Combinational Circuit Design

EE 200

Digital Logic Circuit Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals

Presentation Outline

* How to Design a Combinational Circuit
* Designing a BCD to Excess-3 Code Converter
* Designing a BCD to 7-Segment Decoder
* Hierarchical Design
* Iterative Design

Combinational Circuit

* A combinational circuit is a block of logic gates having:
n inputs: $x_{1}, x_{2}, \ldots, x_{n}$ m outputs: $f_{1}, f_{2}, \ldots, f_{m}$
* Each output is a function of the input variables
* Each output is determined from present combination of inputs
* Combination circuit performs operation specified by logic gates

How to Design a Combinational Circuit

1. Specification

\diamond Specify the inputs, outputs, and what the circuit should do
2. Formulation
\triangleleft Convert the specification into truth tables or logic expressions for outputs
3. Logic Minimization
\diamond Minimize the output functions using K-map or Boolean algebra
4. Technology Mapping
\diamond Draw a logic diagram using ANDs, ORs, and inverters
» Map the logic diagram into the selected technology
\triangleleft Considerations: cost, delays, fan-in, fan-out
5. Verification
\diamond Verify the correctness of the design, either manually or using simulation

Designing a BCD to Excess-3 Code Converter

1. Specification
\triangleleft Convert BCD code to Excess-3 code
\triangleleft Input: BCD code for decimal digits 0 to 9
\diamond Output: Excess-3 code for digits 0 to 9

2. Formulation

\diamond Done easily with a truth table
« BCD input: a, b, c, d
« Excess-3 output: w, x, y, z
\diamond Output is don't care for 1010 to 1111

	Excess-3 wxyzz
0000	0011
0001	0100
0010	0101
0011	0110
0100	011
0101	1000
0110	1001
0111	1010
1000	1011
1001	1100
1010 to 1111	X $\mathrm{X} \times \mathrm{X}$

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps

	K-map for w				K-map for x				K-map for y				K-map for z			
b)	00	01	11	10	00	01	11	10	00	01	11	10	00	01	11	10
00						1	1	1	1		1		1			1
01		1	1	1	1				1		1		1			1
11	X	X	(X)	X	x	X	X	X	X	X	X	X	X	X	X	X
10	1	1	X	X		1	X	X	1		x	X	1		X	X

Minimal Sum-of-Product expressions:

$$
w=a+b c+b d, x=b^{\prime} c+b^{\prime} d+b c^{\prime} d^{\prime}, y=c d+c^{\prime} d^{\prime}, z=d^{\prime}
$$

Additional 3-Level Optimizations: extract common term $(c+d)$

$$
w=a+b(c+d), x=b^{\prime}(c+d)+b(c+d)^{\prime}, y=c d+(c+d)^{\prime}
$$

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters
Other gates can be used, such as NAND, NOR, and XOR

Using XOR gates

$$
\begin{gathered}
x=b^{\prime}(c+d)+b(c+d)^{\prime}=b \oplus(c+d) \\
y=c d+c^{\prime} d^{\prime}=(c \oplus d)^{\prime}=c \oplus d^{\prime}
\end{gathered}
$$

Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually
Extract output functions from circuit diagram
Find the truth table of the circuit diagram
Match it against the specification truth table
Verification process can be automated
Using a simulator for complex designs

Truth Table of the
Circuit Diagram

$\begin{gathered} B C D \\ \text { abcd } \end{gathered}$	C+d	$b(c+d)$	$\begin{aligned} & \text { Excess-3 } \\ & \text { wxyz} \end{aligned}$
0000	0	0	0011
0001	1	0	0100
0010	1	0	010
0011	1	0	0110
0100	0	0	0111
0101	1	1	1000
0110	1	1	1001
0111	1	1	1010
1000	0	0	1011
1001	1	0	1100

BCD to 7-Segment Decoder

* Seven-Segment Display:
\diamond Made of Seven segments: light-emitting diodes (LED)
\diamond Found in electronic devices: such as clocks, calculators, etc.

* BCD to 7-Segment Decoder
\diamond Accepts as input a BCD decimal digit (0 to 9)

\diamond Generates output to the seven LED segments to display the BCD digit
\diamond Each segment can be turned on or off separately

Designing a BCD to 7-Segment Decoder

1. Specification:
\& Input: 4-bit BCD (A, B, C, D)
\diamond Output: 7-bit (a, b, c, d, e, f, g)
\diamond Display should be OFF for
Non-BCD input codes
2. Formulation
\triangleleft Done with a truth table
\triangleleft Output is zero for 1010 to 1111

0723456789

Truth Table

$B C D$ input A B C D	7-Segment decoder a b c defg
0000	1111110
0001	011000
0010	110110
0011	111100
0100	0110011
0101	101101
0110	1011111
0111	1110000
1000	111111
1001	111101
1010 to 1111	0000000

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

	K-map for a			
$A B$		01	11	10
00	1		1	1
01		1	1	1
11				
10	1	1		

$C D$ K-map for c				
$A B \quad 00 \quad 01 \quad 11 \quad 10$				
00	1	1	1	
01	1	1	1	1
11				
10	1	1		

$$
\begin{aligned}
& a=A^{\prime} C+A^{\prime} B D+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime} D^{\prime} \\
& b=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+A^{\prime} C^{\prime} D^{\prime}+A^{\prime} C D \\
& c=A^{\prime} B+B^{\prime} C^{\prime}+A^{\prime} D
\end{aligned}
$$

Extracting common terms
Let $T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}, T_{3}=A^{\prime} D$

Optimized Logic Expressions $a=A^{\prime} C+T_{1} D+T_{2} A+T_{2} D^{\prime}$ $b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C$
$c=T_{1}+T_{2}+T_{3}$
T_{1}, T_{2}, T_{3} are shared gates

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

	K-map for g			
$A B$	00	01	11	10
00			1	1
01	1	1		1
11				
10	1	1		

$$
\begin{aligned}
& \text { Optimized Logic Expressions } \\
& d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D \\
& e=T_{5}+T_{7} \\
& f=T_{4}+T_{5}+T_{8}+T_{9} \\
& g=T_{4}+T_{6}+T_{8}+T_{9}
\end{aligned}
$$

Designing a BCD to 7-Segment Decoder

4. Technology Mapping

Many Common AND terms: T_{0} thru T_{9}
$T_{0}=A^{\prime} C, T_{1}=A^{\prime} B, T_{2}=B^{\prime} C^{\prime}$
$T_{3}=A^{\prime} D, T_{4}=A B^{\prime} C^{\prime}, T_{5}=B^{\prime} C^{\prime} D^{\prime}$
$T_{6}=A^{\prime} B^{\prime} C, T_{7}=A^{\prime} C D^{\prime}$
$T_{8}=A^{\prime} B C^{\prime}, T_{9}=A^{\prime} B D^{\prime}$
Optimized Logic Expressions

$$
\begin{aligned}
& a=T_{0}+T_{1} D+T_{4}+T_{5} \\
& b=A^{\prime} B^{\prime}+T_{2}+A^{\prime} C^{\prime} D^{\prime}+T_{3} C \\
& c=T_{1}+T_{2}+T_{3} \\
& d=T_{4}+T_{5}+T_{6}+T_{7}+T_{8} D \\
& e=T_{5}+T_{7} \\
& f=T_{4}+T_{5}+T_{8}+T_{9} \\
& g=T_{4}+T_{6}+T_{8}+T_{9}
\end{aligned}
$$

Verification Methods

* Manual Logic Analysis
\triangleleft Find the logic expressions and truth table of the final circuit
\triangleleft Compare the final circuit truth table against the specified truth table
\diamond Compare the circuit output expressions against the specified expressions
\triangleleft Tedious for large designs + Human Errors
* Simulation
\diamond Simulate the final circuit, possibly written in HDL (such as Verilog)
\triangleleft Write a test bench that automates the verification process
\diamond Generate test cases for ALL possible inputs (exhaustive testing)
\triangleleft Verify the output correctness for ALL input test cases
\diamond Exhaustive testing can be very time consuming for many inputs

Hierarchical Design

*Why Hierarchical Design?
To simplify the implementation of a complex circuit
\star What is Hierarchical Design?
Decompose a complex circuit into smaller pieces called blocks Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough
Any block not decomposed is called a primitive block
The hierarchy is a tree of blocks at different levels

* The blocks are verified and well-document
* They are placed in a library for future use

Example of Hierarchical Design

* Top Level: 16-input odd function: 16 inputs, one output « Implemented using Five 4-input odd functions
* Second Level: 4-input odd function that uses three XOR gates

Top-Down versus Bottom-Up Design

* A top-down design proceeds from a high-level specification to a more and more detailed design by decomposition and successive refinement
* A bottom-up design starts with detailed primitive blocks and combines them into larger and more complex functional blocks
* Design usually proceeds top-down to a known set of building blocks, ranging from complete processors to primitive logic gates

Iterative Design

* Using identical copies of a smaller circuit to build a large circuit
* Example: Building a 4-bit adder using 4 copies of a full-adder
* The cell (iterative block) is a full adder

Adds 3 bits: a_{i}, b_{i}, c_{i}, Computes: Sum s_{i} and Carry-out c_{i+1}

* Carry-out of cell i becomes carry-in to cell $(i+1)$

Full Adder

* Full adder adds 3 bits: a, b, and c
* Two output bits:

1. Carry bit: cout
2. Sum bit: sum

* Sum bit is 1 if the number of 1 's in the input is odd (odd function) sum $=(a \oplus b) \oplus c$
\star Carry bit is 1 if the number of 1 's in the input is 2 or 3 cout $=a \cdot b+(a \oplus b) \cdot c$

Truth Table

a	b	c	cout	sum	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1		1	0
	1	0	1	0	
1	1	1	1	1	

