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Ecology of Infectious Diseases

Explores the relationship between
1 Pathogen
2 Host: animal and human
3 Environment
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Ecology of Infectious Diseases
Tasmanian Devil Facial Tumor Disease
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Ecology of Infectious Diseases
Zika virus
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Overview: Motivation

Focus of talk
Challenges of statistical parameter estimation and inference
for dynamical models of infectious disease

Why are infectious diseases challenging to model?

1 Disease transmission is not observable

2 Much uncertainty about what is observed

3 Highly nonlinear dynamics
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Overview: Motivation

Why are infectious diseases challenging to model?

You need to synthesize a broad range of ideas from
biology,

mathematics,
and

statistics
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Overview: Process versus pattern

Classification of modeling approaches
Mathematical versus Statistical
Deterministic versus Stochastic

Theoretical versus Phenomenological
Process versus Pattern

Traditional approach:
choose between a mathematical or a statistical model

Alternative approach:
combine the advantages of mathematical and statistical
models
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Overview: Process versus pattern

Mathematical model (process)
Model structure reflects explicit hypotheses about the
biological mechanisms that drive infection dynamics

Example: Susceptible-Infectious-Recovered (SIR) Model

dS
dt

= −βSI
dI
dt

= βSI − γI
dR
dt

= γI

Advantages:
Explicitly model nonlinearities in the process
Useful for prediction

Disadvantages:
Represent the average behavior
Often focus is on model form,
not parameter estimation for observed data
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Overview: Process versus pattern

Statistical model (phenomenological)
Model describes the observed relationship between
variables

Example: Linear regression model

Y = β0 + β1X1 + β2X2 + . . . βpXp + ε

Advantages:
Data can inform the model
Rich characterization of different types of errors

Disadvantages:
May only describe the observed data
Gives little information about the mechanism
Interactions not always well captured
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Overview: history

Why not combine the advantages of
mathematical biology and statistics?

Long history of combining mathematical and statistical
models (e.g., Berliner 1991)
Many sessions at this conference include these ideas

References and this talk:
See the end of the talk for complete list of references
These slides are available online:
www.stat.colostate.edu/∼jah
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Motivating example: CWD Transmission

Deer (female) with 

Chronic Wasting Disease

Healthy deer (male)

Chronic Wasting Disease

Overview J. Hoeting



Motivating example: CWD Transmission

Chronic wasting disease (CWD)

100% fatal contagious disease that affects cervids (deer family)

CWD is a prion disease

Important to understand the transmission mechanisms of CWD

Several deterministic epidemic models were proposed by
Miller, Hobbs & Tavener (2006)
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Motivating example: CWD Transmission

Mathematical model for disease transmission
Susceptible-Infectious-Recovered (SIR) Model

Susceptible 
Deer

Infectious
 Deer

Dead 
Deer

# animals
time S I R

t1 100 0 0
t2 90 10 0
t3 80 10 10
t4 70 10 20

N = 100
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Motivating example: CWD Transmission

We develop a type of Susceptible-Infectious-Recovered (SIR) model
for disease transmission where the state variables are described by a
set of differential equations.

Consider the state vector X(t) = (S(t), I(t),R(t))T , where
S is the number of susceptible animals
I is the number of infectious animal
R is the number of deaths from CWD
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Motivating example: : CWD Transmission

Direct transmission ODE model for CWD

dS
dt

=a− S(βI + m)

dI
dt

=βSI − I(µ+ m)

dR
dt

=µI

where

β is the transmission rate
µ is the per capita CWD mortality rate

}
unknown

a is the number of susceptible animals annually
added to the population via births or importation

 known

m is the per capita natural mortality rate
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Motivating example: CWD Transmission
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Motivating example: CWD Transmission

There are always challenges with observed data:

Complete data 
# of animals 

Time S I R 
t1 100 0 0 
t2 90 10 0 
t3 80 10 10 
t4 70 10 20 

Observed data 
# of animals 

Time S I R 
t1 0 
t2 0 
t3 10 
t4 20 

  N=100 N=100
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Motivating example: CWD Transmission
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Challenges

We explore challenges in
1 Observed data
2 Model development:

I Which class of dynamical model? (Mathematics)
I Which mechanisms to include? (Biology)

3 Statistical inference:
I Which statistical model/paradigm?
I Which computational method?
I How to select models?
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Challenge 1: Data challenges

Challenges in the observed data:
1 Missing data

I You have to find the animals, they don’t visit the
nearest health clinic

I Some states are unobserved

2 Sparse data
I Interval between observations can be long and irregular

3 Uncertain data
I Uncertainties about the testing procedure

(false negatives and/or false positives)

4 Initial conditions unknown
I Usually don’t observe the population before

the disease outbreak
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Challenge 2: Model development

Challenges in model development:

1 Which class of dynamical model? (Mathematics)

2 Which mechanisms to include? (Biology)
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Challenge 2: Model development
Which class of dynamical model?

What is a dynamical model?
A dynamical model describes a system that evolves in time.

A dynamical model includes:
A description of the state(s) of the system
A time index
A rule by which the state(s) evolves forward in time

Some classifications of dynamical models
continuous or discrete
stochastic or deterministic
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Challenge 2: Model development
Which class of dynamical model?

Ordinary Differential Equation (ODE) model:
ODE models can be used to determine whether or not disease
transmission will occur.
Dynamical model classifications: deterministic, continuous
time, continuous state space model

Example:

dS
dt

=a− S(βI + m)

dI
dt

=βSI − I(µ+ m)

dR
dt

=µI
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Challenge 2: Model development
Which class of dynamical model?

Stochastic Differential Equation (SDE) model:

SDE models be used to determine the probability of disease
transmission between two individuals

Natural extension of ODE models

Dynamical model classifications: stochastic, continuous time,
continuous state space model
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Challenge 2: Model development
Which class dynamical model?

A SDE model for direct transmission of CWD is given by

dS =[a− S(βI + m)]dt + B11dW1 + B12dW2 + B13dW3,

dI =[βSI − I(µ+ m)]dt + B21dW1 + B22dW2 + B23dW3,

dC =µIdt + B31dW1 + B32dW2 + B33dW3,

where
W is a k -dimensional standard Wiener process.
B = (Bij) =

√
Σ with

Σ =

a + S(βI + m) −βSI 0
−βSI βSI + I(µ+ m) −µI

0 −µI µI

 .
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Challenge 2: Model development
Which class of dynamical model?

Continuous time Markov chain (CTMC) model:

CTMC models be used to determine the probability of disease
transmission between two individuals

May be more complicated to derive than SDE models

Dynamical model classifications: stochastic, continuous time,
discrete state space model
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Challenge 2: Model development
Which class of dynamical model?

A CTMC model for direct transmission of CWD is given by

P

 S(t + δ) = i + 1 S(t) = i
I(t + δ) = j I(t) = j
R(t + δ) = k R(t) = k

 = aδ + o(δ),

P

 S(t + δ) = i − 1 S(t) = i
I(t + δ) = j I(t) = j
R(t + δ) = k R(t) = k

 = imδ + o(δ),

P

 S(t + δ) = i − 1 S(t) = i
I(t + δ) = j + 1 I(t) = j
R(t + δ) = k R(t) = k

 = βijδ + o(δ),

P

 S(t + δ) = i S(t) = i
I(t + δ) = j − 1 I(t) = j
R(t + δ) = k R(t) = k

 = jmδ + o(δ),

P

 S(t + δ) = i S(t) = i
I(t + δ) = j − 1 I(t) = j
R(t + δ) = k + 1 R(t) = k

 = jµδ + o(δ),

where o(δ)→ 0 as the time interval δ → 0.
Each probability statement in the CTMC model corresponds to a
component of the ODE model.
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Challenge 2: Model development

Model development:
1 Which class of dynamical model? (Mathematics)

2 Which mechanisms to include? (Biology)
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Challenge 2: Model development
Which mechanisms to include?
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Challenge 2: Model development
Which mechanisms to include?

A two serotype model for dengue fever

C. Leach, 2015
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Challenge 3: Statistical inference

Challenges in statistical inference

1 Which statistical model/paradigm?

2 Which computational method for inference?

3 Which model do the data support?
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Challenge 3: Statistical inference
Statistical model/paradigm

The statistical method you select for inference will
depend on the

shortcomings of your data

dynamical model you developed
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Challenge 3: Statistical inference
Statistical model/paradigm

Example: For the Chronic Wasting Disease data
It is reasonable to allow for errors in the
observed number of deaths
We use a hierarchical model with a
dynamical model at the process level

Hierarchical model consists of
Stage 1: Data model
Stage 2: Process model
Stage 3: Parameter model
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Challenge 3: Statistical inference
Computational methods for inference

Some possible computational methods to enable statistical inference
for dynamical models

1 Bayesian approaches
I Markov chain Monte Carlo (MCMC)
I Approximate Bayesian Computation (ABC)

2 Maximum likelihood approaches
I Iterated filtering
I Penalized simulated maximum likelihood

3 Least squares approaches
I Gradient matching
I Trajectory matching

Many other options available. See talk references.
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Challenge 3: Statistical inference
Computational methods for inference

Most computational methods can’t be used ‘out of the
box’ for modeling infectious diseases due to

The sparse nature of the data
Small changes in the parameters can lead to very
different dynamic behavior

Finding good starting values for the computational
statistical algorithms can be particularly challenging.

Latin hypercube sampling (Marino et al., 2008) can
be useful
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Challenge 3: Statistical inference
Model selection

Choice of model selection methods will depend on the inference
paradigm you choose.

Some options:
1 Bayesian

I Compare models via their posterior model probabilities.
For modelMk the posterior model probability is given by P(Mk |D).

I Compare models using Bayes factors (Kass & Raftery 1995)

2 Maximum likelihood: AIC

3 Other options for both paradigms: see references

Just to be precise: model selection isn’t statistical inference
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Example: Chronic Wasting Disease

Putting all the pieces together:

Parameter inference and model selection in deterministic and
stochastic dynamical models via approximate Bayesian computation
(Sun, Lee, Hoeting, 2015)

Challenges in
1 Observed data
2 Model development: We’ll consider several disease models
3 Statistical inference:

I Which model/paradigm? Bayesian hierarchical model
I Which computational method? ABC
I How to select models? Posterior model probabilities and Bayes

factors
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Motivating example: CWD Transmission

The observed data:
Annual observations of cumulative mortality from two CWD
epidemics in captive mule deer
No live-animal test, vaccine, or treatment for CWD existed prior to
2008.
Epidemic 1: 1974 to 1985
Epidemic 2: 1992 to 2001 (in a new deer herd)
21 observations over time
The dataset also includes

I annual number of new deer added to the herd
I per capita losses due to natural deaths and removals
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Example: Chronic Wasting Disease

Observed data from two CWD epidemics
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Example: Chronic Wasting Disease

For our chronic wasting disease example:

Stage 1: Data Model

At time t let R̃(t) = observed cumulative number of deaths from
CWD where

R̃(t) ∼ Binomial
(

N(t);
R(t)
N(t)

)
where

N(t) = S(t) + I(t) + R(t) is the total # of animals at time t
Only R̃(t) and N(t) observed at discrete time t = t0, t1, . . . , tn
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Example: model set-up

Stage 2: Process Model: Direct transmission ODE

dS
dt

=a− S(βI + m)

dI
dt

=βSI − I(µ+ m)

dR
dt

=µI

Stage 3: Parameter Model
Prior distributions for all model parameters

Inference: We can’t write the likelihood in closed form so we
certainly don’t have the posterior distribution in closed form
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Example: Model selection

Biologists and statisticians have proposed multiple reasonable models.
Which model should we use?

Goal 1: Choose a data model
We consider Binomial or Poisson

Goal 2: Choose the disease transmission model
1 Direct (basic SIR)
2 Indirect (environmental transmission)
3 Both direct and indirect disease transmission

Goal 3: Choose a class of dynamical model
1 Ordinary differential equation (ODE) model
2 Stochastic differential equation (SDE) model
3 Continuous time Markov chain (CTMC) model

Example J. Hoeting



Example: Results for CWD

Goal: compare models for Chronic Wasting Disease.

Posterior model probabilities for each model P(M|D)
Data CWD Process Informative prior set
Model Transmission Model P(M|D) Bayes factor
Binom Direct/Indirect SDE 0.21 1.00
Binom Direct SDE 0.18 1.15
Binom Direct ODE 0.13 1.55
Binom Direct CTMC 0.11 1.87
Binom Direct/Indirect ODE 0.09 2.43
Pois Direct/Indirect SDE 0.09 2.27
Pois Direct ODE 0.06 3.48
Pois Direct SDE 0.05 3.87
Pois Direct/Indirect ODE 0.04 4.63
Pois Direct CTMC 0.03 6.17

Example J. Hoeting



Example: Parameter estimates

The marginal posterior distribution for 2 of the parameters of the
indirect transmission SDE model based on the CWD epidemic data.
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Example: Parameter estimates

Marginal posterior modes and 95% HPD intervals of the parameters of
the indirect transmission SDE process model with the Binomial data
model based on the CWD epidemic data.

Informative prior set
Parameter Mode 95% HPD
γ = Indirect transmission rate (mass−1yr−1) 0.05 (0.01, 0.36)
µ = CWD mortality rate (yr−1) 0.20 (0.10, 0.59)
ε = Per capita rate of excretion of infectious agent (yr−1) 0.47 (0.15, 0.91)
τ = Rate of loss of infectious agent (yr−1) 0.88 (0.01, 4.52)
S(0) of the first epidemic 18 (10,26)
I(0) 10 (5,18)
E(0) 1.73 (0.97,5.84)
S(0) of the second epidemic 48 (24,50)
I(0) 2 (0,5)
E(0) 3.47 (0.24,4.85)
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Example: Fitted SDE Model for CWD
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Future work

Much work left to do in development of statistical methods and models
for the ecology of infectious disease:

As data complexity and model complexity increase, the current
methods often fail.

More developments needed in:
1 Develop efficient computational algorithms for estimation
2 Inference for data from multiple sources and across multiple

scales

Did this session pique your interest?
Attend the session on Disease Ecology today at 17:00
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Example: ODE model for direct/indirect
transmission of CWD

An ODE model for the direct and indirect transmission of CWD (Miller
et al. 2006)

d


S
I
E
C

 =


a− S(γE + m)
γSE − I(µ+ m)

εI − τE
µI

dt ,

where
γ is the indirect transmission coefficient
ε is the per capita rate of excretion of infectious material by
infectious animals
τ is the mass-specific rate of loss of infectious material from the
environment

The unknown quantities to be estimated are (γ, µ, ε, τ,S(t0), I(t0),E(t0)).
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Example: Parameter estimates

The marginal posterior distribution for the parameters of the indirect
transmission SDE model based on the CWD epidemic data.
Left column is prior set 1 and right column is prior set 2
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