Color

What is 'Color'

Color is a fundamental attribute of human visual perception.

By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience.

How would you describe color to a person who was blind since birth?

3 Properties of Color Perception

- Hue

Qualitative, easily identified category of visual experience (Colloquially known as 'color'; e.g. 'red', 'green', 'blue’). Differs from black-gray-white. Quickly now: Name 10 'colors'...

- Brightness

Intensity of the visual experience (e.g., 'dim', 'bright', 'light', 'dark')

- Saturation

Purity of the hue experience (i.e., relative absence of 'white' or 'gray') (reciprocal of 'added white' required for a color-match-to-sample)

Color Stimulus Triad

- Illuminant Spectrum
- Surface Reflectance Spectrum
- Spectral Sensitivity of the Visual System

Illuminant

Emission Spectra

"White" Light is a mixture of many different WAVELENGTHS

We perceive different wavelengths as different colors

Newtonian Light Spectrum (ROY G BIV)

© sciencephotos/Alamy

Spectra of Some Common Illuminants

Sunlight

Incandescent Lamps

Surface

Reflectance Spectra

Objects REFLECT some wavelengths but ABSORB others....

Surface Reflectance Spectra

The Spectral Reflectance Profile is the basic stimulus for Color Vision

Visual Stimulus Spectrum = Illuminant x Surface Reflectance

Additive vs. Subtractive Color Mixing

- Color Mixing Demo

Wavelength

Ideal "Yellow" Pigment

Ideal "Blue" Pigment

Residual "Green" Pigment resulting from mixing
Yellow+Blue

Spectral Response of the Visual System

Newton's Color Experiments

Sir Isaac Newton (1643-1727)

Color Circle

- Found that light was not "pure" but could be analyzed into separate component that appeared different in color [ROY G BIV]
- Combinations of "spectral colors" gave rise to perceived colors not observed in the spectrum
- "Non-spectral colors" were an emergent property of the human nervous system
- "Color wheel" is one of the first psychological theories in the classic scientific literature

Trichromatic Theory of Color

Thomas Young (1773-1829)

- Color perception emerges from the idiosyncratic discrimination of light wavelength in the retina
- Evidence strongly suggests that the retina must "encode" color based upon more than one type of wavelengthtuned photoreceptor [Univariance Principle]
- Additive color matching experiments suggest that three wavelength sensors are required
[aka Trichromatic Theory]

Hermann von Helmholtz (1821-1894)

Classic Color Demonstrations Explained by Trichromatic Mechanism

- Tristimulus Color Mixing Findings Maxwell Color Matching
- Fast Color Adaptation (Basis for Color Constancy)

Simulated

Microspectrophotometry
Analysis of Human Retina
|r
(
(

Wavelength

Wavelength

Wavelength

Wavelength

Wavelength

Wavelength

Wavelength

Wavelength

3 Cones Revealed by MSP

Trichromatic Response to Spectral Stimulus

Color Metamers

Colour signal

Color Specification Systems (Hue,Saturation,Brightness)

- CIE (1931) Chromaticity
(x, y) captures hue x saturation
- Munsell Color System
(18 Hues, 18 Chroma; 10 Values)
- Pantone
(Proprietary Color Matching Standards)

CIE Color Matching Paradigm (Specifying Tristimulus Values)

Wavelength

CIE Maxwellian Color Matching Functions

CIE (1931) Standardized Tristimulus Color Matching Functions

Fig. 4-6. CIE 1931 chromaticity diagram showing color designations for lights, by K. L. Kelly. (From J. Opt. Soc. 33, 627, 1943).

CIE (1931) Chromaticity Diagram

$\underline{\text { TRISTIMULUS VALUE }}=X, Y, Z$

Normalization of XYZ into (x, y) Chromaticity Coordinates:
$x=X /(X+Y+Z)$
$y=Y /(X+Y+Z)$
$\mathrm{Z}=\mathrm{Z} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$

Since $z=1-x-y$ then $X Y Z$ can be fully specified in the (x, y) plane

Munsell = (Hue,Value,Chroma)

Munsell Hues

Munsell Book of Colors

Hue 10YR (Yellow-Red)

Hue
Value Chroma

Problems with Trichromatic Theory

- Hue Cancellation Effects (Hurvich \& Jameson) Red+Green \rightarrow Yellow (not reddish-green) Yellow+Blue \rightarrow White (not yellow-blue)
- Complementary Color Afterimages
- Complex Color Contrast Effects (Land)
- "Blue" light discounted in Brightness Perception

Problems with Trichromatic Theory

- Hue Cancellation Effects (Hurvich \& Jameson) Red+Green \rightarrow Yellow (not reddish-green) Yellow+Blue \rightarrow White (not yellow-blue)
- Complementary Color Afterimages
- Complex Color Contrast Effects (Land)
- "Blue" light discounted in Brightness Perception

Complementary Color Afterimages

Challenge for Simple Trichromatic Theory

Problems with Trichromatic Theory

- Hue Cancellation Effects (Hurvich \& Jameson) Red+Green \rightarrow Yellow (not reddish-green) Yellow+Blue \rightarrow White (not yellow-blue)
- Complementary Color Afterimages
- Complex Color Contrast Effects (Land)
- "Blue" light discounted in Brightness Perception

Experiments in Color Vision

Edwin Land Scientific American (1960)

LONG AND SHORT RECORDS are provided by transparencies of these black-and white photographs made through a red filter (top) and a green filter (bottom). In projection the long record (top) is illuminated by the longer of two wavelengths or bands of wavelengths, and the short record is illuminated by the shorter wavelength or band of wavelengths.

$$
5
$$

${ }_{590} \uparrow \uparrow{ }_{599}$
B

Problems with Trichromatic Theory

- Hue Cancellation Effects (Hurvich \& Jameson) Red+Green \rightarrow Yellow (not reddish-green) Yellow+Blue \rightarrow White (not yellow-blue)
- Complementary Color Afterimages
- Complex Color Contrast Effects (Land)
- "Blue" light discounted in Brightness Perception

Opponent Process Theory

Information from Red, Green and Blue Cones is organized into three discrete channels before ascending to the visual cortex:

Two pairs of OPPONENT COLOR channels code for HUE

Red vs. Green channel
Blue vs. Yellow channel
$L \leftarrow \rightarrow$ M cones
$\mathrm{S} \leftarrow \rightarrow$ L+M cones

One ACHROMATIC channel codes for BRIGHTNESS

Black vs. White
L+M in center-surround antagonism

DeValois \& DeValois (1975) Color-Opponent Cells in the LGN

Red-Green Ganglion Cell

Blue-Yellow Ganglion Cell

Achromatic Ganglion Cell

(Notice that Blue Light is "Discounted")

Psychophysical vs. Physiological Results

DeValois \& DeValois (1975) Monkey LGN data

Boynton \& Gordon's (1965) Color Naming Results

Present brief-flash of monochromatic light; Identify appearance using four color categories: RED, YELLOW, GREEN or BLUE

Bornstein (1975) Infant Color Vision Study

Dichromatic Color "Blindness"

Only TWO cone types available
3D color-space reduced to 2D color-space
(i.e., diminished color discrimination capability)

Prevalence

		Males	Females
Protanopia	Missing L-cones	2%	0.02%
Deuteranopia	Missing M-cones	6%	0.4%
Tritanopia	Missing S-cones	0.01%	0.01%

Trichromat

Red/Green
 Dichromat

Source: www.vischeck.com/daltonize

