

Color Appearance Models

Arjun Satish Mitsunobu Sugimoto

1

Today's topic

- Color Appearance Models CIELAB
- The Nayatani et al. Model
- The Hunt Model
- The RLAB Model

Terminology recap

- Color
- Hue
- Brightness/Lightness
- Colorfulness/Chroma
- Saturation

3

Color

- Attribute of visual perception consisting of any combination of chromatic and achromatic content.
- Chromatic name
- Achromatic name
- others

Hue

- Attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors
- Often refers red, green, blue, and yellow

5

Brightness

- Attribute of a visual sensation according to which an area appears to emit more or less light.
- Absolute level of the perception

Lightness

- The brightness of an area judged as a ratio to the brightness of a similarly illuminated area that appears to be white
- Relative amount of light reflected, or relative brightness normalized for changes in the illumination and view conditions

7

Colorfulness

 Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic

Chroma

- Colorfulness of an area judged as a ratio of the brightness of a similarly illuminated area that appears white
- Relationship between colorfulness and chroma is similar to relationship between brightness and lightness

9

Saturation

- Colorfulness of an area judged as a ratio to its brightness
- Chroma ratio to white
- Saturation ratio to its brightness

Definition of Color Appearance Model

- so much description of color
- such as: wavelength, cone response, tristimulus values, chromaticity coordinates, color spaces, ...
- it is difficult to distinguish them correctly
- We need a model which makes them straightforward

11

Definition of Color Appearance Model

- CIE Technical Committee 1-34 (TC1-34)
 (Comission Internationale de l'Eclairage)
- They agreed on the following definition: A color appearance model is any model that includes predictors of at least the relative color-appearance attributes of lightness, chroma, and hue.
- CIELAB meets this criteria

4

Construction of Color Appearance Models

- All color appearance models start with CIE XYZ tristimulus values
- The first process is the linear transformation from CIE XYZ tristimulus values to cone responses
- so that we can more accurately model the physiological processes in the human visual system

- To calculate CIELAB coordinates, one must begin with two sets of CIE XYZ tristimulus values
- Stimulus XYZ
- reference white X_nY_nZ_n
 used to define the color "white"

15

Calculating CIELAB Coordinate

Then, add appropriate constants

$$L^* = 116f(Y/Y_n) - 16$$

$$a^* = 500[f(X/X_n) - f(Y/Y_n)]$$

$$b^* = 200[f(Y/Y_n) - f(Z/Z_n)]$$

•
$$f(w) = w^{1/3}$$
 (if $w > 0.008856$)
= 7.787(w)+16/116 (otherwise)

- $L^* = 116f(Y/Y_n) 16$
- L* is perceived lightness approximately ranging from 0.0 for black to 100.0 for white

17

Calculating CIELAB Coordinate

- $a^* = 500[f(X/X_n) f(Y/Y_n)]$
- $b^* = 200[f(Y/Y_n) f(Z/Z_n)]$
- a* represents red-green chroma perception
- b* represents yellow-blue chroma perception

- $a^* = 500[f(X/X_n) f(Y/Y_n)]$
- $b^* = 200[f(Y/Y_n) f(Z/Z_n)]$
- They can be both negative and positive value
- What does it mean if a value is 0.0?

19

20

CIELAB color space

Chroma (magnitude)

$$C^*_{ab} = [a^{*2} + b^{*2}]^{1/2}$$

Hue (angle)

$$h_{ab} = tan^{-1}(b^*/a^*)$$

expressed in positive degrees starting at the positive a* axis and progressing in a counterclockwise direction

Table 10-1. Example CIELAB calculations.

Quantity	Case 1	Case 2	Case 3	Case 4
(19.01	57.06	3.53	19.01
7	20.00	43.06	6.56	20.00
Z	21.78	31.96	2.14	21.78
ζ,,	95.05	95.05	109.85	109.85
Y_{ij}^{n}	100.00	100.00	100.00	100.00
Z_n	108.88	108.88	35.58	35.58
	51.84	71.60	30.78	51.84
r **	0.00	44.22	-42.69	-13.77
o*	-0.01	18.11	2.30	-52.86
C* ab	0.01	47,79	42.75	54.62
ab ab	270.0	22.3	176.9	255.4

Plots of hue and chroma from the Munsell Book of Color

Straight lines represent hue

Concentric circles represent chroma

Summary of CIELAB (pros)

- well-established, de facto internationalstandard color space
- capable of color appearance prediction

Summary of CIELAB (cons)

- limited ability to predict hue
- no luminance-level dependency
- no background or surround dependency
- and so on...

20

Therefore...

 CIELAB is used as a benchmark to measure more sophisticated models

The Hunt Model

- designed to predict a wide range of visual phenomena
- requires an extensive list of input data
- complete model
- complicated

31

Input data

- chromaticity coordinates of the illuminant and the adapting field
- chromaticities and luminance factors of the background, proximal field, reference white, and test sample
- photopic luminance L_A and its color temparature T
- chromatic surrounding induction factors N_c
- brightness surrounding induction factors Nb
- luminance of reference white Yw
- luminance of background Yb
- If some of these are not available, alternative values can be used

Adaptation Model

 In Hunt model, the cone responses are denoted ργβ rather than LMS

$$\begin{vmatrix} \rho \\ \gamma \\ \beta \end{vmatrix} = \begin{vmatrix} 0.38971 & 0.68898 & -0.07868 \\ -0.22981 & 1.18340 & 0.04641 \\ 0.0 & 0.0 & 1.0 & Z \end{vmatrix}$$

33

Adaptation Model

$$\rho_{a} = B_{\rho} \left[f_{n} \left(F_{L} F_{\rho} \rho / \rho_{W} \right) + \rho_{D} \right] + 1$$

$$\gamma_{a} = B_{\gamma} \left[f_{n} \left(F_{L} F_{\gamma} \gamma / \gamma_{W} \right) + \gamma_{D} \right] + 1$$

$$\beta_{a} = B_{\beta} \left[f_{n} \left(F_{L} F_{\beta} \beta / \beta_{W} \right) + \beta_{D} \right] + 1$$

There are many parameters need to be defined...

$$f_n[I] = 40[I^{0.75}/(I^{0.75} + 2)]$$

The nonlinear response function fn Log(Nonlinear Response) 1.5 saturation 0.5 -Threshold Log(Input)

Adaptation Model

$$\begin{split} & \rho_{a} = B_{\rho} \Big[f_{n} \Big(F_{L} F_{\rho} \rho / \rho_{W} \Big) + \rho_{D} \Big] + 1 \\ & \gamma_{a} = B_{\gamma} \Big[f_{n} \Big(F_{L} F_{\gamma} \gamma / \gamma_{W} \Big) + \gamma_{D} \Big] + 1 \\ & \beta_{a} = B_{\beta} \Big[f_{n} \Big(F_{L} F_{\beta} \beta / \beta_{W} \Big) + \beta_{D} \Big] + 1 \end{split}$$

$$\rho_a = \left[f_n \left(F_L F_\rho \rho / \rho_W \right) \right]$$

$$\gamma_{a} = f_{n} \left(F_{L} F_{\gamma} \gamma / \gamma_{W} \right)$$

$$\beta_{a} = f_{n} \left(F_{L} F_{\beta} \beta / \beta_{W} \right)$$

$$\beta_a = f_n (F_L F_\beta \beta / \beta_W)$$

Opponent-color Dimensions

 Given the adapted cone signals, ρ_a, γ_a, and β_a, one can calculate opponent-type visual responses very simply

$$A_a = 2\rho_a + \gamma_a + (1/20)\beta_a - 3.05 + 1$$

$$C_1 = \rho_a - \gamma_a$$

$$C_2 = \gamma_a - \beta_a$$

$$C_3 = \beta_a - \rho_a$$

37

Opponent-color Dimensions

$$\underline{A_a} = 2\rho_a + \gamma_a + (1/20)\beta_a - 3.05 + 1$$

$$C_1 = \rho_a - \gamma_a$$

$$C_2 = \gamma_a - \beta_a$$

$$C_3 = \beta_a - \rho_a$$

■ The achromatic post-adaptation signal Aa is calculated by summing the cone responses with weights that represent their relative population in the retina

Opponent-color Dimensions

$$A_{a} = 2\rho_{a} + \gamma_{a} + (1/20)\beta_{a} - 3.05 + 1$$

$$\underline{C_{1}} = \rho_{a} - \gamma_{a}$$

$$\underline{C_{2}} = \gamma_{a} - \beta_{a}$$

$$\underline{C_{3}} = \beta_{a} - \rho_{a}$$

 The three color difference signals, C1, C2, and C3, represent all of the possible chromatic opponent signals that could be produced in the retina

30

Others

 Hue, saturation, brightness, lightness, chroma, and colorfulness also can be calculated by solving quite complicated equations...

Summary of the Hunt model (pros)

- seem to be able to do everything that anyone could ever want from a color appearance model
- extremely flexible
- capable of making accurate predictions for a wide range of visual experiments

41

Summary of the Hunt model (cons)

- optimized parameter is required; otherwise, this model may perform extremely poorly, even worse than much simpler model
- computationally expensive
- difficult to implement
- Requires significant user knowledge to use consistently

Color Appearance Models II

Arjun Satish Mitsunobu Sugimoto

Agenda

- Nayatani et al Model. (1986)
- RLAB Model. (1990)

- Illumination engineering
- Color rendering properties of light sources.
- Explanation of naturally occurring natural phenomenon.

- Stevens Effect
 - Contrast Increase with luminance
- Hunt Effect
 - Colorfulness increases with luminance
- Helson Judd Effect
 - Change in hue depending on background

Nayatani Model - Input Data

- Background
 - Luminance Factor, Y_o
 - Chromaticity Co-ordinates, x_o and y_o.
- Stimulus
 - Luminance Factor, Y
 - Chromaticity Co-ordinates, x and y.
- Absolute luminance E_o
- Normalizing Illuminance, E_{or}

Use chromaticity coordinates.

- Use chromaticity coordinates.
- Convert them to 3 intermediate values.

Nayatani Model - Starting Points

- Use chromaticity coordinates.
- Convert them to 3 intermediate values.

$$\begin{split} \xi &= (0.48105x_o + 0.78841y_o - 0.08081)/y_o \\ \eta &= (-0.27200x_o + 1.11962y_o + 0.04570)/y_o \\ \zeta &= 0.91822(1 - x_o - y_o)/y_o \end{split}$$

Adaptation Model

Calculate the cone responses for the adapting field

$$\begin{vmatrix} R_o \\ G_o \\ B_o \end{vmatrix} = \frac{Y_o E_o}{100\pi} \begin{vmatrix} \xi \\ \eta \\ \zeta \end{vmatrix}$$

Chromatic Adaptation Model

- Cone excitations
 - L, M, S
- Noise terms
 - L_n, M_n, S_n

$$L_{\rm a} = a_L \left(\frac{L + L_{\rm n}}{L_{\rm 0} + L_{\rm n}} \right)^{\beta_L}$$

$$M_{\rm a} = a_M \left(\frac{M + M_{\rm n}}{M_{\rm 0} + M_{\rm n}} \right)^{\beta_M}$$

$$S_{\rm a} = a_{\rm S} \left(\frac{S + S_{\rm n}}{S_0 + S_{\rm n}} \right)^{\beta_{\rm S}}$$

Adaptation Model

 Compute the exponents nonlinearities used in the chromatic adaptation model

$$\beta_1(R_o) = \frac{6.469 + 6.362R_o^{0.4495}}{6.469 + R_o^{0.4495}}$$

$$\beta_1(G_o) = \frac{6.469 + 6.362G_o^{0.4495}}{6.469 + G_o^{0.4495}}$$

$$\beta_2(B_o) = \frac{8.414 + 8.091B_o^{0.5128}}{8.414 + B_o^{0.5128}} \times 0.7844$$

Adaptation Model

For the test stimulus,

$$\begin{vmatrix} R \\ G \end{vmatrix} = \begin{vmatrix} 0.40024 & 0.70760 & -0.08081 \\ -0.22630 & 1.16532 & 0.04570 \\ 0.0 & 0.0 & 0.91822 \end{vmatrix} Z$$

Opponent Color Dimensions

- Use opponent theory to represent the cone response in achromatic and chromatic channels.
- Single achromatic channel.
- Double chromatic channels.

Achromatic Response

$$Q = \frac{41.69}{\beta_1(L_{or})} \left[\frac{2}{3} \beta_1(R_o) e(R) \log \frac{R+n}{20\xi + n} + \frac{1}{3} \beta_1(G_o) e(G) \log \frac{G+n}{20\eta + n} \right]$$

- Considers only the middle and long wavelength cone response.
- Logarithm -> model the nonlinearity of the human eye.

Chromatic Channels

- Tritanopic and Protanopic responses.
- Tritanopic
 - Red Green Response
- Protanopic
 - Blue Yellow Response

Chromatic Channels

$$\begin{split} t &= \beta_1(R_o) \log \frac{R+n}{20\xi+n} - \frac{12}{11} \beta_1(G_o) \log \frac{G+n}{20\eta+n} + \frac{1}{11} \beta_2(B_o) \log \frac{B+n}{20\zeta+n} \\ p &= \frac{1}{9} \beta_1(R_o) \log \frac{R+n}{20\xi+n} + \frac{1}{9} \beta_1(G_o) \log \frac{G+n}{20\eta+n} - \frac{2}{9} \beta_2(B_o) \log \frac{B+n}{20\zeta+n} \end{split}$$

- Hue Angle
- Hue Quadrature
- Hue Composition

$$\theta = \tan^{-1} \left(\frac{p}{t} \right)$$

Brightness

$$B_r = Q + \frac{50}{\beta_1(L_{or})} \left[\frac{2}{3} \beta_1(R_o) + \frac{1}{3} \beta_1(G_o) \right]$$

$$\beta_1(L_{or}) = \frac{6.469 + 6.362L_{or}^{0.4495}}{6.469 + L_{or}^{0.4495}}$$

Lightness

- Calculated from the achromatic response alone.
- $L_p = Q + 50$.
 - Black => L_p = 0;
 - White => $L_p = 100$;

- 'Complete' model.
- Relatively simple.

Cons

- Changes in background and surround
- Not helpful for cross media applications.

The RLAB Model

- A color appearance model which would be suitable for most practical applications.
- simple and easy to use.
- takes the positive aspects of CIELAB and tries to overcome its drawbacks.
- application cross media image reproduction.

- Tristimulus values of the test stimulus.
- Tristimulus values of the white point.
- Absolute luminance of a white object.
- Relative luminance of the surround.

Adaptation Model

Cone Response

$$\begin{vmatrix} L \\ M \\ S \end{vmatrix} = \mathbf{M} \begin{vmatrix} X \\ Y \\ Z \end{vmatrix}$$

$$\mathbf{M} = \begin{vmatrix} 0.3897 & 0.6890 & -0.0787 \\ -0.2298 & 1.1834 & 0.0464 \\ 0.0 & 0.0 & 1.0000 \end{vmatrix}$$

Adaptation Model

Chromatic Adaptation

$$\mathbf{A} = \begin{vmatrix} a_L & 0.0 & 0.0 \\ 0.0 & a_M & 0.0 \\ 0.0 & 0.0 & a_S \end{vmatrix}$$

Adaptation Model

 Mapping the X,Y,Z to a reference viewing condition.

 \blacksquare R = M⁻¹ A⁻¹, a constant.

$$\begin{vmatrix} X_{ref} \\ Y_{ref} \\ Z_{ref} \end{vmatrix} = \mathbf{RAM} \begin{vmatrix} X \\ Y \\ Z \end{vmatrix}$$

$$R = \begin{vmatrix} 1.9569 & -1.1882 & 0.2313 \\ 0.3612 & 0.6388 & 0.0 \\ 0.0 & 0.0 & 1.0000 \end{vmatrix}$$

Opponent Color Dimensions

A 'better' and 'simplified' CIELAB.

$$\begin{split} L^R &= 100 \big(Y_{ref} \big)^{\sigma} \\ a^R &= 430 \bigg[\big(X_{ref} \big)^{\sigma} - \big(Y_{ref} \big)^{\sigma} \bigg] \\ b^R &= 170 \bigg[\big(Y_{ref} \big)^{\sigma} - \big(Z_{ref} \big)^{\sigma} \bigg] \end{split}$$

Exponents

- $\mathbf{\overline{O}} = 1/2.3$, for an average surround.
- \blacksquare **T** = 1/2.9, for a dim surround.
- \blacksquare \bigcirc = 1/3.5, for a dark surround.

Lightness

The RLAB Correlate of lightness is just L^R!

Hue

- Hue Angle, $h^R = tan^{-1}(b^R/a^R)$
- Hue Composition, H^R same as before.

Chroma and Saturation

$$C^R = \{ (b^R)^2 + (a^R)^2 \}^{1/2}$$

$$S^R = C^R / L^R$$

- Simple.
- Straightforward.
- Accurate.

Cons

- Can't be applied to really large luminance ranges.
- Does not explain Hunt, Stevens model.

Thanks!