquad
4. Osmotic Pressure

- In all of these we will be comparing a pure substance to a mixture

- \qquad - the pressure exerted in a closed container by liquid particles that have escaped to the surface and entered the gas phase

- Changes related to lowering of vapor pressure are governed by Raoult's law, and fall into two categories.
- Those where the solute is non-volatile
- those where the solution has two volatile components.

- The presence of a nonvolatile solute lowers the vapor pressure of the solvent.
- VP solution $=X_{\text {solvent }} P_{\text {solvent }}$
- VP solution $=\mathrm{VP}$ of the solution
- $X_{\text {solvent }}=$ mole fraction of the solvent
- $\mathrm{P}_{\text {solvent }}=\mathrm{VP}$ of the pure solvent

- 23.00 g of an unknown substance was added to 120.0 g of water. The vapor pressure above the solution was found to be 21.34 mmHg . Given that the vapor pressure of pure water at this temperature is 22.96 mmHg , calculate the Molar Mass of the unknown.

- At $20.0^{\circ} \mathrm{C}$ the vapor pressures of methanol $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ and ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ are 95.0 and 45.0 mmHg respectively. An ideal solution contains 16.1 g of methanol and 92.1 g of ethanol. Calculate the vapor pressure.

- Modified Raoult's law
- Modified Raoult's law

Boiling Point Elevation

- The boiling point of a mixture is higher that the boiling point of a pure substance
- The difference in boiling points can be calculated by the equation:
- $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} m$ (i)

- $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} m$ (i)
- $\Delta T_{b}=$ change in boiling point (boiling point elevation)
- $\mathrm{K}_{\mathrm{b}}=$ Boiling point elevation constant (will always get form chart)
- m = molality
- i = van't Hoff factor = number of particles that the molecule breaks into

- molality = moles solute $/ \mathrm{kg}$ solvent
- What is the molality of a solution with 4.5 g of NaCl dissolved in 100.0 g of $\mathrm{H}_{2} \mathrm{O}$?

Freezing Point Depression

-- point where enough energy has been removed from the solution to slow the molecules down and increase intermolecular forces so the solution becomes a solid

Freezing Point Depression

- The freezing point of a mixture is lower that the freezing point of a pure substance
- The difference in freezing points can be calculated by the equation:
- $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} m$ (i)

Freezing Point Depression

- $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}} m$ (i)
- $\Delta \mathrm{T}_{\mathrm{f}}=$ change in freezing point (freezing point depression)
- $\mathrm{K}_{\mathrm{f}}=$ Freezing point depression constant (will always get form chart)
- m = molality
- $\mathrm{i}=$ number of particles that the molecule breaks into

Calculations with BPE \& FPD

- What are the boiling points and freezing points of a 0.029 m aqueous solution of NaCl ?

- K_{f} will always be given to you in the chart along with the solution's freezing point

- What are the boiling point \& freezing point of a 0.050 m solution of a non-electrolyte in ethanol?

- $\pi=$ MRT
- $\pi=$ osmotic pressure
- $\mathrm{M}=$ molarity
- $\mathrm{R}=0.0821$
- T = Temperature

