
COMBINATIONAL CIRCUITS

Combinational (combinatorial) circuits realize Boolean
functions and deal with digitized signals, usually denoted
by 0s and 1s. The behavior of a combinational circuit is
memoryless; that is, given a stimulus to the input of a com-
binational circuit, a response appears at the output after
some propagation delay, but the response is not stored or
fed back. Simply put, the output depends solely on its most
recent input and is independent of the circuit’s past history.

Design of a combinational circuit begins with a behav-
ioral specification and selection of the implementation
technique. These are then followed by simplification, hard-
ware synthesis, and verification.

Combinational circuits can be specified via Boolean
logic expressions, structural descriptions, or truth tables.
Various implementation techniques, using fixed and pro-
grammable components, are outlined in the rest of this
article. Combinational circuits implemented with fixed
logic tend to be more expensive in terms of design effort
and hardware cost, but they are often both faster and
denser and consume less power. They are thus suitable for
high-speed circuits and/or high-volume production. Imple-
mentations that use memory devices or programmable
logic circuits, on the other hand, are quite economical for
low-volume production and rapid prototyping, but may not
yield the best performance, density, or power consumption.

Simplification is the process of choosing the least
costly implementation from among feasible and equiva-
lent implementations with the targeted technology. For
small combinational circuits, it might be feasible to do
manual simplification based on manipulating or rewrit-
ing logic expressions in one of several equivalent forms. In
most practical cases, however, automatic hardware synthe-
sis tools are employed that have simplification capabilities
built in. Such programmed simplifications are performed
using a mix of algorithmic and heuristic transformations.
Verification refers to the process of ascertaining, to the
extent possible, that the implemented circuit does in fact
behave as originally envisaged or specified.

A half adder is a simple example of a combinational
circuit. The addend, augend, carry, and sum are all sin-
gle binary digits or bits. If we denote the addend as A and
the augend as B, the Boolean function of carry-out Co and
sum S can be written as

The carry-out and sum functions can also be specified in the
form of a truth table with eight rows (corresponding to the
eight possible combinations of values for the three Boolean
inputs) and two columns in which the values of Co and S
are entered for each of the eight combinations. With this
view, we see that Co and S are two of the 223 = 256 possible
functions of three variables. The foregoing is justified by
noting that each of the 23 = 8 rows of the truth table for
a 3-variable function can be filled out in two ways, thus
leading to 28 choices overall.

The process of designing combinational circuits involves
certain levels of abstraction. For structured circuit

implementation, the key is to find high-level building
blocks that are sufficiently general to be used for different
designs. While it is easy to identify a handful of elements
(such as AND, OR, and NOT gates) from which all combi-
national circuits can be synthesized, the use of such simple
building blocks reduces the component count by only a
modest amount. A more significant reduction in component
count may be obtained if each building block is equivalent
to tens or hundreds of gates.

Popular combinational circuits that are more complex
than single gates include the following.

� Multiplexer: In its simplest form, a multiplexer (mux,
for short) has two data inputs x0 and x1, a selection
signal s, and an output Y that equals xs, that is, one
of the two inputs, chosen based on the value of s. The
foregoing 2-to-1 mux can be readily generalized to one
with 2L data inputs and L selection signals, as we
shall see shortly.

� Decoder: An L-to-2L (or L-input) decoder has 0s on 2L

− 1 of its outputs and 1 on the single output whose
index (in binary) is represented by the L input bits.
So, if the L-bit input pattern is 01001, representing
the number 9 in binary, the output Y9 will be 1 and all
other outputs will be 0s.

� Encoder: The operation of encoding is the opposite of
decoding. Here, there are 2L inputs, at most one of
which (say, xi) is 1. The L-bit output is the binary rep-
resentation of the index i of the single active input
line. A priority encoder can deal with multiple active
inputs. It sets the L outputs to the index of the first
such active input.

A commonly used building-block approach is based on
array structures. Programmable logic devices (PLDs) are
composed of primitive gates arranged into logic blocks
whose connections can be customized for realizing spe-
cific functions. Programmable elements are used to specify
what each logic block does and how they are combined to
produce desired functions. This fundamental idea is used
in connection with various architectures and fabrication
technologies to implement a wide array of different PLDs.

IMPLEMENTATIONS WITH FIXED LOGIC

If the input-output behavior of the combinational circuit
is defined by means of a logic statement, then the state-
ment can be easily expressed in sum-of-products form
using Boolean algebra. Once in this form, its implementa-
tion is a relatively straightforward task. In the following,
we will consider the implementation of combinational cir-
cuits using gate networks and multiplexers. These are
fixed (as opposed to programmable) logic devices in the
sense that they are used by suitably interconnecting their
input/output terminals, with no modification to the inter-
nal structures of the building blocks.

Using Gate Networks

Let us begin with the Boolean function D defined as

J. Webster (ed.), Wiley Encyclopedia of Electrical and Electronics Engineering. Copyright © 2010 John Wiley & Sons, Inc.



2 Combinational Circuits

where A, B, and C are input variables whose values can be
either 0 or 1. Direct implementation based on the preced-
ing expression would require three chips: one that contains
inverters (such as 7404), one that contains two-input AND
gates (such as 7408), and one that contains two-input OR
gates (such as 7432). Rewriting the logic expression for D
as

reduces the number of gates from 4 to 3, but does not affect
the component or chip count discussed in the preceding.

By applying DeMorgan’s theorem, we can derive an
equivalent logic expression for our target Boolean function
that can be implemented using a single chip containing
only NOR gates (such as 7402).

Similarly, DeMorgan’s theorem allows us to transform the
logic expression into one whose implementation requires
only NAND gates:

Figure 1 shows the three gate network implementations
of D using NOT-AND-OR, NOR, and NAND gates, as
discussed in the preceding. The output D of such a com-
binational gate network becomes available after a certain
delay following the application of its inputs.With gate-level
components, the input-to-output delay, or the latency, of a
combinational circuit depends on the number and types of
gates located on the slowest path from an input terminal to
the output. The number of gate levels is a rough indicator
of the circuit’s latency.

Practical combinational circuits may contain many
more gates and levels than the simple examples shown in
Fig. 1. As combinational circuits are often placed between

synchronously clocked storage elements, or latches, the cir-
cuit’s latency dictates the clock rate and, thus, the overall
system speed. One way to improve the computation rate,
or throughput, is to partition the gates into narrow slices,
each consisting of only a few levels, and buffer the signals
going from one slice to the next in latches. In this way, the
clock rate can be made faster and a new set of inputs pro-
cessed in each clock cycle. Thus, the throughput improves
while both latency and cost deteriorate due to the insertion
of latches (see Fig. 2).

Today, digital implementation technologies are quite
sophisticated and neither cost nor latency can be easily
predicted based on simple notions such as number of gates,
gate inputs, or gate levels. Thus, the task of logic circuit
implementation is often relegated to automatic synthesis
or CAD tools. As an added benefit, such tools can take many
other factors, besides cost and latency, into account. Exam-
ples of such factors include power consumption, avoidance
of hazards, and ease of testing (testability).

Realizing combinational circuits by means of specially
designed gate networks constitutes the ASIC (application-
specific integrated circuit) approach. The circuit is tailored
to computing a particular function and cannot be used for
any other function, unless its components are modified or
augmented. In the rest of this article, we focus on real-
izations based on general or flexible circuits that can be
molded (programmed) to fit the needs of a multitude of
functions.

Using Multiplexers

The application of discrete logic circuits becomes imprac-
tical as our Boolean expression grows in complexity. An
alternative solution might be the use of a multiplexer. To
implement the Boolean function with a multiplexer, we
first expand it into unique minterms; each of which is a
product term of all the variables in either true or comple-

Figure 1. Realizing the Boolean function D = AB + BC by gate networks.

Figure 2. Schematic of a pipelined combinational circuit.



Combinational Circuits 3

Figure 3. A multiplexer or selector transfers one of its “data”
inputs to its output depending on the values applied to its “select”
inputs.

ment form

With L input variables, there are 2L possible minterms,
each corresponding to one data line of a 2L -to-1 multiplexer.
Figure 3 shows an 8-to-1 multiplexer and the logic expres-
sion for its output. A 2L -to-1 multiplexer can be used to
implement any desired L-variable Boolean function by sim-
ply connecting the input variables to its select lines, logic 1
to the data lines corresponding to the minterms, and logic 0
to the remaining data lines. The select inputs s2, s1, and s0,
when viewed as a 3-bit binary number, represent an index
i in the 0 to 7 range. The value on data line xi is then chosen
as the output.

To implement a Boolean function with more variables
than can be accommodated by a single multiplexer, we can
connect other multiplexers to the xi inputs of Fig. 3 to
obtain a multilevel multiplexer realization. For example,

to implement a 6-variable function, we can expand it in
terms of three of the variables to obtain an expression sim-
ilar to the one shown on the output in Fig. 3, where the xi

are residual functions in terms of the remaining variables.
Figure 4 shows how the function D can be implemented

by an 8-to-1 multiplexer. We can view the single line enter-
ing each AND gate as representing multiple inputs. In
effect, we have an 8-bit memory whose hardwired data are
interrogated by the input variables; the latter information
filters through the decoder, which finds the corresponding
data line and selects it as the output.

With a multiplexer that can supply both the output D
and its complement D, we can choose to tie the minterms to
logic 1 and the remaining data lines to logic 0, or vice versa.
This, again, is an application of DeMorgan’s theorem.

A 2L -to-1 multiplexer can be implemented as an L-
level network of 2-to-1 multiplexers. This becomes clear
by noting that a 2-to-1 multiplexer is characterized by the
equation

and that the output logic expression for the 8-to-1 multi-
plexer of Fig. 3, say, can be written as:

Another way to justify the preceding is to note that a 2-to-1
multiplexer can act as a NOT, AND, or OR gate:

We have just concluded our examination of a simple
programmable logic device. The basic elements include a
means to store data, a decoding function to retrieve data,
and an association of data with logic values. In the case
of a multiplexer, the programmability is provided by man-
ual wiring. Slightly more complicated schemes use fuse or

Figure 4. Realizing the Boolean function D = AB + BC by an 8-to-1 multiplexer.



4 Combinational Circuits

antifuse elements. A fuse is a low-resistance circuit ele-
ment that can be opened permanently by a relatively high
surging current, thus disconnecting its endpoints. An anti-
fuse is the opposite of a fuse; it is an open circuit element
that can be made permanently low resistance. Both fuse
and antifuse offer one-time programmability (OTP). Once
programmed, they cannot be modified.

IMPLEMENTATIONS WITH MEMORY DEVICES

Multioutput Boolean functions can be implemented by sev-
eral multiplexers connected in parallel. However, it seems
wasteful to have multiple decoders, especially when the
number of variables is large. Removing all but one of
the replicated decoders in the multiplexers and making
the hardwiring changeable lead to a memory structure,
as shown in Fig. 5. This approach of logic being embod-
ied in the memory content is the well-known table-lookup
method for implementing Boolean functions.

Table lookup is attractive for function evaluation as
it allows the replacement of irregular random logic
structures with much denser memory arrays. The input
variables constitute an address that sensitizes a word
select line and leads to the stored data in that particu-
lar word being gated out. As in the case of the multiplexer,
the values to be stored are related to the minterms of the
Boolean function. Thus, the content of each memory col-
umn in Fig. 5 is the truth table of the associated output
function.

Figure 6 shows the use of an 8 × 2 bit memory device
to implement a full adder. The full adder is a half adder
augmented with a single-bit carry-in Ci and is specified by
the Boolean functions

In general, memory cells can be classified in two major
categories: read-only memory (ROM) (in some cases, read-

Figure 5. The read path of a memory device goes through the
address decoder and the memory array. Such a device can be
viewed as a multiplexer with multiple outputs.

mostly), which is nonvolatile, and random-access memory
(RAM) (read-write memory is a better designation), which
is usually volatile. They are distinguished by: (1) the length
of write/erase cycle time compared with the read cycle time;
and (2) whether the data are retained after power-off. Pro-
grammability refers to the ability to write either a logic
0 or 1 to each memory cell, which in some cases must be
preceded by a full or partial erasure of the memory content
(such as in EPROM and EEPROM). In this respect, PLDs
are no different and actually use some form of memory in
their structures.

Strictly speaking, implementations of Boolean functions
based on such memory devices cannot be viewed as combi-
national. Many PLDs are in fact sequential in nature. They
become combinational only because the clocked latches
are bypassed. However, the programming will never occur
in operation and, in some cases, is limited to a cer-
tain maximum number of times during the life of the
device. Thus, between programming actions, even such
latched or registered PLDs behave as truly combinational
circuits.

It is noteworthy that in Fig. 5, the programmable ele-
ments (memory cells) along each column are wire-ORed
together. Intuitively, the programmable elements can also
be placed in the decoder so they are wired-ANDed together
along each column. These and other variations lead to dif-
ferent building blocks. Programmable logic array (PLA)
and programmable array logic (PAL) are two types of build-
ing blocks that are universally used for implementing
combinational circuits in PLDs.

IMPLEMENTATIONS WITH PROGRAMMABLE LOGIC

The memory-based implementation of Fig. 5 has the essen-
tial feature of array logic, that is, a regular array that
is programmable. Array logic operates by presenting an
address in the data path to the memorylike structure.
Decoding of this address starts the process whereby a pre-
determined result is extracted from the array. Because the
result generated by such an array depends on the content of
the array, the Boolean function can, in principle,be changed
in the same way as writing into a memory.

Using Programmable Logic Arrays

Instead of expanding the product terms into minterms
exhaustively, we take advantage of “don’t care” conditions
to let the decoder select more than one row simultaneously.
Programmable logic devices are organized into an AND
array and an OR array, with multiple inputs and multiple
outputs. The AND array maps the inputs into particular
product terms; the OR array takes these product terms
together to produce the final expression. Figure 7 shows a
block diagram for the array component.

Figure 8 shows a commonly used scheme for represent-
ing the topologies of PLAs. The input variables x1, x2, . . . , xL

and their complements x1,x2, . . . , xL constitute the columns
of the AND array. The rows correspond to the product terms
z1, z2, . . ., zM in both the AND and OR arrays. The columns
of the OR array represent the Boolean functions y1, y2,
. . ., yN in sum-of-products form. The complexity of PLA is



Combinational Circuits 5

Figure 6. Using memory to realize a full adder. The memory content on the right is in one-to-one correspondence with the truth table on
the left.

Figure 7. The basic logic array component consists of an AND
array and an OR array.

determined by the number L of inputs, the number M of
product terms, and the number N of outputs. An L-input,
M-product-term, N-output PLA is sometimes referred to as
an L × M × N device.

The number of product terms is often selected to be
much smaller than 2L (for example, M = 4L). There is a
penalty for this tremendous compression. Whereas a mem-
ory device with its full decoder can generate any function of
the input variables, the partial decoder of the PLA device
generates a very limited number of product terms.

Because of the severe limitation on the number of
available product terms, an aggressive two-level logic mini-
mization method is critical for effective utilization of PLAs.
A convenient way to describe a function for PLA realization
is through a personality matrix, which is a minor reformu-
lation of the truth table. Figure 9 shows an example for a
full adder and the corresponding PLA realization.

For the realization of Boolean functions PLAs are widely
used within integrated circuit designs. A distinct advan-
tage is that their regular structures simplify the automatic
generation of physical layouts. Except for a handful
of stand-alone PLA parts to be used in combinational
circuit implementations, PLAs are generally not field-
programmable. Rather, they are programmed by using
appropriate masks at the time of circuit manufacture.

Multilevel logic structures can be realized with PLAs
either by interconnecting several PLAs or by connecting
certain of the outputs to the inputs in a single PLA. As an
example, an 18 × 42 × 10 PLA can implement the parity
or XOR function in two-level AND-OR form for no more
than six inputs. The reason is that the seven-input XOR
function has 64 minterms which is beyond the capacity of
the preceding PLA. Consider the problem of implement-
ing the nine-input XOR function. One way is to divide the
inputs into three groups of three and separately realize 3

Figure 8. A commonly used scheme for representing the topology of array logic explicitly shows its columns and rows. The cross-points
mark the locations of programmable elements whose states may be changed through programming.



6 Combinational Circuits

Figure 9. A personality matrix defines the inputs, product terms, and outputs of a PLA.

three-input parity functions using 9 of the inputs, 12 of the
product terms, and 3 of the outputs. The preceding three
outputs can then be fed back to three of the unused inputs
and their XOR formed on one of the available outputs by
utilizing four more product terms.

Using Programmable Array Logic

A more common programmable solution is to use PALs.
There is a key difference between PLAs and PALs: PLAs
have the generality that both the AND and OR arrays can
be programmed; PALs maintain the programmable AND
array, but simplify the OR array by hardwiring a fixed
number of product terms to each OR gate.

For example, the commercial PAL device 16L8 (which
means that the device has 16 inputs and 8 outputs, and it
is active low combinational) arranges the AND array in 32
columns and 64 rows. Each AND gate has programmable
connections to 32 inputs to accommodate the 16 variables
and their complements. The 64 AND gates are evenly
divided into 8 groups, each group associated with an OR
gate. However, there are only 7 AND gates connected to
each OR gate and, thus, each Boolean function is allowed
to have at most 7 product terms. The remaining one AND
gate from each group is connected to a tri-state inverter
right after the OR gate, as depicted in Fig. 10. The device
shown in Fig. 10 actually has 10 inputs, 2 outputs, and
6 bidirectional pins that can be used as either inputs or
outputs.

There exists a fundamental trade-off between speed and
capacity in PLDs. It is fair to say that for devices with
comparable internal resources, a PLA should be able to
implement more complex functions than a PAL. The rea-
son is that the PLA allows more product terms per output
as well as product-term sharing; that is, outputs of the
AND array can be shared among a number of different OR
gates. On the other hand, the PLA will be slower because
of the inherent resistance and capacitance of extra pro-
grammable elements on the signal paths.

In reality, NOR-NOR arrays may be used, instead of
AND-OR arrays, to achieve higher speed and density.
(Transistors are complementary, but the N-type is more
robust than the P-type and is often the preferred choice.)

Figure 10. Schematic diagram of the PAL device 16L8 known as
its programming map. Locations to be programmed are specified
by their numbers (11-bit integers in the range 0 to 2047, composed
of a 6-bit row number and a 5-bit column number).

Consider the full adder example. We can rewrite the
Boolean functions as follows:



Combinational Circuits 7

Figure 11. The implementation of a full adder in PAL using NOR
gates is equivalent to that using AND and OR gates. The figure
assumes that four product terms are tied to each sum term.

The inverted inputs and outputs preserve the original
AND-OR structure so the realization is equivalent, as
shown in Fig. 11.

As in the case of PLAs, we can use several PALs to
implement logic functions that are too complex for the
capabilities of a single device. Feeding back the outputs
into the array in order to realize multilevel circuits is facil-
itated by the built-in feedback paths (see Fig. 10). As an
example, to implement the 9-input XOR function using the
PAL device 16L8 shown in Fig. 10, we can divide the inputs
into three groups of 3 and proceed as we did for the PLA
implementation. The only difference is that the feedback
paths are internal and no external wiring is needed.

Other PLD Variants

Generic array logic (GAL) is a slight enhancement of PAL
that includes an XOR gate after each OR gate. The XOR
gate can be viewed as a controlled inverter that changes
the output polarity if desired. Given that y ⊕ 0 = y and
y ⊕ 1 = y, we can choose to implement a Boolean func-
tion directly or generate its complement and then invert
it. As an extreme example, y = x1 + x2 + · · · + x16 cannot
be implemented by PAL16L8, but it can be easily realized
by a similar device that includes the aforementioned XOR
gates through implementing y = x1x2, . . .,x16 and then com-
plementing the result. It is therefore not surprising that
most PALs now allow one to control their output polarity
through an XOR gate or with a multiplexer that chooses
the true or complement result.

The ultimate in flexibility is provided by field-
programmable gate arrays (FPGAs) which consist of a
regular array of logic blocks with programmable function-
alities and interconnections. Figure 12 shows part of a
generic FPGA component. Each block can implement one
or more simple logic functions, say of four or five logic vari-
ables. The inputs to the block can be taken from its adjacent
horizontal or vertical signal tracks (channels) and its out-
put(s) can be routed to other blocks via the same channels.

Figure 12. Part of an FPGA, consisting of four rows and two
columns of logic blocks and their associated programmable inter-
connections (channels). The upper left logic block has been
configured to receive three inputs from its upper and lower hor-
izontal channels and to send its output to the logic block at the
lower right via a vertical and a horizontal channel segment.

The logic blocks of an FPGA store their outputs in storage
elements, thus making the result a sequential circuit. Com-
binational circuits can be implemented by programmed
bypassing of the storage elements.

Many FPGAs have two types of blocks: ordinary logic
blocks, as described above, and special input/output blocks
(typically placed along the chip boundary for direct con-
nection to its pins) that facilitate the interconnection of
an FPGA to external circuits and devices. Many modern
FPGAs use table lookup to realize the simple function(s)
of each logic block. For example, if a 4-variable function
is to be realized, a 16 × 1 table can be embedded into the
logic block. This table can then be preloaded with the truth
table of any desired function at set-up time. It is possi-
ble to combine these small tables with simple arithmetic
circuits, such as adders, into a highly efficient distributed
arithmetic scheme for computing functions of interest.

In order to cover most designs, PLDs are organized
to balance speed and capacity within the constraints of
fabrication technologies. Because the assemblages of logic
blocks are positioned where they are anticipated to be use-
ful to each other, such an approach is necessarily wasteful.
On the other hand, the flexibility, short development time,
and low cost of PLDs makes them ideal for rapid proto-
typing of digital circuits and their realization when the
expected production volume is low or else the need for
debugging and upgrading in the field is envisaged.

BIBLIOGRAPHY

Advanced Micro Devices, PAL r© Device Data Book, 1996.
J. W. Carter, Digital Designing with Programmable Logic Devices,

Englewood Cliffs, NJ: Prentice-Hall, 1997.
H. Flesher, L. I. Maissel, An introduction to array logic, IBM J.

Res. Develop., 19 (2): 98–109, 1975.
R. H. Katz, Contemporary Logic Design, Redwood City, CA: Ben-

jamin/Cummings, 1994.
Lattice Semiconductor, Introduction to GAL r© device architec-

tures, ISP Encyclopedia, 1996.
B. Parhami, Computer Arithmetic: Algorithms and Hardware

Designs, New York: Oxford, 2nd ed., 2010.



8 Combinational Circuits

Philips Semiconductors, Programmable Logic Devices Data Hand-
book, 1993. See also: http://www.datasheetcatalog.com/

K. Tsuchiya, Y. Takefuji, A neural network approach to PLA fold-
ing problems, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., 15: 1299–1305, 1996.

BEHROOZPARHAMI

University of California,
Santa Barbara, CA


