Combinational Logic Design
with Verilog

ECE 152A — Winter 2012

‘ Reading Assignment

= Brown and Vranesic

o 2 Introduction to Logic Circults

= 2.10 Introduction to Verilog
0 2.10.1 Structural Specification of Logic Circuits
0 2.10.2 Behavioral Specification of Logic Circuits
0 2.10.3 How Not to Write Verilog Code

January 30, 2012 ECE 152A - Digital Design Principles

‘ Reading Assignment

= Brown and Vranesic (cont) 15t edition only!

0 4 Optimized Implementation of Logic Functions

= 4.12 CAD Tools
4.12.1 Logic Synthesis and Optimization
4.12.2 Physical Design
4.12.3 Timing Simulation
4.12.4 Summary of Design Flow
4.12.5 Examples of Circuits Synthesized from Verilog Code

January 30, 2012 ECE 152A - Digital Design Principles

‘ Programmable Logic

= Provides low cost and flexibility in a design
o Replace multiple discrete gates with single device

o Logical design can be changed by reprogramming
the device
= No change in board design

0 Logical design can be changed even after the part

has been soldered onto the circuit board In
modern, In-system programmable device

2 Inventory can focus on one part
= Multiple uses of same device

January 30, 2012 ECE 152A - Digital Design Principles

‘ Programmable Logic

= Evolution of Programmable Logic

o Both in time and complexity

2 ROM’s and RAM’s

= Not strictly programmable logic, but useful in
Implementing combinational logic and state machines

o PAL's
= PAL’s — Programmable Array Logic
= PLA’s — Programmable Logic Array
= GAL'’s — Generic Logic Array

January 30, 2012 ECE 152A - Digital Design Principles

‘ Programmable Logic

o PLD’s

= Programmable Logic Device
0 PLDs are (in general) advanced PALs

o CPLD’s

= Complex Programmable Logic Device
0 Multiple PLDs on a single chip

a0 FPGA's
= Field Programmable Gate Array

January 30, 2012 ECE 152A - Digital Design Principles

‘ Design Entry

In previous examples, design entry is schematic
based

= TTL implementation using standard, discrete integrated
Circuits

= PLD implementation using library of primitive elements

Code based design entry uses a hardware
description language (HDL) for design entry
= Code is synthesized and implemented on a PLD

January 30, 2012 ECE 152A - Digital Design Principles

\Verilog Design

= Structural Verilog

0 Looks like the gate level implementation
= Specify gates and interconnection

o Text form of schematic
s Referred to as “netlist”

o Allows for “bottom — up” design
= Begin with primitives, instantiate in larger blocks

January 30, 2012 ECE 152A - Digital Design Principles

\Verilog Design

» RTL (Register Transfer Level) Verilog
2 Allows for “top — down” design
o No gate structure or interconnection specified

0 Synthesizable code (by definition)
= Emphasis on synthesis, not simulation
0 vs. high level behavioral code and test benches
No timing specified in code
No initialization specified in code

o Timing, stimulus, initialization, etc. generated in testbench
(EIED)

January 30, 2012 ECE 152A - Digital Design Principles

'Half Adder - Structural Verilog Design

= Recall Half Adder
description from
schematic based
design example
o Operation
a Truth table
a Circuit
o Graphical symbol

(c) Circuit

Figure 5.2 Half-adder.

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Syntax

= Modules are the basic unit of Verilog models

o Functional Description

= Unambiguously describes module’s operation
0 Functional, I.e., without timing information

o Input, Output and Bidirectional ports for interfaces

o May include instantiations of other modules
= Allows building of hierarchy

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Syntax

= Module declaration
o module ADD HALF (s,c,X,Y);
s Parameter list is I/O Ports

= Port declaration

o Can be input, output or inout (bidirectional)
= output s,c;
= Input X,y;

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Syntax

= Declare nodes as wires or reg
o Wires assigned to declaratively

o Reg assigned to procedurally
= More on this later

o In a combinational circuit, all nodes can, but don'’t

have to be, declared wires
0 Depends on how code is written
= Node defaults to wire if not declared otherwise

= Wires,c,X,Y;

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Syntax

= Gates and interconnection
0 xor G1(s,x,VY);

o and G2(c,X,VY);
Verilog gate level primitive
o Gate name
Internal (local) name
0 Instance name
Parameter list
0 Output port, input port, input port...

January 30, 2012 ECE 152A - Digital Design Principles

Gate Instantiation

= Verilog Gates

a Note: notif
and bufif are
tri-state gates

Table A.2

Name

or

nor

xnor

not

buf

bufif(

bufif1

'\-"erﬂog gates.

buf (f, a)

notifd (f,

notifl (f, a, ¢)

bufif0 (/', a,)

bufifl (£, a

January 30, 2012

ECE 152A - Digital Design Principles

‘ Verilog Syntax

= Close the module definition with
2 endmodule

= Comments begin with //

January 30, 2012 ECE 152A - Digital Design Principles

'Half Adder - Structural Verilog Design

module ADD _HALF (s,c,x,y);

output s,c;
Input x,y;

wire s,C,X,Y,;
/[this line is optional since nodes default to wires

xor G1 (s,x,y); // instantiation of XOR gate
and G2 (c,x,y); // instantiation of AND gate

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

'Half Adder — PLD Implementation

= Functional Simulation

January 30, 2012 ECE 152A - Digital Design Principles

'Full Adder — Structural Verilog Design

= Recall Full Adder
description from
schematic based
design example
o Truth table
o Karnaugh maps
a Circuit

January 30, 2012 ECE 152A - Digital Design Principles

Full Adder from 2 Half Adders

(a) Block diagram

(b) Detailed diagram

Figure 5.5 A decomposed implementation of the full-adder circuit.

January 30, 2012 ECE 152A - Digital Design Principles

'Full Adder — Structural Verilog Design

module ADD_FULL (s,cout,x,y,cin);

output s,cout;
Input x,y,cin;

/linternal nodes also declared as wires
wire cin,X,y,s,cout,s1,cl1,c2;

ADD_HALF HA1(s1,cl,xy);
ADD_HALF HAZ2(s,c2,cin,sl);

or (cout,cl,c2);

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

'Full Adder — PLD Implementation

= Functional Simulation

O+1+1
Input 0+0+0

20.0ns 40.0ns 60.0ns 80.0ns :

100.0ns 120.0ns 140.0ns 160.0ns 180

SRR 1 e S

Li—p

B e

OQutput 00

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Operators

o The Verilog language includes a large number of
logical and arithmetic operators
= Bit length column indicates width of result

Table A.1 Verilog operators and bit lengths.

Category Examples Bit Length

Bitwise Aol TR A (A)
A&B, A|B, A~"B, A"~B MAX (L(A), L(B))
Logical 1A, &B, A | 1 bit

Reduction A, o~ &AL A A, A, 1 bit

Relational A 3, A>B A< 1 bit

Arithmetic ! MAX (L(4), L(B))
Shift A<<B A>>8 L)
Concatenate Sy - LAY +-- + LB
Replication {A}] B = L(A)

Condition AlB. C MAX (L(B), L(C))

January 30, 2012 ECE 152A - Digital Design Principles

\ Behavioral Specification of Logic Circults

= Continuous Assignment Operator

0 assignsum =a” b;
= “Assign” to a wire (generated declaratively)
= Equivalent to

0 Xxor (sum,a,b);

o Continuous and concurrent with other wire
assignment operations
= If a or b changes, sum changes accordingly

= All wire assignment operations occur concurrently
0 Order not specified (or possible)

January 30, 2012 ECE 152A - Digital Design Principles

'Full Adder from Logical Operations

module ADD FULL RTL (sum,cout,x,y,cin);

output sum,cout;
Input x,y,cin;

//declaration for continuous assignment
wire cin,X,y,sum,cout;

//logical assignment
assign sum = x "y ” cin;
assigncout=x & y|x &cin|y & cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

\ Full Adder from Arithmetic Operations

module ADD_FULL _RTL (sum,cout,X,y,cin);

output sum,cout;
input X,y,cin;

//declaration for continuous assignment
wire cin,X,y,sum,cout;

/[concatenation operator and addition
assign {cout, sum} = x +y + cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

'Procedural Verilog Statements

s Recall:

o Wires assigned to declaratively
= Continuous / concurrent assignment

o Reg “variables” assigned to procedurally

= Value is “registered” until next procedural assignment

0 Continuous assignment (wires) occurs immediately on input
change

= Enables clocked (synchronous) timing

January 30, 2012 ECE 152A - Digital Design Principles

'Procedural Verilog Statements

= The “always” block

o Syntax Is “always at the occurrence (@) of any
event on the sensitivity list, execute the
statements inside the block (in order)”

always @ (x ory or cin)
{cout, sum} = x + vy + cin;

January 30, 2012 ECE 152A - Digital Design Principles

RTL Design of Full Adder

module ADD_FULL _RTL (sum,cout,X,y,cin);

output sum,cout;
input X,y,cin;

/ldeclaration for behavioral model
wire cin,X,y;
reg sum,cout;

I/ behavioral specification
always @ (x or y or cin)
{cout, sum} = x +y + cin;

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

\ Two-Dbit, Ripple Carry Adder —
Structural Verilog

module TWO_BIT_ADD (S,X,Y,cin,cout);

input cin;

input [1:0]X,Y; [/l vectored input
output [1:0]S; // and output signals
output cout;

wire cinternal;

ADD_ FULL AFO0(S[0],cinternal,X[0],Y[0],cin);
ADD FULL AF1(S[1],cout,X[1],Y[1],cinternal);

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

\ Two-Dbit, Ripple Carry Adder —
PLD Implementation

= Functional Simulation
0 Base-4 Bus Representation of X, Y and Sum

100.0ns 200.0ns 400.0ns

0+1+3 =4 =10, —

0+3+0=3=03,— 1+3+3=7=13,—

January 30, 2012 ECE 152A - Digital Design Principles

‘ Verilog Test Bench

2 Device Under Test (DUT)
= Circuit being designed/developed
o Full adder for this example
o Testbench
= Provides stimulus to DUT
0 Like test equipment on a bench
o Instantiate DUT in testbench
= Generate all signals in testbench
= No I/O (parameter list) in testbench

January 30, 2012 ECE 152A - Digital Design Principles

'Full Adder Testbench Example

module ADDFULL_TB; always begin
#5 a=~a,
reg a,b,ci; end
wire sum,co;
always begin
Initial begin #10 b = ~b;
a=0; end
b=0;
ci=0; always begin
end #20 ci = ~cClI;
end

ADD_FULL AF1(sum,co,a,b,ci);

endmodule

January 30, 2012 ECE 152A - Digital Design Principles

