# Combinational Circuit Design 

## COE 202

Digital Logic Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

## Presentation Outline

* How to Design a Combinational Circuit
* Designing a BCD to Excess-3 Code Converter
* Designing a BCD to 7-Segment Decoder
* Hierarchical Design
* Iterative Design


## Combinational Circuit

* A combinational circuit is a block of logic gates having:
$n$ inputs: $x_{1}, x_{2}, \ldots, x_{n}$ $m$ outputs: $f_{1}, f_{2}, \ldots, f_{m}$
* Each output is a function of the input variables
* Each output is determined from present combination of inputs
* Combination circuit performs operation specified by logic gates



## How to Design a Combinational Circuit

## 1. Specification

$\triangleleft$ Specify the inputs, outputs, and what the circuit should do
2. Formulation
$\triangleleft$ Convert the specification into truth tables or logic expressions for outputs
3. Logic Minimization
$\diamond$ Minimize the output functions using K-map or Boolean algebra
4. Technology Mapping
$\diamond$ Draw a logic diagram using ANDs, ORs, and inverters
$\diamond$ Map the logic diagram into the selected technology
$\diamond$ Considerations: cost, delays, fan-in, fan-out
5. Verification
$\diamond$ Verify the correctness of the design, either manually or using simulation

## Designing a BCD to Excess-3 Code Converter

1. Specification
$\triangleleft$ Convert BCD code to Excess-3 code
$\triangleleft$ Input: BCD code for decimal digits 0 to 9
$\diamond$ Output: Excess-3 code for digits 0 to 9
2. Formulation
$\diamond$ Done easily with a truth table
४ BCD input: $a, b, c, d$
« Excess-3 output: $w, x, y, z$
$\diamond$ Output is don't care for 1010 to 1111

|  | Excess-3 <br> w x y z |
| :---: | :---: |
| 0000 | 0011 |
| 0001 | 0100 |
| 0010 | 0101 |
| 0011 | 0110 |
| 0100 | 0111 |
| 0101 | 1000 |
| 0110 | 1001 |
| 0111 | 1010 |
| 1000 | 1011 |
| 1001 | 1100 |
| 1010 to 1111 | X X X X |

## Designing a BCD to Excess-3 Code Converter

## 3. Logic Minimization using K-maps

|  | K-map for $w$ |  |  |  | K-map for $x$ |  |  |  | K-map for $y$ |  |  |  | K-map for $z$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b) | 00 | 01 | 11 | 10 | 00 | 01 | 11 | 10 | 00 | 01 | 11 | 10 | 00 | 01 | 11 | 10 |
| 00 |  |  |  |  |  | 1 | 1 | 1 | 1 |  | 1 |  | 1 |  |  | 1 |
| 01 |  | 1 | 1 | 1 | 1 |  |  |  | 1 |  | 1 |  | 1 |  |  | 1 |
| 11 | X | X | (X) | X | $x$ | X | X | X | X | X | X | X | X | X | X | X |
| 10 | 1 | 1 | X | X |  | 1 | X | X | 1 |  | X | X | 1 |  | X | X |

Minimal Sum-of-Product expressions:

$$
w=a+b c+b d, x=b^{\prime} c+b^{\prime} d+b c^{\prime} d^{\prime}, y=c d+c^{\prime} d^{\prime}, z=d^{\prime}
$$

Additional 3-Level Optimizations: extract common term $(c+d)$

$$
w=a+b(c+d), x=b^{\prime}(c+d)+b(c+d)^{\prime}, y=c d+(c+d)^{\prime}
$$

## Designing a BCD to Excess-3 Code Converter

## 4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters
Other gates can be used, such as NAND, NOR, and XOR


## Using XOR gates

$$
\begin{gathered}
x=b^{\prime}(c+d)+b(c+d)^{\prime}=b \oplus(c+d) \\
y=c d+c^{\prime} d^{\prime}=(c \oplus d)^{\prime}=c \oplus d^{\prime}
\end{gathered}
$$



## Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually
Extract output functions from circuit diagram
Find the truth table of the circuit diagram
Match it against the specification truth table
Verification process can be automated
Using a simulator for complex designs


Truth Table of the Circuit Diagram

| $\begin{aligned} & \mathrm{BCD} \\ & \mathrm{abcd} \end{aligned}$ | C+d | $\mathrm{b}(\mathrm{c}+\mathrm{d})$ | $\begin{aligned} & \text { Excess-3 } \\ & \text { wxyz} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 0000 | 0 | 0 | 0011 |
| 0001 | 1 | 0 | 010 |
| 0010 | 1 | 0 | 010 |
| 0011 | 1 | 0 | 011 |
| 0100 | 0 | 0 | 011 |
| 0101 | 1 | 1 | 1000 |
| 0110 | 1 | 1 | 1001 |
| 0111 | 1 | 1 | 1010 |
| 1000 | 0 | 0 | 1011 |
| 1001 | 1 | 0 | 1100 |

## BCD to 7-Segment Decoder

* Seven-Segment Display:
$\diamond$ Made of Seven segments: light-emitting diodes (LED)
$\diamond$ Found in electronic devices: such as clocks, calculators, etc.

* BCD to 7-Segment Decoder
» Accepts as input a BCD decimal digit (0 to 9)

$\diamond$ Generates output to the seven LED segments to display the BCD digit
$\triangleleft$ Each segment can be turned on or off separately


## Designing a BCD to 7-Segment Decoder

1. Specification:
$\triangleleft$ Input: 4-bit BCD $(A, B, C, D)$
$\diamond$ Output: 7-bit ( $a, b, c, d, e, f, g$ )
$\triangleleft$ Display should be OFF for
Non-BCD input codes
2. Formulation
$\triangleleft$ Done with a truth table
$\diamond$ Output is zero for 1010 to 1111


## Truth Table

| BCD input <br> A B C D | 7-Segment decoder abcdefg |
| :---: | :---: |
| 0000 | 1111110 |
| 0001 | 0110000 |
| 0010 | 1101101 |
| 0011 | 1111001 |
| 0100 | 0110011 |
| 0101 | 1011011 |
| 0110 | 1011111 |
| 0111 | 1110000 |
| 1000 | 1111111 |
| 1001 | 1111011 |
| 1010 to 1111 | 0000000 |

## Designing a BCD to 7-Segment Decoder

## 3. Logic Minimization Using K-Maps

| $C D$ K-map for a |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} A B \\ 00 \end{array}$ |  | 01 | 11 | 10 |
|  | 1 |  | 1 | 1 |
| 01 |  | 1 | 1 | 1 |
| 11 |  |  |  |  |
| 10 | 1 | 1 |  |  |



| $C D$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $C D$ | K-map for $c$ |  |  |  |
| $A B$ | 00 | 01 | 11 | 10 |
| 00 | 1 | 1 | 1 |  |
| 01 | 1 | 1 |  |  |
|  | 1 | 1 | 1 | 1 |
| 11 |  |  |  |  |
|  |  |  |  |  |
| 10 | 1 | 1 |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

$$
\begin{aligned}
& a=A^{\prime} C+A^{\prime} B D+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime} D^{\prime} \\
& b=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} C D \\
& c=A^{\prime} B+B^{\prime} C^{\prime}+A^{\prime} D
\end{aligned}
$$

Extracting common terms
Let $T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}, T_{3}=A^{\prime} D$

Optimized Logic Expressions $a=A^{\prime} C+T_{1} D+T_{2} A+T_{2} D^{\prime}$
$b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C$
$c=T_{1}+T_{2}+T_{3}$
$T_{1}, T_{2}, T_{3}$ are shared gates

## Designing a BCD to 7-Segment Decoder

## 3. Logic Minimization Using K-Maps



| $C D$ K-map for $g$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} A B \\ 00 \end{array}$ |  | 01 | 11 | 10 |
|  |  |  | 1 | 1 |
| 01 | 1 | 1 |  | 1 |
| 11 |  |  |  |  |
| 10 | 1 | 1 |  |  |

$$
\begin{aligned}
& \text { Common AND Terms } \\
& \rightarrow \text { Shared Gates } \\
& T_{4}=A B^{\prime} C^{\prime}, T_{5}=B^{\prime} C^{\prime} D^{\prime} \\
& T_{6}=A^{\prime} B^{\prime} C, T_{7}=A^{\prime} C D^{\prime} \\
& T_{8}=A^{\prime} B C^{\prime}, T_{9}=A^{\prime} B D^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Optimized Logic Expressions } \\
& d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D \\
& e=T_{5}+T_{7} \\
& f=T_{4}+T_{5}+T_{8}+T_{9} \\
& g=T_{4}+T_{6}+T_{8}+T_{9}
\end{aligned}
$$

## Designing a BCD to 7-Segment Decoder

## 4. Technology Mapping

Many Common AND terms: $T_{0}$ thru $T_{9}$
$T_{0}=A^{\prime} C, T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}$
$T_{3}=A^{\prime} D, T_{4}=A B^{\prime} C^{\prime}, T_{5}=B^{\prime} C^{\prime} D^{\prime}$
$T_{6}=A^{\prime} B^{\prime} C, T_{7}=A^{\prime} C D^{\prime}$
$T_{8}=A^{\prime} B C^{\prime}, T_{9}=A^{\prime} B D^{\prime}$
Optimized Logic Expressions

$$
\begin{aligned}
& a=T_{0}+T_{1} D+T_{4}+T_{5} \\
& b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C \\
& c=T_{1}+T_{2}+T_{3} \\
& d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D \\
& e=T_{5}+T_{7} \\
& f=T_{4}+T_{5}+T_{8}+T_{9} \\
& g=T_{4}+T_{6}+T_{8}+T_{9}
\end{aligned}
$$



## Verification Methods

* Manual Logic Analysis
$\triangleleft$ Find the logic expressions and truth table of the final circuit
$\triangleleft$ Compare the final circuit truth table against the specified truth table
$\diamond$ Compare the circuit output expressions against the specified expressions
$\triangleleft$ Tedious for large designs + Human Errors
* Simulation
$\triangleleft$ Simulate the final circuit, possibly written in HDL (such as Verilog)
$\diamond$ Write a test bench that automates the verification process
$\diamond$ Generate test cases for ALL possible inputs (exhaustive testing)
$\triangleleft$ Verify the output correctness for ALL input test cases
$\diamond$ Exhaustive testing can be very time consuming for many inputs


## Modeling the 7-Segment Decoder

// Module BCD_to_7Segment: Modeled using continuous assignment module BCD_to_7Segment (input $A, B, C, D$, output $a, b, c, d, e, f, g$ ); wire T0, T1, T2, T3, T4, T5, T6, T7, T8, T9;
assign T0=~A\&C; assign T1=~A\&B; assign T2=~B\&~C; assign T3=~A\&D; assign T4=T2\&A; assign T5=T2\&~D;
assign T6=T0\&~B; assign T7=T0\&~D; assign T8=T1\&~C; assign T9=T1\&~D;
assign a = T0 | T1\&D | T4 | T5;
assign b = ~A\&~B | T2 | ~A\&~C\&~D | T3\&C;
assign c = T1 | T2 | T3;
assign d = T4 | T5 | T6 | T7 | T8\&D;
assign e = T5 | T7;
assign $f=$ T4 | T5 | T8 | T9;
assign g = T4 | T6 | T8 | T9;
assign statements can appear in any order
endmodule

## Testing the BCD to 7-Segment Decoder

module Test_BCD_to_7Segment; // No need for Ports
 endmodule

## The initial and always Blocks

* There are two types of procedural blocks in Verilog

1. The initial block
$\triangleleft$ Executes the enclosed statement(s) once
2. The always block
$\triangleleft$ Executes the enclosed statement(s) repeatedly until simulation terminates

* The body of the initial and always blocks is procedural
$\triangleleft$ Can enclose one or more procedural statements
$\triangleleft$ Procedural statements surrounded by begin ... end execute sequentially
$\triangleleft$ \#delay is used to delay the execution of the procedural statement
* Procedural blocks can appear in any order inside a module
* Multiple procedural blocks run in parallel inside the simulator


## Simulator Waveforms

All sixteen input test cases of $A, B, C, D$ are generated between $t=0$ and $t=160 \mathrm{~ns}$. Verify that outputs $a$ to $g$ match the truth table.


## Hierarchical Design

*Why Hierarchical Design?
To simplify the implementation of a complex circuit
$\star$ What is Hierarchical Design?
Decompose a complex circuit into smaller pieces called blocks Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough
Any block not decomposed is called a primitive block
The hierarchy is a tree of blocks at different levels

* The blocks are verified and well-document
* They are placed in a library for future use


## Example of Hierarchical Design

* Top Level: 16-input odd function: 16 inputs, one output $\diamond$ Implemented using Five 4-input odd functions
* Second Level: 4-input odd function that uses three XOR gates





## Top-Down versus Bottom-Up Design

* A top-down design proceeds from a high-level specification to a more and more detailed design by decomposition and successive refinement
* A bottom-up design starts with detailed primitive blocks and combines them into larger and more complex functional blocks
* Design usually proceeds top-down to a known set of building blocks, ranging from complete processors to primitive logic gates


## Hierarchical Design in Verilog

// Module Odd_4: 4-input Odd function uses three xor gates module Odd_4 (input [0:3] x, output z);
wire [0:1] w;

$$
\text { xor } g 1(w[0], x[0], x[1]) ;
$$

$$
\text { xor } \operatorname{g2}(w[1], x[2], x[3]) \text {; }
$$

$$
\text { xor } g 3(z, w[0], w[1]) ;
$$

endmodule

## // Module Odd_16: 16-input Odd function

module Odd_16 (input [0:15] x, output z);
wire [0:3] w;
Odd_4 block0 (x[0:3], w[0]); Odd_4 block1 (x[4:7], w[1]); Odd_4 block2 (x[8:11], w[2]); Odd_4 block3 (x[12:15], w[3]); Odd_4 block4 (w[0:3], z);
endmodule

## Bit Vectors in Verilog

* A Bit Vector is multi-bit declaration that uses a single name
* A Bit Vector is specified as a Range [msb:lsb]
* msb is most-significant bit and Isb is least-significant bit
* Examples:
input [0:15] $x ; \quad / / x$ is a 16-bit input vector wire [0:3] w; // Bit 0 is most-significant bit reg [7:0] a; // Bit 7 is most-significant bit
* Bit select: w[1] is bit 1 of vector w
* Part select: $x[8: 11]$ is a 4-bit select of $x$ with range [ $8: 11$ ]
* The part select range must be consistent with vector declaration


## Testing Hierarchical Design

* Exhaustive testing can be very time consuming (or impossible)
$\checkmark$ For a 16 -bit input, there are $2^{16}=65,536$ test cases (combinations)
$\triangleleft$ For a 32-bit input, there are $2^{32}=4,294,967,296$ test cases
$\checkmark$ For a 64 -bit input, there are $2^{64}=18,446,744,073,709,551,616$ test cases!
* Testing a hierarchical design requires a different strategy
* Test each block in the hierarchy separately
$\triangleleft$ For smaller blocks, exhaustive testing can be done
$\triangleleft$ It is easier to detect errors in smaller blocks before testing complete circuit
* Test the top-level design by applying selected test inputs
* Make sure that the test inputs exercise all parts of the circuit


## Iterative Design

* Using identical copies of a smaller circuit to build a large circuit
* Example: Building a 4-bit adder using 4 copies of a full-adder
* The cell (iterative block) is a full adder

Adds 3 bits: $a_{i}, b_{i}, c_{i}$, Computes: Sum $s_{i}$ and Carry-out $c_{i+1}$

* Carry-out of cell $i$ becomes carry-in to cell $(i+1)$



## Full Adder

* Full adder adds 3 bits: a, b, and c
* Two output bits:

1. Carry bit: cout
2. Sum bit: sum

* Sum bit is 1 if the number of 1 's in the input is odd (odd function) sum $=(a \oplus b) \oplus c$
$*$ Carry bit is 1 if the number of 1 's in the input is 2 or 3 cout $=a \cdot b+(a \oplus b) \cdot c$

Truth Table

| a b c | cout | sum |
| :---: | :---: | :---: |
| 000 | 0 | 0 |
| 001 | 0 | 1 |
| 010 | 0 | 1 |
| 011 | 1 | 0 |
| 100 | 0 | 1 |
| 101 | 1 | 0 |
| 110 | 1 | 0 |
| 111 | 1 | 1 |

## Full Adder Module (Gate-Level Description)

module Full_Adder(input a, b, c, output cout, sum);

$$
\begin{aligned}
& \text { wire } w 1, w 2, w 3 ; \\
& \text { and (w1, } a, b) ; \\
& \text { xor (w2, } a, b) ; \\
& \text { and (w3, w2, c); } \\
& \text { xor (sum, w2, c); } \\
& \text { or (cout, w1, w3); } \\
& \text { endmodule }
\end{aligned}
$$



## 16-Bit Adder with Array Instantiation

// Input ports: 16-bit a and b, 1-bit cin (carry input) // Output ports: 16-bit sum, 1-bit cout (carry output) module Adder_16 (input [15:0] a, b, input cin, output [15:0] sum, output cout);

```
wire [16:0] c; // carry bits
assign c[0] = cin; // carry input
assign cout = c[16]; // carry output
```

// Instantiate an array of 16 Full Adders
// Each instance [i] is connected to bit select [i]
Full_Adder adder [15:0] (a[15:0], b[15:0], c[15:0], c[16:1], sum[15:0]);
endmodule
Array Instantiation of identical modules by a single statement

## 16-Bit Adder with Continuous Assignment

```
// Input ports: 16-bit a and b, 1-bit cin (carry input)
// Output ports: 16-bit sum, 1-bit cout (carry output)
module Adder_16b (input [15:0] a, b, input cin,
                                    output [15:0] sum, output cout);
```

```
wire [16:0] c;
```

wire [16:0] c;
assign c[0] = cin;
assign c[0] = cin;
assign cout = c[16]; // carry output
assign cout = c[16]; // carry output
// carry bits
// carry bits
// carry input

```
    // carry input
```

```
// assignment of 16-bit vectors
assign sum[15:0] = (a[15:0] ^ b[15:0]) ^ c[15:0];
assign c[16:1] = (a[15:0] & b[15:0]) |
    (a[15:0] ^ b[15:0]) & c[15:0];
```

endmodule

## Testing the 16-bit Adder

* Exhaustive testing: $2^{16 \times} \times 2^{16} \times 2=8,589,934,592$ test cases
* Let us choose only: $3 \times 3 \times 2=18$ test cases
* Input test cases for a [15:0] = 'h158A, 'h52AF, 'hB903

Chosen randomly with values shown in hexadecimal
'h158A (hexadecimal) = 'b0001_0101_1000_1010 (binary)
Underscores are ignored (used to enhance readability)

* Input test cases for b[15:0] = 'h7095, 'h9A4E, 'hC6BD

Also chosen randomly with values shown in hexadecimal
Radix symbol: 'b (binary), 'o (octal), 'd (decimal), 'h (hex)

* Input test cases for cin = 0, 1


## Writing a Test bench for the 16 -bit Adder

module Test_Adder_16;
reg [15:0] A, B; reg Cin; wire [15:0] Sum; wire Cout; Adder_16 Test (A, B, Cin, Sum, Cout); initial begin
A='h158A; B='h7095; Cin=0;
\#10 Cin=1;
\#10 B='h9A4E; Cin=0;
\#10 Cin=1;
\#10 B='hC6BD; Cin=0;
\#10 Cin=1;
\#10 A='h52AF; B='h7095; Cin=0;
\#10 Cin=1;
\#10 B='h9A4E; Cin=0;
\#10 \$finish; end
// Test bench for Adder_16
// Data and Carry inputs
// Sum and Carry outputs
// Instantiate 16-bit adder
// Initialize A, B, Cin
// t=10, Change Cin
// t=20, Change B and Cin
// t=30, Change Cin
// $t=40$, Change $B$ and Cin
// t=50, Change Cin
// t=60, Change A, B and Cin
// t=70, Change Cin
// t=80, Change B and Cin
// more test cases
// End simulation

## Generating Test Cases in parallel with always

module Test_Adder_16;
// Test bench for Adder_16
reg [15:0] A, B; reg Cin;
// Data and Carry inputs
wire [15:0] Sum; wire Cout;
// Sum and Carry outputs
Adder_16 Test (A, B, Cin, Sum, Cout); // Instantiate 16-bit adder
initial begin
A='h158A; B='h7095; Cin=0; // Initialize A, B, Cin
\#200 \$finish;
// At t=200 end simulation
end
always begin // Change A every 60 ns
\#60 A='h52AF; \#60 A='hB903; \#60 A='h158A;
end
always begin // Change B every 20 ns
\#20 B='h9A4E; \#20 B='hC6BD; \#20 B='h7095;
end
always \#10 Cin = ~Cin; // Invert Cin every 10 ns
endmodule

## Simulator Waveforms



* The values of $A, B$, and Sum are shown in hexadecimal

Can change the radix to binary, octal, and decimal

* The values of Sum and Cout can be verified easily
* All 18 test cases of A, B, and Cin are generated ( $\mathrm{t}=0$ to 180 ns )

