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Abstract

We describe an application of probabilistic modeling and inference framework
that is capable of analyzing sensor data in an intensive care unit setting. We are
specifically interested in the intracranial hemodynamics. We show that using a
probabilistic description of the system and sensor models in addition to the state-
of-the-art statistical learning machinery can lead to an accurate real-time decision
support mechanism.

1 Introduction

An estimated five million critically ill patients are admitted to intensive care units (ICUs) in the
United States every year, at a cost of nearly $100 billion, and roughly half a million of them die,
[6]. Advances in clinical decision-making for critically ill patients, therefore, can have a significant
human and financial impact.

Decisions on testing and treatment in the ICU are often made under considerable uncertainty. De-
spite what may appear to be a plethora of information from continuous patient monitoring, key
pathophysiological states (vasospasm, sepsis, subarachnoid hemorrhage, failure of autoregulation,
etc.) are not directly measurable and must be inferred from the history of observations. The problem
is further complicated by the variability in physiology across patients, by the complexity of the dis-
ease pathways and injury processes in ICU patients, and by the abundance of artifacts in measured
data.

A patient in an ICU is continuously monitored by various sensors, while many interventions, tests,
and additional measurements are done asynchronously. The sensory data are usually displayed in
real time, and can, if continuously observed, provide an expert physician with a great deal of insight
into a patient’s condition. In most ICU settings, however, data are reduced to an hourly paper
chart generated by a nurse and reviewed daily by the physician. It seems plausible, therefore, that
standards of care might be improved by automated data analysis and decision support systems. At
present, however, deployed systems are limited to automated alarms based on simple rules; their
false-alarm rate often exceeds 90% and generally ICU staff ignore the alarms [11].

This abstract describes a decision support methodology that can deal with high-frequency, artifact-
ridden data, variability in patient physiology, and unknown disease states. Our particular focus is
on neurocritical care for traumatic brain injury (TBI), which is the developed world’s leading cause
of morbidity and mortality for individuals under the age of 45 [16]. TBI patients may exhibit a
multitude of primary and secondary brain injury pathways, and their obtunded state adds to the
difficulty of clinical assessment. The physiological mechanism of interest for such patients is the
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intracranial hemodynamics system, for which the key variable is the intracranial pressure (ICP)—
the pressure of the cerebrospinal fluid that surrounds the brain tissue. We are interested in inferring
critical physiological events and states using from ICP data and other measurements, as well as
estimating ICP itself in a non-invasive manner.

Our approach is based on the classical theory of state estimation, i.e., calculation of a probabilistic
estimate of patient state at each time point given the complete observation history up to that point.
The calculation is based on system, sensor, and parameter models. The system model describes
how the intracranial dynamics evolve over time as well as giving the probability of occurrence and
likely effects of disease events (hematoma, vasospasm, autoregulation failure, etc.) and clinical
interventions. The sensor model describes the measurement process, including noise, artifacts, drift,
etc.; the parameter model describes the a priori uncertainty about physiological parameters of the
individual patient.

We represent these models using dynamic Bayesian networks [2], which allow for uncertainty in
all aspects of the model. We use the physiological model described in [15, 12, 13, 14] and further
developed in [10] as basis of our system model. Inference is performed from the observed sensor
data using sequential Monte Carlo algorithms, allowing us to learn patient parameters, estimate
patient state, and detect clinically important events.

Our probabilistic model is still incomplete, as we don’t have a complete sensor model yet. A com-
plete sensor model is necessary, since the data is buried in non-Gaussian, highly persisting random
artifactual noise.

2 Related Work

Deterministic modeling of human physiology has a very long history. One highlight is the work of
Guyton [5], who describes the human circulation system in terms of 354 interconnected subsystems.
For intracranial hemodynamics, Ursino and his colleagues have provided a deterministic differential
equation system which is capable of describing various important physiological phenomena [15,
12, 13, 14]. Whereas standard ICP measurement requires cranial drilling, recent work [7, 8] builds
on a simplified version of Ursino’s model to estimate ICP non-invasively from blood pressure and
Doppler measurements of cerebral blood flow velocity.

The basic techniques for detecting events in critical-care monitoring using dynamic Bayesian net-
works have been presented by Aleks and his colleagues [9]. They detect sensory artifacts in blood-
pressure measurement and estimate the underlying true blood pressure accurately using particle
filtering. Some preliminary work on modeling of critical hemodynamic events using the methods
described here has been presented previously at a clinical meeting [10].

3 Probabilistic Inference

The main task of the ICU monitoring system is to estimate the physiological states of a patient given
a sequence of observations. Recent trends in machine learning suggest a data-driven approach that
is model agnostic. However, such an approach is not the best fit due to following reasons.

• The data is complex and high-dimensional and is buried under artifactual noise which is
persisting over long time periods. Furthermore, there is missing data from some or all
sensors for extended time periods.

• The underlying physiological model is known and sensory processes can be explained
stochastically. Being agnostic to this information is not reasonable.

Furthermore, results in [9] show that model-based approaches can do far better than purely data-
driven ones.

3.1 Probabilistic Modeling: Dynamic Bayesian Networks

As mentioned before, most physiological models are described in terms of deterministic differential
equations. However, this is not a good fit for real life applications as system parameters are unknown
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most often the time and most physiological variables show stochastic behavior. Furthermore, mea-
surements are available through noisy and artifactual sensors; hence we believe that only stochastic
models can describe the intrinsic uncertainty, stochastic variation and sensor noise.

We represent the intracranial dynamics using a dynamic Bayesian network (DBN). A portion of
the model is illustrated in the appendix, see Figure 3. DBNs are concise descriptions of discretized
stochastic differential equations that can handle discrete and continuous variables, [2]. For stochastic
modeling of intracranial dynamics and the associated DBN representation, see [10]. Figure 1(a) and
1(b) illustrate some elementary simulations and show how our model can express physiological
events (like hypotension, 1(a)) or ICU interventions (like jugular vein compression test, 1(b)). Our
model is capable of explaining various stochastic physiological and clinical scenarios.

3.2 State Estimation

ICU monitoring systems should be capable of inferring and predicting the underlying hidden patient
physiological states. State estimation is the task of calculating posterior probability densities over
the states, given a sequence of observations. It is one of the widely studied problems in statistics,
control theory and artificial intelligence. Exact state estimation is tractable only in limited situations,
and for nonlinear, non-Gaussian models such as ours, approximation schemes are necessary. One
such approximation scheme is the sequential Monte Carlo (SMC) framework. Particle filtering is
one example of the SMC framework that has been successfully used in various state estimation tasks,
[1, 3].

We use particle filtering for the state estimation task in our intracranial hydrodynamics model.
In an unpublished work of ours, successful inference of various physiological phenomenon like
hematoma, vasospasm, autoregulation failure has been achieved using the described framework un-
der the assumption that system parameters are fully known. Figure 2(a) illustrates the inference of
autoregulation failure. Autoregulation failure is very hard to infer unless there is a physiological
event or clinical intervention happening. Our approach, however, is capable of doing proper infer-
ence using the information buried in high-frequency data. Red line in figure 2(a) shows the belief
state on the autoregulation. After a short gap, particle filter is able to detect the autoregulation failure
and changes its belief state properly.

3.3 Parameter Estimation

Our intracranial model is parametrized by a high-dimensional parameter set. Each human has a
unique combination of parameters and estimating these parameters is a crucial part of our appli-
cation. Failing to estimate these parameters properly may lead to very poor state estimation and
prediction. However, most state-of-the-art algorithms cannot handle our model as it is very high-
dimensional both in parameter and state spaces.

Online parameter estimation in nonlinear and non-Gaussian systems is a challenging task. It is
still an open research problem in the SMC community. Russell’s group at UC Berkeley has an
ongoing algorithmic research effort in the direction of high-dimensional parameter estimation, (for
instance, [4]) and there are some promising results for the intracranial dynamics model using the
recent particle Markov Chain Monte Carlo (PMCMC) framework. Figure 2(b) illustrates the one
dimensional parameter estimation of the autoregulation speed parameter. For this one dimensional
simple estimation problem, a plain bootstrap particle filter is sufficient to track the posterior.

4 Conclusion

We have described a probabilistic framework that is capable of modeling a highly complex physio-
logical behavior. Using this framework and recent statistical learning machinery, we are able to do
state estimation and system identification. This inference mechanism which can infer unmeasurable
states and pathological events can be used to build a decision support system for ICU physicians.

We need to build a better and complete sensor model that can explain the artifactual noise stochas-
tically. Parameter estimation still poses issues as the parametrization of interest is very high-
dimensional. However, there are promising results that were obtained using the offline PMCMC
framework. As a future research direction; such inference can be used for decision making over
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(b) Jugular Vein Compression

Figure 1: Simulating Intracranial Dynamics, (a)-Hypotension: The simulated behavior of intracra-
nial variables around a 4 min period in which the ABP drops from 100 to 60 mmHg. Top left: ICP
falls and rises with ABP. Top right: CBF stays within a tight range when autoregulation is intact, but
decreases markedly when it is impaired. Bottom left: CSF absorption drops below formation as the
reduction in ICP decreases its pressure gradient. Bottom right: Proximal arterial radius increases
during hypotension, but only if autoregulation is intact. (b)-Jugular vein compression: Simulated
behavior during jugular compression. Top left: Venous sinus pressure (VSP) rises as jugular vein is
compressed. Top right: ICP rises as jugular compression prevents venous outflow. Bottom left: CSF
absorption rate drops below formation rate as rise in VSP decreases its pressure gradient. Bottom
right: CSF volume rises while CSF formation exceeds absorption.

(a) Autoregulation Failure Inference (b) Parameter Estimation

Figure 2: State and Parameter Estimation, (a)-State estimation (autoregulation inference): Green
line shows the exact autoregulation behavior. Autoregulation failure happens around the 15th sec-
ond whereas the particle filter infers the failure correctly around the 25th second. Red line is the
mean of the particles, showing approximately the probability of active autoregulation mechanism.
(b): Parameter estimation: Correct autoregulation speed parameter is τ = 14 seconds. Bootstrap
filter with N = 5000 particles correctly learns the parameter. The green line and the red errorbar
shows the mean and the standard deviation of the particles that represent the posterior distribution,
respectively.

long time scales. The decision of administering an additional test, intervention or drug can be de-
scribed as a partially observable Markov decision process (POMDP) in an effort to find optimal or
sub-optimal control strategies.
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A DBN for Intracranial Pressure

We have developed differential equations for various sets of physiological variables. For instance,
ICP can be expressed mathematically as follows.

Ṗic =

(
2G1

Cic

)
Pa +

(
−2G1

Cic

)
P1 +

(
−2G2

Cic

)
P2 +

(
2G2 +Gpv

Cic

)
Pc +

(
−Gpv −Gvs

Cic

)
Pv

+

(
Gvs

Cic

)
Pvs +

(
Gf

Cic

)
(Pc − Pic)+ −

(
G0

Cic

)
(Pic − Pvs)+

whereC1,C2,Gf , andG0 are static parameters and Pa, P1, P2, Pc, Pv and Pvs are various pressures
inside the intracranial compartment.

Cic =
1

(KE × Pic)

Cvi =
1

Kv(Pv − Pic − Pv1)

KE , Kv and Pv1 are static parameters as well. The complete model has more than 10 dynamic state
variables and more than 25 static parameters.

Figure 3 illustrates the aforementioned differential equation graphically. Due to space constraints as
well as highly interconnected DBN structure, we will not illustrate the whole intracranial dynamics
structure here.

ICP (t)Pc(t)P2(t)P1(t)Pa(t)

ICP (t+ 1)

Pv(t) Pvs(t)

Figure 3: A portion of the DBN that illustrates the transition for the intracranial pressure ICP (t)
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