
Combinational Circuit Design

EE 200

Digital Logic Circuit Design

Dr. Muhamed Mudawar

King Fahd University of Petroleum and Minerals



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 2

Presentation Outline

❖ How to Design a Combinational Circuit

❖ Designing a BCD to Excess-3 Code Converter

❖ Designing a BCD to 7-Segment Decoder

❖ Hierarchical Design

❖ Iterative Design



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 3

Combinational Circuit

❖ A combinational circuit is a block of logic gates having:

𝑛 inputs: 𝑥1, 𝑥2, … , 𝑥𝑛

𝑚 outputs: 𝑓1, 𝑓2, … , 𝑓𝑚

❖ Each output is a function of the input variables

❖ Each output is determined from present combination of inputs

❖ Combination circuit performs operation specified by logic gates



Combinational

Circuit



𝑛 inputs 𝑚 outputs



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 4

How to Design a Combinational Circuit

1. Specification

 Specify the inputs, outputs, and what the circuit should do

2. Formulation

 Convert the specification into truth tables or logic expressions for outputs

3. Logic Minimization

 Minimize the output functions using K-map or Boolean algebra

4. Technology Mapping

 Draw a logic diagram using ANDs, ORs, and inverters

 Map the logic diagram into the selected technology

 Considerations: cost, delays, fan-in, fan-out

5. Verification

 Verify the correctness of the design, either manually or using simulation



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 5

Designing a BCD to Excess-3 Code Converter

1. Specification

 Convert BCD code to Excess-3 code

 Input: BCD code for decimal digits 0 to 9

 Output: Excess-3 code for digits 0 to 9

2. Formulation

 Done easily with a truth table

 BCD input: 𝑎, 𝑏, 𝑐, 𝑑

 Excess-3 output: 𝑤, 𝑥, 𝑦, 𝑧

 Output is don't care for 1010 to 1111 

BCD

a b c d

Excess-3

w x y z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1010 to 1111 X X X X



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 6

Designing a BCD to Excess-3 Code Converter

3. Logic Minimization using K-maps

00 01 11 10

00

𝑎𝑏

𝑐𝑑
K-map for 𝑤

01

11

10

K-map for 𝑥 K-map for 𝑦 K-map for 𝑧

00 01 11 10 00 01 11 10 00 01 11 10

1

11

11 1 1

XX XX

XX 1

1

1 1 1

XX XX

XX

1

1

XX XX

XX

1

1

XX XX

XX1

1

1

1

Minimal Sum-of-Product expressions:

𝑤 = 𝑎 + 𝑏𝑐 + 𝑏𝑑 , 𝑥 = 𝑏′𝑐 + 𝑏′𝑑 + 𝑏𝑐′𝑑′ , 𝑦 = 𝑐𝑑 + 𝑐′𝑑′ , 𝑧 = 𝑑′

Additional 3-Level Optimizations: extract common term (𝑐 + 𝑑)

𝑤 = 𝑎 + 𝑏(𝑐 + 𝑑) , 𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ , 𝑦 = 𝑐𝑑 + (𝑐 + 𝑑)′



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 7

Designing a BCD to Excess-3 Code Converter

4. Technology Mapping

Draw a logic diagram using ANDs, ORs, and inverters

Other gates can be used, such as NAND, NOR, and XOR

a

b

c

d

w

x

y

z

Using XOR gates

𝑥 = 𝑏′ 𝑐 + 𝑑 + 𝑏 𝑐 + 𝑑 ′ = 𝑏  𝑐 + 𝑑

𝑦 = 𝑐𝑑 + 𝑐′𝑑′ = 𝑐  𝑑 ′ = 𝑐  𝑑′

a

b

c

d

w

x

y

z



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 8

Designing a BCD to Excess-3 Code Converter

5. Verification

Can be done manually

Extract output functions from circuit diagram

Find the truth table of the circuit diagram

Match it against the specification truth table

Verification process can be automated

Using a simulator for complex designs

a

b

c

d

w = a + b(c + d)

x = b  (c + d)

y = c  d'

z = d'

BCD
a b c d c+d b(c+d)

Excess-3
w x y z

0 0 0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1 0 0

0 0 1 0 1 0 0 1 0 1

0 0 1 1 1 0 0 1 1 0

0 1 0 0 0 0 0 1 1 1

0 1 0 1 1 1 1 0 0 0

0 1 1 0 1 1 1 0 0 1

0 1 1 1 1 1 1 0 1 0

1 0 0 0 0 0 1 0 1 1

1 0 0 1 1 0 1 1 0 0

Truth Table of the

Circuit Diagram



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 9

BCD to 7-Segment Decoder

❖ Seven-Segment Display:

 Made of Seven segments: light-emitting diodes (LED)

 Found in electronic devices: such as clocks, calculators, etc.

❖ BCD to 7-Segment Decoder

 Accepts as input a BCD decimal digit (0 to 9)

 Generates output to the seven LED segments to display the BCD digit

 Each segment can be turned on or off separately

BCD to

7-Segment

Decoder

A

B

C

D

a
b
c
d
e
f
g



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 10

Designing a BCD to 7-Segment Decoder 

1. Specification:

 Input: 4-bit BCD (A, B, C, D)

 Output: 7-bit (a, b, c, d, e, f, g)

 Display should be OFF for

Non-BCD input codes

2. Formulation

 Done with a truth table

 Output is zero for 1010 to 1111

BCD input

A B C D

7-Segment decoder

a b c d e f g

0 0 0 0 1 1 1 1 1 1 0

0 0 0 1 0 1 1 0 0 0 0

0 0 1 0 1 1 0 1 1 0 1

0 0 1 1 1 1 1 1 0 0 1

0 1 0 0 0 1 1 0 0 1 1

0 1 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 1 1 1 1 1

0 1 1 1 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1 1 1 1

1 0 0 1 1 1 1 1 0 1 1

1010 to 1111 0 0 0 0 0 0 0

Truth Table



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 11

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑎

01

11

10 11

1 1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑏

01

11

10 11

1

11

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑐

01

11

10 11

1

1 1

11

11

𝑎 = 𝐴′𝐶 + 𝐴′𝐵𝐷 + 𝐴𝐵′𝐶′ + 𝐵′𝐶′𝐷′

𝑏 = 𝐴′𝐵′ + 𝐵′𝐶′ + 𝐴′𝐶′𝐷′ + 𝐴′𝐶𝐷

𝑐 = 𝐴′𝐵 + 𝐵′𝐶′ + 𝐴′𝐷

Extracting common terms

Let 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′, 𝑇3 = 𝐴′𝐷

Optimized Logic Expressions

𝑎 = 𝐴′𝐶 + 𝑇1 𝐷 + 𝑇2 𝐴 + 𝑇2 𝐷
′

𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3

𝑇1, 𝑇2, 𝑇3 are shared gates



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 12

Designing a BCD to 7-Segment Decoder

3. Logic Minimization Using K-Maps

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑑

01

11

10 11

1

1

1 1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑒

01

11

10 1

1

1

1

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑓

01

11

10 11

1

1 11

00 01 11 10

00
𝐴𝐵

𝐶𝐷 K-map for 𝑔

01

11

10 11

1 1

1 1

1

Optimized Logic Expressions

𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7

𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9

𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Common AND Terms

➔ Shared Gates

𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 13

Designing a BCD to 7-Segment Decoder

4. Technology Mapping

Many Common AND terms: 𝑇0 thru 𝑇9
𝑇0 = 𝐴′𝐶, 𝑇1 = 𝐴′𝐵, 𝑇2 = 𝐵′𝐶′

𝑇3 = 𝐴′𝐷, 𝑇4 = 𝐴𝐵′𝐶′, 𝑇5 = 𝐵′𝐶′𝐷′

𝑇6 = 𝐴′𝐵′𝐶, 𝑇7 = 𝐴′𝐶𝐷′

𝑇8 = 𝐴′𝐵𝐶′, 𝑇9 = 𝐴′𝐵𝐷′

Optimized Logic Expressions

𝑎 = 𝑇0 + 𝑇1 𝐷 + 𝑇4 + 𝑇5
𝑏 = 𝐴′𝐵′ + 𝑇2 + 𝐴′𝐶′𝐷′ + 𝑇3𝐶

𝑐 = 𝑇1 + 𝑇2 + 𝑇3
𝑑 = 𝑇4 + 𝑇5 + 𝑇6 + 𝑇7 + 𝑇8 𝐷

𝑒 = 𝑇5 + 𝑇7
𝑓 = 𝑇4 + 𝑇5 + 𝑇8 + 𝑇9
𝑔 = 𝑇4 + 𝑇6 + 𝑇8 + 𝑇9

Showing only

Outputs e, f, g

T4

T2

T5

A

B'
C'

D'

T0

T6

T7

B'

A'
C

D'

T8

T1

T9

C'

A'
B

D'

e f g



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 14

Verification Methods

❖ Manual Logic Analysis

 Find the logic expressions and truth table of the final circuit

 Compare the final circuit truth table against the specified truth table

 Compare the circuit output expressions against the specified expressions

 Tedious for large designs + Human Errors

❖ Simulation

 Simulate the final circuit, possibly written in HDL (such as Verilog)

 Write a test bench that automates the verification process

 Generate test cases for ALL possible inputs (exhaustive testing)

 Verify the output correctness for ALL input test cases

 Exhaustive testing can be very time consuming for many inputs



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 15

Hierarchical Design

❖Why Hierarchical Design?

To simplify the implementation of a complex circuit

❖What is Hierarchical Design?

Decompose a complex circuit into smaller pieces called blocks

Decompose each block into even smaller blocks

Repeat as necessary until the blocks are small enough

Any block not decomposed is called a primitive block

The hierarchy is a tree of blocks at different levels

❖ The blocks are verified and well-document

❖ They are placed in a library for future use



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 16

Example of Hierarchical Design

❖ Top Level: 16-input odd function: 16 inputs, one output

 Implemented using Five 4-input odd functions

❖ Second Level: 4-input odd function that uses three XOR gates

16-Input

Odd

Function

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

4-Input

Odd

Function

z

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

z

x0

x1

x2

x3

z

Hierarchical Design 

typically includes 

blocks of different 

functions and sizes



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 17

Top-Down versus Bottom-Up Design

❖ A top-down design proceeds from a high-level 

specification to a more and more detailed design by 

decomposition and successive refinement

❖ A bottom-up design starts with detailed primitive 

blocks and combines them into larger and more 

complex functional blocks

❖ Design usually proceeds top-down to a known set of 

building blocks, ranging from complete processors to 

primitive logic gates



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 18

Iterative Design

❖ Using identical copies of a smaller circuit to build a large circuit

❖ Example: Building a 4-bit adder using 4 copies of a full-adder

❖ The cell (iterative block) is a full adder

Adds 3 bits: ai, bi, ci, Computes: Sum si and Carry-out ci+1

❖ Carry-out of cell i becomes carry-in to cell (i +1)

c0Full

Adder

a0 b0

s0

c1Full

Adder

a1 b1

s1

c2Full

Adder

a2 b2

s2

c3Full

Adder

a3 b3

s3

c4 ciFull

Adder

ai bi

si

ci+1



Combinational Circuit Design EE 200 – Digital Logic Circuit Design © Muhamed Mudawar – slide 19

Full Adder

❖ Full adder adds 3 bits: a, b, and c

❖ Two output bits:

1. Carry bit: cout

2. Sum bit: sum

❖ Sum bit is 1 if the number of 1's in 

the input is odd (odd function)

sum = (a  b)  c

❖ Carry bit is 1 if the number of 1's in 

the input is 2 or 3

cout = a·b + (a  b)·c

a b c cout sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Truth Table


