
Combinational Logic Design
with Verilog

ECE 152A – Winter 2012

January 30, 2012 ECE 152A - Digital Design Principles 2

Reading Assignment

 Brown and Vranesic
 2 Introduction to Logic Circuits

 2.10 Introduction to Verilog
 2.10.1 Structural Specification of Logic Circuits
 2.10.2 Behavioral Specification of Logic Circuits
 2.10.3 How Not to Write Verilog Code

January 30, 2012 ECE 152A - Digital Design Principles 3

Reading Assignment

 Brown and Vranesic (cont) 1st edition only!
 4 Optimized Implementation of Logic Functions

 4.12 CAD Tools
 4.12.1 Logic Synthesis and Optimization
 4.12.2 Physical Design
 4.12.3 Timing Simulation
 4.12.4 Summary of Design Flow
 4.12.5 Examples of Circuits Synthesized from Verilog Code

January 30, 2012 ECE 152A - Digital Design Principles 4

Programmable Logic

 Provides low cost and flexibility in a design
 Replace multiple discrete gates with single device
 Logical design can be changed by reprogramming

the device
 No change in board design

 Logical design can be changed even after the part
has been soldered onto the circuit board in
modern, In-system programmable device

 Inventory can focus on one part
 Multiple uses of same device

January 30, 2012 ECE 152A - Digital Design Principles 5

Programmable Logic

 Evolution of Programmable Logic
 Both in time and complexity
 ROM’s and RAM’s

 Not strictly programmable logic, but useful in
implementing combinational logic and state machines

 PAL’s
 PAL’s – Programmable Array Logic
 PLA’s – Programmable Logic Array
 GAL’s – Generic Logic Array

January 30, 2012 ECE 152A - Digital Design Principles 6

Programmable Logic

 PLD’s
 Programmable Logic Device

 PLDs are (in general) advanced PALs

 CPLD’s
 Complex Programmable Logic Device

 Multiple PLDs on a single chip

 FPGA’s
 Field Programmable Gate Array

January 30, 2012 ECE 152A - Digital Design Principles 7

Design Entry

 In previous examples, design entry is schematic
based
 TTL implementation using standard, discrete integrated

circuits
 PLD implementation using library of primitive elements

 Code based design entry uses a hardware
description language (HDL) for design entry
 Code is synthesized and implemented on a PLD

January 30, 2012 ECE 152A - Digital Design Principles 8

Verilog Design

 Structural Verilog
 Looks like the gate level implementation

 Specify gates and interconnection
 Text form of schematic

 Referred to as “netlist”
 Allows for “bottom – up” design

 Begin with primitives, instantiate in larger blocks

January 30, 2012 ECE 152A - Digital Design Principles 9

Verilog Design

 RTL (Register Transfer Level) Verilog
 Allows for “top – down” design
 No gate structure or interconnection specified
 Synthesizable code (by definition)

 Emphasis on synthesis, not simulation
 vs. high level behavioral code and test benches

 No timing specified in code
 No initialization specified in code

 Timing, stimulus, initialization, etc. generated in testbench
(later)

January 30, 2012 ECE 152A - Digital Design Principles 10

Half Adder - Structural Verilog Design

 Recall Half Adder
description from
schematic based
design example
 Operation
 Truth table
 Circuit
 Graphical symbol

January 30, 2012 ECE 152A - Digital Design Principles 11

Verilog Syntax

 Modules are the basic unit of Verilog models
 Functional Description

 Unambiguously describes module’s operation
 Functional, i.e., without timing information

 Input, Output and Bidirectional ports for interfaces
 May include instantiations of other modules

 Allows building of hierarchy

January 30, 2012 ECE 152A - Digital Design Principles 12

Verilog Syntax

 Module declaration
 module ADD_HALF (s,c,x,y);

 Parameter list is I/O Ports

 Port declaration
 Can be input, output or inout (bidirectional)

 output s,c;
 input x,y;

January 30, 2012 ECE 152A - Digital Design Principles 13

Verilog Syntax

 Declare nodes as wires or reg
 Wires assigned to declaratively
 Reg assigned to procedurally

 More on this later

 In a combinational circuit, all nodes can, but don’t
have to be, declared wires

 Depends on how code is written
 Node defaults to wire if not declared otherwise
 wire s,c,x,y;

January 30, 2012 ECE 152A - Digital Design Principles 14

Verilog Syntax

 Gates and interconnection
 xor G1(s,x,y);
 and G2(c,x,y);

 Verilog gate level primitive
 Gate name

 Internal (local) name
 Instance name

 Parameter list
 Output port, input port, input port…

January 30, 2012 ECE 152A - Digital Design Principles 15

Gate Instantiation

 Verilog Gates
 Note: notif

and bufif are
tri-state gates

January 30, 2012 ECE 152A - Digital Design Principles 16

Verilog Syntax

 Close the module definition with
 endmodule

 Comments begin with //

January 30, 2012 ECE 152A - Digital Design Principles 17

Half Adder - Structural Verilog Design

module ADD_HALF (s,c,x,y);

output s,c;
input x,y;

wire s,c,x,y;
// this line is optional since nodes default to wires

xor G1 (s,x,y); // instantiation of XOR gate
and G2 (c,x,y); // instantiation of AND gate

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 18

Half Adder – PLD Implementation

 Functional Simulation

Input

Output

0+0 0+1 1+0 1+1

00 01 01 10

January 30, 2012 ECE 152A - Digital Design Principles 19

Full Adder – Structural Verilog Design

 Recall Full Adder
description from
schematic based
design example
 Truth table
 Karnaugh maps
 Circuit

January 30, 2012 ECE 152A - Digital Design Principles 20

Full Adder from 2 Half Adders

January 30, 2012 ECE 152A - Digital Design Principles 21

Full Adder – Structural Verilog Design

module ADD_FULL (s,cout,x,y,cin);

output s,cout;
input x,y,cin;

//internal nodes also declared as wires
wire cin,x,y,s,cout,s1,c1,c2;

ADD_HALF HA1(s1,c1,x,y);
ADD_HALF HA2(s,c2,cin,s1);
or (cout,c1,c2);

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 22

Full Adder – PLD Implementation

 Functional Simulation

Input

Output

0+0+0
0+0+1

00 01

0+1+0
0+1+1

01 10

1+0+0
1+0+1

01 10

1+1+0
1+1+1

10 11

January 30, 2012 ECE 152A - Digital Design Principles 23

Verilog Operators

 The Verilog language includes a large number of
logical and arithmetic operators
 Bit length column indicates width of result

January 30, 2012 ECE 152A - Digital Design Principles 24

Behavioral Specification of Logic Circuits

 Continuous Assignment Operator
 assign sum = a ^ b;

 “Assign” to a wire (generated declaratively)
 Equivalent to

 xor (sum,a,b);

 Continuous and concurrent with other wire
assignment operations
 If a or b changes, sum changes accordingly
 All wire assignment operations occur concurrently

 Order not specified (or possible)

January 30, 2012 ECE 152A - Digital Design Principles 25

Full Adder from Logical Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for continuous assignment
wire cin,x,y,sum,cout;

//logical assignment
assign sum = x ^ y ^ cin;
assign cout = x & y | x & cin | y & cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 26

Full Adder from Arithmetic Operations

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for continuous assignment
wire cin,x,y,sum,cout;

// concatenation operator and addition
assign {cout, sum} = x + y + cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 27

Procedural Verilog Statements

 Recall:
 Wires assigned to declaratively

 Continuous / concurrent assignment
 Reg “variables” assigned to procedurally

 Value is “registered” until next procedural assignment
 Continuous assignment (wires) occurs immediately on input

change
 Enables clocked (synchronous) timing

January 30, 2012 ECE 152A - Digital Design Principles 28

Procedural Verilog Statements

 The “always” block
 Syntax is “always at the occurrence (@) of any

event on the sensitivity list, execute the
statements inside the block (in order)”

always @ (x or y or cin)
{cout, sum} = x + y + cin;

January 30, 2012 ECE 152A - Digital Design Principles 29

RTL Design of Full Adder

module ADD_FULL_RTL (sum,cout,x,y,cin);

output sum,cout;
input x,y,cin;

//declaration for behavioral model
wire cin,x,y;
reg sum,cout;

// behavioral specification
always @ (x or y or cin)

{cout, sum} = x + y + cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 30

Two-bit, Ripple Carry Adder –
Structural Verilog

module TWO_BIT_ADD (S,X,Y,cin,cout);

input cin;
input [1:0]X,Y; // vectored input
output [1:0]S; // and output signals
output cout;

wire cinternal;

ADD_FULL AF0(S[0],cinternal,X[0],Y[0],cin);
ADD_FULL AF1(S[1],cout,X[1],Y[1],cinternal);

endmodule

January 30, 2012 ECE 152A - Digital Design Principles 31

Two-bit, Ripple Carry Adder –
PLD Implementation
 Functional Simulation
 Base-4 Bus Representation of X, Y and Sum

0+1+3 = 4 = 104 → 1+2+2 = 5 = 114 →

0+3+0 = 3 = 034 → 1+3+3 = 7 = 134 →

January 30, 2012 ECE 152A - Digital Design Principles 32

Verilog Test Bench

 Device Under Test (DUT)
 Circuit being designed/developed

 Full adder for this example

 Testbench
 Provides stimulus to DUT

 Like test equipment on a bench

 Instantiate DUT in testbench
 Generate all signals in testbench
 No I/O (parameter list) in testbench

January 30, 2012 ECE 152A - Digital Design Principles 33

Full Adder Testbench Example

module ADDFULL_TB;

reg a,b,ci;
wire sum,co;

initial begin
a = 0;
b = 0;
ci = 0;

end

always begin
#5 a = ~a;

end

always begin
#10 b = ~b;

end

always begin
#20 ci = ~ci;

end

ADD_FULL AF1(sum,co,a,b,ci);

endmodule

