Combinational Logic Design
with Verilog

ECE 152A — Winter 2012




‘ Reading Assignment

= Brown and Vranesic

o 2 Introduction to Logic Circults

= 2.10 Introduction to Verilog
0 2.10.1 Structural Specification of Logic Circuits
0 2.10.2 Behavioral Specification of Logic Circuits
0 2.10.3 How Not to Write Verilog Code
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‘ Reading Assignment

= Brown and Vranesic (cont) 15t edition only!

0 4 Optimized Implementation of Logic Functions

= 4.12 CAD Tools
4.12.1 Logic Synthesis and Optimization
4.12.2 Physical Design
4.12.3 Timing Simulation
4.12.4 Summary of Design Flow
4.12.5 Examples of Circuits Synthesized from Verilog Code
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‘ Programmable Logic

= Provides low cost and flexibility in a design
o Replace multiple discrete gates with single device

o Logical design can be changed by reprogramming
the device
= No change in board design

0 Logical design can be changed even after the part

has been soldered onto the circuit board In
modern, In-system programmable device

2 Inventory can focus on one part
= Multiple uses of same device
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‘ Programmable Logic

= Evolution of Programmable Logic

o Both in time and complexity

2 ROM’s and RAM’s

= Not strictly programmable logic, but useful in
Implementing combinational logic and state machines

o PAL's
= PAL’s — Programmable Array Logic
= PLA’s — Programmable Logic Array
= GAL'’s — Generic Logic Array
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‘ Programmable Logic

o PLD’s

= Programmable Logic Device
0 PLDs are (in general) advanced PALs

o CPLD’s

= Complex Programmable Logic Device
0 Multiple PLDs on a single chip

a0 FPGA's
= Field Programmable Gate Array
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‘ Design Entry

In previous examples, design entry is schematic
based

= TTL implementation using standard, discrete integrated
Circuits

= PLD implementation using library of primitive elements

Code based design entry uses a hardware
description language (HDL) for design entry
= Code is synthesized and implemented on a PLD
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\Verilog Design

= Structural Verilog

0 Looks like the gate level implementation
= Specify gates and interconnection

o Text form of schematic
s Referred to as “netlist”

o Allows for “bottom — up” design
= Begin with primitives, instantiate in larger blocks
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\Verilog Design

» RTL (Register Transfer Level) Verilog
2 Allows for “top — down” design
o No gate structure or interconnection specified

0 Synthesizable code (by definition)
= Emphasis on synthesis, not simulation
0 vs. high level behavioral code and test benches
No timing specified in code
No initialization specified in code

o Timing, stimulus, initialization, etc. generated in testbench
(EIED)
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'Half Adder - Structural Verilog Design

= Recall Half Adder
description from
schematic based
design example
o Operation
a Truth table
a Circuit
o Graphical symbol

(c) Circuit

Figure 5.2  Half-adder.
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‘ Verilog Syntax

= Modules are the basic unit of Verilog models

o Functional Description

= Unambiguously describes module’s operation
0 Functional, I.e., without timing information

o Input, Output and Bidirectional ports for interfaces

o May include instantiations of other modules
= Allows building of hierarchy
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‘ Verilog Syntax

= Module declaration
o module ADD HALF (s,c,X,Y);
s Parameter list is I/O Ports

= Port declaration

o Can be input, output or inout (bidirectional)
= output s,c;
= Input X,y;

January 30, 2012 ECE 152A - Digital Design Principles




‘ Verilog Syntax

= Declare nodes as wires or reg
o Wires assigned to declaratively

o Reg assigned to procedurally
= More on this later

o In a combinational circuit, all nodes can, but don'’t

have to be, declared wires
0 Depends on how code is written
= Node defaults to wire if not declared otherwise

= Wires,c,X,Y;
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‘ Verilog Syntax

= Gates and interconnection
0 xor G1(s,x,VY);

o and G2(c,X,VY);
Verilog gate level primitive
o Gate name
Internal (local) name
0 Instance name
Parameter list
0 Output port, input port, input port...
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Gate Instantiation

= Verilog Gates

a Note: notif
and bufif are
tri-state gates

Table A.2

Name

or

nor

xnor

not

buf

bufif(

bufif1

'\-"erﬂog gates.

buf ( f, a)

notifd ( f,

notifl ( f, a, ¢)

bufif0 ( /', a, )

bufifl (£, a
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‘ Verilog Syntax

= Close the module definition with
2 endmodule

= Comments begin with //
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'Half Adder - Structural Verilog Design

module ADD _HALF (s,c,x,y);

output s,c;
Input x,y;

wire s,C,X,Y,;
/[ this line is optional since nodes default to wires

xor G1 (s,x,y); // instantiation of XOR gate
and G2 (c,x,y); // instantiation of AND gate

endmodule
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'Half Adder — PLD Implementation

= Functional Simulation
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'Full Adder — Structural Verilog Design

= Recall Full Adder
description from
schematic based
design example
o Truth table
o Karnaugh maps
a Circuit
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Full Adder from 2 Half Adders

(a) Block diagram

(b) Detailed diagram

Figure 5.5 A decomposed implementation of the full-adder circuit.
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'Full Adder — Structural Verilog Design

module ADD_FULL (s,cout,x,y,cin);

output s,cout;
Input x,y,cin;

/linternal nodes also declared as wires
wire cin,X,y,s,cout,s1,cl1,c2;

ADD_HALF HA1(s1,cl,xy);
ADD_HALF HAZ2(s,c2,cin,sl);

or (cout,cl,c2);

endmodule
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'Full Adder — PLD Implementation

= Functional Simulation
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‘ Verilog Operators

o The Verilog language includes a large number of
logical and arithmetic operators
= Bit length column indicates width of result

Table A.1  Verilog operators and bit lengths.

Category Examples Bit Length

Bitwise Aol TR A (A)
A&B, A|B, A~"B, A"~B MAX (L(A), L(B))
Logical 1A, &B, A | 1 bit

Reduction A, o~ &AL A A, A, 1 bit

Relational A 3, A>B A< 1 bit

Arithmetic ! MAX (L(4), L(B))
Shift A<<B A>>8 L)
Concatenate Sy - LAY +-- + LB
Replication {A}] B = L(A)

Condition AlB. C MAX (L(B), L(C))
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\ Behavioral Specification of Logic Circults

= Continuous Assignment Operator

0 assignsum =a” b;
= “Assign” to a wire (generated declaratively)
= Equivalent to

0 Xxor (sum,a,b);

o Continuous and concurrent with other wire
assignment operations
= If a or b changes, sum changes accordingly

= All wire assignment operations occur concurrently
0 Order not specified (or possible)
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'Full Adder from Logical Operations

module ADD FULL RTL (sum,cout,x,y,cin);

output sum,cout;
Input x,y,cin;

//declaration for continuous assignment
wire cin,X,y,sum,cout;

//logical assignment
assign sum = x "y ” cin;
assigncout=x & y|x &cin|y & cin;

endmodule
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\ Full Adder from Arithmetic Operations

module ADD_FULL _RTL (sum,cout,X,y,cin);

output sum,cout;
input X,y,cin;

//declaration for continuous assignment
wire cin,X,y,sum,cout;

/[ concatenation operator and addition
assign {cout, sum} = x +y + cin;

endmodule
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'Procedural Verilog Statements

s Recall:

o Wires assigned to declaratively
= Continuous / concurrent assignment

o Reg “variables” assigned to procedurally

= Value is “registered” until next procedural assignment

0 Continuous assignment (wires) occurs immediately on input
change

= Enables clocked (synchronous) timing
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'Procedural Verilog Statements

= The “always” block

o Syntax Is “always at the occurrence (@) of any
event on the sensitivity list, execute the
statements inside the block (in order)”

always @ (x ory or cin)
{cout, sum} = x + vy + cin;
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RTL Design of Full Adder

module ADD_FULL _RTL (sum,cout,X,y,cin);

output sum,cout;
input X,y,cin;

/ldeclaration for behavioral model
wire cin,X,y;
reg sum,cout;

I/ behavioral specification
always @ (x or y or cin)
{cout, sum} = x +y + cin;

endmodule
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\ Two-Dbit, Ripple Carry Adder —
Structural Verilog

module TWO_BIT_ADD (S,X,Y,cin,cout);

input cin;

input [1:0]X,Y; [/l vectored input
output [1:0]S;  // and output signals
output cout;

wire cinternal;

ADD_ FULL AFO0(S[0],cinternal,X[0],Y[0],cin);
ADD FULL AF1(S[1],cout,X[1],Y[1],cinternal);

endmodule
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\ Two-Dbit, Ripple Carry Adder —
PLD Implementation

= Functional Simulation
0 Base-4 Bus Representation of X, Y and Sum

100.0ns 200.0ns 400.0ns

0+1+3 =4 =10, —

0+3+0=3=03,— 1+3+3=7=13,—
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‘ Verilog Test Bench

2 Device Under Test (DUT)
= Circuit being designed/developed
o Full adder for this example
o Testbench
= Provides stimulus to DUT
0 Like test equipment on a bench
o Instantiate DUT in testbench
= Generate all signals in testbench
= No I/O (parameter list) in testbench

January 30, 2012 ECE 152A - Digital Design Principles




'Full Adder Testbench Example

module ADDFULL_TB; always begin
#5 a=~a,
reg a,b,ci; end
wire sum,co;
always begin
Initial begin #10 b = ~b;
a=0; end
b=0;
ci=0; always begin
end #20 ci = ~cClI;
end

ADD_FULL AF1(sum,co,a,b,ci);

endmodule
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