
Combinatory Categorial Grammar:

a (gentle) introduction

Claudio Delli Bovi

CCG: a (gentle) introduction

2

The story so far: syntax

5/30/2014

Context-free grammars:

• Terminal symbols

(lexicon)

• Non-terminal symbols

(phrases/clauses)

• A set of rules

(productions)

+

Dependency grammars

Treebanks

Parsing: CKY, Earley

...

CCG: a (gentle) introduction

35/30/2014

The story so far: semantics

Representing concepts and

meanings (senses):

First Order Logic

λ-calculus formalism

+

Lexical semantics:

Word senses

Semantic roles

Taxonomies and semantic

networks

(WordNet, BabelNet)

...

CCG: a (gentle) introduction

45/30/2014

The story so far: semantics

Fine! We have plenty of

formalisms (FOL, λ-calculus)

and a convenient way of

representing word senses

and lexical relations.

But how do we work out the

meaning of a sentence?

- Parse the sentence

- Get the semantics for

each word

- Proceed bottom-up

CCG: a (gentle) introduction

55/30/2014

The story so far: semantics

Fine! We have plenty of

formalisms (FOL, λ-calculus)

and a convenient way of

representing word senses

and lexical relations.

But how do we work out the

meaning of a sentence?

- Parse the sentence

- Get the semantics for

each word

- Proceed bottom-up

..is there any

smarter

way of doing
this?

CCG: a (gentle) introduction

65/30/2014

Categorial Grammar

The term Categorial Grammar names a group of theories of

natural language syntax and semantics in which the main

responsibility for defining syntactic form is borne by the lexicon.

(M. Steedman)

Categorial Grammars (CGs) developed

as an alternative approach to CFGs.

They capture the same information by

associating a functional type, or

category, with all grammatical entities.

CCG: a (gentle) introduction

75/30/2014

Categorial Grammar: Lexicon

In CGs lexical entries for words contain all language-specific

information. For each word, the associated lexical entry contains:

• a syntactic category, to determine which other categories the

word may combine with;

• a semantic interpretation, which defines the related semantics.

For instance, a possible entry in the lexicon could look like:

𝑤𝑟𝑖𝑡𝑒 ⊢ 𝑆\NP /NP λy.λx.write‘(x, y)

Lexeme Category

CCG: a (gentle) introduction

85/30/2014

Categorial Grammar: Lexicon

𝑤𝑟𝑖𝑡𝑒 ⊢ 𝑆\NP /NP λy.λx.write‘(x, y)

Lexeme Category

Syntax Semantics

The so-called Lambek notation (arguments under slash)

reads like this:

- A/B = “give me a B to my right, then I’ll give you an A”

- A\B = “give me a B to my left, then I’ll give you an A”

λ-calculus expression paired with the syntactic type:

syntactic and semantic information captured jointly

CCG: a (gentle) introduction

95/30/2014

Categorial Grammar: Lexicon

A few examples:

• S\NP : λx.f(x) intransitive verb

CCG: a (gentle) introduction

95/30/2014

Categorial Grammar: Lexicon

A few examples:

• S\NP : λx.f(x)

• (S\NP)/NP : λx.λy.f(x, y) transitive verb

intransitive verb

CCG: a (gentle) introduction

95/30/2014

Categorial Grammar: Lexicon

A few examples:

• S\NP : λx.f(x)

• (S\NP)/NP : λx.λy.f(x, y)

• ((S\NP)/NP)/NP : λx.λy.λz.f(x, y, z)

transitive verb

intransitive verb

ditransitive verb

CCG: a (gentle) introduction

95/30/2014

Categorial Grammar: Lexicon

A few examples:

• S\NP : λx.f(x)

• (S\NP)/NP : λx.λy.f(x, y)

• ((S\NP)/NP)/NP : λx.λy.λz.f(x, y, z)

• (S\NP)/(S\NP) : λg.λx.f(g x)

transitive verb

adverb/modal

intransitive verb

ditransitive verb

CCG: a (gentle) introduction

95/30/2014

Categorial Grammar: Lexicon

A few examples:

• S\NP : λx.f(x)

• (S\NP)/NP : λx.λy.f(x, y)

• ((S\NP)/NP)/NP : λx.λy.λz.f(x, y, z)

• (S\NP)/(S\NP) : λg.λx.f(g x)

• S/(S\NP) : λf.f(x)

transitive verb

adverb/modal

intransitive verb

ditransitive verb

subjective pronoun

CG parsing: a toy example

CCG: a (gentle) introduction

105/30/2014

First, use the

lexicon to match

words with their

categories

CG parsing: a toy example

CCG: a (gentle) introduction

115/30/2014

...
...

Primitive

symbols

Composite

categories

Forward Function Application:

A/B: f B: a ⇒ A: f(a)

CG parsing: a toy example

CCG: a (gentle) introduction

125/30/2014

Backward Function Application:

B: a A\B: f ⇒ A: f(a)

CG parsing: a toy example

CCG: a (gentle) introduction

135/30/2014

CGs vs CFGs

CCG: a (gentle) introduction

145/30/2014

CG parse CFG parse

[…] “pure” categorial grammar limited to these two rules alone is

essentially context-free grammar written in the accepting, rather

than the producing, direction.

(M. Steedman)

CGs vs CFGs

CCG: a (gentle) introduction

155/30/2014

From CGs to CCGs: is this all?

CCG: a (gentle) introduction

165/30/2014

Fair enough: we now have a new fancy way of writing syntax that

somehow look more compact and naturally tied up with semantics.

However, we didn’t move any further from CFGs in terms of

expressiveness. Both CGs and CFGs are not powerful enough to

capture some linguistic phenomena, such as

• Object relative clauses: [..] the man that Ed saw.

• Right-node raising: Ed saw and Ned heard Ted.

• Long-distance relativization, parasitic gaps, argument cluster

coordination…

From CGs to CCGs: CCG to the rescue

CCG: a (gentle) introduction

175/30/2014

• Combinatory Categorial Grammar (Steedman 1996, 2000)

CCG is sometimes characterized as the ‘rule-based’ extension of

CG’s Lambek system. Roughly speaking, by adding to it more

rules that implicitly reflect the logical properties of slashes, such
as Type Raising or Function Composition, you get CCG.

CCG: What’s new?

CCG: a (gentle) introduction

185/30/2014

• Composition:

A/B: f B/C: g ⇒ A/C: λx.f(g(x))

B\C: g A\B: f ⇒ A/C: λx.f(g(x))

Equivalent to function composition: functional types can compose if

the domain of one corresponds to the range of the other. The result

is a new functional type with the range of the first and the domain of

the second.

Works in both directions (forward and backward)

(>B)

(<B)

CCG: What’s new?

CCG: a (gentle) introduction

195/30/2014

• Type Raising:

X: x ⇒ T/(T\X): λf.f(x)

Used to convert elementary types to functional types (“turn

arguments into functions over functions-over-such arguments”), e.g.

birds := NP ⇒ S/(S\NP)

Again, works in both directions (forward and backward)

(>T)

(<T) X: x ⇒ T\(X/T): λf.f(x)

CCG: What’s new?

CCG: a (gentle) introduction

205/30/2014

Type Raising and Composition rules are often applied together.

For instance:

CCG: What’s new?

CCG: a (gentle) introduction

215/30/2014

Type Raising and Composition rules are often applied together.

For instance:

>T

Forward Type Raising:

X: x ⇒ T/(X\T): λf.f(x)

CCG: What’s new?

CCG: a (gentle) introduction

225/30/2014

Type Raising and Composition rules are often applied together.

For instance:

Forward Composition:

A/B: f B/C: g ⇒ A/C: λx.f(g(x))

>B

CCG: What’s new?

CCG: a (gentle) introduction

235/30/2014

Type Raising and Composition rules are often applied together.

For instance:

Forward Function Application (see previous slides)

CCG: What’s new?

CCG: a (gentle) introduction

245/30/2014

Despite the introduction of (even more) ambiguity in the parse, the

new rules are useful for dealing with long-distance dependencies.

Look at this:

>B

>B

>B

>T

...read what?

CCG: What’s new?

CCG: a (gentle) introduction

255/30/2014

• A (first) special case: coordination

and ≔ (X\X)/X: λf.λg.λx.(f(x) ∧ g(x))

Coordination is handled by specific rules: related operators (e.g.

conjunctions) have special lexical entries.

CCG: What’s new?

CCG: a (gentle) introduction

255/30/2014

• A (first) special case: coordination

and ≔ (X\X)/X: λf.λg.λx.(f(x) ∧ g(x))

Coordination is handled by specific rules: related operators (e.g.

conjunctions) have special lexical entries.

• A (second) special case: quantifiers

every ≔ (S/(S\NP))/N: λf.λg.(∀x f(x) → g(x))

Quantifiers are entered in the lexicon directly in the raised type.

CCG: What’s new?

CCG: a (gentle) introduction

265/30/2014

λx.girl(x)

λx.laugh(x)

λf.λg.(∀x f(x) → g(x))

λg.(∀x girl(x) → g(x))

∀x girl(x) → laugh(x)

Every girl laughed.

CCG: What’s new?

CCG: a (gentle) introduction

275/30/2014

laugh(John) ∧ ∀x girl(x) → laugh(x)

Every girl and John laughed.

λg.(∀x girl(x) → g(x)) λg.g(John)

λg.(g(John) ∧ ∀x girl(x) → g(x))

Parsing with CCGs: the problem

CCG: a (gentle) introduction

285/30/2014

‘Spurious’ ambiguity: with our new rules, for each derived

structure of a sentence, there can be many derivations leading to

that structure.

Parsing with CCGs: the problem

CCG: a (gentle) introduction

285/30/2014

‘Spurious’ ambiguity: with our new rules, for each derived

structure of a sentence, there can be many derivations leading to

that structure.

+

Syntax-only CCG parsing has polynomial time CKY-style

algorithms, but parsing with semantics requires entire categories

as chart signatures (e.g. fun := ADJ λx.fun(x)).

Parsing with CCGs: the problem

CCG: a (gentle) introduction

285/30/2014

‘Spurious’ ambiguity: with our new rules, for each derived

structure of a sentence, there can be many derivations leading to

that structure.

+

+

Syntax-only CCG parsing has polynomial time CKY-style

algorithms, but parsing with semantics requires entire categories

as chart signatures (e.g. fun := ADJ λx.fun(x)).

Inherent lexical and grammatical ambiguities of language

Parsing with CCGs: the problem

CCG: a (gentle) introduction

285/30/2014

‘Spurious’ ambiguity: with our new rules, for each derived

structure of a sentence, there can be many derivations leading to

that structure.

+

+

=

Syntax-only CCG parsing has polynomial time CKY-style

algorithms, but parsing with semantics requires entire categories

as chart signatures (e.g. fun := ADJ λx.fun(x)).

Inherent lexical and grammatical ambiguities of language

CCG parsing is a tough task!

Parsing with CCGs: (some) solutions

CCG: a (gentle) introduction

295/30/2014

Many approaches have been tried so far:

• Generative models over normal-form derivations (Hockenmaier,

2001; Hockenmaier and Steedman, 2002);

Parsing with CCGs: (some) solutions

CCG: a (gentle) introduction

295/30/2014

Many approaches have been tried so far:

• Generative models over normal-form derivations (Hockenmaier,

2001; Hockenmaier and Steedman, 2002);

• Conditional models over dependency structures (Clark et al.,

2002), that is CCG categories + word-word dependencies;

Parsing with CCGs: (some) solutions

CCG: a (gentle) introduction

295/30/2014

Many approaches have been tried so far:

• Generative models over normal-form derivations (Hockenmaier,

2001; Hockenmaier and Steedman, 2002);

• Conditional models over dependency structures (Clark et al.,

2002), that is CCG categories + word-to-word dependencies;

• Log-linear models (Clark and Curran, 2003) capturing information

from both dependencies and derivations:

P π S =
d ∈ Δ(π)

P d, π S)

conditional probability

of the parse π
given the sentence S

conditional probability

of the parse π
and the dependency

structure d

Δ π : set of al possible

CCG derivations of S

Parsing with CCGs: log-linear model

CCG: a (gentle) introduction

305/30/2014

The log-linear model (or maximum entropy model) looks like this:

P π S =
1

𝑍𝑆
𝑒 𝑖 𝜆𝑖𝑓𝑖(𝜋)

conditional probability

of the parse π
given the sentence S

features of the parse: any

real-valued function over

the space of parses Π
Normalization factor

• Packed charts: compact representation of a very large number

of CCG derivations (retrieve the highest scoring parse or

dependency structure without enumerating all derivations)

• The derivation space Δ(π) could be huge! CCG produces an

extremely large number of parses: we need a way of limiting them.

Parsing with CCGs: supertagger

CCG: a (gentle) introduction

315/30/2014

CCG parsing is best viewed as a two-stage process:

• first, assign lexical categories to the words in the sentence

(supertagging);

• then combine the categories together using the rules we

already know (parsing).

Parsing with CCGs: supertagger

CCG: a (gentle) introduction

315/30/2014

CCG parsing is best viewed as a two-stage process:

• first, assign lexical categories to the words in the sentence

(supertagging);

• then combine the categories together using the rules we

already know (parsing).

The trivial (but stupid) way:

simply assigning to each word

all categories from the word’s

entry in the lexicon.

Parsing with CCGs: supertagger

CCG: a (gentle) introduction

315/30/2014

CCG parsing is best viewed as a two-stage process:

• first, assign lexical categories to the words in the sentence

(supertagging);

• then combine the categories together using the rules we

already know (parsing).

The trivial (but stupid) way:

simply assigning to each word

all categories from the word’s

entry in the lexicon.

The complex (but smarter) way:

try to guess the most likely

category (or categories) given

the word’s context.

Log-linear supertagger (Clark and Curran, 2004) + parser is an

order of magnitude faster than comparable systems!

What about the training data?

CCG: a (gentle) introduction

325/30/2014

CCGbank: a corpus of CCG derivations and dependency structures

(Hockenmeier and Steedman, 2003) directly translated from Penn

Treebank and suitable for training CCG-based systems.

What about the training data?

CCG: a (gentle) introduction

325/30/2014

CCGbank: a corpus of CCG derivations and dependency structures

(Hockenmeier and Steedman, 2003) directly translated from Penn

Treebank and suitable for training CCG-based systems.

CCG derivation tree dependency tree

word dependencies

From Treebanks to CCGbanks

CCG: a (gentle) introduction

335/30/2014

Available from the Linguistic Data Consortium

(LDC):

CCG derivation tree

Dependencies

Further development: multi-modal CCG

CCG: a (gentle) introduction

345/30/2014

CCG composition rules are all order-preserving: cannot derive

sequences of expressions in which function categories are not

immediately adjacent to their arguments.

Ed often sees his friend Ted. Ed saw today his friend Ted.

 Fine: adverb is (S\NP)/(S\NP) × Heavy NP-shift: cannot derive this!

Further development: multi-modal CCG

CCG: a (gentle) introduction

345/30/2014

CCG composition rules are all order-preserving: cannot derive

sequences of expressions in which function categories are not

immediately adjacent to their arguments.

Ed often sees his friend Ted. Ed saw today his friend Ted.

 Fine: adverb is (S\NP)/(S\NP) × Heavy NP-shift: cannot derive this!

Need some rule to allow permutations over arguments...

For instance:

A/B B\C ⇒ A\C

B\C A/B ⇒ A/C

(>Bx)

(<Bx)

Forward crossed composition

Backward crossed composition

Further development: multi-modal CCG

CCG: a (gentle) introduction

355/30/2014

Problem: rules are now a bit too loose! We could derive something

like:

Further development: multi-modal CCG

CCG: a (gentle) introduction

355/30/2014

Problem: rules are now a bit too loose! We could derive something

like:

Further development: multi-modal CCG

CCG: a (gentle) introduction

355/30/2014

Problem: rules are now a bit too loose! We could derive something

like:

Solution #1: Devise some language-specific rules for cases where

such scrambling operations are allowed.

× Somehow unattractive: we would like to have a grammar where

combinatory rules are universal (remember Steedman’s words about

CGs?)

permutation

not allowed!

Further development: multi-modal CCG

CCG: a (gentle) introduction

365/30/2014

Solution #2: Create modalized rules (multi-modal CCG: Baldridge

and Kruijff, 2003) by introducing typed slashes:

Further development: multi-modal CCG

CCG: a (gentle) introduction

365/30/2014

Solution #2: Create modalized rules (multi-modal CCG: Baldridge

and Kruijff, 2003) by introducing typed slashes:

• /
⋆

• /⋄

• /
×

• /∙

non-associative, non-commutative

associative, non-commutative

non-associative, commutative

associative, commutative

(‘old’ uni-modal slash)

Further development: multi-modal CCG

CCG: a (gentle) introduction

365/30/2014

Solution #2: Create modalized rules (multi-modal CCG: Baldridge

and Kruijff, 2003) by introducing typed slashes:

• /
⋆

• /⋄

• /
×

• /∙

non-associative, non-commutative

associative, non-commutative

non-associative, commutative

associative, commutative
most

permissive

most

restrictive
(‘old’ uni-modal slash)

Now restate application rules with , composition rules with and
crossed composition rules with and everything will magically fix!

Further development: multi-modal CCG

CCG: a (gentle) introduction

375/30/2014

Even further extension: modalities (like),

dependency grammars and other fancy things borrowed from CTL
(Categorical Type Logic).

What about semantics then?

CCG: a (gentle) introduction

385/30/2014

Note: from the point of view of semantics, the use of λ-terms is simply

a convenient device to bind arguments when presenting derivations.
What actually matters are dependencies!

What about semantics then?

CCG: a (gentle) introduction

385/30/2014

Note: from the point of view of semantics, the use of λ-terms is simply

a convenient device to bind arguments when presenting derivations.
What actually matters are dependencies!

• Hybrid Logic Dependency Semantics

(Baldridge and Kruijff, 2003): directly

adapt the CTL framework to encode the

semantics of CCG derivations

Hybrid modal logic

(Blackburn, 2000) allows

explicit references to states

in the object language

What about semantics then?

CCG: a (gentle) introduction

385/30/2014

Note: from the point of view of semantics, the use of λ-terms is simply

a convenient device to bind arguments when presenting derivations.
What actually matters are dependencies!

• Hybrid Logic Dependency Semantics

(Baldridge and Kruijff, 2003): directly

adapt the CTL framework to encode the

semantics of CCG derivations

For instance:

Hybrid modal logic

(Blackburn, 2000): allows

explicit references to states

in the object language

n: syntactic category

d1: discourse referent (unique for Ed!)

What about semantics then?

CCG: a (gentle) introduction

385/30/2014

Note: from the point of view of semantics, the use of λ-terms is simply

a convenient device to bind arguments when presenting derivations.
What actually matters are dependencies!

• Hybrid Logic Dependency Semantics

(Baldridge and Kruijff, 2003): directly

adapt the CTL framework to encode the

semantics of CCG derivations

For instance:

Hybrid modal logic

(Blackburn, 2000): allows

explicit references to states

in the object language

n: syntactic category

d1: discourse referent (unique for Ed!)

resulting sentence with attached semantics argument: subject

CCG applications

CCG: a (gentle) introduction

395/30/2014

• Semantics and Knowledge Representation
(Bos et al. 2004, Bos 2005, Harrington et al. 2007);

• Discourse Theory, Dialogue Systems
(Steedman 2003, Curran et al. 2007);

• Object Extraction and Question Parsing
(Clark et al. 2004);

• Natural Language Generation
(White et al. 2003-2007);

• Semantic Parsing and Semantic Role Labeling
(Gildea et al. 2003, Zettlemoyer et al. 2007);

• Statistical Machine Translation
(Birch et al. 2007, Mehay et al. 2012);

• ...

CCG applications

CCG: a (gentle) introduction

405/30/2014

• Semantics and Knowledge Representation
(Bos et al. 2004, Bos 2005, Harrington et al. 2007);

• Discourse Theory, Dialogue Systems
(Steedman 2003, Curran et al. 2007);

C&C tools
http://svn.ask.it.usyd.edu.au/trac/candc

o Wide-coverage CCG parser and supertagger:

provides categories, derivation trees and dependencies

o Additional tools: POS tagger, Lemmatizer, NER, …

o Boxer: takes a CCG derivation and generates a semantic

representation (Discourse Representation Structures)

C&C tools: a demo

CCG: a (gentle) introduction

415/30/2014

A man does not talk or every man walks.

dependencies

(same formalism of the

Stanford Parser)
supertags

Boxer output

Online demo available at:
http://svn.ask.it.usyd.

edu.au/trac/candc/wiki/

Demo

CCG applications

CCG: a (gentle) introduction

425/30/2014

• Natural Language Generation
(White et al. 2003-2007);

OpenCCG
http://openccg.sourceforge.net

o Part of OpenNLP (an open source library written in Java)

focused on parsing and realization

o Makes use of multi-modal extensions to CCG and the hybrid

logic semantics just described

o Current development efforts towards the use of the realizer in a

dialogue system

The CCG site

http://groups.inf.ed.ac.uk/ccg

CCG: a (gentle) introduction

435/30/2014

M. Steedman, J. Baldridge, Combinatory Categorial Grammar. In R. Borsley

and K. Borjars (eds.), Non-Transformational Syntax, Blackwell, 2005.

References

M. Steedman, Categorial Grammar, A short encyclopedia entry for MIT

Encyclopedia of Cognitive Sciences. In R. Wilson and F. Keil (eds.), 1999.

J. Hockenmaier, M. Steedman, CCGbank: A Corpus of CCG Derivations and

Dependency Structures Extracted from the Penn Treebank. In Journal of

Computational Linguistics, vol. 33-3, pp. 355-396, 2007

J. R. Curran, S. Clark, J. Bos, Linguistically Motivated Large-Scale NLP with

C&C and Boxer. In Proceedings of the 45th Annual Meeting of the Association

for Computational Linguistics (ACL-07), pp.29-32, 2007.

The CCG site

http://groups.inf.ed.ac.uk/ccg

CCG: a (gentle) introduction

445/30/2014

Additional readings

S. Clark, J. R. Curran, Log-Linear Models for Wide-Coverage CCG Parsing.

In Proceedings of the SIGDAT Conference on Empirical Methods in Natural

Language Processing, 2003.

J. Baldridge, G.-J. Kruijff, Coupling CCG with Hybrid Logic Dependency

Semantics. In Proceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL-02), 2002.

J. Baldridge, G.-J. Kruijff, Multi-Modal Combinatory Categorial Grammar. In

Proceedings of the 11th Conference of the European Chapter for the Association of

Computational Linguistics, 2003.

...and a thousand more at:

CCG: a (gentle) introduction

455/30/2014

Thanks for your attention!

[audience looks around] 'What just happened?' 'There must be

some context we're missing.'

xkcd, Formal languages

