
Collision-Aware Assembly Planning

Tesca Fitzgerald Andrew Price Laura Strickland Zhefan Ye

Abstract— We present a collision-aware approach to assem-
bly planning using a robotic manipulator arm equipped with a
gripping endeffector tool. Planning of the manipulator’s motion
is accomplished using RRT-Connect. Computing the sequence
in which components in the assembly should be placed in the
assembly takes the size and shape of the gripper holding each of
the parts to be placed in the assembly into account. By looking
at how each part must be placed with respect to other parts
in the assembly, as well as where the gripper may come into
collision with the parts that will have already been placed up
to that point, our planning system generates the sequence in
which the parts should be assembled that best avoids collision
between the gripper and the parts already in the assembly.
Results are presented from a simulated manipulator arm that
uses this approach to successfully plan and execute the assembly
of a simple LEGO model.

I. MOTIVATION

“A good assembly process plan can increase the efficiency
and quality, and decrease the cost and time of the whole
product manufacturing process.” [1]. The ability to produce
inexpensive, high-quality products is a major feature of the
modern developed economies (see [2] for a listing of per-
capita GDP). Bearing these concerns in mind, it is easy to
see how important efficient, automated production processes
can be to the wealth of modern nations.

As this is a research frontier closely tied to the bottom
lines of both corporations and governments, much work
has been done to generate assembly sequences consumable
by production machines from human-generated design doc-
uments. This is frequently accomplished by generating a
precedence graph showing the high-level dependencies be-
tween parts, then using low-level skill primitives to actually
achieve the assembly design. One area that we feel we may
improve upon is augmenting this graph to show relationships
imposed not by the interactions between the parts themselves,
but between the parts and the tool(s) used to assemble them.
Thus, we hope to show that certain high-level assembly
tasks may be inadmissable or require action modification to
successfully achieve the desired design.

In this paper, we discuss our approach to assembly
planning, which combines traditional manipulator motion
planning with collision-aware part sequence planning. Plans
are generated that not only avoid manipulator self-collisions
and collisions between the manipulator and the assembly-in-
progress, but that also take into account that the endeffector
gripper holding the next part to be placed may not collide
with parts already in place. We have implemented this system
in simulation to assemble a LEGO model as shown in
Figure 1. While the LEGO model used in testing is a simple
model requiring only placement of parts onto a plane parallel

Fig. 1: KUKA KR5sixxR650WP arm (white) and completed
LEGO brick model (green)

to the horizontal ground plane, and while model requires no
two-handed assembly steps, we believe this is an excellent
starting point for further collision-aware assembly planning
development.

II. RELATED WORK

As assembly planning is a vital step in many manu-
facturing processes, much work has already been done on
planning for assembly and grasp planning. Common methods
for planning sequences of part placement in assembly tasks
include Assembly Sequence Planning (ASP), graph- and
tree-search approaches, stochastic optimization methods, and
partial-ordered planning approaches.

A. Assembly Sequence Planning

ASP is the selection of an ordered sequence of actions that
successfully assemble a specific product. Common topics
in the literature surrounding ASP include constraints and
geometry concerns related to assembly sequencing and tool
usage, optimization, and generalization.

1) Geometric Concerns in Assembly Planning: Graphical
methods are often used to represent assemblies and how they
may be assembled. Both [3] and [4] discuss the use of Non-
Directional Blocking Graphs (NDBG) in ASP. The NDBG of
an assembly represents the assembly’s internal structure and
describes possible interactions between parts [3]. An NDBG
may be used to estimate assembly complexity based on the
constraints at each step and generate assembly sequences
[3]. In [3], Wilson, et al. discuss how the complexity of an
assembly sequence may be measured and classified. Plans
for some special cases of assemblies, such as sequences



consisting entirely of one-step translations, may be computed
in polynomial time [3] [4].

Geometric constraints on tool usage must often be taken
into consideration. In [5], Wilson presents a framework for
general assembly procedures to determining whether the
use of some tool is feasible for some assembly step. This
framework considers the space needed for the tool to be
used, collision avoidance, and how the tool interacts with
a part [5].

2) Automated Assembly Planning: Wang, et al. discuss
several approaches to Automated Assembly Planning [1].
Automated assembly planning can be approached with two
primary methods. Exact, or enumerative methods utilize tree-
or graph-search to choose the best sequence of assembly
steps. While exact methods can find the optimal assembly
plan for an assembly process, this method does not scale well
for large, complex assemblies with many components [1].
Heuristic methods do not guarantee an optimal sequence, but
are much more efficient. Yet heuristic methods are prone to
getting stuck in local optima, requiring algorithms that allow
escape from local optima, such as stochastic optimization
methods [1].

3) Stochastic Optimization: Various stochastic optimiza-
tion methods may be used to prevent heuristic assembly
sequence planning methods from getting stuck in local
minima. Simulated annealing, such as presented in [6], is
often used. Hong and Cho define an energy function used
in the simulated annealing process based on the assembly
cost and assembly constraints associated with a proposed
assembly sequence [6]. The assembly sequence for which
the cost is minimized is considered optimal for the assembly.

Ant Colony Optimization (ACO) is a stochastic optimiza-
tion method used in the planning of assembly sequences
based on the behavior of ant colonies [7]. In nature, ants
deposit pheremones along their paths of travel, such as to
denote a path that leads to a food source. When an ant
finds a pheremone trail, it decides whether to follow the trail,
leaving its own pheremone trail wherever it goes. If it follows
the trail it found, that path’s scent is strengthened, as is the
likelihood of other ants to follow it. Similarly, in ACO, “ants”
are placed at random locations on a graph comprised of
possible disassembly steps for the finished product [7]. The
ants build disassembly sequences from the graph, which may
or may not be geometrically feasible. A pheremone matrix
is constructed to track the frequency with which each edge
of the graph is visited. The “best” sequence has the highest
pheremone count [7].

4) Partial-Ordered Planning: Work has also been done to
generalize plans by using partial-order planning. In [8], plans
for assembly are generated from the disassembly sequence of
a CAD model, and a plan is chosen based on user criteria.
These plans are broken down into generalized steps, such
as the translation of the endeffector, the rotation of a part,
or the use of a sensor or tool. These generalized steps are
then defined as lists of commands for a specific model of
robot that will execute the assembly task [8]. The robot,
equipped with these definitions, may use the generalized

(a) Planning Workspace

(b) SCHUNK PG70 gripper (c) LEGO bricks

Fig. 2: Overview of the workspace, detailed view of gripper
and Lego bricks.

plan to execute the assembly task, given that all necessary
constraints are met [8].

III. COLLISION-AWARE PLANNING

While completing an assembly task, it is vital that a robot
arm avoid collisions with itself and with other objects in the
world. Our method plans collision-free arm trajectories and
a sequence for part assembly that avoids collisions between
the gripper and already-assembled parts.

A. Collision Checking

Motion planning is crucial to enable robots to move
safely in real world environments while avoiding obstacles.
It relies on accurate and fast collision checking to know
whether poses of the robot in the world are in collision or
not. Since motion planners often have to deal with partial
or noisy information about the environment in which they
operate, we used the Flexible Collision Library (FCL)1 to
check for collisions, as it is well-suited to address these
limitations. FCL integrates several techniques, such as octree
representation, for fast and accurate collision checking and
proximity computation. It is based on hierarchical repre-
sentations and is designed to perform multiple proximity
queries on different model representations. FCL can perform
collision checking for rigid objects, point clouds, deformable
objects, and articulated objects [9]. Those features allow us
to detect collisions for the robot arm (an articulated object)
and rigid objects.

B. Construction Element Sequence Planner

1) Motivation: The first step of this planning process uses
classical planning to derive an total-order plan from the

1http://wiki.ros.org/fcl



partial-order plan provided by the model building instruc-
tions. The provided instructions consist of a series of steps,
each of which contains brick-placing actions that should be
performed within that step, but without a specified order.
While a human may easily use these instructions to construct
a model, this is in part due to our ability to manipulate small
objects dexterously. A robot, however, may not be able to
manipulate pieces with this same ability, and is thus faced
with a set of restrictions, such as grasping each object such
that it can be placed in the goal location without the gripper
hitting already-placed objects. As a result, the total-order
plan provides the robot with two benefits:

1) Provides a fully ordered list of brick-placing actions
2) Provides a grip position for each action such that the

item can be placed without the robot’s gripper hitting
already-placed objects in the process

2) Method: Since a partial-order plan is provided in
the instructions, the fully-ordered planning occurs to order
actions in each step of the provided plan as follows.

function ORDERACTIONS(ordered, unordered)
if Size(unordered) = 0 then

return ordered
end if
for a in unordered do

grasps← GetGraspPositions(a)
for g in grasps do

lGrasp← g[0]
rGrasp← g[1]
for block in ordered do

if Contains(block, lGrasp, rGrasp) then
collision← True

end if
end for
if collision = False then

action← [a, g]
ordered← ordered+ action
unordered← unordered− a
return OrderActions(ordered, unordered)

end if
end for

end for
end function
For each step, the above function is called, which tests

that each object can be placed at one of the specified grasp
positions. If an object can be grasped, it is placed into the
ordered plan and the next object is then tested.

The function Contains(brick, leftGrasp, rightGrasp)
detects whether grasping the brick at either of the given grasp
points will interfere with any of the already-placed bricks.
Specifically, it checks that each point does not touch any
object at the same height. Objects that have been placed at
a lower height cannot collide with the robot’s gripper, and
thus do not interfere with any grasp position.

Initially, the planner was written to reorder a series of
actions if a situation were to arise in which a block is difficult
to place, and cannot be placed using any of the available

(a) Placing first block (b) Placing second block

(c) Stacking block vertically (d) Alternate grasp

Fig. 3: Overhead View of Planner’s Model Construction

grasp points. By reordering the set of actions in that step,
the difficult-to-place block could be placed first, with the
remaining actions following. However, several steps in the
provided instructions that cannot be completed using a two-
point grasp without colliding with an already-placed block.
Thus, we defined three possible grasp configurations: a two-
point grasp which contacts the block at both the left and
right sides along the same x-axis; a two-point grasp which
contacts the block at both the far and near sides along the
same y-axis; and a one-point grasp which contacts the block
at the upward-facing surface. The last grasp would require
a more specialized tool to drop the block into place from
overhead, similar to how we might slide and press a block
into a goal location that is difficult to reach. As a result,
the planner only uses this third grasp if neither of the other
grasps are possible without colliding with the model.

3) Classical Planning Results: The result of this classical
planner is a fully-ordered set of actions written in the same
format as the original model building instructions, but with
a number at the end of each action statement to indicate the
index of the grasp type. This resulting plan is then provided
to the motion planner, which plans to move the specified
object to the planned goal location using the specified grasp
position.

Figure 3 depicts a top-down view of four stages along the
classical planner’s model construction. Figure 3a illustrates
the first block placement, which is a large LEGO plate
highlighted in blue. The white line represents the grasp
configuration, where the two end-points of the line are the
gripper’s points of contact with the LEGO piece.

Figure 3b illustrates the second block placement, also
highlighted in blue. The previously-placed object is also



(a) Building state 1 (b) Building state 2 (c) Building state 3

Fig. 4: Sample images from different building states. Figure 4c shows the completed state.

Fig. 5: MoveIt planner leveraging OMPL’s RRT-Connect
implementation to avoid the completed tower.

outlined in this figure, but is no longer highlighted. The third
building stage, Figure 3c, is an example of the first stacked
LEGO piece, which is placed vertically over a previously-
placed piece. Figure 3d shows a later building stage, in which
the highlighted piece cannot be grasped left-to-right without
colliding with the two previously placed parts; as a result, a
top-bottom grasp is used instead, as illustrated by the white
line.

C. Motion Planning

We used the Open Motion Planning Library (OMPL) [10]
to plan the trajectory for assembly. OMPL is a sampling-
based motion planner, and it contains implementations of
many state-of-the-art planning algorithms, such as Probab-
listic Road Method (PRM) [11], Rapidly-expanding Random
Trees (RRT) [12], RRT-Connect [13], and Kinodynamic
Planning by Interior-Exterior Cell Exploration (KPIECE)
[14]. For our project, given a start pose A, a goal pose B,
and a URDF description of a robot arm, OMPL is able to
find a motion plan using RRT-Connect, a bi-directional RRT
method, to guide the robot arm to move from A to B with
a valid trajectory.

IV. RESULTS

We tested the combination of the construction element se-
quence planner and OMPL to devise a possible construction
sequence for a simple LEGO tower in simulation, demon-
strating the viability of our method for performing simple as-
sembly operations. A model of the KUKA KR5sixxR650WP
arm equipped with a SCHUNK PG70 endeffector gripper
was used in visualization of the plan implementation.

Figure 2a shows the simulated world, which includes the
robot arm, the gripper and LEGO bricks.

Figure 2 shows the robot gripper and LEGO bricks in
details. Figure 4 shows the sample images from different
building states. Note that Figure 4c shows the final state of
our LEGO building.

Potential directions for future work include testing addi-
tional assembly tasks in simulation, such as additional and
more complex LEGO models. Beyond simulation testing, the
presented method could be implemented on a robot arm to
test real-world performance.

V. CONCLUSION

In this paper, we present a method of assembly planning
for manipulator arms completing an assembly task. This
method uses the possible grasps for each part to be assembled
and the resulting size and shape of the gripper holding the
part, as well as what other parts could already be in the
assembly, to plan the order in which parts are assembled. The
order is specifically chosen to avoid collisions between the
gripper (holding the part to be placed) and already-assembled
parts. This is complemented by the use of OMPL to plan the
arm’s trajectory and FCL to check for collisions.

The presented method was tested in simulation, with a
simulated robot arm assembling a simple LEGO model. The
part-sequence-planning algorithm was successful in deter-
mining the order of assembly, as the gripper did not collide
with any of the pieces already in the assembly.

VI. BREAKDOWN OF WORK

A. Tesca Fitzgerald

• Implemented classical planning algorithm
• Wrote object grasp visualizer



B. Andrew Price

• Created 3D models and visualizations
• Configured MoveIt motion planner for use with Kuka

arm.

C. Laura Strickland

• Wrote file I/O for LDraw files
• Worked on implementation and integration of motion

planning node

D. Zhefan Ye

• Worked on implementation and integration of motion
planning node

• Created video and image media

VII. APPENDIX

A. Repositories

Source code for the work discussed herein and instructions
for how the simulation and related code may be run is
available in the following repositories:

• Repository containing motion planning for
construction element sequencing and arm
motion: https://github.gatech.edu/
CS7649-HW1-AwesomeGroup/everything_
is_awesome

• Integration of MoveIt! package into simu-
lation: https://github.gatech.edu/
CS7649-HW1-AwesomeGroup/kuka_kr5sixx_
moveit

• Description of KR5sixxR650WP manipulator
arm: https://github.com/a-price/
KR5sixxR650WP_description/tree/GTRI

• Description of SCHUNK PG70 gripper: https:
//github.com/a-price/schunkPG70_
description/tree/GTRI

B. Videos

A video showing the assembly sequence plan gener-
ated by the construction element sequence planner: http:
//youtu.be/xmkYb9cUIzg Another video shows the
building process of LEGO Sears Tower: http://youtu.
be/FWt_a5A4tt4

REFERENCES

[1] Lihui Wang, Shadi Keshavarzmanesh, Hsi-Yung Feng, and RalphO.
Buchal. Assembly process planning and its future in collaborative
manufacturing: a review. The International Journal of Advanced
Manufacturing Technology, 41(1-2):132–144, 2009.

[2] The World Bank. Gdp per capita, ppp (current international
$). http://data.worldbank.org/indicator/NY.GDP.
PCAP.PP.CD, 2014. Accessed 2014-10-30.

[3] Randall H. Wilson and Jean-Claude Latombe. Geometric reasoning
about mechanical assembly. Artificial Intelligence, 71(2):371 – 396,
1994.

[4] D. Halperin, J.-C. Latombe, and R. H. Wilson. A general framework
for assembly planning: The motion space approach. Algorithmica,
26(3-4):577–601, 2000.

[5] Randall H Wilson. A framework for geometric reasoning about tools
in assembly. In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 2, pages 1837–1844. IEEE,
1996.

[6] DS Hong and HS Cho. Generation of robotic assembly sequences
using a simulated annealing. In Intelligent Robots and Systems, 1999.
IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on,
volume 2, pages 1247–1252. IEEE, 1999.

[7] J.F. Wang, J.H. Liu, and Y.F. Zhong. A novel ant colony algorithm for
assembly sequence planning. The International Journal of Advanced
Manufacturing Technology, 25(11-12):1137–1143, 2005.

[8] U. Thomas and F.M. Wahl. A system for automatic planning,
evaluation and execution of assembly sequences for industrial robots.
In Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, volume 3, pages 1458–1464 vol.3, 2001.

[9] Jia Pan, Sachin Chitta, and Dinesh Manocha. Fcl: A general purpose
library for collision and proximity queries. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on, pages 3859–3866.
IEEE, 2012.

[10] Ioan A \cSucan, Mark Moll, and Lydia E Kavraki. The Open Motion
Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–
82, December 2012.

[11] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. Robotics and Automation, IEEE Transactions on,
12(4):566–580, 1996.

[12] Steven M LaValle and James J Kuffner. Randomized kinodynamic
planning. The International Journal of Robotics Research, 20(5):378–
400, 2001.

[13] James J Kuffner and Steven M LaValle. Rrt-connect: An efficient
approach to single-query path planning. In Robotics and Automation,
2000. Proceedings. ICRA’00. IEEE International Conference on, vol-
ume 2, pages 995–1001. IEEE, 2000.

[14] Ioan Sucan and Lydia E Kavraki. A sampling-based tree planner for
systems with complex dynamics. Robotics, IEEE Transactions on,

28(1):116–131, 2012.


