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ABSTRACT To ensure the safety and stability of spacecrafts of which thousands of telemetry parameters are
monitored, fast and accurate response to anomalies or potential hazards is very important and challenging.
This task becomes more difficult when the obtained telemetry data are sampled at irregular intervals. Long
Short-Term Memory networks (LSTM), as time series prediction models, have been applied to satellite
anomaly detection and show a promising prospect. However, the anomaly detection method merely based
on LSTM does not show a stable performance: when the prediction performance of LSTM is not satisfying,
the performance of subsequent anomaly detection will be affected, and the impact is augmented when the
telemetry data are of irregular intervals. In order to solve these problems, time intervals are introduced
into the LSTM model directly. Besides that, a novel anomaly detection method, Detecting Anomalies using
LSTM and Ensembled One-Class Support Vector Machines (DALEO) is proposed to further improve the
performance of anomaly detection. In DALEO, multiple One-Class Support Vector Machines are used to
obtain the ensemble outputs of high precision and high recall respectively. These ensemble outputs are
integrated into the two stages of the anomaly detection method with LSTM in a novel way. Extensive
empirical studies on real-world datasets of satellites and space shuttles demonstrate that DALEO improves
the performance of anomaly detection significantly when dealing with telemetry data with irregular intervals.

INDEX TERMS Spacecrafts, irregular intervals, one-class support vector machine, long short-term memory
network, anomaly detection, integration.

I. INTRODUCTION
Due to the extremely high cost of spacecrafts such as satellites
and space shuttles, thousands of kinds of telemetry data are
usually used to monitor their status in real time to guarantee
their safety and stability during the mission. These teleme-
try parameters cover data from various subsystems, such as
power subsystem, attitude control subsystem. It is difficult to
manually design a generic method for all kinds of telemetries.
Besides, the sampling frequency of telemetry data is very
high, which means that a large volume of telemetry data
will be obtained just in a short period of time. What makes
the anomaly detection more difficult is that, limited by data
transmission or other conditions, the telemetry data of equal
intervals are not always available.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

In the domain of anomaly detection, anomalies are usually
divided into three categories: point, collective and contex-
tual [1]. Point anomalies are single values that fall within
low-density regions of values, while contextual anomalies are
single values that do not fall within low-density regions but
are anomalous with regard to their contextual values. Collec-
tive anomalies are anomalous sequences rather than single
values. Amyriad of methods have been proposed for anomaly
detection in aerospace field, including expert systems [2],
[3], nearest neighbors approaches [4], [5], clustering-based
approaches [6], [7], approaches based on dimension reduc-
tion [8], [9] and etc. These methods have exhibited certain
advantages in certain scenarios, but each of them has its own
obvious shortcomings, such as high computational expense,
poor generalizability or interpretability, and complex param-
eter specification. In contrast, out of limits (OOL) approaches
have the advantages of low computational expense, broad
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applicability, and ease of understanding [10]. However, it is
difficult to find the contextual anomalies which are related
to temporal information using OOL. In recent years, with
the rapid development of deep learning, Recurrent Neural
Networks (RNN), especially the Long Short-Term Mem-
ory networks (LSTM), have been widely used for anomaly
detection of time series [10]–[13]. Compared with traditional
RNN, LSTM improves the long-termmemory by introducing
a weighted self-loop that allows it to forget past information
in addition to accumulating it [14].

Anomaly detection of time series can be realized with a
LSTM based classification model with the help of sliding
windows [12], [15], but it needs a lot of labeled anomaly
data to train the supervised classification model, and it is
difficult to obtain high-quality labeled anomaly data in the
field of aerospace. Another more practical way is to use
LSTM as a prediction model [10], [16]–[18] to get prediction
sequence and the corresponding error sequence, based on
which the anomalies are detected. These error-based meth-
ods show obvious advantages in domains where labels of
anomalous samples are rare. A prediction model trained on
‘normal’ data is modeled to predict the future values using
the current sequences. Therefore, the prediction model can
capture and model normal behaviors of a system. When
test data represent an unusual pattern, the errors between
the actual values and predicted values are far larger than
those of normal data, which indicate a potential anomaly.
Recently, Hundman et al. [10] demonstrated the effectiveness
of using LSTM to detect anomalies from satellite telemetry
data.

Most existing anomaly detection methods for time series
do not pay enough attention to the issue of irregular intervals,
because various methods are available for solving the prob-
lem of irregular intervals or missing values in time series [19].
Among them, the most crude method is to directly ignore
the impact of unequal intervals, and just perform analysis
on the observed data, but its performance is poor when
the missing rate is high [20]. The intuitive method is data
imputation, that is, estimated values are added to fill the
irregular data to allow the analysis to proceed in normal way.
Imputation methods include linear interpolation [21], poly-
nomial interpolation [22], matrix completion [23], matrix
factorization [24], spectral analysis [25], principal component
analysis [26] and so on. However, not only data imputation
brings additional steps and computation costs, but also the
quality of the estimated data can hardly be guaranteed [20].
Since LSTM can directly process multivariate time series
and learn the complex non-linear relationship without domain
knowledge, time interval, as an important feature, is com-
bined with telemetry value as inputs of LSTM model to gain
more accurate predictions.

There are some works which utilize this strategy in RNN-
based method for classification [20], [27], but the strategy has
never been used for prediction based anomaly detection.

Although such a strategy can reduce the impact of unequal
interval for LSTM-based anomaly detection, it still cannot

solve the problem that anomaly detection based on a single
model is not robust enough.

In this paper, another unsupervised method, One-Class
Support Vector Machine (OC-SVM) [28], is combined with
LSTM in a novel way for anomaly detection. The proposed
method is named as DALEO to stand for Detecting Anoma-
lies using LSTM and Ensembled OC-SVMs.When OC-SVM
is directly used for anomaly detection of temporal data,
the performance is poor due to the complex temporal rela-
tionship and high dimension of temporal data [29]. In the pro-
posed method, a variety of features extracted from time series
are fed into OC-SVM models separately to get their own
results, which are aggregated to get two ensemble outputs
according to different voting thresholds. One is the ensemble
output with high precision, the other is the ensemble output
with high recall. In the meantime, the LSTM model which
takes the telemetry value and the corresponding time intervals
as input is used to get the prediction values. Based on the
predicted values, the error sequence and the smoothed error
sequence are derived. Then the anomaly scores are calculated
for each point in the sequence using the error sequence, the
smoothed error sequence and the ensemble output of high
precision. Subsequently, the dynamic threshold is calculated
based on the derived anomaly scores and the set of candidate
anomalous sequences can be obtained. Finally, two pruning
strategies are applied using the ensemble output of high recall
and the anomaly scores of candidate anomalous sequences
sequentially to mitigate the false alarms. The retained anoma-
lous sequences are the final result of anomaly detection.

The main contributions of this study are as follows. Firstly,
the shortcomings of the existing LSTM-based anomaly
detection methods are pointed out and analyzed. Secondly,
a method which combines two unsupervised models in a
novel way is proposed to detect anomalies in telemetry data
with irregular intervals. Thirdly, the proposed integration
framework for the anomaly score calculation module and
pruning module provides insights to point-wise anomaly
detection methods. Finally, experiments on real datasets
demonstrate the effectiveness of combining time intervals
with telemetry values as input of LSTM model, and verify
that the two ensemble outputs of multiple OC-SVM models
improve the performance of anomaly detection when they are
integrated into the traditional method.

The rest of the paper is organized as follows. Section II
presents the most closely related work. Section III gives
the architecture of DALEO and details how it works to
detect anomalies in time series sampled at irregular intervals.
The experimental details and discussions are articulated in
Section IV. Conclusions and future directions of our work are
given in Section V.

II. RELATED WORK
The related research works are analyzed from three aspects:
LSTM based anomaly detection methods, OC-SVM based
anomaly detection methods, and integration methods for
anomaly detection.
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A. LSTM-BASED ANOMALY DETECTION
LSTM-based anomaly detection methods can be divided into
two categories: classification-based methods [12], [15] and
error-based methods [10], [16]–[18]. Error-based methods
using LSTM have great advantages over classification-based
methods in detecting anomalies where labeled sampled are
barely accessible. Current error-basedmethods detect anoma-
lies by setting thresholds for prediction error sequences
or transformed error sequences. There are two mainstream
methods to determine the threshold, one is setting a fixed
threshold based on the assumption of Gaussian distribution
of the errors [16], [17], which is often violated, while the
other is the dynamic thresholdmethod proposed in [10]. In the
dynamic threshold method, the exponential weighted moving
average (EWMA) [30] is used to process the error sequence,
obtaining the smoothed error sequence, based on which the
dynamic threshold is determined. This method does not need
any hypothesis about error distribution nor anomaly samples
to determine the threshold. However, to the best of our knowl-
edge, all the existing thresholds in LSTM-based methods are
set based on merely one type of information which describe
the state of the anomaly: either the error sequence [16], [17],
or the transformed error sequence [10], [18]. Therefore,
an anomaly score calculation method which considers a vari-
ety of anomaly information at the same time is defined in
our method, based upon which a more accurate dynamic
threshold can be found.

Many false alarms are often obtained when the thresholds
are set, while the pruning method proposed in [10] only
considers the characteristics of one point in each candidate
anomaly sequence. In the proposed method, a new strategy
which is based upon the overall state of the candidate anoma-
lous sequence is applied to the pruning process.

At present, there are limited studies on using LSTM or
other RNN models to deal with unequal interval time series
except the works in [20], [27], which are proposed to deal
with the missing data. The method in [27] introduces the
time intervals to predict when the next event will happen,
which has little to do with anomaly detection. The method
in [20] is proposed to model the ‘informative missingness’
for multivariable time series by modifying RNN structures.
Although these methods have different purposes and apply
different methods to model the time series of unequal inter-
vals, they show the value of concatenating time intervals
with the original time series. In this work, experiments are
conducted to verify the effectiveness of concatenating time
intervals with telemetry data for anomaly detection when data
are irregularly sampled.

B. OC-SVM BASED ANOMALY DETECTION
OC-SVM, as one kind of One-Class classifier, allows for the
modeling of just a single class of samples and is often used
for anomaly detection. Zhang et al uses the method of data
transformation to get two-dimensional sequence [32], but this
method does not provide additional information. In [31], [32],

the methods first use autoencoder to learn a fixed length
features, then use OC-SVM to detect the anomaly accord-
ing to the learnt features. The improvement on the perfor-
mance shows the importance of temporal feature extraction
for temporal data anomaly detection using OC-SVM. In [33],
an ensemble of OC-SVMs are used to detect Fingerprint
Spoof. Although this method is not related to the time series,
it shows the effectiveness of ensemble of OC-SVM detectors
which utilize different kinds of features.

Enlightened by these works, an ensemble of multiple
OC-SVM models which take different kinds of features as
input is proposed to generate high precision outputs and high
recall outputs respectively for anomaly score calculation and
pruning in DALEO.

C. INTEGRATION METHODS FOR ANOMALY DETECTION
The main integration methods of various models for anomaly
detection in time series are ensemble-based methods, which
take the outputs from base detectors and combine them
in some way (max, min average) to generate a final
score [34]–[36]. These methods are sensitive to inaccu-
rate detectors, especially when the inaccurate score deviates
far from those of other detectors. In [37], the method of
finding the optimal weights of base detectors is proposed
using Bayesian model for combining classifiers. Since this
method is based on the assumption that detectors output
scores fit a normal distribution, it is also restrictive. All these
ensemble-based methods try to seek the weight for each
base detector to get the final output, but no one shows a
significantly better performance than others.

In DALEO, by introducing the concept of voting thresh-
old, the outputs of multiple base detectors are aggregated
point-wise according to different voting thresholds, and
ensemble outputs of high precision and high recall are
obtained. The high precision ensemble output is used to
calculate the anomaly score for each point in the sequence,
and the high recall ensemble output is used to mitigate the
false alarms.

III. DALEO
In this section, the main framework of DALEO is firstly
given. After that, the ensemble of OC-SVM models and the
error calculation using LSTM model with unequal intervals
telemetry data are illustrated. Finally, the novel integration
method using the ensemble outputs of OC-SVMs and LSTM
in the anomaly score calculation module and pruning module
is detailed in subsection D and E.

A. OVERVIEW OF DALEO
The overall framework of DALEO is illustrated in Fig. 1.
In DALEO, multiple kinds of features obtained from dif-
ferent Feature Extraction Modules (FEM) are fed into
OC-SVMmodels separately to get their classification results,
and then these results are aggregated to get the ensemble
outputs according to two different voting thresholds. The
high-precision ensemble output oHP is derived by setting
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FIGURE 1. The main framework of DALEO.

a higher threshold η1, and the high recall ensemble output
oHR is derived with a lower threshold η2. At the same time,
the LSTMmodel is used to get the prediction values, based on
which the error sequence e and the smoothed error sequence
es are calculated. Then, the sequences e, es and oHP are used
as the inputs of the anomaly score calculationmodule, and the
anomaly score for each point in the sequence is calculated
according to the proposed formula (see formula(3)). Next,
the dynamic threshold is calculated based on the derived
anomaly scores and the set of candidate anomalous sequences
can be obtained according to the dynamic thresholds. Finally,
two pruning strategies are applied using the ensemble output
oHR and the candidate anomalous sequences to mitigate the
false positives. The retained anomalies are the result of the
anomaly detection of DALEO.

For ease of understanding, important concepts are pre-
sented by symbols. Table 1 shows the important symbols used
in the proposed method and the corresponding meanings.

TABLE 1. Symbols and their meanings.

B. ENSEMBLE OF OC-SVMs
In this subsection, the original OC-SVM is introduced at first.
Then, the analysis on oHP and oHR is given. Subsequently,
how to get the ensemble outputs oHP and oHR from multiple
OC-SVM models is illustrated. Finally, a concrete example
of extracting different kinds of features as inputs of different
OC-SVM models is given.

An OC-SVM model can judge whether a sample is abnor-
mal or not. One-class Support Vector Machine, as one kind
of one-class paradigm, learns to model patterns of a single
class and distinguishes them from all other possible pat-
terns by finding the maximal margin hyperplane which best
separates the training data from other data [28]. The input
of OC-SVM models for each sample can be the original
data or the transformed features and the output is 1 or −1,
where 1 represents the input sample belongs to a normal
sequence, while −1 represents the input sample belongs to
an abnormal one. However, the performance of OC-SVM
models is prone to low precision when it is used to handle
time series, that is, many normal sequences are judged as
abnormal. In DALEO, instead of using OC-SVM models to
detect anomalies directly, the two kinds of ensemble results
of multiple OC-SVM models are integrated into the anomaly
score calculation module and pruning module respectively.

oHP as one of the inputs of anomaly score calculation, is
used to locate the ‘anomalous parts’, for which the anomaly
scores are augmented, while the anomaly scores of the rest
of the sequence remain unchanged. Under this rule, the high
precision of oHP is important. If the anomaly score of normal
parts is augmented, it causes more false alarms eventually.
On the other hand, the low recall of oHP is acceptable since it
will just degrade to a trivial method in the worst case when no
‘anomalous parts’ is detected. oHR as one base of pruning, is
used to mitigate the false positives from the set of candidate
anomalous sequences. High recall of oHR needs to be guar-
anteed, otherwise the true positives will also be eliminated in
the pruning process. Obviously, different thresholds should
be applied to get oHP and oHR respectively.
The output of a OC-SVM model for each sample is 1 or
−1 and the output sequence can be obtained through sliding
windows for time series. Given the ensemble consists of
n OC-SVM models which take different kinds of features
as input, the length of test sequence is L, the input length
of each OC-SVM model is Loc, the stride of the sliding
window is 1, the output of each OC-SVM model is oj =
{o(1)j , o

(2)
j , . . . , o

(i)
j , . . . , o

(L−Loc+1)
j }, where o(i)j ∈ {1,−1}

and j = 1, 2, . . . , n. Then the number of OC-SVM models
whose output o(i)j = −1 is computed as

n(i)A =
n∑
j=1

count(o(i)j = −1) (1)

for each point in the test sequence, where 0 ≤ n(i)A ≤ n, and
i ∈ 1, 2, . . . , (L − Loc + 1). We define

AR(i) = n(i)A /n (2)
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FIGURE 2. The basic structure of an autoencoder with fully-connected
layer.

as the confidence of the ith point belonging to an anomaly,
where AR(i) ∈ [0, 1], and the greater AR(i) is, the more
likely the ith point belongs to an anomaly. Two voting thresh-
olds η1 and η2 are set for oHP and oHR separately. o(i)

HP
=

{
−1,AR(i) > η1
1,AR(i) ≤ η1

} and o(i)
HR
= {
−1,AR(i) ≥ η2
1,AR(i) < η2

} are obtained,

where η1 > η2 and i ∈ 1, 2, . . . , (L − Loc + 1).
Diversity assures the value of ensemble. In the experi-

ments of this paper, four Feature Extraction Modules and
four OC-SVM models are specifically utilized for ensem-
ble, the inputs of which include: the original time series
x, the manually extracted features xhandcraft , the learnt fea-
tures xencoded through autoencoder, and xencoded_rff which is
Random Fourier features of xencoded [31].
For the manually extracted features xhandcraft , ten most

widely used features are selected as Park et al. did in [38]:
• Mean
• Peak
• Standard deviation
• Root mean square
• Skewness
• Kurtness
• Crest factor
• Shape factor
• Pulse factor
• Margin factor
An autoencoder which consists of an encoder and a

decoder is widely used as a feature extractor. The compo-
nent of the encoder and the decoder can be fully-connected
network, convolution network, or recurrent neural network,
etc. [41]. The fully-connected network for the autoencoder is
used in this case, whose basic structure is shown in Fig. 2.
The encoder reads the input data and compresses the input
information to generate the low dimension features as the
output of hidden layer, which are fed into the decoder and
used to reconstruct the original input data. Once the param-
eters of the autoencoder are well trained, the hidden layer
outputs of the encoder xencoded can be acquired as an effective
feature representation of the original data. Then, the features
xencoded_rff are derived.

The above four kinds of inputs used in the ensemble are
not necessarily the best combination, but they express the

FIGURE 3. An example of using LSTM model to predict irregularly
sampled time series and getting the error sequence with sliding windows.
Module A and B represent the LSTM units of the first and the second layer
respectively. h(i )

1 is the output of the first layer of LSTM for t(i), while h(i )
2

is the output of the second layer of LSTM for t(i). The weight matrix W
and bias vector b are used for the dense layer to get the predicted value
of x at the next time step. The error sequence can be obtained through
sliding windows.

characteristics of time series from different perspectives and
thus guarantee the diversity of the base models.

After feature extraction, the above different kinds of fea-
tures can be fed into independent OC-SVM models to give
their results respectively. Then, in EnsembleModule, the out-
puts are aggregated to get two ensemble outputs oHP and oHR
for further steps in DALEO.

C. LSTM BASED ERROR CALCULATION FOR TIME SERIES
WITH IRREGULAR INTERVALS
A single LSTM model is trained for each telemetry channel,
and used to detect anomalies separately. Although LSTM
can predict multiple variables simultaneously, the prediction
performance degrades when the number of variables is large.
Therefore, it is unrealistic to use only one or a few LSTM
models to model all telemetry parameters of a spacecraft.
More importantly, detecting anomalies on single telemetry
channel is helpful to the rapid location of anomalies and
provides convenience to aggregate the anomalies into the
component level or subsystem level.

Given the unequal interval univariate telemetry sequence
x = {x(1), x(2), . . . , x(L)} and the corresponding time
sequence t = {t (1), t (2), . . . , t (L)}, where the length of the test
sequence is L. The time interval for each telemetry value is
calculated as d (i) = t(i+1) − t(i) for each i ∈ {1, 2, . . . ,L −
1}. Then the original time series can be represented by a
two-dimensional matrix S. Given the input length of LSTM
is Lp, then the input for t(i) is

S(i) =
[
x(i−Lp), x(i−Lp+1), . . . , x(i−1)

d (i−Lp), d (i−Lp+1), . . . , d (i−1)

]
and the corresponding output is x̂(i). The prediction error
for each telemetry value is e(i) =

∣∣x(i) − x̂(i)∣∣ and the error
sequence e is obtained through sliding windows. In Fig. 3,
we illustrate how to get the error sequence e using a LSTM
predictionmodel and slidingwindows for an irregular interval
sequence with Lp = 3.
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The error sequence e is smoothed to dampen spikes that
frequently occur with LSTM-based predictions [39], because
abrupt changes in values are often not perfectly predicted
which lead to sharp spikes in error sequence even when these
changes conform to normal patterns. Exponentially-weighted
average (EWMA) [30] is used to generate the smoothed error
sequence es, which is of the same length of e.

D. ANOMALY SCORE BASED DYNAMIC THRESHOLD
The anomaly score of each telemetry value is calculated based
on three parts: the prediction error, the smoothed error and
the ensemble output oHP. Since e and es have the same length
(L−Loc+1) and the length of oHP is (L−Lp+1), the lengths
of these three sequences do not equal when Loc 6= Lp. But
they can be matched into a unified time range for anomaly
detection according to time indexes.

The anomaly score of each telemetry value is calculated as

a(i) =

{
α(e(i)s + γ ∗e(i)), o(i)

HP
= −1

e(i)s + γ ∗e(i), o(i)
HP
= 1

}
(3)

and the anomaly score sequence a is derived, where o(i)
HP
=

−1 represents that the i th point belongs to an anomaly
according to oHP, while o(i)HP = 1 represents the ith point
belongs to an normal sequence according to oHP. α > 1 is
set so that the points whose o(i)

HP
= −1 have higher anomaly

scores, and γ ≥ 0 is set as the weight to balance the error
value and the smoothed error value. The settings of α and γ ,
and how they influence the result of the anomaly detection
are detailed in the next section.

The threshold for the derived anomaly scores is calculated
dynamically – the parts whose anomaly scores exceed the
threshold are regarded as candidate anomalies. A similar
method to that used in [10] is applied to compute the dynamic
thresholds, and the difference is that the smoothed errors
are substituted with the proposed anomaly scores as inputs.
A threshold ε is selected from the set:

ε = u(a)+ zσ (a) (4)

such that:

argmax(ε) =
1u(a)/u(a)+1σ (a)/σ (a)

|aa| +
∣∣Aseq

∣∣2 (5)

where 1u(a) = u(a) − u({a ∈ a|a < ε}) represents the
decrease in the mean of the anomaly scores, and 1σ (a) =
σ (a) − σ ({a ∈ a|a < ε}) represents the decrease in the
standard deviation of the anomaly scores. aa represents all
the points over the dynamic threshold, while each continuous
sequence of aa ∈ aa makes up aseq, and all the sequences aseq
make up the set of candidate anomalous sequences Aseq.
Values evaluated for ε are determined by z ∈ z where z is

a set of positive values representing the number of standard
deviations above u(a). The dynamic threshold is set with
the aim to cause the greatest percent decrease in the mean
and standard deviation of the anomaly scores when values
above are removed. The formula (3) also penalizes for having

large numbers of anomalous values (|aa|) and anomalous
sequences (

∣∣Aseq
∣∣). The optimal z depends on the distribution

of anomaly scores, but experimental results suggest that the
range between 0.5 to 10 always provides a proper choice for z.
Once the dynamic threshold ε is determined, the resulting
candidate anomalous sequences are also obtained.

E. MITIGATING FALSE POSITIVES
Anomaly score based dynamic thresholds often lead to many
false positives, so it is necessary to reduce the false alarms.
In anomaly detection, recall usually goes down when pre-
cision goes up. Therefore, it is necessary to eliminate false
positives as much as possible with little reduction on recall.
Two pruning strategies are applied sequentially according
to the ensemble output oHR and the candidate anomalous
sequences to reduce the number of the false positives.

If the value of a point in the sequence oHR is 1, it means
that most of the OC-SVM models support that the point
belongs to a normal sequence and the likelihood of the point
belonging to an anomalous sequence is small. The sequence
oHR shows how many points in each candidate anomalous
sequence are judged as abnormal by oHR. If there are very
few abnormal points in a candidate sequence, we argue that
the likelihood of such a candidate anomalous sequence being
a true positive is low and this sequence should be eliminated.
Given the length of a candidate anomalous sequence a(j)seq
is l(j)s , the corresponding sequence oHR contains n(j)s points
whose values equal to −1, where 0 ≤ n(j)s ≤ l

(j)
s . We define

APR(j) = n(j)s /l
(j)
s (6)

as the confidence of the jth candidate anomalous series
being anomalous. p1 is set as the threshold to determine
whether a candidate anomalous sequence will be pruned.
When APR(j) < p1, a

(j)
seq is eliminated from the set Aseq.

The second strategy used to prune is similar to that in [10],
but the smoothed errors is substituted with the anomaly
scores as inputs, and the corresponding threshold is p2. Given
Aseq={aseq|for each ak ∈ aseqs.tak > ε}, a new set,
amax , is created containing max(aseq) for all aseq sorted in
descending order. We also add the maximum anomaly score
a′m that belong to normal sequences to the end of amax . The
consequent decrease percent is calculated as d (j)=(a(j)max −
a(j+1)max )/a(j)max where i ∈ {1, 2, . . . , |aa|}. If ∃j, s.t.d (j) >

p2, then all the candidate anomalous sequences whose
maximum anomaly score is larger than that of a(j)seq are
retained, otherwise the candidate anomalous sequences are
pruned.

After the two-stage pruning, the remaining anomalous
sequence is the final result of anomaly detection. In gen-
eral, DALEO combines the ensemble outputs of multiple
OC-SVMs with LSTM-based method in two stages for
anomaly detection. DALEO is mainly designed for time
series with unequal intervals, but it can also be used for
trivial anomaly detection where telemetry data are regularly
sampled.
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IV. EXPERIMENTS
This section mainly includes the description of the datasets,
the parameter setting of the base models and algorithms in
section III, and the display and analysis of the experimental
results.

A. DATASETS
A satellite anomaly detection dataset (SAT_AD1) and a space
shuttle anomaly detection dataset (SS_AD2), both of which
are provided by NASA, are used to verify the effectiveness
of DALEO. The original SAT_AD and SS_AD are datasets
of equal intervals. In order to evaluate the proposed method,
SAT_AD and SS_AD are randomly sampled and transformed
into datasets with irregular intervals to simulate the telemetry
data that might be obtained in a real scenario.

SAT_AD includes the telemetry data of SMAP (Soil
Moisture Active Passive) satellite and MSL (Mars Science
Laboratory) satellite as well as the corresponding annota-
tions for anomalies. SAT_AD contains data from 82 chan-
nels, including data from 55 channels of SMAP satellite and
27 channels of MSL satellite. The training data and test data
of each channel are continuous equal interval sequences. The
training set only contains normal sequences, while each chan-
nel of the test set contains at least one abnormal subsequence.
These abnormal sequences contain three types of anomalies:
point anomalies, contextual anomalies and collective anoma-
lies. In the annotation of this dataset, Hundman et al. [9]
combined contextual anomalies and collective anomalies into
one group and name both of them as contextual anomalies,
since it is difficult to detect them by threshold or distance-
based methods which do not take temporal relationship into
account. Therefore, there are only two types of anomaly
labels in the dataset: contextual anomalies which are related
to temporal information and point anomalies which require
no temporal context. Among the above 102 anomalies, 59 are
point anomalies and 43 are contextual anomalies.

SS_AD contains the telemetry data about the Energize/
De-Energize cycle of space shuttles. It contains three sam-
ples: TEK 14, TEK 16 and TEK 17. The telemetry values
about the normal part of the dataset have strong periodicity,
but the anomalies are very different and all of them belong
to contextual anomalies. This dataset is relatively small, but
it is also a popular anomaly detection dataset. It is mainly
used to further verify the effectiveness of DALEO and the
generalizability of the parameters introduced in the proposed
method.

The training data and test data of the original dataset are
randomly sampled on each channel according to a certain
proportion, without changing the number of channels and
anomalies in the original datasets. Due to the short duration
of anomalies of some channels, random sampling may cause
the disappearance of characteristic of anomalies in these

1 https://github.com/khundman/telemanom
2https://github.com/chickenbestlover/RNN-Time-series-Anomaly-

Detection

channels. Therefore, it is necessary to verify whether the
characteristic of anomalies still exists after random sampling.
If not, it is necessary to resample the channel randomly again
until the characteristic of original anomalies is retained to a
certain degree.

Half of the data in the SAT_AD dataset is randomly sam-
pled, and the derived dataset is represented by SAT_AD-50.
Since the anomalies in the SS_AD dataset are composed of
shorter sequences, the anomaly characteristic can hardly be
retained when the proportion of random sampling is low. 80%
of the data in the SS_ADdataset is randomly sampled, and the
derived dataset is represented by SS_AD-80. Channel D-12
and T-9 in SAT_AD-50 and SAT_AD are removed, since
the training data of these two channels is insufficient after
random sampling. Table 2 describes the brief information of
the original datasets and the sampled datasets of SAT_AD-50
and SS_AD-80.

TABLE 2. The brief information of the datasets.

Fig. 4 shows some examples of point and contextual
anomalies in SAT_AD-50, and the adjacent points have
unequal time intervals, making the anomaly detection more
difficult, especially for contextual anomalies.

FIGURE 4. Examples of point anomalies and contextual anomalies in
SAT_AD-50.

B. EXPERIMENTAL SETUP
Since DALEO involves the integration of multiple models,
not only the parameters of each model need to be set properly,
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but also the parameters related to the integration need to be
set systematically.

The same hyper-parameters related to the LSTMmodel are
used for SAT_AD and SAT_AD-50 as they are set in [10] to
provide enough capacity to predict individual channels well.
For all the datasets we use, each LSTM model is shallow
with only two hidden layers and the last time step of the sec-
ond layer output is used for prediction. As for SS_AD and
SS_AD-80, input sequence length is increased to 400 because
the data in these datasets have larger scale patterns than those
in SS_AD, and thus more units in hidden layers are also used.
The hyper-parameters related to the LSTMmodel on different
datasets are shown in table 3.

TABLE 3. Parameters for the LSTM model.

In contrast, shorter input sequence length and less units in
hidden layers are set for the autoencoder model for all the
above datasets to focus on local temporal features and ensure
that the LSTM model and the autoencoder model extract
features of different scales. The reduction of input sequence
length and units in hidden layers also accelerates the training
process. The main parameters of the autoencoder model are
given in table 4.

TABLE 4. Parameters for the autoencoder model.

The LIBSVM package [40] is used to implement the
OC-SVM algorithm, where ‘nu’ is the main tuning parameter
which decides the upper bound on the fraction of training
errors and a lower bound of the fraction of support vectors.
‘nu’ is set to 0.1 as a commonly used default.

In DALEO, five parameters are introduced: two weight
coefficients α and γ for anomaly score calculation, two
voting thresholds η1 and η2, and one pruning threshold p1.
η1 is set to 0.6 while η2 is set to 0.1 to make sure the high
precision of oHP and the high recall of oHR. Based onmultiple
validation experiments, α is set to 1.3, γ is set to 0.3 and p1
is set to 0.1. The final performance of anomaly detection is
sensitive to α, γ and p1 to some extent, and the effects of
these parameters are discussed following experiment results.

In addition, the other pruning threshold p2 is set to 0.13 as it
was set in [10].

We adopt the same evaluation strategy as used in [10], [41].
A true positive is recorded if some portion of the pre-
dicted anomalous sequence of anomalies falls into a true
labeled sequence. Only one true positive is recorded even
if parts of multiple predicted sequences fall within one
labeled sequence. A false negative represents no predicted
sequences overlap with a positively labeled sequence. For
a predicted anomalous sequence that does not overlap any
labeled anomalous region, a false positive is recorded. The
number of true positives is denoted as TP, the number of false
negatives is denoted as FN, and the number of false positives
is denoted as FP.

Themetrics used for evaluating the final anomaly detection
results include the following:

• Precision (P): TP/ (TP+ FP);
• Recall (R): TP/ (TP+ FN );
• F-measure (Fβ ): Fβ = (1+ β2)× P× R/(β2P+ R).

β is a non-negative real number to give different weights to
precision and recall. When β = 1, the F-measure considers
precision and recall simultaneously without any bias, and it
is used to evaluate the overall performance of anomaly detec-
tion. F0.5 which weights precision twice as much as recall is
also commonly used in anomaly detection. Experiments on
all datasets are repeated 5 times and the average results are
reported for comparison.

C. EXPERIMENT RESULTS
First of all, we demonstrate the advantage of combining
time intervals with telemetry data as inputs of LSTM model
for anomaly detection with irregularly sampled data. For
simplicity, such a method is denoted as Simple-LSTM.
Several popular data imputation methods are selected as
baselines, including two interpolation methods: Linear inter-
polation [19] and Cubic interpolation [20], and three other
imputation methods: KNN [42], SoftImpute [43], and mean
value based imputation. After data imputation, telemetry
data are recovered to time series with equal intervals. For a
fair comparison, all the above methods are combined with
the state-of-the-art LSTM-based anomaly detection method
in [9] for anomaly detection. These methods are listed as
follows.

• Linear-LSTM: in this method, linear interpolation
is used before the LSTM-based anomaly detection
method.

• Cubic-LSTM: in this method, cubic interpolation,
one of polynomial interpolation, is used before the
LSTM-based anomaly detection method.

• Mean-LSTM: this method fills the missing data with
mean of the observed data before using the LSTM-based
method for anomaly detection.

• KNN-LSTM: this method fills the missing data with
KNN algorithm based imputation before using the
LSTM-based method for anomaly detection.
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• Soft-LSTM: this method fills the missing data with Soft-
Impute algorithm before using the LSTM-based method
for anomaly detection.

• Simple-LSTM: in this method, the time intervals are
calculated and combined with existing data as inputs
of LSTM, and then the LSTM-based anomaly detection
method is used.

The comparison results of the above methods on
SAT_AD-50 are shown in table 5. For interpolation-based
methods, Linear-LSTM outperforms Cubic-LSTM on both
precision and recall. For other imputation-based methods,
Mean-LSTM shows an obvious improvement on recall and
a little higher precision than KNN-LSTM and Soft-LSTM.
Simple-LSTM achieves the highest precision while the recall
is slightly lower than the two interpolation-based methods.
In general, interpolation-based methods seem to have advan-
tages with respect to recall, while the performance of other
imputation methods is inferior to Simple-LSTM on both pre-
cision and recall. In terms ofF0.5 andF1, Simple-LSTMbeats
all the baseline methods, which demonstrates the advantage
of directly combining time intervals with telemetry data as
inputs over imputation methods.

TABLE 5. Performance comparison of dealing with unequal intervals on
SAT_AD-50.

Table 6 describes the experiment results on SS_AD-80.
For interpolation-based methods, Linear-LSTM outperforms
Cubic-LSTM on precision. For other imputation-based meth-
ods, KNN-LSTM shows a better performance on precision
than Mean-LSTM and Soft-LSTM. Simple-LSTM achieves
the highest precision and recall. In general, Simple-LSTM
shows an obvious advantage over the baselines, and further
verifies the effectiveness of directly combining time intervals
with telemetry data as inputs over imputation methods.

TABLE 6. Performance comparison of dealing with unequal intervals on
SS_AD-80.

DALEO combines the OC-SVM ensemble outputs oHP
and oHR with Simple-LSTM respectively, and it is com-
pared with Simple-LSTM to see how much improvement

the combination can bring to the performance of anomaly
detection. As can be seen from table 7, the performance of
Simple-LSTM is badly influenced when Sat_AD is changed
to Sat_AD-50 (recall decreased from 79.41% to 62.75%,
and F1 decreased from 0.8308 to 0.7232 despite the minor
difference of the total anomaly sequences between these
two datasets). DALEO outperforms simple-LSTM on recall
significantly and shows a slight improvement of precision
on Sat_AD-50. Although DALEO presents a lower precision
than Simple-LSTM on Sat_AD, the overall performance (F1)
of DALEO is still better than that of Simple-LSTM due to the
improvement on recall.

TABLE 7. Comparison of Simple-LSTM and DALEO on Sat_AD-50 and
Sat_AD.

Similar experiments are conducted on SS_AD-80 and
SS_AD. As can be seen in table 8, DALEO outperforms
simple-LSTM on recall with equal precision on SS_AD-80.
On the other hand, although DALEO get a lower precision
than Simple-LSTM on SS_AD, the overall performance of
DALEO is still better than that of Simple-LSTM.

TABLE 8. Comparison of Simple-LSTM and DALEO on SS_AD-80 and
SS_AD.

From table 7 and table 8, we find that DALEO shows
an obvious advantage and both recall and precision may
contribute to the overall performance on telemetry data with
irregular intervals, though the improvement of recall might be
accompanied with a small reduction of precision on datasets
of equal intervals. In general, the overall performance of
DALEO shows a better performance than Simple-LSTM,
especially when the time series are of irregular intervals.

D. THE EFFECT OF PAPRAMETERS
In DALEO, three important parameters are introduced: α, γ
and p1. In this subsection, the effects of these parameters are
discussed.

We found that the dynamic thresholds and the resulting
candidate anomalous sequences are relatively sensitive to
the anomaly scores. Thus, both α and γ which determine
the derived anomaly scores are very important parameters.
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To show the trend of the performance of anomaly detection
when α and γ are changed, two groups of box diagrams
with respect to F1 score on SAT_AD-50 dataset are pre-
sented. In Fig. 5(a), the trend of performance in the pro-
cess of changing α from 1 to 1.6 is shown when γ ∈
{0, 0.05, 0.1, . . . , 0.5}; Fig. 5(b) depicts the trend of perfor-
mance in the process of changing γ from 0 to 0.5 when
α ∈ {1.0, 1.05, 1.1, . . . , 1.6}.

FIGURE 5. The box diagrams of F1 score with different settings for α
and γ .

As can be seen from Figure 5(a), F1 score shows an
obvious trend of rising first and then declines. When α ∈
[1.15, 1.4], F1 score stays at a relatively high level. When
γ ∈ {0, 0.05, 0.1, . . . , 0.5} and 0 < α ≤ 1.6, the cor-
responding F1 score is greater than the F1 score obtained
when α = 0, which indicates the effectiveness of integrating
the high-precision ensemble output oHP into the proposed
anomaly score calculation as long as the settings of α and
γ are within a reasonable range.
As can be seen from Figure 5(b), when γ is changed from

0 to 0.5, F1 score tends to rise first and then goes down.When
γ ∈ [0.1, 0.3], F1 score fluctuates at a high level. When
α ∈ {1.0, 1.05, 1.1, . . . , 1.6} and 0 < γ ≤ 0.4, the corre-
sponding F1 score is greater than the F1 score obtained when
γ = 0, which reveals that the integration of error sequence is
effective when the setting of γ is in a reasonable range.
We also discuss how the pruning threshold p1, which

is related to oHR, influences the performance of anomaly
detection. Fig. 6 shows the performance change when p1 is

FIGURE 6. The trend of performance when increasing p1.

increased while other parameters remain unchanged. At first,
precision presents an inclination to increase, but turn to
decrease after p1 exceeds 0.3. Obviously, increasing p1 can
only reduce recall or keep it unchanged at best. In this case,
recall goes down when p1 exceeds 0.2. Apparently, a large
value for p1 will certainly lead to performance degradation.
On the contrary, when p1 is too small, the p1 related pruning
will have little effect in reducing the number of false posi-
tives. From the above analysis, a value in the range [0.1, 0.2]
seems to be appropriate for p1.

E. INTERNAL ANALYSIS OF DALEO
In this subsection, we discuss the effect of integrating
the OC-SVM ensemble outputs into LSTM-based anomaly
detection for thorough evaluation. The integration includes
two stages: the first one is integrating the high precision
ensemble output oHP into the anomaly score, and the second
one is utilizing the high recall ensemble output oHR for prun-
ing.

First, we compare the method with no integration (Simple-
LSTM) and DALEO without the oHR based pruning (denoted
as DALEO-WP). The comparison result of these twomethods
on SAT_AD-50 dataset is shown in Fig. 7.

FIGURE 7. Comparison between DALEO-WP and Simple-LSTM.

From Fig. 7, it can be seen that DALEO-WP beats
simple-LSTM on all the evaluation metrics, and improves
the recall significantly without reducing precision. There-
fore, this experiment confirms the effect of augmenting the
anomaly score according to the high precision ensemble
output oHP.
Then, the results of DALEO-WP and DALEO are com-

pared on SAT_AD-50 to verify the effect of pruning based
on oHR. Compared with the DALEO-WP, DALEO only has
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one more step of pruning. Therefore, recall of the DALEO
cannot exceed that of DALEO-WP, and can only be equal at
best. On the other hand, increasing a pruning procedure also
take the risk of decreasing precision, because there is a risk of
reducing the true positives while eliminating the false positive
ones.

As shown in Fig. 8, DALEO improves the precision with-
out reducing recall, further improves the overall performance
of anomaly detection, and verifies the effectiveness of using
oHR for pruning.

FIGURE 8. Comparison between DALEO-WP and DALEO.

V. CONCLUSION
In this paper, the impact of inaccurate prediction on the
performance of anomaly detection based on single LSTM
method is analyzed, and this impact is expanded when con-
fronted with the irregular interval telemetry data. In order to
improve the performance of anomaly detection, DALEO is
proposed to integrate the two unsupervised anomaly detec-
tion methods, OC-SVM and LSTM. By introducing different
voting thresholds, DALEO aggregate the results of multi-
ple OC-SVM models, obtaining ensemble outputs of high
precision and high recall. Then, the ensemble outputs are
integrated into the anomaly score calculation module and
pruning module of anomaly detection method in a novel way.
This integration method is generic, which means the LSTM
prediction model can be replaced by any other RNN model.

Extensive experiments have been conducted on two real-
world datasets. Firstly, the effectiveness of concatenating
time intervals with telemetry data for anomaly detectionwhen
data are irregularly sampled are verified. Then DALEO is
compared to the baseline and the results demonstrate the
obvious advantage of the proposed method. DALEO can also
be used in the trivial anomaly detection problem where time
series are regularly sampled. Despite the fact that DALEO
improves precision at the cost of a small decrease in recall
when dealing with equal interval time series on the two
datasets, the overall performance of DALEO is still better
than that of the baseline methods. Although the final result
of anomaly detection seems to be sensitive to the introduced
parameters and the optimal result may not be obtained eas-
ily, DALEO always provide an improvement as long as the
parameters are within a reasonable range. Finally, the validity
of the respective function of oHP and oHR are verified.

DALEO involves the integration of multiple models, but
these models can be trained offline and used for anomaly
detection in parallel. The computation cost of the rest parts

of DALEO almost equals to the traditional LSTM-based
anomaly detection. Thus, DALEO can provide a performance
improvement without much loss in efficiency.

Accurate prediction model is critical to this approach and
the employed LSTM model can be substituted with any
improved predictionmodel. Somewidely used tricks of RNN,
like Attention mechanism or transformation skills, have the
potential to further improve the prediction capacity of the pre-
diction model and the final anomaly detection performance.
In the near future, reinforcement learning will be used so
that the introduced parameters can be adjusted automatically.
Then DALEO can be used to monitor important spacecrafts
without human intervention continuously and reliably.
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