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Università di Pavia

FEEM, Milan

Claudio A. Piga

Keele University

Rimini Centre Economic Analysis

February 27, 2014

∗We wish to thank seminar participants at the Texas A&M University, Tilburg Uni-

versity, London City University, Bocconi University, the University of Nottingham, and

at the 2010 EARIE conference in Istanbul for their comments. Thanks also go to Makoto

Watanabe and Chris Wilson for their feedback. The responsibility for the arguments

and results expressed in this paper is entirely ours. Claudio Piga gratefully acknowledges

financial support from the Leverhulme Trust Research Grant RPG-051.
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Abstract

Based on two strands of theoretical research, this paper provides new ev-

idence on how fares are jointly affected by in-flight seat availability and pur-

chasing date. As the capacity-based theories predict, it emerges that fares

monotonically and substantially increase with flight occupancy. After control-

ling for capacity utilization, our analysis also supports time-based theories,

indicating a U-shaped temporal profile over a two-month booking period, as

well as a sharp increase in fares in the two weeks prior to departure.

EconLit Codes: D22, L11, L93.

Keywords: Pricing policy, Panel Data, Ryanair, Yield Management.
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1 Introduction

Yield management (hereafter, YM) refers to a broad set of techniques that are profitably

used by such companies as airlines, hotels, car retails, cruise shipping, etc., to implement

a pricing policy when customers are heterogeneous, demand is uncertain, and capacity

is hardly modifiable. In its simplest formulation, it entails a trade-off between accepting

a booking request now at a low price or refusing it in the expectation that tomorrow a

potential customer will be willing to pay a higher price (Weatherford and Bodily, 1992;

McGill and Van Ryzin, 1999).

In the airline sector, YM implementation usually requires that seats are grouped

into different booking classes, each having a definite fare and, in most cases, specific re-

strictions (e.g. ticket refunding, advance purchase restrictions, valid travel days, or stay

restrictions). YM activity, in practice, consists of setting fares and/or managing the num-

ber of seats allocated to each class. Although YM operations are heavily computerized,

the human intervention (carried out by a “yield manager”) still remains very important.

It may occur when the observed sales are not aligned to the forecasted ones, or be due to

a rapid change in market conditions, such as an unexpected peak demand or a strategic

action of rivals. In economic terms, YM can be interpreted as a very sophisticated way

to implement pricing policies, which may produce a wide range of fares even for the same

flight, so that two passengers sitting next to each other are likely to have paid different

prices for their tickets.1

This paper aims to provide new evidence on the sources of such a difference, by

using an original database combining detailed information on fares and seat availability

obtained from the website of Europe’s largest Low-Cost airline (hereafter, LCA), Ryanair.

The relatively simple pricing behaviour of an LCA helps us to identify the combined

impact on fares of both in-flight seat availability and the time separating the purchase

1In Borenstein and Rose (1994), the expected difference in fares between two random

passengers on a given flight is on average 36% of the airline’s average ticket fare; this

percentage increases to 44% in Gerardi and Shapiro (2009), and to 66% in Gaggero and

Piga (2011).
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from the departure date. This, in turn, allows us to provide a test for the predictions of

two theoretical strands of research on airline pricing: the capacity-based and the time-

based theories, respectively. The capacity-based theories focus on the relationship between

the evolution of fares and a flight’s occupancy rate; Dana (1999a) postulates that such

a relationship is defined by the airlines once and for all at the beginning of the planning

horizon, while Deneckere and Peck (2012) extend the static analysis to allow for possible

dynamic updating of the relationship. In both the static and the dynamic case, fares are

predicted to be a non-strictly increasing function of the remaining capacity within each

planning period.

In this paper, we provide a direct test of the relevance of capacity-based theories. A

main practical difficulty in carrying out this test is the availability of data on capacity

utilization at the time a fare is offered on an airline reservation system. Another compli-

cation, usually associated with fares by full service airlines, may arise because different

booking classes, each with a different set of restrictions and fares, may be simultaneously

available to travellers at a given point in time, thus making it necessary to account for

ticket characteristics (Stavins, 2001). A notable innovation in this study is the possibil-

ity to combine fares with the number of seats available at the time when the fare was

retrieved from the airline’s website. Moreover, using data from Ryanair rules out any

difference in seat characteristics, because the airline sets the same set of restrictions on

all its fares. Furthermore, by using flight fixed-effect panel data techniques, where the

time dimension is obtained by tracking a flight’s fares and seat availability over a 70-day

period, we also control for possible unobserved heterogeneity across flights. Our estimates

indicate that, on average, an extra seat sold induces an increase of about 3.1% in offered

fares. This effect increases in the sample of flights that: i) operate in less competitive

routes; ii) are scheduled in Summer or depart in the evening, i.e., in periods of higher

demand; iii) are short-haul and less volatile.

These results show the relevant role played by capacity-based theories in explaining

airline price dispersion. The previous evidence on this issue is rather mixed. On the

one hand, Puller et al. (2009) find only modest support for the capacity-based theories,
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and illustrate that much of the fare variation may be associated with second-degree

price discrimination (i.e., ticket characteristics). On the other, Escobari and Gan (2007)

find that price quotes are on average higher in fully occupied flights, as predicted by

capacity-based theories. Both these studies, however, rely on data generated by the more

complex process used by legacy carriers, whose properties are only partly aligned with

the assumptions adopted by any of the models in the theoretical literature.

The time-based theories state that airlines may use inter-temporal price discrimination

to exploit customer heterogeneity in terms of willingness-to-pay and uncertainty about

departure time (Gale and Holmes, 1992, 1993; Dana, 1999b; Möller and Watanabe, 2010).

On the one hand, the application of advance-purchase discounts (hereafter APD), i.e.,

fare reductions in the periods far from the departure date, plays in favor of an increasing

temporal fare profile. On the other, clearance sale practices (Möller and Watanabe, 2010),

i.e., fare reductions in the period immediately preceding departure, and the declining

option value of waiting for customers with a higher willingness-to-pay (Gallego and van

Ryzin, 1994) suggest that the opposite effect cannot be excluded.

This study sheds light on Ryanair’s time-based pricing policy. If a temporal profile is

coded into the carrier’s reservation system or is the result of the analyst’s intervention,

it can be identified by tracking the evolution of each flight’s fares over time (Mantin

and Koo, 2009). A novel feature of the present work is that we do so after controlling

for capacity utilization. Thus, we are able to separate fare variations due to purely

capacity-based motivation from those induced by the willingness to discriminate between

customers booking at different times before departure. The evidence reveals that, on

average, fares increase monotonically over the last three weeks before departure. However,

a more complex price dynamics is also found over the entire booking period we take into

consideration: in the two months preceding departure the temporal profile of fares often

appears to be U-shaped. A similar finding is reported in Bilotkach et al. (2010), where,

however, no control for capacity utilization is made.

In sum, this paper offers the first combined study of two testable implications derived

from the theoretical economics literature on airline pricing. Both implications relate to
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the pricing profile of carriers, suggesting that fares: i) should increase as a flight fills

up; and ii) should grow over time, but may have a more complex U-shaped temporal

pattern. A notable innovation of this study is that it addresses both of these features

simultaneously. Given the parallel movement that both effects induce on fares, studying

one without the other is likely to bias the analysis. Furthermore, the joint investigation

of both properties sheds lights on the relative importance of two classes of theoretical

airline pricing models, each focusing on, respectively, the capacity and the time dimension

(Alderighi, 2010; Puller et al., 2009).

The remainder of the paper is structured as follows. Section 2 discusses the relevant

theoretical and empirical literature, while Section 3 illustrates Ryanair’s business model

and its importance in the European airline market. In Section 4, we explain how we

could retrieve the information on the flight’s occupancy at the time when the fares were

posted. Section 5 provides some descriptive statistics on the fare profile. The econometric

model is presented in Section 6, which is followed by the comments to the main findings

in Section 7. Section 8 concludes.

2 Literature Review

This section reviews the main theoretical and empirical works on YM, which are related

to both the capacity-based and the time-based theories.2 Dana (1999a) provides a theo-

retical model that addresses the link between fares and seat availability when capacity is

fixed, by assuming that fares are set before demand is known. The basic idea is that the

optimal fare is given by a constant mark-up over the capacity cost. Because the shadow

cost of a unit of capacity increases as the probability of selling a ticket decreases, the

2Previous studies on pricing behavior in the U.S. Airlines industry have used different

cohorts of the same database, i.e., the Databank of the U.S.A. Department of Trans-

portation’s Origin and Destination Survey, which is a 10 percent yearly random sample

of all tickets that originate in the United States on US carriers (Borenstein, 1989; Kim

and Singal, 1993; Evans and Kessides, 1993, 1994; Borenstein and Rose, 1994; Lederman,

2008; Gerardi and Shapiro, 2009). None of these studies addresses the issues of this paper.
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distribution of fares increases with capacity utilization. In other words, price dispersion

arises not because an airline is trying to segment the market, but because demand is

uncertain, and the probability of selling an extra seat decreases with in-flight seat utiliza-

tion. In equilibrium, the airline defines a fare distribution where the cheapest fares are

assigned to seats with the highest probability of sale and the highest fares are associated

with seats that are seldom occupied. The analysis, however, assumes a commitment to

the equilibrium price schedule, i.e., the airline cannot revise its ex-ante pricing decision as

it learns new information about actual observed demand. As Deneckere and Peck (2012)

indicate, such a commitment where prices cannot be adjusted over time is inefficient.

More importantly, Deneckere and Peck (2012) develop a model where, on the supply

side, current prices depend on the evolution of the aggregate quantity sold in previous

periods; on the demand side, inter-temporal substitution is allowed so that, on the basis

of their expectation of future prices and their private information about the state of de-

mand, consumers may decide whether to purchase today or to delay buying in the hope

of getting a better deal in later periods. In equilibrium, within each period transaction

prices increase with the amount of sales made over the period, with the possibility at the

beginning of each period of a markdown whose size is inversely related with the observed

demand of the previous period. This is consistent with the empirical observation that

prices within a route do not generally monotonically increase over time, but can indeed

be sometimes observed to fall (Piga and Bachis, 2007). Furthermore, because the equi-

librium prices in Deneckere and Peck (2012) are martingales, on average a flat temporal

path over the booking period should be observed. However, such a prediction may not

hold in a model incorporating the possibility of using inter-temporal pricing strategies to

screen heterogeneous travelers, as the time-based theories suggest.

In Dana (1999b), firms cannot distinguish between peak and non-peak flights and

travelers differ in their disutility to fly at their least preferred time; in equilibrium, firms

commit to a distribution of monotonically increasing fares over time for each flight. Gale

and Holmes (1992) show that a monopolist, and a social planner, can use APD to spread

uncertain peak demand more evenly between two flights. Gale and Holmes (1993) show

7

451
by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



that in a monopoly with capacity constraints and perfectly predictable demand, APD

arises from a mechanism design setting where consumers self-select so that demand is

diverted from peak periods to off-peak periods. Möller and Watanabe (2010) study

the conditions under which, over two consecutive periods, prices may either decline or

increase. They demonstrate that the former (the latter) is more appropriate when a

consumer’s demand uncertainty is absent (present) and the risk of being rationed is high

(low).

Due to the difficulty of obtaining data on the occupancy rate at the time when a fare

is offered either online or on a computer reservation system, only a limited number of

empirical studies have tried to shed light on the accuracy and relevance of the theoretical

predictions resulting from both the capacity- and time-based theories. Puller et al. (2009)

test a number of implications derived from the theoretical works of Dana (1999a) and

Gale and Holmes (1992, 1993). Using a proxy for a flight’s load factor, they divide their

sample into quartiles of expected demand (i.e., from expected full to expected empty):

according to Dana (1999a), within each category the carriers are supposed to apply the

same rule linking fares and occupancy rate. That is, after controlling for the expected

demand, one should observe a greater proportion of higher fares (and therefore a higher

mean fare and a greater measure of fare dispersion) as the realized load factor grows.

The descriptive evidence in Puller et al. (2009) shows no support for these predictions.

To test the predictions from Gale and Holmes’s works, Puller et al. (2009) evaluate

whether discount tickets account for a smaller share of tickets in high-peak flights (defined

as those expected to fly full and indeed realized to be full) and a larger share on off-peak

ones (i.e., those expected to be empty and turned out to fly empty). After controlling for

the number of days in advance of the flight a ticket was purchased, the evidence shows

no significant difference among these shares across types of flights and carriers. Finally,

Puller et al. (2009) illustrate how ticket restrictions explain a substantial amount of vari-

ation in fares, and conclude that standard price discrimination strategies appear to play

a more crucial role in driving fare dispersion than those based on capacity management.

Such a result may be due to the highly heterogeneous way with which airlines manage
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their inventory using ex-ante mechanisms, as discussed in Bilotkach et al. (2010).

Interestingly, using panel data techniques, Escobari and Gan (2007) find evidence in

support of the capacity-based theories. In their work, which is dual to ours, they derive

an effective cost of capacity (ECC) by dividing an estimate of the fixed unit capacity

cost by a calibrated measure of the probability a seat is sold; thus, the ECC increases

as a seat’s probability to sell decreases. Escobari and Gan (2007) test and find support

for the hypothesis that a higher ECC should lead to higher prices, and that this effect

should be larger in competitive markets.

Using the same data, Escobari (2012) confirms that, holding inventories constant, fares

decrease until about 14 days from departure and subsequently increase. The declining

profile is consistent with the theoretical model in Gallego and van Ryzin (1994), where

the option value of waiting for the arrival of a customer with a high willingness-to-pay

falls as the departure date approaches. However, the increasing time profile in the late

booking period, also found in McAfee and te Velde (2007), suggests that other factors are

at play, such as, the carriers’ need to establish a reputation for consistently not offering

last-minute deals which could lead to customers delaying their purchases. Furthermore,

Escobari (2012) focuses on whether carriers adjust dynamically to unexpected shocks in

demand, and finds strong evidence in favor of prices responding to new information about

the pattern of sales: as the uncertainty on aggregate demand dispels, the airline intervenes

to adjust its fares. This finding is thus complementary to our analysis, which focuses on

the role played by the predetermined adjustments implied by the capacity-based theories.

3 Ryanair’s business model

Drawing on the business model established by Southwest Airlines in the US, Ryanair

pioneered the low-cost strategy in Europe. The business model that Ryanair adopts has

several notable features: (i) a simple pricing structure with one cabin class (with optional

paid-for in-flight food and drink), and no discrimination between one-way and round-trip

ticket fares; (ii) direct selling through Internet bookings with electronic tickets and no seat
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reservations;3 (iii) simplified point-to-point routes often involving cheaper, less congested

airports; (iv) intensive aircraft usage (typically with 25-minute turnaround times); (v)

employees working in multiple roles (e.g., flight attendants, cleaning the aircraft and

acting as gate agents); (vi) a standardized fleet made up of only Boeing 737-800 aircrafts,

with a capacity of 189 seats.

Founded in 1985 and based in Dublin, Ryanair expanded its route network rapidly

following the liberalization of intra-EU air services, increasing its passenger numbers

from 5.6 million in 2000 to 33.6 millions in 2005, reaching over 71.2 million by 2010. For

comparison, in the same year the number of passengers flying with Lufthansa (44.4m),

easyJet (37.6m), Air France and Emirates (both 30.8m), and British Airways (26.3m) was

considerably lower. Ryanair has also been a consistently profitable business in a sector in

which many airlines have struggled to make profits from one year to another: its operating

revenues (profit) in 2000, which amounted to 370 (72.5) million euros, escalated to the

value of 3,629 (374.6) million euros in the financial year ending on 31 March 2011.4 The

size and importance of this carrier, and its ability to attract customers, make it a key

player in the European airline industry.

3.1 Insights into Ryanair’s YM practices

Unlike most full service carriers, Ryanair employs a relatively simple pricing structure

with no price discrimination based on multiple service and cabin classes, and on specific

restrictions like minimum stay requirements and Saturday night stay-overs. Furthermore,

all its tickets carry the same penalties for a name, date and/or route variation, and permit

the same free in-flight hand baggage allowance (max 10 kg) with a fixed fee for each

checked baggage (max 15 kg per item). The applicability of our findings to legacy carriers

might be limited by these differences, albeit none of these impinge on the YM aspects

on which we focus on in this paper, since they are unaffected by capacity utilization

3Since 2011 Ryanair has been offering the opportunity to reserve a seat, for a fee. This

happened after the time period considered in the present analysis.
4The information in this section is drawn from material, including yearly Financial

Reports, available from Ryanair’s website www.ryanair.com/en/about.
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and/or by temporal aspects.5 Thus, the use of Ryanair data offers some advantages for

the empirical analysis, since its ticket characteristics (identical restrictions) are close to

the modeling assumption of many theoretical works.

Interesting insights into how Ryanair designs its YM system are given in European

Commission (2007), which provides details of the investigation that led to the decision to

block the takeover by Ryanair of Aer Lingus. Both companies may choose from a set of

standard “templates”, each describing “the number of places that should be available in a

given price category (“booking class”) (p. 109, item 439)”; each adopted template is the

one that is expected to best match a specific flight’s characteristics. The template thus

appears to correspond to the practical implementation of the notion of an equilibrium

distribution of fares across the full set of an aircraft’s seats given in Dana (1999a).

The template is also instrumental in the carrier’s adoption of a multifaceted pricing

policy that, in addition to a pure capacity-based strategy, allows for time effects, as

well as responses to unexpected shocks. Indeed, as suggested in European Commission

(2007), the time dimension of the carrier’s YM practice is obtained by changing the

number of seats assigned to each booking class: a decrease or an increase of fares is

brought about “by making more seats available in the cheaper [or more expensive] price

categories (p. 109, item 440)”. Note, however, that similar alterations of the standard

template may be applied when the carrier needs to respond to an unexpected shock;

the important difference lies in the fact that, on the one hand, time effects are designed

to include pre-defined changes in the template that take place in a “routine” fashion,

i.e., they occur systematically at specific points in time. On the other, responses to

an unexpected shocks arise only after the template is set; the ensuing modification to

the template is thus “discretionary” in nature, and is spurred by either external (e.g.,

new qualitative information on future demand, changes in the rivals’ behavior, etc.) or

5The charges for a ticket variation are so high relative to the average price of a ticket

that it is often cheaper to buy a new ticket. This, combined with the fact that Ryanair

does not practice overbooking, may explain why we practically observe no cases where

capacity utilization decreases over two consecutive periods.
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internal (a promotional policy of the marketing department, etc.) factors that are known

by the carrier but are unobserved by the econometrician.6

To sum up, fares are the results of three drivers: capacity, time, and shocks, where

the former two give rise to an “augmented template” that captures the airline’s routine

YM operations, while the latter come about through a discretionary intervention of a YM

analyst. One of the main contributions of this paper is to identify the routine activity,

which simultaneously considers how fares are related to seat occupancy and how they are

designed to change as the time to departure nears.7 By doing so, we shed light on the

role played by the capacity- and time-based theories in explaining the airlines’ fare-setting

process, after purging for the discretionary intervention.

4 Data Collection

Our analysis is based on primary data on fares collected using an “electronic spider” which

is linked to the Ryanair website.8 The database includes daily flights information from

January 2004 up to, and including, June 2005. In order to account for the heterogeneity

of fares offered by airlines at different times prior to departure, every day we instructed

the spider to collect the one-way fares for departures due 1, 4, 7, 10, 14, 21, 28, 35, 42,

49, 56, 63 and 70 days from the date of the query. Henceforth, these will be referred to

6From an YM analyst’s operational perspective, the distinction between routine and

discretionary interventions implies that the former are carried out as part of a set of

standard codified tasks that are regularly scheduled, e.g., the modification of the original

template to implement a specified temporal price profile. As emerged from the authors’

discussion with industry practitioners, routine tasks may be automated subject to the

analyst’s approval. Conversely, discretionary changes trigger an update of a flight’s prior

forecast and therefore may lead to a revision of the template.
7In Section 5.2 we show how changes over time appear to be coded into the airline’s

computerized reservation system.
8All fares are net of add-ons and other fees, i.e., charges for the use of some of the

methods of payment, such as credit cards.
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as BookingDays.9 Thus, for every daily flight we obtained up to 13 prices that differ by

the time interval from the day of departure, and allow the identification of the evolution

of fares over time.

Data collection was carried out everyday at the same time, and included: the price of

one seat, which in the remainder of the paper is denoted as Fare1 ; the number of seats

available at each booking day, denoted as Seats ; and the corresponding unit price for a

query involving that number of seats, referred to as TopFare (see Sections 4.1 and 4.2 for

a discussion of both fares and their role within a template). We also collected the time

and date of the query, the departure date, the scheduled departure and arrival time, the

origin and destination airports and the flight identification code, all of which will be used

as controls in the econometric analysis.

In addition to UK domestic fares, routes to the following countries were surveyed:

Austria, Belgium, France, Germany, Ireland, Italy, the Netherlands, Norway, Spain, Swe-

den. For consistency, the procedure considered only flights departing from an airport

within the UK, and arriving at either a domestic or an international airport. We have

data for 82 of the 154 routes that Ryanair operated to these countries over the sample

period; in some cases, we consider more than one flight code per route when the airline

operated more than one daily flight. All fares, which do not include tax and handling

fees, are for a one-way flight and are quoted in Sterling.10 Some descriptive statistics are

reported in Tables 1 and 2, to be discussed in more detail in Section 4.2.
9For instance, assume the queries were carried out on 1 March 2004. The spider

would retrieve the fares for flights whose departures were due on 2/3/04, 5/3/04, 8/3/04,

11/3/04, etc. The procedure was repeated every day over the data collection period.
10Focusing only on the outward leg from the UK emerges as a valid data collection strat-

egy, since it is widely acknowledged that European LCAs price each leg independently

(Bachis and Piga, 2011). Moreover, excluding taxes and fees does not affect the results

for the following reasons. First, Ryanair started charging a fixed fee for check-in and

luggage only in 2006, that is, after our sample period. Second, the fixed per-passenger

tax that contributes to the full cost of the ticket would not impinge on the evaluation of

how a flight’s fare changes relative to the flight’s occupancy rate or over time.
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4.1 Retrieving data on Seats and TopFare

The collection strategy exploited a feature of Ryanair’s website: during the sample period,

Ryanair allowed purchases of up to 50 seats using a single query. This made it possible

to learn if, at the time of the query, fewer than 50 seats were available on a flight with a

specific identification code. The spider worked using the following algorithm:

• issue a query for S = 50 seats for a specific flight identified by a unique flight code

on a route. The flight was due to depart D days from the date of the query, where

D assumes the values of the BookingDay previously introduced.

• If the airline’s site returned a valid fare for that flight code, then we interpreted this

finding as follows: D days prior to departure, there were at least 50 seats available on

the flight. We could not, however, retrieve any more precise information regarding

the actual observed number of available seats, which is thus censored at the level

of 50. The spider would then save the value of Seats= 50, and the corresponding

value of TopFare, as well as the value of D and all the other flight’s details (see

above).

• If the site failed to return a valid fare for that flight, the program inferred that

there were fewer than 50 seats available, and then started a search to obtain the

highest number of seats in a query that returned a valid fare. This corresponds to

the number of seats available D days before a flight’s departure, a value which was

saved in Seats. In this case, TopFare corresponds to the unit price at which the

airline was willing to sell all the S remaining seats in a single transaction.

By repeating this procedure every day, we could track the seats and the associated

fare for each value of BookingDay.
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4.2 Interpretation of retrieved fares

When Seats < 50, TopFare corresponds to the fare of a transaction whose completion

would fill the flight to capacity.11 For this reason, TopFare presents two important

characteristics. First, as Table 1 shows, it exhibits some limited variation around its

median value. Indeed, for all the routes in the table, despite the wide sample period

covered by the data, the distribution of TopFare is highly concentrated. In many routes,

its maximum value coincides with the median and the mode values, which are in turn

only marginally above the mean value, thus suggesting a very limited number of cases

where TopFare assumes values below the mode. On other routes, the maximum value is

higher, but by not more than £10 or £20 above the median/mode. Overall, it appears

that TopFare is largely insensitive to the number of seats that remain to be sold, as well

as to the number of days that separate the fare retrieval from the flight’s departure. This

is also supported by the low standard deviations reported.

Second, and relatedly, if Seats < 50, in line with the capacity-based theories, TopFare

represents the maximum fare of a flight. When a query that closes the flight is issued,

the Ryanair reservation system always retrieves the fare that is associated with the value

of the last seat. The capacity of a Ryanair’s flight is 189 seats. When Seats = N < 50,

issuing a query for N seats always retrieves the value of the 189th seat in the template.

Consistently, when S = 50, i.e., when we do not know the exact number of available seats,

TopFare indicates the fare of the 50th seat ahead of the one that being made available.

It follows that TopFare varies in a similar fashion as Fare1, and their two values can

coincide when only a few seats remain on a flight. Table 2 reports the maximum and

mean values for the Fare1 variable. The maximum value for one seat is generally either

identical to or slightly below the equivalent value for TopFare when there are less than

50 seats available. Therefore, we have cases where the values of TopFare coincide with

the highest values of Fare1. Relatedly, the mean values of Fare1 across all routes are

11If, for example, the spider returned 26 unsold seats for a given booking day, then the

retrieved fare would correspond to the posted fare for a booking of 26 seats, i.e., for the

number of seats that would close the flight.
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well below those of TopFare reported in Table 1, even when we condition on observations

with less than 50 seats available. Indeed, conditioning for Seats < 50, Fare1 is more

dispersed than TopFare, given the wider gap between the maximum and the mean values

of Fare1 relative to those of TopFare. An implication is that TopFare does not represent

an average of the remaining “forward” values of Fare1. If this were the case, TopFare

would change with the number of remaining seats.

Table 2 shows also that, with 50 seats or more available, the fares for one seat cannot,

a fortiori, refer to the last seats available on a flight, and indeed we do not observe any

coincidence between equivalent values of Fare1 and TopFare between the two tables.

Furthermore, the value of one seat when there are at least 50 available is expected to be

no higher than the fare for one seat when 49 or less remain to be sold. This is clearly

borne out by the difference in the mean values of Fare1 when the remaining number of

seats is either below the value of 50 or not.

The previous analysis therefore interprets TopFare as the price of the last seat that

can be purchased in a single query. Although TopFare exhibits limited variation when

Seats < 50, when Seats = 50 (i.e., 50 or more seats are available) TopFare corresponds

to the price of the 50th seat ahead, and therefore it varies in a similar fashion as Fare1.

5 Preliminary evidence

The results drawn from the descriptive analysis in this section help to gain better insights

into the airline’s pricing policy and its relation to both the in-flight seat availability

and the purchasing date. They also provide a useful guide for the specification of the

econometric model and the interpretation of its findings.

5.1 Do fares increase as the flight fills up?

Figure 1 shows the median spline plot of Fare1 on Sold Seats, which represents the

complement to 50 for the number of available seats retrieved by the spider (i.e., 50 −

Seats), and is thus available only for those observations where the number of available

seats is strictly less than 50. The values in the figure refer to the London Gatwick
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- Dublin route: each line represents a different flight code. The lowest fare is about

£25, while the highest is just below £150. In all periods and for all flights, the plot

shows, on average, a monotonically increasing relationship; fluctuations are probably due

to idiosyncratic changes in the template and/or to lack of fare observations for specific

occupancy values.12

To generalize the evidence from one route to the entire sample, in Figure 2 we follow

the approach used in Puller et al. (2009). We first calculate, for each flight-code/booking

day combination, the mean value of both Fare1 and Sold Seats in a given month; then, we

derive the percentage deviation of each daily observation from each respective mean value.

Next, we aggregate the pairs of percentage deviations across two categories of booking

days: early-middle and middle-late, that is, 70 to 35 and 28 to 1 days from departure. In

the first category, a percentage increase (decrease) of 20% of Sold Seats from its mean,

as reported on the horizontal axis, is associated with a percentage increase (decrease)

of about 110% (60-70%) in Fare1 from its mean (as can be read on the vertical axis).

In the second, fares appear to be more responsive to increases in a flight’s occupancy

rate. Indeed, the same increase of 20% over the mean of Sold Seats is associated with an

almost 200% increase in Fare1 over its mean. Interestingly, the same 20% decrease from

the mean of Sold Seats is met by a slightly lower deviation from the mean of Fare1 than

in the case of the early-middle booking period.

A number of considerations can be drawn from the foregoing graphical analysis. First,

the evidence reported in Figure 2 suggests that YM techniques designed by airlines to

manage capacity constitute an important factor driving price dispersion. Interestingly,

despite the methodological similarity, Puller et al. (2009) reach an opposite conclusion

in their study of the US airline markets.13 Second, it introduces the need to combine

12A smoother increasing relationship can be obtained from a nonparametric plot of the

Log of Fare1 with the last 50 seats’ occupancy. This is not reported to save on space but

is available upon request.
13Differences may be due to the different type of airlines considered (legacy vs. low

cost) and to the different methods used to obtain the in-flight’s remaining capacity.
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capacity concerns with at least two other aspects of YM: 1) the fares’ temporal profile,

i.e., the possibility that fares may change regardless of the in-flight remaining capacity;

and 2) the discretionary intervention of a yield manager to tackle unexpected contingen-

cies. The latter point will be considered in the econometric analysis, where we employ

instrumental variable techniques to isolate the carrier’s routine pricing behavior net of

such discretionary interventions. Given the crucial role of time in the literature, in the

next section we delve deeper into the existence and the characteristics of the temporal

profile (Gale and Holmes, 1992, 1993; Dana, 1999b; Möller and Watanabe, 2010).

5.2 Do fares increase over time all of the time?

The descriptive analysis in the previous sub-section highlighted a positive relationship

between fares and available seats, which appears to hold on average over a range of dates

and routes. In this sub-section, we extend the analysis by focusing on possible time effects

in the airline’s pricing structure. Our objective is to separate fare changes induced by

variations in the flight’s remaining capacity from time effects that are unrelated to the

actual observed evolution of sales. This is also important in terms of econometric testing,

because the time-based theories lead to predictions that may be confused with those of

the capacity-based ones. That is, in both cases, fares may increase over time. In the

latter case, fares are based on the shadow cost of capacity, while, in the former, airlines

increase their fares to exploit consumer heterogeneity.

Table 3 reinforces the previous analysis, and shows that, when we hold the booking

day fixed and look at the fares in each line of the table, fares in our sample on average

decrease as the availability of seats increases. More interestingly, when we condition

on capacity utilization to see how fares on average change with the booking day, we

observe that the temporal profile of fares assumes a U-shaped form, with the minimum

fares occurring 21 to 14 days prior to departure. Indeed, the evidence in every column

suggests that, during the last fortnight, fares return to the level they assumed about

35-28 days before departure.

However, it might be possible that the temporal profile in Table 3 is due to the aggrega-
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tion of fares from heterogeneous routes and the extensive sample period used. Therefore,

Table 4 focuses on economically significant (i.e., worth at least £5) fare changes that oc-

cur within a single flight. It illustrates the likelihood of a fare drop over two consecutive

booking days, conditional on available seats remaining stable or decreasing. Under such

circumstances, we should not observe any drop in fares if the template is decided once and

for all, as discussed in Dana (1999a). Conversely, the airline adjusts its fares downward

quite frequently, and in ways that appear to be consistent with an active intervention

by the yield manager, as suggested in European Commission (2007), and predicted in

Deneckere and Peck (2012). First, in each row the likelihood of observing a price drop

generally increases as more seats become available, especially when the departure time is

not within a week.14 This is consistent with the expectation that drops are likely meant

to stimulate demand. The Total row indicates that 13% of observations with at least

40 seats available report fare drops, while this occurs in only 6% of observations where

less than 10 seats are recorded. Second, the highest probabilities of observing a drop

are found in the 28-14 days period, after which they diminish sharply and are hardly

observed a few days prior to a flight’s departure.

Table 4 can only identify cases of decreases, but not increases, over time. However,

for the large majority of observations, fares increase between two consecutive booking

days, and at the same time, available capacity reduces. In such a case, using descriptive

statistics, it is not easy to separate the variation due to capacity utilization from that

due to the time variation. In Table 5 we show a pure time variation, since we hold in-

flight occupancy fixed between two consecutive booking days by considering only those

observations where the number of available seats has not changed over two consecutive

14The fact that 4−5% of late booking cases report a price drop when less than ten seats

are available indicates an active intervention, which may be explained by the carrier’s

desire to fill a flight to capacity to generate ancillary revenues and boost market shares.

This incentive is, however, offset by the need not to offer “last-minute discounts”, which

customers may learn to anticipate: hence the lower probability of observing a drop within

a week from departure.
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booking periods. Any change in price is thus not due to a change in the occupancy

rate. We distinguish between Large and Moderate changes, the former (latter) being

greater (smaller) than £20.0 in absolute terms. As the first row in the table indicates,

the average value of a change tends to be the same for each category of decreases and

increases. We also consider the case of no change, which, in line with the capacity-based

theories, accounts for the largest majority of observations (about 73%). Interestingly, this

also implies that 27% of fare changes are generated by a pure time effect, with increases

(N = 1905) being more than twice as many as decreases (N = 919). The way changes

are distributed across flight characteristics does not appear to differ significantly, with

some minor exceptions. First, the proportion of increases (decreases) is above (below) the

sample mean when the booking day is (is not) within two weeks from departure. That

is, it is more likely to observe a fare increase as the date of departure approaches. By the

same token, large increases are hardly observed during the early booking period. Second,

more pure time variation (i.e., both more increases and decreases) is found in flights that

have more than 20 seats available and are operated in routes with low competition.15

Overall, the evidence in Tables 3-5 suggests that fares are affected by a combination

of capacity and time factors. These will be further investigated in the next Section.

6 The econometric model

The foregoing descriptive analysis provides evidence that both time and capacity are

strong drivers of fares. As discussed in Section 3, fares are also affected by pricing de-

cisions arising from an unexpected shock. We now aim to trace out an augmented tem-

plate linking in-flight remaining capacity and time before departure with offered fares,

net of human discretionary intervention. This is equivalent to estimating a pricing equa-

tion where the independent regressors are Sold Seats and BookingDay dummies, holding

other factors fixed. To achieve this, the use of an OLS regression is inappropriate be-

cause Sold Seats has two features which need special attention. A first obvious issue is

its endogeneity, since some unobserved determinants of the airline pricing behavior may

15See Section 7.2 for a formal definition of routes with high and low competition.
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be correlated with a specific flight’s time-invariant factors (an issue which could be dealt

with using the standard fixed-effects panel technique) and, more importantly, with the

idiosyncratic, discretionary intervention of the airline’s yield manager. This aspect calls

for an instrumental variables estimator. A second, more subtle, issue, is that Sold Seats

is censored due to the retrieving procedure. Indeed, the number of sold seats may range

from 0 to 189, i.e., the aircraft’s capacity. However, we can only detect the number of

available seats when they are less than 50. This censoring, therefore, induces a bias in

the estimates, and needs to be corrected.

Consider a simple model where y is a function of a vector of explanatory variables, x,

and z is a vector of instruments, such that:

y = xβ + u, (1)

E(u | z) = 0.

The key assumption underlying the validity of two stage least squares (2SLS) on the

selected sample is E(u | z, s) = 0, where s is a selection indicator. This assumption

holds if we observe a random sample selection: s is independent of (z, u), and a sufficient

condition for this is that s is independent of (x, y, z). Therefore, it can be proven that

the 2SLS estimator on the selected sub-sample is consistent for β.

However, if the selection indicator is not independent of x, as in our case, things

are different. Suppose that x is exogenous, and s is a nonrandom function of (x, v),

where v is a variable not appearing in equation (1). If (u, v) is independent of x, then

E(u | x, v) = E(u | v) and we may write:

E(y | x) = xβ + E(u | x, v) = xβ + E(u | v).

Specifying a functional form for E(u | v) = γv, we can rewrite:

E(y | x) = xβ + γv + e,

where e = u − E(u | v). As s is a function of (x, v), E(e | x, v, s) = 0 and β and γ can

be consistently estimated by ordinary least squares (OLS) on the selected sample. Thus,
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including v in the regression eliminates the sample selection problem and allows us to

consistently estimate β. Of course, if some variable in x is endogenous, the procedure to

correct for sample selection is the same, while to consistently estimate β we need 2SLS.

In our specific case, one of the explanatory variables, Sold Seats, is expected to

be correlated with the error term u, and therefore instrumental variables are required.

Moreover, we need to specify the selection mechanism, which in this case is determined

by a censoring of the data. The model in the population is:

LnFare1 = z1δ1 + αSold Seats+ u, (2)

where the logarithmic transformation of Fare1 is meant to linearize its convex relation-

ship with the endogenous regressor Sold Seats shown in Figure 2 and in Table 3, where

there is a more than proportional increase in fares as the number of available seats falls;

z1 are the other exogenous regressors, including dummy variables for booking days.16

Our specification links the current fare with the current in-flight available capacity: this

is a significant departure from Escobari (2012), where lagged values for both are used.

Equation (3) is a linear projection for the endogenous and censored variable, while

equation (4) describes the censoring induced by the data retrieving procedure:

Sold Seats = zδ2 + v2, (3)

Sold Seats∗ = max(0, zδ3 + v3). (4)

We allow correlation among the three error terms. We assume: a) (z, Sold Seats∗) is

always observed, but (Fare1, Sold Seats) is observed when Sold Seats is not censored,

16The booking days dummies capture the routine intervention of the yield manager.

The true fare setting model should also include the analyst’s discretionary intervention,

H, so that LnFare1 = z1δ1 + αSold Seats + λH + ε. Because H is unobserved and its

effect is included in u, endogeneity is thus due to an omitted variable problem resulting

from the positive correlation between Sold Seats and H. Indeed, the analyst is more

likely to discretionally reduce (increase) fares when Sold Seats is low (high). Therefore,

estimation using OLS should produce an upward bias in the coefficient for Sold Seats.
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i.e., when Sold Seats∗ > 0; b) (u, v3) is independent of z; c) v3 is normally distributed;

d) E(u | v3) = γ1v3; e) E(z′v2) = 0, and zδ2 = z1δ21 + z2δ22 where δ22 6= 0. Defining

e ≡ u− E(u | v3) = u− γ v3, equation (2) can be written as:

LnFare1 = z1δ1 + αSold Seats+ γv3 + e. (5)

Since (e, v3) is independent of z by assumption b), we have that E(e | z, v3) = 0.

As discussed above, if v3 were observed we could estimate equation (5) by 2SLS on

the selected sample using as instruments z and v3. However, we can obtain v3 when

Sold Seats∗ > 0, since δ3 can be consistently estimated by Tobit of Sold Seats∗ on z, on

the entire sample. To sum up, we proceed as follows:

1. We estimate a Tobit specification for equation (4) using all observations.

2. We retrieve the residuals: v̂3 = Sold Seats∗ − zδ̂3 for the selected sub-sample.

3. On the selected sub-sample, we estimate a modified version of (5), where instead

of v3, which is not observed, we include v̂3 among the regressors. As Sold Seats

is endogenous, we adopt an Instrumental Variable Two-Stage Fixed Effect (IVFE)

estimator, using as instruments z1 and v̂3.
17

It is possible to test whether the selection bias is statistically significant by observing

the t statistic on v̂3 in the IVFE model: when γ1 6= 0 standard errors should be corrected.

We do so by means of a bootstrapping procedure.

6.1 Model specification

To estimate (5), given the structure of our data, we focus on a panel where the identifier

is the single flight (defined by a combination of departure date and flight code) and the

time dimension is given by the time before departure (i.e., the booking day). This panel

structure allows us to control for all unobserved characteristics which are specific to the

single flight, such as, for instance, market structure and distance. Furthermore, focussing

17Our approach therefore strictly follows Procedure 17.4 in Wooldridge (2002, p.574).
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on a single flight using a fixed-effects approach allows us to control for possible strategic

effects at the route level, where, for example, the airline can opt to implement temporary

capacity limits, i.e., reduce the number of daily flights.

With regard to the regressors in (5), z1 includes a set of booking days dummies and

month of booking dummies. These exogenous regressors are part of the set of explanatory

variables, z, in the first stage estimation. To these we add the residuals from the Tobit

procedure, v̂3, to account for the sample selection.

To deal with endogeneity, we propose the following identification strategy, which is

based on two instruments. Their validity depends on the extent they are correlated with

Sold Seats and uncorrelated with the residuals e of the pricing equation. The first is

a dummy indicating whether the day the fare was posted is during a holiday period

(i.e., main UK Bank Holidays and the week before and after Christmas and Easter). Its

effect on Sold Seats may be driven by the fact that the ticket purchasing activity in

such periods is likely to be different from non-holiday periods (e.g., when on holiday a

person is less willing to spend time planning future trips); and it is less likely to observe

a discretionary intervention by the yield manager (e.g., because there are fewer staff

working during holidays).

The second instrument is derived by building upon the interpretation of Top Fare

and Fare1 presented in Section 4.2. As the convex relationship between fares and seat

occupancy shown in Figure 2 suggests, the slope of the template is expected to increase

with occupancy, and can therefore be considered as a valid candidate for an instrument.

To derive it, we take the difference between Top Fare and Fare1 and divide it by the

number of available seats (50−Sold Seats); as previously discussed, the difference in the

numerator tends to shrink (expand) as occupancy increases (decreases), and so does the

denominator. However, the convex relationship indicates that, as the plane fills up, the

denominator decreases at a faster rate than the numerator, which is sufficient to guarantee

a positive correlation between the template’s slope and Sold Seats, whose value, in the

selected sub-sample, is about 0.383. Although the slope captures a relevant feature of

the flight’s pricing template, it is also correlated with the error e. However, under the
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assumption that template changes are specific to each daily flight, using the lagged values

of the slope would still retain the important information about the template, without any

correlation with other flights’ idiosyncratic shocks. To capture the fact that templates

may change with the day of the week (e.g., Monday), the instrument denoted “Lag Mean

Slope” is constructed by averaging, for each booking day, the value of the slope in flights

with the same code departing on the same day (e.g., Monday) of the three preceding

weeks. Some of these lagged values may belong to observations where Seats = 50, and

for which therefore we cannot ascertain the exact number of available seats. Nonetheless,

this would not impact on the interpretation of the instrument as the slope of the template.

Indeed, as discussed in Section 4.2, in this case the instrument would include values of

TopFare indicating not the value of the last seat on the flight but that of the 50th seat

ahead of the one being available (whose value is captured by Fare1).

Notice that, in principle, the same set of exogenous variables, z, could appear in the

selection equation and in the first stage of the IV procedure. However, in practice, the two

sets of regressors should differ, otherwise a severe problem of multicollinearity between v̂3

and z1 may affect the results (Wooldridge, 2002). Therefore, in the Tobit specification for

model (4), we exclude the dummy for the booking during a holiday period, and instead we

include the number of UK airports serving the destination airport: this is not correlated

with v3, since the decision to open a route is generally taken in the preceding quarter,

but it captures the fact that a higher demand destination is more likely to be served by

more than one UK airport. Furthermore, dummies for the day of the week of booking

are included in the Tobit, but not in the IVFE model. Finally, a set of week, route,

and daytime of departure dummies are included. These would be dropped in the IVFE

procedure used in (5).

The validity of the chosen instruments is confirmed by a number of tests presented

in Tables 7-11. The first one is the Hansen’s J statistic for overidentifying restrictions:

the joint null hypothesis is that the instruments are valid. If the test fails to reject the

null hypothesis, then all instruments used are considered exogenous. The second one

is the Kleibergen-Paap LM statistic, which tests whether the equation is identified. A
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rejection of the null indicates that the matrix of reduced-form coefficients is full column

rank and the model is identified.18 To anticipate our results, both tests, as well as the

weak instruments tests not reported, strongly support our choice of instruments.

7 Results

Table 6 reports the Tobit and the first stage estimates, respectively. As discussed above,

although in principle the two sets of regressors should be identical, problems of mul-

ticollinearity require the two groups to differ. Additionally, the two estimation samples

differ, as the Tobit model is estimated on all available observations, while the IVFE model

is run on the non-censored subsample. Notwithstanding these two differences, we observe

similar results in the two specifications. This suggests that we are correctly accounting

for censoring in the dependent variable of the Tobit, and for its possible bias in the IVFE

estimates. As expected, Sold Seats is positively affected by “Lag Mean Slope”. This is

evidence that yield managers raise fares when past sales increase more than expected.

This is probably because they anticipate that, at least some of the time, changes in the

current sales are correlated with future sales, or more directly because they observe shocks

in demand that are correlated with current and future sales. Moreover, the instrument

that identifies booking during a holiday period has a negative coefficient, i.e., in those

days sales tend to be lower than usual.

Table 7 shows the second step of the IVFE estimation. We compare the results with an

OLS specification which corrects for selection, but not for the endogeneity of Sold Seats.

Notice that the IV approach yields a lower coefficient for Sold Seats: a unit increment

induces a 3.43% increase in fares if we do not correct for endogeneity, while only a 3.11%

increase in the IVFE case. The upward bias of the OLS coefficient for Sold Seats comes

from the fact that it includes both the direct impact of Sold Seats due to the airline

pricing policy and the indirect impact due to a human discretionary intervention, which

18The tests for weak instruments are reported only in Table 6, for the full sample IVFE

estimates in Table 7. As for the specifications presented in Tables 8-11, the tests are not

reported but are available upon request.

26

451
by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



is positively related to Sold Seats (see fn.16). The magnitude of the Sold Seats coefficient

suggests that a considerable proportion of a flight’s fare dispersion can be attributed to

a capacity effect. Indeed, if we apply a 3.11% change rate per seat to the mean value of

Fare1 (£65.17) when Sold Seats changes from its intermediate value (25) to either its

maximum (49) or minimum value (1), we obtain a prediction for the fare of about £137.53

and £30.88, respectively.19 These results provide strong support to the capacity-based

theories, and therefore shed empirical light on the relevance of the theoretical set-up

developed in Dana (1999a). In addition, this contrasts with the conclusions in Puller

et al. (2009), where fares appear to be insensitive to a flight’s occupancy rate.

The temporal profile in the two estimations are also quite different. The coefficients

of the BookingDays dummies in the IV specification suggest a steeper (relative to the

OLS) increase in prices in the last days before the flight. Relative to the base case of

prices posted 70 days from departure, for fares posted 4 and 1 days from departure we

record percentage increases of about 13% and 51%, respectively. Interestingly, in both

specifications these last-minute increases, which highlight an important role for time

effects, are part of an U-shaped temporal fare profile whose declining part reflects the

option value of waiting for a high-demand traveler to book (Gallego and van Ryzin, 1994).

To get further insights on the price dispersion generated by the two dimensions, we use

the estimates in Table 7 to compute both the price variation caused by a change over the

time before departure keeping the available capacity fixed and the price variation caused

by a change in available capacity keeping the time before departure fixed. The analysis

is performed starting from the intermediate values of the two variables, i.e., 25 available

seats and 28 days before departure. The maximum price difference is £54.87 moving

along the time dimension (from 1 to 70 days before departure) and £106.65 considering

the capacity variation (from 1 to 49 seats), which roughly corresponds to one-third and

two-thirds of total variation.

Overall, after controlling for endogeneity (i.e., after purging the estimates from the

19Note that the 5th and the 95th percentile values of Fare1 are, respectively, 13.99 and

149.99.
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effect due to the discretionary analyst intervention), we obtain strong evidence for both

capacity- and time-based theories in driving the airline’s pricing policy. In Table 8 we

check whether these two effects operate cumulatively by interacting Sold Seats with a

dummy variable capturing all the booking days within 7, 10 and 14 days, respectively.

The insignificant coefficient for the interaction term suggests that the two effects operate

independently of one another.

The results in Tables 7 and 8 are obtained using data from a heterogeneous sample

featuring 82 routes that differ in terms of market structure and length. In turn, each

route includes flights which vary by departure time, day of the week, seasonal period,

etc. Indeed, the summary statistics reported in Tables 1 and 2 indicate that the pricing

policy of the airline could vary across routes (e.g., substantial differences in terms of

mean and maximum value of Fare1 and Top Fare); furthermore, Tables 4 and 5 suggest

additional complexity in the pricing behavior that is compatible with variability at the

flight level. In the remainder of the paper, we study whether the average pricing policy

depicted in Table 7 changes as we take these sources of heterogeneity into account.

7.1 Demand volatility and flight’s characteristics

First, we study whether differences in the pricing profile arise in relation to the extent

of aggregate demand uncertainty: a pricing policy based on available capacity may be

less precisely applied when flights exhibit large rather than small demand volatility, thus

leading to a larger role for the time dimension. In Table 9 high (low) volatility flights are

those whose standard deviation of Sold Seats in a given month is larger (smaller) than

the sample one. As expected, the impact of Sold Seats is weaker than average in the

high volatility sample, where, in addition, the temporal profile is steeper.

Second, Table 10 offers further insights into the nature of the effects of in-flight re-

maining capacity and booking days on fares. First, we use the samples of morning and

evening flights, since the departure time is likely to vary with the passengers’ travel moti-

vation and their flight’s convenience.20 The coefficient of Sold Seats is found to be larger

20Morning flights are from 6am to 11am; evening ones from 4pm to 10.15pm. We thus
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in the evening sample; as evidence not reported here indicates, evening flights include a

larger proportion of observations with a higher number of sold seats, and, hence, such a

larger demand is met with a pricing policy designed to manage a higher shadow cost of

capacity.

Third, the last two columns of Table 10 consider the two samples of flights operated

in the Winter (November-March) and the Summer (April-October) periods. Because

Ryanair serves many Mediterranean destinations whose demand is obviously larger in

the Summer, the higher coefficient for Sold Seats is again due to the adoption of a

pricing policy which weighs capacity issues more heavily. Interestingly, the U-shaped

temporal profile is only found in the Summer flights, possibly because larger demand

is also accompanied by larger customers’ heterogeneity. In such a situation, the airline

faces a stronger incentive to adopt a U-shaped temporal profile to attract price-sensitive

consumers with high demand uncertainty who would not book their flights too far in

advance.

In situations of higher demand, i.e., evening and summer routes, the capacity effect

dominates. If we consider the price variation due to time and capacity independently, as

discussed in the comment of Table 7, we find that the latter accounts for approximately

three-quarters of the total. Vice versa, in lower demand conditions, the price variations

induced by capacity and time are more similar.21 However, the sum of the two effects is

of a comparable magnitude across the different sub-samples.

Finally, in Table 11 we investigate whether the different cost structure that character-

izes routes of varying length may affect the carrier’s pricing approach. Indeed, short haul

flights are subject to higher operative costs per kilometer, due to the greater fuel con-

sumption during take-off and landing. This is likely to induce a pricing strategy that is

exclude late morning and afternoon flights.
21More precisely, in the evening (summer) sample we have a price variation induced

by time of £41.66 (£43.77) and £126.00 (£115.81) for capacity variation. For morning

(winter) flights the time variation is £68.49 (£94.89) and the capacity variation is £94.98

(£85.82).
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more based on the capacity dimension. Consistent with this conjecture, we find that the

coefficient of Sold Seats is larger in the short-haul sample. Furthermore, the prominent

U-shaped temporal profile indicates a stronger reliance on a time-based strategy aim-

ing at attracting passengers with a lower willingness-to-pay, who in other circumstances

would not be targeted.

Overall, while the analysis in this section confirms the important role played by both

the capacity and the time dimensions, it also highlights how the airline may vary its

pricing policy mix depending on some of the underlying characteristics at the flight or

route level.

7.2 Market structure

As previously discussed, Dana (1999a) characterizes an equilibrium in price distributions

where higher prices are associated with higher occupancy rates. An important prediction

of Dana’s model is that the price distribution’s domain expands as competition increases:

unlike a monopolist, competitive firms pass through all of their cost increases, and there-

fore they should exhibit more intra-firm price dispersion. However, Gerardi and Shapiro

(2009) argue that in less competitive markets it may be easier to implement price dis-

crimination tactics: their estimates support the hypothesis that overall price dispersion

should decrease with competition. By focussing on particular forms of online price dis-

crimination strategies by European LCAs, Bachis and Piga (2011) also show that such

strategies are more likely to be found in less competitive markets.

To study how the coefficient of Sold Seats changes with market structure, we have

distinguished between markets with low and high competition, where a market is identi-

fied at both the route and the city-pair level.22 In less competitive markets, Ryanair is

at most a duopolist at either the route or the city-pair level, while, in highly competitive

ones, travellers may substitute Ryanair’s services with those of at least two or more of

22A city-pair defines the airline market for two cities (e.g., London and Milan). It gen-

erally includes more than one route, each identified by a unique airport-pair combination

(e.g., London Heathrow/Milan Malpensa and London Stansted/Milan Linate).
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its direct competitors on that route/city-pair.23

Table 11 reports the estimates from the low and the high competition sub-samples,

and shows that the coefficient of Sold Seats is larger in markets with low competition.

Thus, when travellers find it more difficult to substitute Ryanair’s services with those of

competitors, Ryanair appears to adopt a pricing policy where a larger proportion of seats

are assigned higher fares, and therefore the gradient of Sold Seats is on average steeper

than those in more competitive markets. Our findings thus suggest that competitive

pressure flattens the relationship between fares and the remaining capacity, in contrast

with the prediction in Dana (1999a) where fare dispersion increases with competition.

However, as far as the temporal profile is concerned, the estimates confirm the previ-

ous finding of a significant time effect. Furthermore, flights exhibiting significant price

drops six to two weeks before departure feature exclusively in the sub-sample of highly

competitive markets.

8 Conclusions

This study has built on the extensive and well-developed theoretical literature on airline

pricing, and sheds new empirical light on two of its predictions. It thus fills a gap in the

literature, since there are very few studies that have managed to overcome the scarcity of

appropriate data. To do so, we rely on data obtained from the website of Ryanair, whose

business model very closely aligns with the assumptions used in the theoretical literature.

Both the descriptive and the econometric evidence lend strong support to the hypoth-

esis of fares becoming higher as fewer seats remain available on a flight. On average, each

extra sold seat induces a 3.11% increase in a flight’s fare. Such a result indicates that the

capacity dimension is an important determinant of airline pricing. The study also reveals

novel evidence regarding the temporal profile of fares. All econometric specifications show

a sharp increase in fares in the last few days prior to departure, which is consistent with

the idea that late bookers are less willing to substitute a flight with another departing

on a different time or date. This leads to the conclusion that Ryanair’s pricing policy

23Data on market structure are obtained from the UK Civil Aviation Authority.
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appears to be designed to include late increases in fares regardless of the actual observed

capacity utilization. That is, higher late fares are part of an ex-ante YM decision by the

airline.

More importantly, the descriptive evidence points to a more complex, U-shaped tem-

poral profile, where early bookers (those booking at least 49 days prior to departure)

appear to pay a higher fare than those booking between 35 and 14 days from departure.

Indeed, the evidence captures a similar effect which is quite robust to variations in the

sample composition. Overall, the evidence indicates that a monotonic temporal profile is

not necessarily observed after capacity utilization is controlled for.

Furthermore, in addition to providing a test for two strands of literature on airline

pricing, this paper provides the foundation for an investigation of the theoretical predic-

tion, reported in Dana (1999a), that fare dispersion is expected to be larger in competitive

markets. Although this issue has been widely studied, the prediction has received mixed

support when dispersion is measured at the route-level (Borenstein and Rose, 1994; Ger-

ardi and Shapiro, 2009). The flight-level analysis in this study supports the findings in

Gerardi and Shapiro (2009) that the lack of competitive pressure allows Ryanair to ex-

tract more surplus from consumers with more inelastic demand. This is revealed in our

estimates by a steeper template in less competitive markets, implying that the last seats

are sold at higher fares.

Finally, it is worth recalling that our results relate to the pricing behaviour of the

largest European low-cost carrier, Ryanair. It is left to future research to investigate the

extent to which the YM approach we have illustrated is relevant for other airlines (with

a similar or different business model) in different geographical areas.
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Möller, M. and Watanabe, M. (2010). Advance Purchase Discounts and Clearance Sales.

Economic Journal, 120:1125–1148.

Piga, C. A. and Bachis, E. (2007). Pricing strategies by European traditional and low

cost airlines: or, when is it the best time to book on line? In Lee, D., editor,

Advances in Airline Economics. The Economics of Airline Institutions, Operations

and Marketing, pages 319–344. Elsevier, Amsterdam, Holland.

Puller, S. L., Sengupta, A., and Wiggins, S. (2009). Testing theories of Scarcity pricing

and Price Dispersion in the Airline Industry. N. 15555, December, NBER Working

Paper Series.

Stavins, J. (2001). Price Discrimination in the Airline Market: The Effect of Market

Concentration. The Review of Economics and Statistics, 83(1):200–202.

Weatherford, L. R. and Bodily, S. E. (1992). A Taxonomy and Research Overview of

Perishable-Asset Revenue Management: Yield Management, Overbooking, and Pric-

ing. Operations Research, 5:831–844.

Wooldridge, J. M. (2002). Econometric Analysis of Cross Section and Panel Data. MIT

Press, Cambridge MA, 1st edition.

35

451
by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



Table 1: Distribution of TopFare, by route, when Seats < 50

Route Max Median Mode Mean S.D. Route Max Median Mode Mean S.D.

BLK-DUB 149.99 149.99 149.99 143.5 25.5 STN-CCF 199.99 169.99 169.99 162.4 26.6

BHX-DUB 159.99 149.99 149.99 148.1 21.8 STN-NOC 189.99 169.99 169.99 157.5 27.6

BRS-DUB 159.99 149.99 149.99 146.9 19.7 STN-DUB 149.99 139.99 139.99 134.8 22.8

CWL-DUB 159.99 149.99 149.99 144.1 23.2 STN-EIN 139.99 139.99 139.99 134.9 21.1

EDI-DUB 169.99 149.99 149.99 144.9 22.5 STN-FRL 199.99 199.99 199.99 185.8 37.4

LGW-DUB 149.99 139.99 139.99 136.9 16.9 STN-GOA 189.99 169.99 169.99 163.6 30.7

LBA-DUB 169.99 149.99 149.99 146.9 21.7 STN-GRO 199.99 189.99 189.99 168.8 46.8

LPL-DUB 169.99 159.99 159.99 156.8 20.9 STN-GSE 189.99 179.99 179.99 170.7 35.8

LTN-BGY 249.99 159.99 159.99 159.9 44.9 STN-HHN 159.99 145.99 145.99 139.9 23.9

LTN-DUB 149.99 139.99 139.99 137.0 17.3 STN-HAU 169.99 169.99 169.99 157.4 39.0

MAN-DUB 189.99 179.99 179.99 176.3 24.4 STN-LBC 139.99 139.99 139.99 130.3 31.8

MME-DUB 159.99 149.99 149.99 145.1 23.0 STN-MMX 169.99 159.99 159.99 147.1 39.7

NCL-DUB 179.99 169.99 169.99 166.1 24.5 STN-MPL 199.99 189.99 189.99 172.7 30.6

PIK-BVA 159.99 139.99 139.99 140.6 19.4 STN-MJV 199.99 179.99 179.99 150.6 43.5

PIK-CRL 139.99 129.99 129.99 128.4 22.1 STN-AOI 179.99 149.99 149.99 151.1 24.7

PIK-DUB 159.99 149.99 149.99 145.4 23.7 STN-VBS 179.99 129.99 129.99 133.9 27.1
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PIK-GRO 199.99 189.99 189.99 177.2 37.6 STN-VLL 199.99 189.99 189.99 171.5 45.9

PIK-NYO 159.99 139.99 139.99 125.9 37.3 STN-PSA 209.99 189.99 189.99 181.3 25.9

STN-EGC 189.99 179.99 179.99 175.9 25.2 STN-PIK 149.99 129.99 129.99 119.6 28.9

STN-SXF 149.99 149.99 149.99 140.9 28.4 STN-CIA 209.99 199.99 199.99 187.0 44.4

STN-LRH 189.99 169.99 169.99 160.9 30.1 STN-REU 199.99 189.99 189.99 163.0 52.7

STN-LIG 189.99 179.99 179.99 174.2 27.3 STN-PUF 189.99 179.99 179.99 156.2 37.9

STN-PIS 189.99 179.99 179.99 172.5 32.0 STN-PGF 199.99 169.99 169.99 164.8 26.9

Note: The table includes a selection of routes with more than 1000 observations in our estimation sample of flights with less than 50

seats available.
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Table 2: Distribution of Fare1, by route and flight occupancy

Available Seats Available Seats

Less than 50 50 or more Less than 50 50 or more

Route Max Mean Max Mean Route Max Mean Max Mean

BLK-DUB 149.99 48.00 119.99 10.29 STN-CCF 199.99 69.25 149.90 26.38

BHX-DUB 159.99 62.95 109.90 18.23 STN-NOC 189.99 75.46 139.99 37.14

BRS-DUB 159.99 62.87 119.99 18.63 STN-DUB 144.99 49.52 119.99 15.31

CWL-DUB 159.99 56.01 109.90 22.26 STN-EIN 139.99 60.54 99.99 9.46

EDI-DUB 169.99 67.06 129.90 16.72 STN-FRL 199.99 71.64 139.99 16.60

LGW-DUB 144.99 55.89 104.99 19.09 STN-GOA 189.99 72.79 149.90 14.78

LBA-DUB 169.99 56.93 149.99 16.48 STN-GRO 199.99 74.26 159.90 22.72

LPL-DUB 169.99 60.81 139.99 13.55 STN-GSE 189.99 91.54 179.90 24.51

LTN-BGY 249.99 78.63 179.99 22.53 STN-HHN 159.99 59.37 85.99 12.80

LTN-DUB 139.99 55.55 99.99 14.23 STN-HAU 169.99 53.42 169.99 16.03

MAN-DUB 189.99 61.08 149.90 10.82 STN-LBC 139.99 62.88 139.99 13.55

MME-DUB 159.99 48.89 119.99 13.95 STN-MMX 169.90 66.82 129.99 16.16

NCL-DUB 179.99 60.83 139.99 20.08 STN-MPL 199.99 77.35 159.90 25.55

PIK-BVA 159.99 55.07 109.99 22.59 STN-MJV 199.99 87.82 159.90 54.73
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PIK-CRL 139.99 49.66 89.99 17.15 STN-AOI 179.99 72.73 139.90 25.53

PIK-DUB 149.99 61.12 149.99 11.31 STN-VBS 179.90 58.25 129.99 18.55

PIK-GRO 189.99 79.75 189.90 50.55 STN-VLL 189.99 73.80 159.99 19.09

PIK-NYO 159.99 69.73 79.99 17.29 STN-PSA 189.99 90.56 169.99 32.28

STN-EGC 189.99 81.47 179.90 31.77 STN-PIK 149.99 48.77 89.99 9.29

STN-SXF 149.99 62.63 149.99 18.99 STN-CIA 199.99 66.83 139.90 19.98

STN-LRH 189.99 69.58 109.99 29.47 STN-REU 199.99 67.04 139.99 20.99

STN-LIG 189.99 75.64 149.99 25.81 STN-PUF 179.99 65.43 129.90 23.11

STN-PIS 189.99 65.72 149.99 24.23 STN-PGF 199.99 75.46 159.99 25.75

Note: The table includes a selection of routes with more than 1000 observations in our estimation sample.
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Table 3: Mean Fare1, by available seats and booking day

Booking Available Seats

Day 1-9 10-19 20-29 30-39 40-49 ≥50 Total

1 125.5 95.4 83.7 78 74.2 64.3 84.5

4 114.3 75.3 57.8 49.4 43.6 36.1 57.2

7 110.9 69.5 49.1 37.9 31.1 19.4 40.6

10 109.3 68.8 48.2 37.7 31.3 19.7 36.3

14 106.4 72.5 48.1 35.9 28.0 13.5 27.3

21 116.4 82.1 56.2 41.8 32.7 15.4 24.1

28 130.9 92.9 64.3 47.0 36.9 16.5 21.6

35 135.6 97.6 71.3 53.0 41.9 17.3 20.4

42 128.0 97.9 74.9 57.1 49.4 18.0 20.0

49-70 124.5 107.4 88.6 66.1 54.9 18.4 19.3

Total 116.9 78.6 58.8 47.1 39.5 20.0 31.1

Note: Fare1 is the fare obtained from a query for one seat.
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Table 4: Percentage mean of observations with a price drop in Fare1 of at least £5.00

between two consecutive booking periods

Booking Available seats

Period 1-9 10-19 20-29 30-39 40-49 Total N

4-1 0.04 0.02 0.02 0.02 0.02 0.02 26,632

7-4 0.05 0.05 0.05 0.04 0.04 0.05 26,281

10-7 0.07 0.09 0.09 0.10 0.09 0.09 24,904

14-10 0.09 0.11 0.10 0.11 0.10 0.10 22,340

21-14 0.14 0.15 0.16 0.19 0.21 0.18 18,382

28-21 0.09 0.13 0.13 0.16 0.19 0.16 11,899

35-28 0.10 0.11 0.13 0.15 0.18 0.15 6,717

42-35 0.06 0.06 0.12 0.15 0.14 0.13 3,691

49-42 0.09 0.14 0.10 0.14 0.14 0.13 2,107

63-49 0.02 0.10 0.10 0.10 0.13 0.11 2,420

Total 0.06 0.08 0.09 0.11 0.13 0.09

N 22,434 30,147 30,973 31,363 30,456 145,373

Note: Fare1 is the fare obtained from a query for one seat. The price drop is calcu-

lated conditional on the number of available seats being less than 50, and non-increasing

between two consecutive periods.
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Table 5: Fare changes between two consecutive booking periods when flight occupancy remains unchanged (percentage values), by flight

characteristics

Fare Change

Large Moderate No Moderate Large N

Drop Drop Change Increase Increase

Average Change in £ -46.21 -12.45 0 14.27 49.78

Available Seats > 20 (% row) 3.94 6.45 64.98 13.09 11.54 4,141

Available Seats <= 20 (% row) 3.63 4.13 78.19 5.68 8.36 6,301

Booking Day > 14 (% row) 5.49 8.89 74.56 6.61 4.45 1,529

Booking Day <= 14 (% row) 3.46 4.39 72.68 8.96 10.51 8,913

Winter (% row) 5.37 5.50 70.25 8.88 10.00 3,129

Summer (% row) 3.06 4.85 74.11 8.51 9.46 7,313

High Competition (% row) 2.88 4.83 74.89 7.93 9.47 6,496

Low Competition (% row) 5.20 5.40 69.77 9.76 9.88 3,946

N (% row) 3.75 5.05 72.96 8.62 9.62

N 392 527 7,618 900 1,005 10,442

Note: Large (Moderate) increases/drops refer to changes strictly greater than (smaller than) £20.0 in absolute terms.
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Table 6: Tobit and First Stage estimates (dependent variable: Sold Seats)

Tobit First stage

Lag Mean Slope 2.536 (0.072)∗∗∗ 2.388 (0.005)∗∗∗

Booking Day1 63.752 (0.697)∗∗∗ 61.354 (0.112)∗∗∗

Booking Day4 58.949 (0.705)∗∗∗ 56.374 (0.110)∗∗∗

Booking Day7 54.357 (0.713)∗∗∗ 52.006 (0.110)∗∗∗

Booking Day10 49.909 (0.707)∗∗∗ 47.345 (0.109)∗∗∗

Booking Day14 44.182 (0.706)∗∗∗ 41.966 (0.106)∗∗∗

Booking Day21 34.468 (0.695)∗∗∗ 32.538 (0.103)∗∗∗

Booking Day28 25.293 (0.694)∗∗∗ 23.756 (0.101)∗∗∗

Booking Day35 17.162 (0.700)∗∗∗ 16.005 (0.099)∗∗∗

Booking Day42 10.144 (0.696)∗∗∗ 9.429 (0.090)∗∗∗

Booking Day49 5.395 (0.698)∗∗∗ 5.039 (0.087)∗∗∗

Booking Day56 2.754 (0.658)∗∗∗ 2.537 (0.080)∗∗∗

Booking Day63 1.651 (0.627)∗∗∗ 1.529 (0.077)∗∗∗

N. UK airports

serving arrival -1.138 (0.185)∗∗∗

Tobit residual 0.925 (0.001)∗∗∗

Booking Day is in

Holiday period -0.186 (0.025)∗∗∗

Constant 110.826 (5.209)∗∗∗

DUMMIES:

Month booking No Yes

Week Yes No

Route Yes No

DOW Booking Yes No

Time Departure Yes No

Number of obs. 511,226 100,031
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Pseudo R2 0.1621

Centered R2 0.9731

Test excluded instruments: F (2, 4490) = 1.0e+05∗∗∗

Underidentification

K-P LM Test χ2(2)=1.0e+05∗∗∗

Anderson-Rubin Wald test F (2, 4490)= 908.97∗∗∗

Anderson-Rubin Wald test χ2(2)=1818.79∗∗∗

Stock-Wright LM S statistic χ2(2)=726.44∗∗∗

Note: Lag Mean Slope is the mean obtained by taking the 7, 14 and 21 days lagged (L)

values of a template’s slope. See the main text for details on its construction. Significant

at ∗10%, ∗∗ 5%, and ∗∗∗ 1%.
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Table 7: Pricing equation results using the full sample and different estimation methods

(dependent variable: LnFare1 )

IVFE FE-OLS

Sold Seats 0.0311 (0.001)∗∗∗ 0.0343 (0.001)∗∗∗

Booking Day1 0.4121 (0.053)∗∗∗ 0.2248 (0.054)∗∗∗

Booking Day4 0.1213 (0.051)∗∗ -0.0542 (0.053)

Booking Day7 -0.0962 (0.049)∗∗ -0.2560 (0.050)∗∗∗

Booking Day10 -0.1205 (0.047)∗ -0.2631 (0.049)∗∗∗

Booking Day14 -0.2589 (0.044)∗∗∗ -0.3815 (0.047)∗∗∗

Booking Day21 -0.2062 (0.042)∗∗∗ -0.2963 (0.044)∗∗∗

Booking Day28 -0.1316 (0.039)∗∗∗ -0.1948 (0.042)∗∗∗

Booking Day35 -0.0804 (0.038)∗∗ -0.1210 (0.040)∗∗∗

Booking Day42 -0.0710 (0.037)∗ -0.0944 (0.041)∗∗

Booking Day48 -0.0399 (0.038) -0.0524 (0.040)

Booking Day56 -0.0129 (0.038) -0.0190 (0.042)

Booking Day63 -0.0009 (0.037) -0.0046 (0.036)

Tobit residual -0.0005 (0.0004) -0.0025 (0.0004)∗∗∗

DUMMIES:

Month booking YES YES

Number of obs. 100,031 100,031

Centered R2 0.5680 0.5683

Excluded instruments: 2

Underidentification

K-P LM Test χ2(2) = 1151.62∗∗∗

Hansen J statistic χ2(1) = 2.158

Note: Fare1 is the fare obtained from a query for one seat. Bootstrap Standard

Errors (SE) are reported in parenthesis, clustered by route and week. 250 repetitions.
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Significant at ∗10%, ∗∗ 5%, and ∗∗∗ 1%. K-P=Kleibergen-Paap.
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Table 8: Pricing equation results interacting with dummies for periods near the departure (dependent variable: LnFare1 )

Interaction with dummy for Interaction with dummy for Interaction with dummy for

7 days before dep. 10 days before dep. 14 days before dep.

Sold Seats 0.0314 (0.001)∗∗∗ 0.0314 (0.002)∗∗∗ 0.0295 (0.003)∗∗∗

Sold Seats*booking period -0.0010 (0.002) -0.0006 (0.003) 0.0024 (0.005)

Booking Day1 0.4155 (0.053)∗∗∗ 0.4120 (0.053)∗∗∗ 0.4204 (0.053)∗∗∗

Booking Day4 0.1218 (0.051)∗∗ 0.1197 (0.051)∗∗ 0.1333 (0.053)∗∗

Booking Day7 -0.0991 (0.049)∗∗ -0.0995 (0.050)∗∗ -0.0797 (0.055)

Booking Day10 -0.1258 (0.048)∗∗∗ -0.1253 (0.051)∗∗ -0.1002 (0.058)∗

Booking Day14 -0.2639 (0.045)∗∗∗ -0.2633 (0.048)∗∗∗ -0.2340 (0.063)∗∗∗

Booking Day21 -0.2102 (0.042)∗∗∗ -0.2098 (0.044)∗∗∗ -0.1910 (0.050)∗∗∗

Booking Day28 -0.1343 (0.039)∗∗∗ -0.1340 (0.041)∗∗∗ -0.1211 (0.044)∗∗∗

Booking Day35 -0.0820 (0.038)∗∗ -0.0818 (0.039)∗∗ -0.0745 (0.039)∗

Booking Day42 -0.0721 (0.037)∗∗ -0.0719 (0.037)∗∗ -0.0673 (0.037)∗

Booking Day48 -0.0404 (0.038) -0.0404 (0.038) -0.0378 (0.038)

Booking Day56 -0.0133 (0.038) -0.0132 (0.038) -0.0116 (0.038)

Booking Day63 -0.0012 (0.037) -0.0012 (0.037) 0.0005 (0.037)
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Tobit residual -0.0006 (0.0004) -0.0005 (0.0004) -0.0004 (0.0004)

DUMMIES:

Month booking YES YES YES

Number of obs. 100,031 100,031 100,031

Centered R2 0.5673 0.5676 0.5693

Excluded instruments: 2 2 2

Underidentification

K-P LM Test χ2(2) =363.314∗∗∗ χ2(2)=248.265∗∗ χ2(2)=88.711∗∗

Hansen J statistic χ2(2)=2.330 χ2(2)=2.212 χ2(2)=2.080

Note: Fare1 is the fare obtained from a query for one seat. Bootstrap Standard Errors (SE) are reported in parenthesis, clustered by

route and week. 250 repetitions. Significant at ∗10%, ∗∗ 5%, and ∗∗∗ 1%. K-P=Kleibergen-Paap.
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Table 9: Pricing equation results in flights that had high vs low volatility (dependent

variable: LnFare1 )

High volatility Low volatility

Sold Seats 0.0292 (0.001)∗∗∗ 0.0323 (0.001)∗∗∗

Booking Day1 0.5844 (0.080)∗∗∗ 0.2907 (0.067)∗∗∗

Booking Day4 0.2545 (0.077)∗∗∗ 0.0273 (0.065)

Booking Day7 0.0118 (0.074) -0.1741 (0.062)∗∗∗

Booking Day10 -0.0180 (0.071) -0.1968 (0.060)∗∗∗

Booking Day14 -0.1721 (0.068)∗∗ -0.3267 (0.057)∗∗∗

Booking Day21 -0.0865 (0.063) -0.2950 (0.053)∗∗∗

Booking Day28 -0.0530 (0.058) -0.1972 (0.049)∗∗∗

Booking Day35 -0.0224 (0.058) -0.1340 (0.047)∗∗∗

Booking Day42 0.0170 (0.057) -0.1488 (0.048)∗∗∗

Booking Day48 0.0547 (0.060) -0.1229 (0.045)∗∗∗

Booking Day56 0.0366 (0.061) -0.0563 (0.053)

Booking Day63 0.0056 (0.065) -0.0116 (0.048)

Tobit residual 0.0003 (0.001) -0.0008 (0.001)

DUMMIES:

Month booking YES YES

Number of obs. 40,728 59,303

Centered R2 0.5586 0.5768

Excluded instruments: 2 2

Underidentification

K-P LM Test χ2(2) =616.293∗∗∗ χ2(2)=764.002∗∗

Hansen J statistic χ2(2)=1.906 χ2(2)=0.455

Note: The two samples are built by selecting those flight codes which in a given month

had a standard deviation of Sold seats respectively larger and smaller than the sample
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one. Bootstrap Standard Errors (SE) are reported in parenthesis, clustered by route and

week. 250 repetitions. Significant at ∗10%, ∗∗ 5%, and ∗∗∗ 1%. K-P=Kleibergen-Paap.

50

451
by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



Table 10: Pricing equation results by time of the day and season (dependent variable: LnFare1 )

Morning Evening Winter Summer

Sold Seats 0.0296 (0.001)∗∗∗ 0.0347 (0.001)∗∗∗ 0.0275 (0.001)∗∗∗ 0.0324 (0.001)∗∗∗

Booking Day1 0.6579 (0.093)∗∗∗ 0.2777 (0.085)∗∗∗ 0.8413 (0.153)∗∗∗ 0.1038 (0.060)∗

Booking Day4 0.3540 (0.09)∗∗∗ 0.0235 (0.081) 0.4924 (0.152)∗∗∗ -0.1568 (0.057)∗∗∗

Booking Day7 0.0875 (0.087) -0.1423 (0.076)∗ 0.1928 (0.149) -0.3362 (0.054)∗∗∗

Booking Day10 0.0502 (0.083) -0.1545 (0.074)∗∗ 0.1095 (0.146) -0.3331 (0.052)∗∗∗

Booking Day14 -0.1275 (0.079) -0.2509 (0.070)∗∗∗ -0.0606 (0.144) -0.4620 (0.049)∗∗∗

Booking Day21 -0.1161 (0.075) -0.1980 (0.064)∗∗∗ -0.1071 (0.141) -0.3779 (0.046)∗∗∗

Booking Day28 -0.0574 (0.074) -0.1305 (0.060)∗∗ -0.0354 (0.139) -0.3023 (0.042)∗∗∗

Booking Day35 0.0119 (0.073) -0.0791 (0.057) 0.0027 (0.136) -0.2379 (0.041)∗∗∗

Booking Day42 0.0075 (0.070) -0.1151 (0.057)∗∗ -0.1146 (0.142) -0.1803 (0.038)∗∗∗

Booking Day48 0.0086 (0.075) -0.0081 (0.053) -0.1478 (0.142) -0.1269 (0.040)∗∗∗

Booking Day56 0.0527 (0.075) -0.0199 (0.059) -0.2182 (0.139) -0.0657 (0.039)∗

Booking Day63 0.0499 (0.080) -0.0101 (0.054) -0.0749 (0.135) -0.0348 (0.039)

Tobit residual 0.0022 (0.001)∗∗∗ -0.0034 (0.001)∗∗∗ 0.0010 (0.001) -0.0008 (0.001)

DUMMIES:

51

451
by the President and Fellows of Harvard College and the Massachusetts Institute of Technology



Month booking YES YES YES YES

Number of obs. 38,885 27,193 31,859 68,172

Centered R2 0.5865 0.5735 0.5596 0.5791

Excluded instruments: 2 2 2 2

Underidentification

K-P LM Test χ2(2)=572.6∗∗∗ χ2(2)=527.1∗∗∗ χ2(2) =399.5∗∗∗ χ2(2)=784.8∗∗∗

Hansen J statistic χ2(2)=0.072 χ2(2)=0.440 χ2(2)=0.505 χ2(2)=0.002

Note: Morning=6am-11am; Evening=4pm-10.15pm; Winter=November-March; Summer=April-October. Bootstrap Standard Errors

(SE) are reported in parenthesis, clustered by route and week. 250 repetitions. Significant at ∗10%, ∗∗ 5%, and ∗∗∗ 1%. K-P=Kleibergen-

Paap.
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Table 11: Pricing equation results in Short and Medium Haul routes with Low and High Competition (dependent variable: LnFare1 )

Short Haul Medium Haul Low Competition High Competition

Sold Seats 0.0332 (0.001)∗∗∗ 0.0285 (0.001)∗∗∗ 0.0332 (0.001)∗∗∗ 0.0296 (0.001)∗∗∗

Booking Day1 0.4235 (0.085)∗∗∗ 0.4528 (0.069)∗∗∗ 0.3355 (0.087)∗∗∗ 0.4596 (0.068)∗∗∗

Booking Day4 0.0974 (0.082) 0.1651 (0.066)∗∗ 0.0687 (0.085) 0.1513 (0.065)∗∗

Booking Day7 -0.1728 (0.080)∗∗ -0.0140 (0.063) -0.1380 (0.082)∗ -0.0744 (0.063)

Booking Day10 -0.2134 (0.078)∗∗∗ -0.0322 (0.059) -0.1518 (0.078)∗ -0.1071 (0.060)∗

Booking Day14 -0.4085 (0.076)∗∗∗ -0.1321 (0.055)∗∗ -0.2827 (0.075)∗∗∗ -0.2505 (0.057)∗∗∗

Booking Day21 -0.3638 (0.071)∗∗∗ -0.0922 (0.051)∗ -0.2028 (0.070)∗∗∗ -0.2176 (0.053)∗∗∗

Booking Day28 -0.2630 (0.070)∗∗∗ -0.0433 (0.046) -0.1154 (0.066)∗ -0.1521 (0.050)∗∗∗

Booking Day35 -0.1094 (0.068) -0.0552 (0.041) -0.0661 (0.063) -0.0944 (0.047)∗∗

Booking Day42 -0.0725 (0.067) -0.0770 (0.040)∗ -0.0398 (0.064) -0.0979 (0.047)∗∗

Booking Day48 -0.0792 (0.070) -0.0109 (0.040) -0.0242 (0.062) -0.0552 (0.045)

Booking Day56 -0.0697 (0.084) 0.0016 (0.041) -0.0723 (0.072) 0.0214 (0.045)

Booking Day63 -0.0249 (0.073) 0.0032 (0.041) 0.0246 (0.068) -0.0239 (0.045)

Tobit residual 0.0001 (0.001) -0.0015 (0.001)∗∗ -0.0013 (0.001)∗ 0.0001 (0.001)

DUMMIES:
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Month booking YES YES YES YES

Number of obs. 38,332 52,523 41,536 58,495

Centered R2 0.6459 0.5115 0.5499 0.5825

Excluded instruments: 2 2 2 2

Underidentification

K-P LM Test χ2(2) = 457.4∗∗∗ χ2(2) = 575.4∗∗∗ χ2(2) = 621.4∗∗∗ χ2(2) = 584.1∗∗∗

Hansen J statistic χ2(1) = 2.141 χ2(1) = 0.322 χ2(1) = 0.698 χ2(1) = 1.254

Note: Fare1 is the fare obtained from a query for one seat. Short (Medium) Haul routes are less than 370 (more than 500) miles

long. Low Competition includes flights in routes/city-pairs where Ryanair is at most a duopolist. In High Competition Ryanair operates

with two or more other carriers at either the route or the city-pair level. Bootstrap Standard Errors (SE) are reported in parenthesis,

clustered by route and week. 250 repetitions. Significant at ∗10%, ∗∗ 5%, and ∗∗∗ 1%. K-P=Kleibergen-Paap.
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Figure 1: Median Spline of Fare1 and sold seats, by timetable season

Route: London Gatwick - Dublin. Each line refers to a different flight code, defined in the legend
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Figure 2: Nonparametric fit between percentage deviation from mean Fare1 and percentage deviation from mean occupancy
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