

What is color?

 Selective emission/reflectance of different wavelengths

What is color?

Illumination

Reflectance

What is color stimuli?

Illumination

Reflectance

What is perceived color?

- The response generated by a stimulus in the cones gives the perceived color
- Three responses

Response of three human cones

Computations on Color

- Very difficult using spectrums
- Can we have some sort of coordinate space to define color?

Tristimulus Values

Integration over wavelength

$$X = \int C(\lambda)x(\lambda) = \sum_{\lambda=400}^{\lambda=700} C(\lambda)x(\lambda)$$

$$Y = \int C(\lambda)y(\lambda) = \sum_{\lambda=400}^{\lambda=700} C(\lambda)y(\lambda)$$

$$Z = \int C(\lambda)z(\lambda) = \sum_{\lambda=400}^{\lambda=700} C(\lambda)z(\lambda)$$

CIE XYZ Space

- Real colors span a subset of the XYZ space
- Two different stimuli can have same XYZ values
 - Metamerism

How does this help?

- Additive color mixtures modeled by addition in XYZ space
- When spectrums get added

- Displays

Can there be any other mixture?

- Subtractive like paint
- Cannot be modeled by CIE XYZ space

What does it not offer?

- No physical feel as to how colors are arranged
- How do brightness change?
- How does hue change?

What are the perceived properties?

- Intensity
 - Sum of the spectrum
 - Energy under the spectrum
- Hue
 - Mean wavelength of the spectrum
 - What wavelength sensation is dominant?
- Saturation
 - Standard deviation of the spectrum
 - How much achromatic/gray component?
- Chrominance Hue and saturation

CIE XYZ space

- Intensity (I) X+Y+Z
- Chrominance (x,y) (X/I, Y/I)
 - Chromaticity chart
 - Projection on a plane with normal (1,1,1)
 - Reduction of dimension
 - Similar to 3D to 2D in geometry

What does this mean?

- Scaling a vector (kX,kY,kZ)
 - -(x,y) does not change
 - Each vector from (0,0,0) is an isochrominance line
 - Each vector map to a point in the chromaticity chart

Chromaticity Coordinates

- Shows all the visible colors
- Achromatic Colors are at (0.33,0.33)
 - Why?
 - Called white point
- The saturated colors at the boundary
 - Spectral Colors

Chromaticity Chart

- Exception is purples
 - Non-spectral region in the boundary
- All colors on straight line from white point to a boundary has the same spectral hue
 - Dominant wavelength

Chromaticity Chart

- What happens here?
 - Complimentary wavelength
 - When mixed generate achromatic color
- Purity (Saturation)
 - How far shifted towards the spectral color
 - Ratio of a/b
 - Purity =1 implies spectral color with maximum saturation

Luminance

- Perceived brightness
 - Based on eye's response
- Same brightness green looks brighter than blue or red
- This is proportional to Y

How to add colors?

- Add (X,Y,Z) coordinates
- What does this mean in terms of brightness and chrominance?
 - Add brightness
 - Linear combination of chrominance in proportion of the brightness
 - Look for errors in literature (I and not Y)

What is the RGB color?

Color reproducibility

- Only a subset of the 3D CIE XYZ space called 3D color gamut
- Projection of the 3D color gamut on the same plane with normal (1,1,1)
 - Triangle
 - -2D color gamut
 - Cannot describe brightness range reproducibility

Specification Protocols

- Brightness or Luminance
- 2D gamut
 - Large if using more saturated primaries

Current standards and devices

Gamut Transformation

- Assume linear gamma
- $[X Y Z 1]^T = M [R G B 1]^T$
- Two devices

$$-[X Y Z 1]^{T} = M_{1}[R_{1}G_{1}B_{1}1]^{T}$$

$$-[X Y Z 1]^T = M_2 [R_2 G_2 B_2 1]^T$$

•
$$[R_2 G_2 B_2 1]^T = M_2^{-1}[X Y Z 1]$$

$$= M_2^{-1}M_1[R_1 G_1 B_1 1]^T$$

Gamut Transformation

- How to get the matrix from the standard spec?
- Given (Y,x,y) or (I,x,y) for the three vectors, you can compute (X,Y,Z)
 - (x. Y/y, Y, (1-x-y). Y/y)
 - -(x.I, y.I, (1-x-y).I)
- Does not change the color, finds the new coordinates when using the new basis

Problem

Problem: Out of Gamut colors

Gamut Matching

- Find a common color gamut defined by R_c, G_c, B_c
- Find the common function M_c
 - $-[X Y Z 1]^{T} = M_{c} [R_{c} G_{c} B_{c} 1]^{T}$
- For any device i
 - $-[R_i G_i B_i 1]^T = M_i^{-1} M_c [R_c G_c B_c 1]^T$

Two gamut

Find their intersection

Find the common gamut

Find the mapping function

Gamut Mapping

- Changing the actual colors
 - Mapping color in one gamut to another in the new gamut
- If just dealing with two devices, may choose to move colors from one gamut to another

What is gamma function?

Tone Mapping Operator

- How the input
 value maps
 to output
 intensity
- Affects
 brightness,
 contrast and
 saturation

Tone Mapping Operator

- How the input value maps to output intensity
- Affects
 brightness,
 contrast and
 saturation

Transfer Function

- Monotonic, smooth with no flat regions
- Brightness and contrast controls

Image Correction

Color Balance

- Relative
 proportions of
 primaries while
 forming a color
- Affects hue, saturation and brightness
- Can be changed by changing the transfer function

Color Balancing

Quantization

- Digitization of color
- Gray scale infinite grays between 0 and 1
 - -8 bit representation 256 levels
 - A range of grays represented by a single value
- Any value is assigned to one of k values
- Choose number of levels and range of each level

Quantization Error

Uniform Quantization

Maximum Error = ½ Step Size

Is it constant across all levels?

- Only when linear transfer function
- Usually non-linear transfer function
- Quantization error changes with input

Gamma Function

 Usually a gamma transfer function

$$-O = I^{\gamma}$$

Non-Uniform Quantization

- Note how quantization changes
- Non-uniform step size
- Maximum Error
 - ½ of maximum step size
- # of levels is the color resolution
 - -# of bits

Color Resolution

Analog Image

4 Steps

8 Steps

16 Steps

64 Steps

32 Steps

Dithering

- What if the color resolution is low?
 - Newsprint Bi-level, only black and white
- Can we expand the # of colors?
 - Spatial integration of eye
- Trading off spatial resolution for

Dithering

- Represented by a dither matrix
 nxn pixels, bi-level intensity, can
- produce n²+1 intensities
- If more than two levels k levels
 - $-n^2$. (k-1) +1
 - Used for increasing the color resolution

Dithering

- If more than two levels k levels
 - $-n^2$. (k-1) +1
 - -For k = 4 (0,1,2,3) and n=2

Examples

Loss of tone and details (Intensity and Spatial Resolution)

Subtractive Color System

- Layers of cyan, yellow and magenta dyes
 - Absorb red, blue and green light
- Depends on the illuminant
- Act as absorption filter
 - Ideally block filters
- Overlaying all the three dyes absorbs all wavelengths creating black

Creation of a color

- CMY = (1, 1, 1) RGB
- (0.25, 0.5, 0.75) =
 (1, 1, 1) (0.75, 0.5, 0.25)
- This works only for block filters

Real Fiilters

- Are not block filters
- Cross talk across
 different filters
- Due to ink impurities
- Grays should be formed by equal amount of three primaries
 - Seldom happens

Why use black?

- Better contrast
- Use of inexpensive black in place of expensive colored dyes
- Superimposing multiple dyes cause tearing of wet paper
- K for key
- Not an independent primary
 - Hence makes dark colors darker

How to use black?

- Initially only for neutral colors
 - Called undercolor removal (UCR)
- Colors with three components
 - Minimum of the three is the gray component
- Full gray component replacement
 - Only in inkjets where registration is a problem
- Partial gray component replacement
 - To achieve the best contrast

Gray Balancing

- The first step in printing is to decide how much of GCR to be used for the neutral grays
- However, every gray needs to be decided separately
- Called gray balancing
- Usually done by iteration
- No simple tristimulus model to decide components

Dependency on Content

- Discussed content independent
- Can also be done by understanding the color distribution of the particular content
- Usually non-linear

Image Compositing

Mosaic Blending

Image Compositing

Compositing Procedure

1. Extract Sprites (e.g using Intelligent Scissors in Photoshop)

2. Blend them into the composite (in the right order)

Composite by David Dewey

Replacing pixels rarely works

Binary mask

Problems: boundries & transparency (shadows)

Two Problems:

Semi-transparent objects

Pixels too large

Alpha Channel

- Add one more channel:
 - Image(R,G,B,alpha)
- Encodes transparency (or pixel coverage):
 - Alpha = 1: opaque object (complete coverage)
 - Alpha = 0: transparent object (no coverage)
 - 0<Alpha<1: semi-transparent (partial coverage)
- Example: alpha = 0.3

Alpha Blending

$$I_{comp} = \alpha I_{fg} + (1-\alpha)I_{bg}$$

alpha mask

shadow

Alpha Hacking...

No physical interpretation, but it smoothes the seams

Feathering

Encoding as transparency

$$I_{blend} = \alpha I_{left} + (1-\alpha)I_{right}$$

Setting alpha: simple average

Alpha = .5 in overlap region

Setting alpha: center seam

Alpha = logical(dtrans1>dtrans2)

Setting alpha: blurred seam

Alpha = blurred

Setting alpha: center weighting

Alpha = dtrans1 / (dtrans1+dtrans2)

Affect of Window Size

Affect of Window Size

Good Window Size

"Optimal" Window: smooth but not ghosted

Type of Blending function

Linear (Only function continuity)

Spline or Cosine (Gradient continuity also)

What is the Optimal Window?

- To avoid seams
 - window = size of largest prominent feature
- To avoid ghosting
 - window <= 2*size of smallest prominent feature</p>

Natural to cast this in the Fourier domain

- largest frequency <= 2*size of smallest frequency
- image frequency content should occupy one "octave" (power of two)

Frequency Spread is Wide

- Idea (Burt and Adelson)
 - Compute Band pass images for L and R
 - Decomposes Fourier image into octaves (bands)
 - Feather corresponding octaves Lⁱ with Rⁱ
 - Splines matched with the image frequency content
 - Multi-resolution splines
 - If resolution is changed, the width can be the same
 - Sum feathered octave images

Octaves in the Spatial Domain

Lowpass Images

Bandpass Images

Pyramid Blending

Left pyramid

blend

Right pyramid

Pyramid Blending

Laplacian Pyramid: Blending

- General Approach:
 - 1. Build Laplacian pyramids LA and LB from images A and B
 - 2. Build a Gaussian pyramid *GR* from selected region *R*
 - 3. Form a combined pyramid *LS* from *LA* and *LB* using nodes of *GR* as weights:
 - LS(i,j) = GR(i,j,)*LA(I,j) + (1-GR(i,j))*LB(I,j)
 - 4. Collapse the LS pyramid to get the finalblended image