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ABSTRACT  

The statistical methods most commonly used to test the equality of survival curves in 

time-to-event analysis rely on the assumption of proportional hazards. In oncology drug 

development, non-proportional hazards between investigational treatments are often 

observed but statistical methods that properly account for these situations are rarely used 

in practice. The use of combinations of Fleming-Harrington weighted log-rank statistics is 

one relatively straightforward way to perform hypothesis testing in the presence of non-

proportional hazards. In this approach, the maximum test statistic of several weighted log-

rank statistics (Zmax) is calculated from Z-statistics obtained using the G(ρ,γ) family. A 

combination test can simultaneously detect equally weighted, early, late or middle 

departures from the null hypothesis and can thus robustly handle several non-proportional 

hazard types with no a priori knowledge of the hazard functions. Although the LIFETEST 

procedure allows for testing with Fleming-Harrington weighted log-rank statistics, there is 

no built-in functionality in SAS® to test combinations of weighted tests. We discuss the 

development of a SAS macro that implements combination testing, including estimation of 

the variance-covariance matrix of the joint distribution of the Z-statistics and calculation 

of the p-value for Zmax. 

INTRODUCTION  

The typical approach to testing the equality of two survival curves is by using the 

log-rank test statistic or Cox proportional-hazards regression. Both methods work well to 

test the null hypothesis under the assumption of proportional hazards, or slight deviations 

thereof. When the two hazard functions are clearly non-proportional, the use of the log-rank 

test and Cox regression becomes problematic: the power of the tests to detect a difference 

between the curves is lost and the hazard ratio from Cox regression becomes 

uninterpretable. Thus, alternative analytical approaches to survival analysis are required 

when the assumption of proportional hazards is violated. 

Figures 1 illustrates examples of the shape that two survival curves take under 

proportional hazards and several types of non-proportional hazards often encountered in 

clinical data.  
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Figure 1. Type of non-proportional hazards. (a) 

(Vermorken, 2007); (b) (Ferris, 2016); (c, d) (Mok, 

2006). 

In the delayed effect scenario, the treatment does not immediately take effect such 

that a lag time observed, followed by diverging hazard functions later in the follow-up 

period. Conversely, the treatment may provide short-term benefit and lose its effect in later 

follow up, resulting in converging hazard functions and a diminishing effect. Lastly, a 

treatment may result in higher event rate early on but may provide benefit over the entirety 

of the follow up period, resulting in crossing hazard functions.  

The log-rank test has maximum power under proportional hazards, and in any of 

these non-proportional hazard scenarios the test may not detect a difference in the survival 

curves, especially with smaller sample sizes. For example, when hazard functions cross, 

events happen earlier in one group and later in the other. The log-rank scores will be 

positive early and negative later, so that the test statistic based on the total score may be 

close to zero and may not be significant, even though the two survival distributions are 

different. Furthermore, the estimate of the hazard ratio from Cox regression (δ) assumes 

that the ratio of the hazards is a constant, that is: 𝛿 =
ℎ1(𝑡)

ℎ2(𝑡)
, for all times 𝑡, and when the 

ratio changes significantly over time, the value of δ becomes meaningless. 
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One important example of non-proportional hazards in the oncology setting is the 

delayed effect often seen in trials of immunotherapies. Immunotherapies quickly entered 

the mainstream of cancer care after their introduction in the late 1990s and they are the 

subject of an ever-increasing number of clinical trials (Sliwkowski & Mellman, 2013). They 

work by eliciting anticancer immune responses and the delayed effect is due to an indirect 

mechanism of action which requires time for activation of the immune system and 

development of an antitumour response, with a subsequent impact on clinical outcome 

(Hoos, 2012). Because of the strong pattern of delayed separation of survival curves in 

immunotherapy trials, the proportional hazard assumption is violated such that the log-rank 

test suffers from significant loss of power. Incorporating knowledge of the non-

proportionality of hazards is essential to achieving properly powered clinical trials and 

appropriately interpreting trial results. 

In situations where a non-proportional hazards pattern can be determined a priori, 

weighted log-rank tests can be used to test early, late or middle differences between two 

survival curves. However, there are many situations where investigators may not be able to 

predict the shape of the survival curves or whether non-proportional hazards will be 

observed. In these situations, combinations of weighted log-rank tests can be used to a 

wide range of scenarios. In this paper, we will describe the implementation of a combination 

test using Fleming-Harrington weighted log-rank statistics.  

LOG-RANK AND WEIGHTED LOG-RANK STATISTICS 

The log-rank test statistic calculates the difference in observed versus expected 

failures over time. Here we show the formulation of the test for the 2-sample case, which 

can be generalized to more than 2 samples (Kalbfleisch & Prentice, 1980). The test statistic 

is:  

𝜒2 =
[∑ (𝑜𝑡 − 𝑒𝑡)𝐷

𝑡=1 ]2

∑ 𝑣𝑡
𝐷
𝑡=1

 

where: 𝑜𝑡 = 𝑑1𝑡, observed number of deaths in group 1 at time 𝑡, 

𝑒𝑡 = 𝑛1𝑡 (
𝑑𝑡

𝑛𝑡
), expected number of deaths in group 1 at time 𝑡, 

𝑣𝑡 = 𝑑𝑡𝑛1𝑡 (
𝑛𝑡−𝑛1𝑡

𝑛𝑡
2 ) (

𝑛𝑡−𝑑𝑡

𝑛𝑡−1
), variance of expected number of deaths in group 1 at time 𝑡, 

𝑑𝑡, total number of deaths at time 𝑡, 

𝑛𝑡, total number at risk at time 𝑡, for each event time 𝑡 = 1, … , 𝐷. 
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A weighted log-rank test incorporates a weight function 𝑤𝑡 that may change over 

time, allowing for the testing of differences between the survival curves under alternatives 

that differ from proportional hazards.  

𝜒2 =
[∑ 𝑤𝑡(𝑜𝑡 − 𝑒𝑡)𝐷

𝑡=1 ]2

∑ 𝑤𝑡
2(𝑣𝑡)𝐷

𝑡=1

 

Consider 𝑆(𝑡 −), the left-continuous Kaplan-Meier estimate of the survival function at 

time t for the pooled survival data. Fleming & Harrington (1982) introduced the Gρ family of 

statistics, where 𝑤(𝑡)  =  {𝑆(𝑡 −)}
𝜌

, 𝜌 ≥ 0. When ρ>0, early events (where 𝑆(𝑡 −) is closer to 1) 

are up-weighted and later events (where 𝑆(𝑡 −) is closer to 0) are down-weighted. When 

ρ=0, the test is equivalent to the log-rank test.  

Fleming & Harrington (1991) extended this definition to the Gρ,γ family of statistics, 

𝑤(𝑡)  =  {𝑆(𝑡 −)}
𝜌

{1 − 𝑆(𝑡 −)}
𝛾

, 𝜌 ≥ 0, 𝛾 ≥ 0, which allows for the simultaneous weighting of early 

and late events. For example, consider ρ=0, 1 and γ=0, 1 as shown in Table 1.  

ρ, γ 𝒘(𝒕) Type of test 

0, 0 1 Log-rank 

1 ,0 {𝑆(𝑡 −)} Test early difference 

0, 1 {1 − 𝑆(𝑡 −)} Test late difference 

1, 1 {𝑆(𝑡 −)}{1 − 𝑆(𝑡 −)} Test middle difference 

Table 1. Gρ,γ family of statistics 

COMBINATION TESTS 

In most situations, non-proportional hazards cannot be prespecified. In these cases, 

a versatile test that is sensitive to both proportional hazards and a range of non-

proportional hazards is desirable. One approach is to consider is combinations of weighted 

log-rank statistics. Combination tests aim to have good power to detect a difference in 

survival curves over a range of possible alternative hypotheses, which allows for testing of 

differences without making assumptions about the shapes of the hazard functions.  

There are several examples of proposed combination tests of Gρ,γ statistics in the 

biometrical literature. Lee (1996) uses the combination of (G0,0, G2,0, G0,2, G2,2) to 

simultaneously test equally weighted, early, late and middle differences and shows that this 

combination has robust performance under different types of alternative hypotheses. 

Karrison (2016) considers the combination of (G0,0, G1,0, G0,1) and provides Stata software 

to test any trivariate Gρ,γ combination. In the statistical literature, others have proposed 

more complex approaches to using weighted log-rank statistics including function-indexed 



5 

statistics that simultaneously consider a large collection of values for ρ and γ (Kosorok & 

Lin, 1999) and tests based on weights able to adapt to changing hazard ratios (Yang & 

Prentice, 2010). 

In 2018, the Food & Drug Administration initiated a working group with 

pharmaceutical companies to address issues in analysis of survival data with non-

proportional hazards in the context of oncology clinical trials. The group held a public 

workshop to discuss and present their findings, wherein they propose the combination of 

(G0,0, G1,0, G0.1, G1,1) statistics, which they call the “max-combo” test (Lin, 2020). R 

software was developed to perform the combination test, with the option to specify any set 

of weights.  

IMPLEMENTATION OF COMBINATION TESTS IN SAS 

To implement the combination test, we first calculate the Gρ,γ statistics under 

consideration using the built-in test=FH option in the strata statement of the LIFETEST 

procedure. Consider two groups from the BMT dataset available in SAS to illustrate the code 

and output:  

   data bmt2;  

    set sashelp.bmt(where=(group in ("ALL","AML-Low Risk"))); 

   run; 

    

   proc lifetest data=bmt2; 

    time T*status(0); 

    strata group / test=FH(1,0); 

   run; 

The test option above gives the following output with results for the G1,0 statistic. 

The LIFETEST Procedure 

Testing Homogeneity of Survival Curves for T over Strata 

Rank Statistics 

Group Fleming 

ALL 5.5727 

AML-Low Risk -5.5727 

 

Covariance Matrix for the Fleming 
Statistics 

Group ALL AML-Low Risk 

ALL 6.37902 -6.37902 

AML-Low Risk -6.37902 6.37902 
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Test of Equality over Strata 

Test Chi-Square DF 
Pr > 

Chi-Square 

Fleming(1,0) 4.8682 1 0.0274 

 

We use the square root of the absolute value of the Chi-square estimate (Z-statistic) 

from the Test of Equality over Strata table to calculate Zmax, simply as the maximum of 

the Z-statistics. We will also use the variance estimates of the Z-statistics from the 

Covariance Matrix for the Fleming Statistics table in the p-value calculations for the 

combination test. Note that LIFETEST must be run multiple times to obtain results for 

different Gρ,γ statistics.  

After calculating the necessary Z-statistics and their variance estimates, we use the 

same option in LIFETEST to calculate the covariance estimates between Gρ,γ statistics to 

complete the variance-covariance matrix. This is straightforward because, as Karrison 

(2016) shows, Cov(Gρ1,γ1, Gρ2,γ2) = Var(G(ρ1+ρ2)/2, (γ1+γ2)/2). 

Finally, to calculate the p-value for the combination test, we take 5 x 106 random 

samples from a multidimensional normal distribution, using mean vector 0 and the 

estimated variance-covariance matrix, and calculate the number of times the samples 

exceed Zmax in any dimension. This proportion is the p-value for the combination test.  

EXAMPLE COMBINATION TEST WITH NON-PROPORTIONAL HAZARDS 

The following example uses digitally reconstructed data from a progression-free 

survival figure published in an immunotherapy trial in which nivolumab monotherapy, 

ipilimumab monotherapy and combination therapy were compared in 945 metastatic 

melanoma patients (randomized 1:1:1) (Satagopan, 2017). Here, we use the monotherapy 

groups only, and take a smaller, random sample of the data to illustrate the performance of 

the combination test with small group sample size. A total of 85 patients were selected, 43 

in the ipilimumab group with 33 events and 42 in the nivolumab group with 27 events. The 

combination of weights proposed by Karrison (2016) are used: G0,0, G1,0, G0,1.  

The two survival curves show the delayed group separation that is typical of 

immunotherapy trials. The equally weighted log-rank and the early-weighted log rank tests 

do not show a significant difference between survival curves (p=0.10, 0.27 respectively). 

The late-weighted test is significant (p=0.02) and the combination test is also significant 

(p=0.04). Here we have an example where the log-rank test was not able to detect a 
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difference in survival curves, but the combination test which simultaneously tested equally 

weighted, early and late differences we able to detect a difference:  

%combo_wlr(data=larkin_85, 

           group=treatment_type, 

           time=time, 

           event=event, 

           weights=%str(0,0 1,0 0,1)); 

 
 

Combination weighted log-rank tests 

 

 
 

Weighted log-rank tests 

 

Test Z statistic P 

Fleming(0,0) 1.63681 0.1017 

Fleming(1,0) 1.09293 0.2744 

Fleming(0,1) 2.29917 0.0215 

 

Combination test 

 

Z max P 

2.29917 0.0392 
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CONCLUSION 

Testing combinations of weighted log-rank statistics offers an alternative to the 

conventional, equally weighted log-rank test that is more robust to detecting differences in 

survival curves in the presence of non-proportional hazards. This manuscript describes a 

flexible macro developed in SAS to easily calculate these tests. The macro is available for 

download via Github: https://github.com/dreaknezevic/combo-wlr. 

The use of weighted log-rank tests that are more sensitive to alternatives is 

appealing in situations where non-proportional hazards are likely to be observed, such as in 

immunotherapy trials. Statistical obstacles remain to incorporating these tests into clinical 

trials, however, including calculating sample size and stopping boundaries.  

It has been suggested that weighted log-rank tests be included as pre-specified 

sensitivity analyses in clinical trials to improve discovery of potential benefits of new 

treatments (Su, 2018). However, the use of combination tests has also been cautioned by 

authors who note that these tests can reject the null hypothesis both in favor of one group 

and the other on the same data and suggest that these tests risk identifying statistically 

significant results that are not clinically significant (Karrison, 2016; Freidlin & Korn, 2019). 

The role of weighted log-rank and combination tests in the future design and analysis of 

cancer trials remains to be seen.   

https://github.com/dreaknezevic/combo-wlr
https://github.com/dreaknezevic/combo-wlr
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