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Abstract—This paper investigates RGB color composition
schemes for hyperspectral imagery display. A three-channel com-
posite inevitably loses a significant amount of information con-
tained in the original high-dimensional data. The objective here
is to display the useful information as distinctively as possible for
high-class separability. To achieve this objective, it is important
to find an effective data processing step prior to color display. A
series of supervised and unsupervised data transformation and
classification algorithms are reviewed, implemented, and com-
pared for this purpose. The resulting color displays are evaluated
in terms of class separability using a statistical detector and
perceptual color distance. We demonstrate that the use of the
data processing step can significantly improve the quality of color
display, whereas data classification generally outperforms data
transformation, although the implementation is more complicated.
Several instructive suggestions for practitioners are provided.

Index Terms—Classification, color display, human visual per-
ception, hyperspectral imaging, transformation, visualization.

I. INTRODUCTION

HYPERSPECTRAL imaging, also known as imaging
spectrometry, has become a core technology in remote

sensing. The resulting hyperspectral imagery has very high
spectral resolution, providing better diagnostic capability for
object detection, classification, and discrimination than mul-
tispectral imagery. However, it is challenging to display all
the useful information contained in such a huge 3-D image
cube. A common practice is to use a red-green-blue (RGB)
color representation to provide a quick overview of a scene
for decision-making support. Obviously, such a three-color
channel display results in significant loss of information. Our
objective is to display classes distinctively to maximize the
class separability.

False-color images, which map three original spectral bands
into three RGB channels, have been used to display multispec-
tral images for decades [1]–[4]. For instance, a color infrared
(CIR) composite is a typical way to represent vegetation and its
vigor from multispectral data. Although CIR provides a simple
synoptic view of the scene, the contrast may be poor when
the three original channels are highly correlated [3]. When the
original data have more than three bands, careful band selection
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is required [5]. This technique is referred to as the three-band
combination (TBC) method in this paper. It may not be suitable
to display a hyperspectral image with hundreds of spectral
bands.

One approach for hyperspectral image display is to condense
the information into three channels and map the three channels
into the RGB color space. A typical method is to perform
principal component analysis (PCA) and display the first three
principal components (PCs) [6]–[8]. However, PCs may not
be ranked in terms of information content, and objects may
be present in other PCs with a lower ranking [9]. Thus, a
noise-adjusted principal component analysis (NAPCA) may be
a better choice, where PCs are ranked in terms of signal-to-
noise ratio (SNR) and a PC with a higher ranking generally
contains more object information [10]. When the desired ob-
jects are known, a supervised transform called interference and
noise-adjusted principal component analysis (INAPCA) can be
used [11]. Other transformation-based color display approaches
include Jacobson et al.’s work [12], [31], where fixed linear
spectral weighting envelopes are used to create natural-looking
imagery that displays the same materials in different data sets
consistently. The weighting envelopes are designed to take into
account how the hardware displays information and the human
perceptual system. However, such fixed linear projections will
be unable to display some different objects distinctively be-
cause there is no adaptation to specific image information.

Another way to display hyperspectral images is to visu-
alize data analysis results using detection, classification, or
quantification maps. For a typical pure pixel analysis result, a
false-color display can be generated by assigning a color label
to each class. Because most pixels are mixed in a remotely
sensed hyperspectral image due to low spatial resolution, it is
more reasonable to conduct mixed-pixel analysis. In mixed-
pixel classification, a pixel has a certain percentage of each
class. According to our study, images produced using data
analysis results are more informative than ones produced using
a simple data transformation, because different objects can
be more easily differentiated from each other. However, their
implementation may be more complicated, particularly under
an unsupervised circumstance.

In this paper, we investigate the use of several data
transformation and classification approaches for hyperspectral
image color display. Specifically, the transformation-based ap-
proaches we propose are NAPCA, INAPCA, Fisher’s linear
discriminant analysis (LDA), and the data classification-based
approaches we propose are independent component analy-
sis (ICA), constrained linear discriminant analysis (CLDA),
and unsupervised fully constrained linear unmixing (UFCLU).
They will be compared with other more frequently used
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approaches, such as PCA, TBC, and the color-matching func-
tion (CMF) projection in [12], in terms of class separability
in the produced color display. Based on experimental results,
instructive suggestions are concluded for practitioners.

The paper is organized as follows. Section II reviews the
data transformation and classification techniques. Section III
discusses the issues on color display generation, such as color
assignment and final color reproduction. Section IV presents
experimental results with quantitative evaluation. Finally,
Section V draws the conclusions.

II. DATA PROCESSING TECHNIQUES

There exist quite a few data processing techniques for hy-
perspectral imagery. In this section, we review the rationales
befind the seven techniques to be used in this research. They are
selected either because they are widely used or because they are
closely related to some widely used techniques. In addition to
PCA, the CMF technique in [12] and the simplest TBC method
are included for comparsion purposes. The conclusions drawn
from these techniques are suitable to other similar approaches
in hyperspectral data color display.

A. PCA

Let Σ be the data covariance matrix for an L-band
hyperspectral image. Let V = [v1,v2, · · · ,vL] and Λ =
diag{λ1, λ2, · · · , λL} be the eigenvector and eigenvalue matri-
ces of Σ, respectively, which can be related as

VT ΣV = Λ. (1)

Then the PC images can be calculated by

zPCA = VT (z − m) (2)

where m is the data mean, and z and zPCA are pixel vectors
before and after the transformation, respectively.

As discussed in [12], there are many problems when the
PCs from PCA are chosen for color display. From a feature
extraction point of view, PCA’s major problem is that some
major PCs may not contain more information than minor PCs
due to the fact that the ranking criterion for PCs is variance,
which can be contributed from both signals and noise. When the
data are noisy, the contribution to variance from small objects
may be even smaller than that from noise. Thus, the resulting
color display constructed from the major PCs may not always
include useful information in the original data.

B. NAPCA

NAPCA’s method is to rank PCs in terms of SNR. Assume
that Σ can be decomposed into signal and noise components,
i.e., Σ = Σs + Σn. NAPCA is performed in two steps [10].
The first step conducts noise whitening to the original data, and
the second step performs ordinary PCA to the noise-whitened
data. Because the noise variance is unity in the noise-whitened
data, the resultant PCs are in the order of SNR. Let F be

the noise-whitening matrix that makes Σn an identity matrix.
Transforming Σ by F, i.e.,

FT ΣF = Σn_adj (3)

results in Σn_adj , the covariance matrix with noise being
whitened. After finding matrix G to whiten Σn_adj , the opera-
tor for NAPCA can be constructed as follows:

zNAPCA = GT FT (z − m). (4)

The noise covariance matrix Σn can be estimated using the
method in [13]. The major PCs from NAPCA generally contain
more object information than those from PCA.

C. INAPCA

When we know the object information that needs to be
preserved, INAPCA is a more appropriate transform [11]. Here,
interference is considered as unwanted signals, such as back-
ground clutters. Let Σ = Σs + Σi+n, where Σi+n is the
interference-noise covariance matrix, which contains the
second-order statistical information of interference and noise
only. Then a matrix A is determined via eigendecomposition of
Σi+n to whiten Σi+n, which is used to transform the data as

AT ΣA = Σi+n_adj . (5)

Here, Σi+n_adj is the covariance matrix with interference and
noise being whitened. If the resultant data are transformed by
ordinary PCA, the net effect is to order PCs in terms of signal-
to-interference-plus-noise ratio (SINR). Following the same
idea of NAPCA, the matrix E can be found via eigendecom-
position of Σi+n_adj to whiten Σi+n_adj . Then the PC images
using INAPCA can be computed by

zINAPCA = ET AT (z − m). (6)

In general, the interference information is difficult to obtain.
Fortunately, Σi+n can easily be computed via orthogonal sub-
space projection (OSP) without the estimation of interference
and noise. Let the desired signature matrix be denoted as S =
�s1s2 · · · sp� with p signatures or classes. To get a data set with
interference and noise only, all these p signatures are annihi-
lated by projecting the original data onto the subspace that is
orthogonal to these desired signatures using the following OSP
operator [14]:

P⊥ = I − S(ST S)−1ST (7)

where I is an identity matrix. Let the projected data be denoted
as ẑ, where only interference and noise is present. Then Σi+n

can be estimated as the sample covariance matrix of ẑ.

D. ICA

ICA is a frequently used unsupervised classification method
[15]. Its basic idea is to decompose a set of multivariate signals
into a base of statistically independent sources with minimal
loss of information content. Quite a few ICA algorithms exist.
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The following is the rationale of the well-known FastICA
algorithm with a kurtosis maximization criterion [16].

Let Z = [z1z2 · · · zN ] be an L × N data matrix with
N L-dimensional pixels. Also let w be the desired projector,
and let y = (y1y2 · · · yN ) be the projected data (after mean re-
moval and data whitening). Denote F (•) as a function measur-
ing independency. For instance, F (y) can measure the kurtosis
κ(y) of the projected data, i.e.,

F (y) = κ(y) = E
[
(y)4

]
− 3. (8)

Then the task is to find an optimal w such that κ(y) is maximal.
The objective function for this optimization problem is

J(w) = max
w

{κ(y)} = max
w

{
κ(wT z)

}
. (9)

Taking the derivative with respect to w yields

∆w =
∂κ

∂w
= 4E(y3z). (10)

Then the gradient-descent or fixed-point adaptation can be used
to determine w. After the first w, denoted as w1, is found, it
is used to transform the data for the first classification map.
To find a second w, denoted as w2, for another class, data
matrix Z is projected onto the orthogonal subspace of w1

before searching w2. The algorithm continues until all the
classes are classified.

E. LDA

Fisher’s LDA is a standard technique for dimension reduction
in pattern recognition. Assume that there are k training sample
vectors given by {zi}k

i=1 for p-classes: θ1, θ2, · · · , θp and that
there are kj samples for the jth class. Let µ be the mean of the
entire training samples and µj be the mean of the jth class. The
LDA projects the original high-dimensional data onto a low-
dimensional space, where all the classes are well separated by
maximizing the Raleigh quotient, i.e., the ratio of between-class
scatter matrix SW to within-class scatter matrix SB , which are
defined as [17]

SW =
∑

zi∈θj

(zi − µj)(zi − µj)
T (11)

SB =
p∑

j=1

kj(µj − µ)(µj − µ)T (12)

respectively. The w maximizing the Raleigh quotient can be
determined by solving the following generalized eigenproblem:

SBw = λSW w (13)

where λ is a generalized eigenvalue. Because the rank of SB

is p − 1, there are p − 1 eigenvectors associated with p − 1
nonzero eigenvalues. Therefore, an L × (p − 1) matrix W can
be found to transform the original L-dimensional data into a
(p − 1)-dimensional space where the p classes can be well
separated.

F. CLDA

Fisher’s LDA performs dimension reduction only. To achieve
classification simultaneously with the transformation, a CLDA
was proposed by imposing the constraint that the different
classes were aligned along different directions as in [18]

wT
l µj = δlj for 1 ≤ l, j ≤ p. (14)

The resulting classifier was the OSP after data whitening. Let
the transform matrix be denoted as W = [w1,w2, · · · ,wp]. It
was proven that W is equivalent to the following operator [19]:

WCLDA = Σ−1S
(
ST Σ−1S

)−1
(15)

where S contains the p-class signatures to be classified.

G. UFCLU

Linear mixture analysis is a widely used method to classify
and quantify endmember materials in hyperspectral imagery.
With a slight abuse of notation, let the number of endmembers
be p and their signature matrix be S. According to the linear
mixture model (LMM), a pixel z can be represented as

z = Sα + n (16)

where α = (α1 · · ·αi · · ·αp)T is a p × 1 column vector called
the abundance vector, whose ith element represents the pro-
portion of the ith endmember material in the pixel z. Here, n
represents an additive noise or measurement error.

Because αi represents abundance, it should be a nonnegative
value. Also, the pixel is assumed to be a linear combination of
all the endmembers. Thus the sum of the abundances should be
one. These two constraints can be formed as follows:

p∑

i=1

αi = 1 and 0 ≤ αi ≤ 1 for 1 ≤ i ≤ p. (17)

When S is known, a constrained optimization process, such
as FCLU, can be imposed to estimate the α that yields the
minimum estimation error when the constraints in (17) are
satisfied. It can be simply achieved via quadratic programming.
If S is unknown, then UFCLU needs to be performed [20].

When the number of endmembers is unknown, a large num-
ber can be assumed first to run the UFCLU algorithm. Then
similar endmember signatures can be combined after similarity
comparison using a spectral angle mapper (SAM) [21]. End-
member signatures corresponding to noisy abundance images
with large entropies are removed. The remaining signatures are
used in the supervised FCLU to generate the final abundance
images for color display.

Note that the performance of supervised FCLU strongly
relies on the accuracy of the number of endmembers and their
signatures. If this information is incorrect, the results can be
misleading, even if the constraints in (17) are imposed [22].
This can be a problem due to the complexity of real image
scenes and the in-field spectral variability. Thus, we only study
UFCLU in this research.
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TABLE I
SUMMARY OF THE NINE COLOR DISPLAY SCHEMES IN THIS PAPER

H. Technique Summary

The characteristics of the aforementioned techniques along
with TBC and CMF are summarized in Table I. CLDA, LDA,
and INAPCA are supervised methods, which means that the
class signatures are known a priori; the rest of techniques
are unsupervervised methods. CLDA, ICA, and UFCLU are
classification methods, whereas LDA, INAPCA, NAPCA, and
PCA are transformation methods. CMF and TBC do not include
a data processing step, although CMF does include a trans-
formation step to directly produce a color display but without
information transfer, as in typical data processing.

After classification maps or transformed components, called
display elements (DE) hereafter, are available, they will be used
to generate a color display. As shown in Table I, the numbers of
DEs from the supervised CLDA and LDA are directly related
to the number of classes p, there are three classes for CMF and
TBC, and others are user defined.

Note that the aforementioned classifiers produce soft classi-
fication results, which are directly used for visualization, due
to the dominant presence of mixed pixels in remotely sensed
imagery.

III. COLOR DISPLAY STRATEGIES

Assume that q DEs are used to generate a color display. In
general, q and p are not equal; they are equal when a supervised
classification result is used for visualization. The detailed steps
for generating a color display include color selection, color
assignment, display element adjustment, and color display
reproduction.

A. Perception-Based Distinctive Color Selection

In approximately uniform color spaces, such as CIELAB
and CIELUV, the perceptual distance between two colors is
roughly proportional to the Euclidean distance between the
corresponding points in the color space [23], [24]. Healey
addressed three criteria for color selection: color category, color
distance, and linear separation [25]. When there are fewer than
10 colors to be selected, the color labels selected from a uniform
color space can belong to different color categories [25], [26].

The Munsell color space is designed to be perceptually
uniform. Developed by Albert H. Munsell in 1905, the Munsell
color model uses three dimensions: hue, value, and chroma to
specify a color. Hue is represented by a circular band divided

Fig. 1. Nine maximally distinct colors selected using the Munsell color tables.

Fig. 2. Six classes are assigned distinctive colors according to their similarity.

into 10 sections: red, yellow-red, yellow, green-yellow, green,
blue-green, blue, purple-blue, purple, and red-purple, denoted
as R, YR, Y, GY, G, BG, B, PB, P, and RP, respectively. Each
section can be further divided into 10 subsections for finer
divisions of hue. Value represents the lightness or darkness of
a color, and it is divided into 11 sections numbered 0 through
10. Chroma defines the strength or weakness of a color, and
it is measured in numbered steps starting at 1. The format
“hue value/chroma” is employed to specify a Munsell color,
and a number preceding the hue defines the subsection. For
instance, 5R5/5 denotes a strong red. Munsell colors can be
perceptually “balanced,” because hues directly opposite one
another will be balanced if the value and chroma are equal.
For instance, 5R5/5 is perceptually balanced with 5BG5/5. In
addition to approximate perceptual uniformity and convenient
balance, Munsell colors can be easily displayed and printed.
They are associated with the Inter-Society Color Council and
the National Bureau of Standards (ISCC-NBS) standard color
naming system [27]. Wyszecki and Stiles provided (X,Y,Z)
values for many Munsell colors [24].

Therefore, Munsell color tables are used for distinctive color
selection in this research. Fig. 1 shows the selected colors (with
the same value 5 and chroma 12) if nine colors are needed.

B. Color Assignment Considering Display Element Similarity

To improve class separability in the final color display image,
it is intuitive to assign very different colors to similar classes.
This can be easily accomplished for a supervised classification
method, such as CLDA. Let class signatures be arranged in a
sequence based on their signature similarity using SAM. With-
out loss of generality, si is more similar to si+1 than to si+2

after this arrangement. Then the color for the ith classification
map corresponding to si is less similar to the (i + 1)th map than
to the (i + 2)th. An example of the resultant interleaving color
assignment strategy is illustrated in Fig. 2.

For an unsupervised classification method, such as ICA and
UFCLU, or a transformation method, such as LDA, colors can
be assigned based on the spatial similarity between the DEs.
The similarity metric is correlation coefficient (CC). Without
loss of generality, assume that DEs are arranged according to
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CC, i.e., DEi is more similar to DEi+1 than to DEi+2. Then the
color assigned to DEi should be less similar to DEi+1 than that
to DEi+2, illustrated in Fig. 2.

In some transformation methods, such as PCA, NAPCA, and
INAPCA, the transformed components are uncorrelated. Thus
all cross-component CCs are zero. In this case, each image can
be divided into nonoverlapping blocks, and the CC between two
corresponding blocks at the same location in two different DEs
is computed. Then the similarity between each pair of DEs can
be arranged in terms of the average block CCs.

C. Display Element Adjustment

In some techniques, e.g., PCA, ICA, and LDA, the solutions
may be sign indeterminable. In this case, it needs to be decided
if the generated or negative classification map/transformed
components should be used as a DE. To make the adjustment
automatic, the maximum positive value bmax and minimum
negative value bmin are determined among all the pixels in a
DE. If the absolute value of bmin is greater than bmax, i.e.,
|bmin| > bmax, this indicates that the negative image should be
used as a DE.

If the range of pixel values in one DE is much larger than
in others, then this DE will dominate the final color display.
Therefore, each DE needs to be normalized.

As for the number of DEs to be used for color display, it
should be less than ten to make sure the colors assigned for DEs
are from different color categories [25], [26]. When there are
more than 10 classes present, similar classes have to be merged
based on CC or SAM.

D. Color Display Reproduction

Let the number of DEs for the final color display be q. For
the ith DE, a 3 × 1 color vector, denoted as ci = (ri gi bi)T ,
is assigned using the criteria for color assignment presented
in Sections III-A and B. Let the q DEs after adjustment form
an N × q data matrix denoted as B = [b1,b2, · · · ,bq], where
bi is the vector formed by stacking the columns of DEi (i.e.,
arranging the ith 2-D classification map or transformed com-
ponent into a 1-D vector). Then, a color matrix of size 3 × q is
constructed as C = [c1 · · · ci · · · cq]. The final color display is
created by

D = CBT (18)

where D is the three-channel image with N pixels. The values
in each channel of D need to be normalized into [0 1] before
an actual RGB display. Equation (18) is also called chromatic
mixing.

E. Evaluation on Visual Interpretation

The metrics to be used in the evaluation of visual products
are objective-dependent. For example, in [12] where the vi-
sualizations were not task specific, the CC between the pixel
spectral distances in an original hyperspectral data and the
corresponding perceptual color distances in a color display

Fig. 3. AVIRIS Cuprite image scene. (a) Band 100 and (b) spatial location
of five minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and
muscovite (M).

are measured; a greater CC means a higher effectiveness in
maintaining the original spectral difference. In this paper, the
objective is class separability, and thus we evaluate the color
distance between class centers (i.e., the Euclidean distance
∆E between the color vectors corresponding to class centers)
in an approximately perceptually uniform color space (e.g.,
CIELUV), and a larger average distance among class centers
generally means better perceptual separation. In addition, class
separability in a produced color image can also be evaluated
by applying a statistical detector or classifier. Here, a detection
algorithm called constrained energy minimization (CEM) is
employed [28] to generate a gray scale detection map for
each class. When the ground truth is unavailable, each map is
compared with its counterpart from using all the original bands.
If they are similar (using the CC as spatial similarity metric),
this means that the color display is satisfactory in preserving
and discriminating different classes.

IV. EXPERIMENT

The data used in the experiment are the Airborne Visible/
Infrared Imaging Spectrometer (AVIRIS) Cuprite subimage
scene sized 350 × 350 shown in Fig. 3, which were taken
over Cuprite, NV, in 1997. After water absorption and low-
SNR bands were removed, 189 bands were left. This scene
has been well studied mineralogically [29]. It is known that at
least five minerals were present: alunite (A), buddingtonite (B),
calcite (C), kaolinite (K), and muscovite (M). Their approxi-
mate spatial locations are marked in Fig. 3(b). Fig. 4 presents
the CLDA classification results where the spatial distributions
of these five materials are elucidated so that they can be used
as “road maps” for visualization. According to our objective,
the generated color display should maximize this five-class
separability. Note that there may be more than five foreground
materials, and the background information (i.e., the number of
background materials and their signatures) is unknown, which
is a typical situation for remote sensing data.

Fig. 5(a)–(g) shows the color displays using the data process-
ing techniques described in Section II. In the three supervised
approaches—CLDA, LDA, and INAPCA—the five material
signatures were used for classification or transformation. In
the other unsupervised approaches, no prior information about
the image scene was assumed. When using INAPCA, ICA,
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Fig. 4. CLDA classification of the AVIRIS Cuprite image scene. (a) Alunite
(A), (b) buddingtonite (B), (c) calcite (C), (d) kaolinite (K), and (e) musco-
vite (M).

UFCLU, NAPCA, and PCA, the number of DEs for color
display is defined by users. In this experiment, nine DEs
were involved in color display generation. The Munsell color
tables were employed to assign distinctive colors to DEs. As
mentioned in Section III-B, the similarity between DEs was
considered when assigning colors.

For comparison purposes, the CMF and TBC methods were
also applied. In the CMF method, the Commission Inter-
nationale d’Eclairage (CIE) 1964 tristimulus color matching
functions were adopted, from which the three 189-dimensional
discrete weighting functions were used to generate the linear
integrations for the red, green, and blue channels. In the TBC
method, three distinct bands in green, red, and NIR spectral
region were selected based on entropy, and they were assigned
to the three-color channels, respectively. Thus, the TBC color
display is very similar to the CMF color display as shown
in Fig. 5(h) and (i). Compared to the color displays from the
data processing results, the color displays from CMF and TBC
obviously provide less information about the distribution of
the five desired classes. For instance, on the right side of the
CMF and TBC visualizations shown in Fig. 5, it is difficult

Fig. 5. Color display using different methods. (a) CLDA. (b) LDA.
(c) INAPCA. (d) ICA. (e) UFCLU. (f) NAPCA. (g) PCA. (h) CMF. (i) TBC.

to differentiate the regions with high probability of alunite,
buddingtonite, and kaolinite, which are displayed in blue.

Fig. 5(c), (f), and (g) were generated using INAPCA,
NAPCA, and PCA, respectively. The PCA-generated color
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TABLE II
EVALUATION USING COLOR DISTANCE IN THE CIELUV SPACE

∆E = Average EUCLIDEAN DISTANCE BETWEEN CLASS

CENTERS IN THE CIELUV SPACE

display is noisier than the other two, because the PCs were not
ranked in terms of image quality, and some high-ranked PCs
(e.g., the sixth PC) contained much noise. NAPCA displays
the minerals with higher contrast. The NAPCA-generated color
display contains more class information than the one from
PCA. For example, kaolinite can be more easily distinguished
from alunite on the left side of the image because the former
was displayed in green-blue and the latter in purple. However,
both the PCA- and NAPCA-generated color displays present
less class information that the one generated by INAPCA.
For instance, buddingtonite is submerged in the background in
Fig. 5(f) and (g), but it is distinctively displayed in light blue in
Fig. 5(c). This is because INAPCA performs supervised trans-
formation, whereas PCA and NAPCA conduct unsupervised
transformation.

The CLDA-generated color display clearly presents the five
classified materials in Fig. 5(a); they are shown in orange,
light green, light magenta, light blue, and yellow, respectively.
Fig. 5(b) is the color display from the LDA transform, where
alunite, buddingtonite, calcite, and kaolinite are visible, but
muscovite is not. This may be because the LDA transform
results in only four components in this case, and there are
not enough dimensions to accommodate all the materials. The
display in Fig. 5(d) from the ICA classification maps looks very
colorful, where all the materials can be visually detected except
calcite. The UFCLU-generated color display in Fig. 5(e) has the
highest contrast.

To quantitatively evaluate the color displays in Fig. 5, the
Euclidean distance between each pair of materials in the
CIELUV space was calculated and averaged. As shown in
Table II, the UFCLU-generated color display has the largest
color distance because of the highest contrast; CLDA, LDA,
INAPCA, and ICA have large color distances; PCA, CMF, and
TBC have the smallest color distances.

To objectively assess the material information preserved in
the color display images and how to separate them easily,
the CEM detector was applied to the original data and color
displays. As listed in Table III, the CC was used to compare
the similarity between the corresponding detection maps. We
can see that CLDA and INAPCA contain most of the mater-

TABLE III
EVALUATION USING CEM (CORRELATION COEFFICIENT)

Fig. 6. Chart for performance comparison using the results in Tables II and
III (the CCs for detection are multiplied by 100 for visualization purposes).

ial information, whereas PCA, CMF, and TBC are the worst
in terms of class separation. UFCLU is not among the best.
This may be because the color display has very high contrast,
which makes the detection maps look very different from those
produced from the original data.

Fig. 6 summarizes the results in Tables II and III. We can also
see that the order of color distances does not precisely match
the performance order in detection. The largest discrepancy
appears in the UFCLU method, and second largest in the ICA
method. Overall, however, the quantified detection performance
is in accordance with the perceptual color distance, i.e., a color
display providing better detection and discrimination generally
has larger color distance between different classes. The dis-
crepancy mainly comes from the nonlinearity of human visual
perception and the linear nature of the CEM detector.

To further investigate the impact of the number of DEs used
for color display, the three PCA-class techniques were studied
by choosing different number of PCs. Table IV lists the color
distance and detection CC in various cases. We can see that
using more PCs does not guarantee better performance. This is
because the color combination may become very complicated
if the number of DEs is too large, making class separation more
difficult. In this experiment, the color display from nine PCs
was better than the one from ten PCs in PCA, NAPCA, and
INAPCA. For PCA, the use of the first three PCs generated the
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TABLE IV
COMPARING THE USE OF A DIFFERENT NUMBER OF PCS

best results. In addition to the problem from color combination,
another reason is that some PCs (after the first three PCs) had
low quality, and adding them resulted in performance degra-
dation. For NAPCA and INAPCA, using more PCs generally
can generate better results, provided that there are fewer than
ten PCs. When there were ten PCs used as DEs, then the
performance began to deteriorate. This tells us that the number
of DEs cannot be too large even when the DEs have good
quality.

V. CONCLUSION

We investigated the color display of hyperspectral data with
a single RGB composite. We focused on the impact of data
processing (i.e., transformation for information compact, and
classification) on information preservation and class separabil-
ity. Six techniques were proposed: supervised CLDA, LDA,
and INAPCA and unsupervised ICA, UFCLU, and NAPCA.
They were compared with the three existing color display
techniques in the literature: PCA, CMF, and TBC. Based on the
experimental results, the following conclusions can be drawn,
which are suitable to other data transformation and classifica-
tion approaches for color display generation in addition to the
nine popular techniques investigated here.

1) Processing the data can produce better color displays,
whereas using the classification approaches generally is
better than using the transformation approaches in terms
of higher class separability in the produced color display
with concomitant complex implementation.

2) When desired class information is known, a supervised
approach can be applied. CLDA is the supervised method
providing the best result. When no prior information is
available, an unsupervised technique has to be applied.
ICA is the unsupervised method providing the best result.

3) In the unsupervised situation, a transformation-based ap-
proach is easier to implement than a classification-based
approach. For instance, both ICA and UFCLU need to
generate many classification maps to separate different
classes, but too many classification maps may split the
same class into several subclasses which need a post-

processing step for class merging. In most cases, a simple
transformation technique such as NAPCA may be the
alternative.

4) TBC produces a color display similar to CMF when a
green band is assigned red, a red band is assigned green,
and a NIR band is assigned blue. Both can provide the
property of consistent rendering but with very low class
separability.

5) This research is focused on colorimetry only, providing
a quick and simple overview of a scene. The number of
classification maps or transformed components for color
combination is constrained to be small, say, less than
ten; otherwise, color differentiation in the final display
becomes very difficult. For a complex image scene with
many classes, more advanced visualization techniques
need to be adopted, such as the one in [30].
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