

Command Line

Users Manual

PKZIP® Command Line
SecureZIP® Command Line

Copyright © 1997-2011 PKWARE, Inc. All Rights Reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any other language in whole or in part, in any form or by any means, whether it be
electronic, mechanical, magnetic, optical, manual or otherwise, without prior written consent of
PKWARE, Inc.

PKWARE, INC., DISCLAIMS ALL WARRANTIES AS TO THIS SOFTWARE,
WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
FUNCTIONALITY, DATA INTEGRITY, OR PROTECTION. PKWARE IS NOT LIABLE FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES.

PKWARE, the PKWARE logo, the zipper logo, PKZIP, PKUNZIP, SecureZIP, and PKSFX
are registered trademarks of PKWARE, Inc. Deflate64 is a trademark of PKWARE, Inc.

Trademarks of other companies mentioned in this documentation appear for identification
purposes only and are the property of their respective companies.

2011-10-25

 iii

Table of Contents
1 THE BASICS ... 1

About This Manual ... 1
Conventions in This Guide .. 2

An Overview of What PKZIP Does .. 2

Supported Archive Types .. 2

Your Work Environment: The Command Line ... 3

Entering Commands .. 4

Creating a New Archive and Adding Files ... 5
Archive File Naming Conventions ... 6
Adding a Single File .. 6
Adding Multiple Files ... 7
Moving Files into an Archive ... 8
Viewing Files in an Archive ... 8

Extracting Files from an Archive .. 9
Extracting All Files .. 9
Extracting Some Files ... 9
Extracting Files to a Different Directory .. 10
Extracting New and Newer Files ... 10

Using Filters When Selecting Files ... 10
Selecting Files by Date ... 11
Selecting Files by Age .. 11
Selecting Files by Size .. 12
Selecting Files to Include or Exclude .. 12

Understanding Commands and Options ... 13
Difference between a Command and Option.. 13
Including an Option in Your Command Line ... 14
Abbreviating Commands and Options .. 14
Using Multiple Options .. 14
Commands and Options with Values .. 15

Using Strong Encryption ... 16

2 GETTING STARTED ... 17

Learning More and Getting Help ... 18
Using Help .. 18
Getting Version Information .. 18
Technical Support ... 19

Working With Your License ... 19

iv

Entering License Keys .. 19

Setting PKZIP in the Path .. 20

3 ADDING FILES TO AN ARCHIVE .. 20

Default Values for Commands and Options .. 21

Creating and Updating Archives ... 21
Adding All Files in a Directory ... 21
Adding New and Modified Files .. 21
Adding Only Files That Have Changed .. 22
Incremental Archiving ... 22

Encrypting Files That You Add to an Archive ... 23
Encrypting Files with a Passphrase .. 24
Encrypting Files with a Recipient List ... 25
Encrypting File Names .. 27
Encrypting Using Only FIPS-Approved Algorithms .. 28
Accessing Recipients in an LDAP Directory Error! Bookmark not defined.
Contingency Keys ... Error! Bookmark not defined.
Creating OpenPGP Files .. 30

Attaching Digital Signatures ... 31
Commands and Options for Signing Archives .. 31
Setting a Default Certificate .. 35
Time Stamping Your Signed ZIP Archive ... 35

Writing an Archive to STDOUT and Special Files ... 36
Writing an Archive to STDOUT ... 36
Writing an Archive to a Named Pipe ... 37

Compressing Files in Subdirectories ... 38

Compressing Open Files ... 38

Storing Directory Path Information .. 39
Additional Methods for Storing Directory Path Information 39
Storing and Recreating Directory Path Information .. 40

Setting the Compression Level ... 42
Specifying a Compression Level from 0-9 .. 42
Specifying a Compression Level by Name ... 43

Compressing Files with a List File ... 44
Getting a List of Files from Standard Input ... 44

Compressing Files with the Deflate64 Method .. 45

Compressing Files with the BZIP2 Method .. 45

Compressing Files with the LZMA Method .. 45

Compressing Files Compatible with the Data Compression Library 46

 v

Compressing Files with the PPMd Method .. 46

Compressing Files to a Specified Type of Archive ... 46

Compressing Files to Diskette .. 47
Creating a Spanned Archive ... 47
Creating a Split Archive .. 47

Preserving International Characters in File Names .. 48

Creating Multiple, Respective Archives ... 49

Storing File Information ... 50
Compressing Files with Specified Attributes... 50
Extended Attribute Storage ... 51

Including Additional Information in a ZIP File ... 52
Including a Text Comment .. 52
Including a Header Comment ... 53
Specifying the Date of a .ZIP File ... 53

Removing File Attributes ... 54

Sorting Files Within a .ZIP File .. 55

Moving Files to a .ZIP File .. 56

Shredding Deleted Files ... 56

Working with Self-Extracting (PKSFX) Archives ... 57
Converting a Standard Archive to a Self-Extractor ... 58
Converting to a Self-Extractor with a Different Name ... 59
Options for Creating Self-Extractors ... 59
Run Programs with the Self-Extractor .. 61
Extraction Options for the Native Self-Extractor ... 61

4 EXTRACTING FILES .. 63

Default Values for Commands and Options .. 63

Extracting New and Existing Files .. 63
Extracting All Files from an Archive .. 63
Extracting Newer Versions of Existing Files and New Files 64
Extracting Only Newer Versions of Files .. 64

Checking for Viruses when Extracting ... 64

Extracting from an Archive Embedded in an Archive .. 65

Extracting Passphrase-Protected Files .. 66

Extracting an Archive on STDIN or a Special File ... 67
Extracting from an Archive on STDIN ... 67
Extracting an Archive from a Named Pipe .. 67

vi

Extracting Files in Lower Case ... 70

Preserving File Times .. 70

Retaining Directory Structure while Extracting... 70

Retaining Zone Identifier Information for Downloaded Files 71

Sorting Files in the Extract Directory ... 71

Extracting Files Only for Display .. 72

Extracting Files with a List File ... 72

Authenticating Digital Signatures ... 72

Extracting Only Trusted Archives .. 74
Specifying Trusted Signers ... 74

5 WORKING WITH DIGITAL SIGNATURES.. 76

Public-Key Infrastructure and Digital Certificates .. 76
Public-Key Infrastructure (PKI) ... 77
How the Keys Are Used .. 77
X.509 ... 77
Digital Certificates ... 77
Certificate Authority (CA) .. 78
Private Key .. 78
Public Key ... 78
Certificate Authority and Root Certificates .. 78

Using Digital Signatures .. 78
Attaching a Signature to an Existing Archive .. 79
Applying Strict Checking to Certificates .. 79
Checking for Revoked Certificates ... 80
Using Digital Certificates on Windows .. 81
Advanced Encryption Options in Windows ... 83

Working with OpenPGP Files .. 84
Overview: OpenPGP vs. X.509 .. 84
Setting Up OpenPGP Keyrings ... 85
Configuring Other OpenPGP Settings .. 86

6 MISCELLANEOUS OPERATIONS ... 87

Overwriting Files .. 87

Viewing the Contents of a ZIP File .. 88
Displaying a Brief View of a ZIP File ... 88
Displaying a Detailed View of the ZIP File .. 88

Translating End-of-Line Sequence ... 89

Converting File Names to a Short Format ... 90

 vii

Inserting a Timestamp in the Archive File Name .. 90

Printing the Contents of a ZIP File .. 92

Testing the Integrity of an Archive ... 92

Pausing on Warnings ... 93

Treating Warnings as Errors ... 93

Previewing Command and Option Operations .. 94

Fixing a Corrupt ZIP File .. 95

Use an Alternate Drive for PKZIP Temporary Files ... 95

Suppressing Screen Output .. 96

Setting Internal Attributes ... 96

Encoding an Archive to Another Type ... 97

Removing an Intermediate Archive .. 97

Generate a List File .. 98

7 CHANGING DEFAULTS FOR COMMANDS AND OPTIONS 99

Viewing Configuration Settings .. 99

How Default Settings Work .. 100

Filter Options .. 101

Changing a Default Value .. 102
Changing Defaults for Filter Options ... 102
Changing Defaults for Compression Method .. 102
Using the Options Dialog to Change Defaults .. 103

Resetting to Original Defaults ... 104
Resetting Individual Defaults .. 104
Resetting All Defaults .. 105

Using an Alternate Configuration File .. 105
Creating an Alternate Configuration File ... 105
Using an Alternate Configuration File ... 105

8 COMMAND CHARACTERISTICS ... 107

Changing Date and Time Environment Variables ... 107

Changing the List Character for List Files ... 107

Changing the Command/Option Character ... 108

viii

A REFERENCE TO COMMANDS AND OPTIONS 109

B ERROR AND WARNING MESSAGES .. 162

Error Messages ... 162

Warning Messages ... 167

C FREQUENTLY ASKED QUESTIONS ... 173

D HOW PKZIP WORKS .. 176

Two Processes ... 176

Compression ... 176
Information Content .. 176
Binary Data Representation .. 177
Speed vs. Size .. 179

Archiving ... 179

How PKZIP builds a .ZIP File ... 180
CRC .. 182

Deleting Files from a .ZIP File ... 182

Adding to an Existing .ZIP File .. 183

 1

1 The Basics

Welcome to PKZIP Command Line and SecureZIP for Windows Command Line.
PKZIP Command Line and SecureZIP for Windows Command Line provide a
command-line interface to PKZIP/SecureZIP for use in creating scripts and batch
files. With Command Line, you execute PKZIP/SecureZIP commands and options by
entering them at a character-based command prompt and running the resulting
command line.

Command Line supports the full range of compression and archiving features of the
graphical PKZIP for Windows Desktop and SecureZIP for Windows Desktop.
SecureZIP Command Line also supports both traditional ZIP encryption and strong
encryption using digital certificates. Both PKZIP and SecureZIP Command Line
decrypt files encrypted with any other version of SecureZIP or PKZIP and
authenticates digital signatures attached to archives and archived files.

This chapter will get you quickly up and running. After a brief overview of the manual
and basic PKZIP concepts, you’ll learn how to create ZIP archives and extract (unzip)
files from archives. After covering the basic commands, you can get a taste of the
power contained within PKZIP command options.

 About This Manual
This manual describes how to use both PKZIP and SecureZIP Command Line.
SecureZIP Command Line contains a superset of the commands and options of
PKZIP Command Line. In general, references to PKZIP in the text apply equally to
SecureZIP. If a feature has special requirements or comes only with special
licensing, this is noted in the text.

The chapters group related commands and options and describe how to use them.
This chapter provides an overview of basic program features. See in particular the
section “Understanding Commands and Options” for an explanation of how
commands and options work.

You can customize the default behavior of most commands and options. Chapter 7
describes how.

Appendix A contains a complete reference to the commands and options of the
program. Experienced users may find that this appendix contains most of the
information they need.

2

 Conventions in This Guide
Most commands and options discussed in the following chapters work on all
platforms that PKZIP supports. The cases are noted where a command or option is
specific to a platform or operating system.

The name of a command or option appears by itself in bold italic font
immediately under the main heading of the section where the command or option is
discussed. In sections devoted to a particular sub-option, or value, of a command or
option, the command or option is followed by an equals sign (=) and the name of the
sub-option—for example, extract=all.

 An Overview of What PKZIP Does

PKZIP was developed to handle two basic tasks: It collects (adds) files into a
container called an archive, and it pulls out (extracts) files from archives to restore
them to their original state. The PKZIP add command is used to add files, and the
extract command extracts them. These are the two most important PKZIP
commands.

When PKZIP adds files to a specified archive, it creates the archive if it does not
already exist. Generally, PKZIP compresses the added files so that they take less
space, and it can also encrypt them so that they cannot be read by anyone who lacks
the means to decrypt them.

As the creator of an archive, you control how its files are to be decrypted and by
whom. You can encrypt files using a passphrase, such that the passphrase is
required to decrypt them, or, if you have SecureZIP, you can use digital certificates to
encrypt them such that only designated recipients can decrypt. SecureZIP also
enables you to digitally sign files that you add to an archive, and the archive itself. A
digital signature assures that the files really come from you.

Compression, encryption, and signing are done when you add files. When you
extract files, PKZIP decrypts the files, decompresses them, and validates any digital
signatures.

Most PKZIP options relate to the two main operations of adding and extracting files
and are for optional use when you do one of those things. For example, besides the
options to encrypt or sign files, there are options for picking the files that you want to
compress or encrypt and options for how you want to compress or encrypt them.
Commands are also available for managing archives—for example, for testing their
integrity and viewing their contents.

 Supported Archive Types
An archive is a kind of file that can contain other files. Several types of archive files
exist. Some can contain only one file, some can contain multiple files, and there can
be other differences as well. A ZIP archive can contain multiple compressed files.
This is the kind of archive that PKZIP creates by default and is the kind that you will
probably use most often. Encryption and digital signing are supported only for ZIP
and OpenPGP archives.

PKZIP enables you to create and extract from many other archive types besides ZIP.
You do not need to do anything special to use PKZIP with one of these other archive
types. PKZIP can tell what type an archive is and will just go ahead and extract its
files. If you want to create a new, non-ZIP archive, there are two ways to tell PKZIP
what type of archive to create:

 3

• Specify a name for the archive file that uses the file name extension
commonly associated with that archive type

• Use the archivetype option to specify the type of archive that you want

The following table lists the types of archives that PKZIP can create or extract from
and the file name extensions customarily associated with these types. For some
archive types, PKZIP can do extractions but cannot create new archives of that type.

Archive type PKZIP can create/extract Usual file name
extensions

7Zip Extract only .7z

ARJ Extract only .arj

BinHex Extract only .hqx

BZIP2 Create and extract .bz2

CAB Extract only

(Not supported on UNIX)

.cab

CDR Extract only .cdr

compress (UNIX, LZW) Extract only .Z

GZIP Create and extract .gz

IMG Extract only .img

ISO Extract only .iso

JAR Create and extract .jar, .ear, .war

LZH Extract only .lzh

OpenPGP Create and extract .pgp, .gpg

RAR Extract only

.rar

TAR Create and extract .tar

UUEncoded Create and extract .uue

XXEncoded Create and extract .xxe

ZIP Create and extract .zip, .zipx

 Your Work Environment: The Command Line

In PKZIP Command Line, your work area is a character-based command line, or
shell. You enter a command by typing the command on the command line; to execute
the command, you press Enter.

To display a command line prompt in Windows, do one of the following:

• Choose Command Prompt from the list of programs in the Start menu

4

• Choose Run from the Start menu, enter cmd in the field, and choose OK.

 Entering Commands

The syntax for commands entered on the command line is shown below. Brackets
set off elements that are optional (Do not type the brackets.). Note that both PKZIP
and SecureZIP Command Line use the same program name, pkzipc, as shown
below.

pkzipc [command] [options] zipfile [@list] [files...]

Examples:

To do this Command line

Add specified
files to an
archive

pkzipc -add zipfile.zip addfile.txt addfile2.doc

Add to an archive
all files in
current directory

pkzipc -add zipfile.zip

or:

pkzipc -add zipfile.zip *

Add to an archive
all files in a
specified
directory

pkzipc -add zipfile.zip subdir*

Add files with the
fast compression
option

pkzipc -add -fast zipfile.zip

View list of files
in archive

pkzipc zipfile.zip

View list of files
whose names begin
with "f" in
archive

pkzipc zipfile.zip f*

Extract all files
from an archive

pkzipc -extract zipfile.zip

Extract specified
files from an
archive

pkzipc -extract zipfile.zip readme.txt mystuff.doc

 5

A PKZIP command line has these main elements:

• The name of the program executable—pkzipc. This command runs
PKZIP and must appear first.

• A PKZIP command for the main task you want PKZIP to do—for example,
add files to an archive. Precede the command with a hyphen: -add

• Any PKZIP options that you want to use. For example, when adding files to
an archive, you can use the maximum option to have PKZIP take a little extra
time to compress them as much as possible. You can include zero or more
options. Precede each with a hyphen: -maximum

• The name of an archive file, such as a ZIP file, to create or operate on.

• The names of files to operate on—for example, to add to an archive, to act
on a file in an archive (for example, to delete it), or to extract from an archive.
Alternatively, you can give a file name pattern such as *.doc to specify
these files, or the name of a file that contains a list of such files.

The name of the archive file must precede any other file names or file name
patterns.

To reference multiple file names and/or patterns to operate on, separate the
names with spaces.

• The pathname of a destination folder to extract to. PKZIP extracts to the
current folder by default. To extract to a different folder, specify the folder’s
pathname.

Note: When identifying a pathname that includes a space, always put the pathname
in quotation marks. For example, if you are archiving all the files in the Important
Documents folder in Windows, type the following:

pkzipc -add zipfile.zip "Important Documents*"

The only elements that are required in any command line are the name of the
executable pkzipc and a PKZIP command. Other elements may be required
depending on the particular commands or options used.

The order of appearance of the elements is not important except that:

• pkzipc must appear at the beginning of the command line

• The name of an archive file, if given, must appear before the name of any
other file or folder

 Creating a New Archive and Adding Files

Use the add command to add files to a new or existing archive.

For example, to add a file called test.txt to an archive file called temp.zip, use a
command line like the following:

pkzipc -add temp.zip test.txt

If the archive does not already exist, PKZIP creates it.

You can optionally encrypt files when you add them. See “Encrypting Files That You
Add to an Archive” in Chapter 3.

The following sections describe several ways to add files and how to display a listing
of the files an archive contains.

6

 Archive File Naming Conventions
Conventionally, archive files are named with a file name extension (the last part of
the name, after the dot) that indicates the kind of archive. Thus a .ZIP archive
generally has a name of the form myarchive.zip, where the file name extension is
.zip. A BZIP2 archive generally has a file name extension of .bz2.

PKZIP can both create and extract from a variety of archive types—including BZIP2.
Because the file name extension is generally a good guide to the type of archive,
PKZIP can use this information to determine what sort of archive you want to create.
Here are the rules PKZIP uses to determine the type of archive to create:

• If you specify an archive name with an extension—for example,
myarchive.zip or myarchive.bz2, or myarchive.exe, PKZIP creates an archive
of that name. Also, by default, PKZIP uses the file extension to select the
type of compression to use. For example,

pkzipc -add myarchive.zip

results in a ZIP-format archive containing files compressed using standard
ZIP-style compression (that is, using the Deflate compression algorithm).
Alternatively, the following command line creates a BZIP2 archive. A BZIP2
archive is created using the BZIP2 compression algorithm and can contain
only a single file.

pkzipc -add myarchive.bz2 myfile.doc

• If you specify an archive name with no file extension, by default PKZIP
creates a ZIP archive and adds a .zip extension to its name. For example:

pkzipc -add myarchive

produces a ZIP archive called myarchive.zip.

Note: The archivetype option lets you explicitly tell PKZIP the type of
archive you want to create. See “Compressing Files to a Specified Type of
Archive” in Chapter 3.

• If you specify an archive name that has no file extension but does have a
trailing dot—that is, a dot as the last character in the file name: for example,
“filename.”—PKZIP does not append an extension to the file name. For
example:

pkzipc -add myarchive.

produces (by default) a ZIP archive called myarchive without an extension.

Note: Systems that do not support more than one “dot” in a file name
suppress the extension if any dot is present in the file name, even if it is not a
trailing dot.

Note: The noarchiveextension option suppresses automatic adding of a
file name extension on all systems.

 Adding a Single File
To add a single file to an archive, use the add command and list on the command
line the name of the archive and the name of the file to add. For example:

pkzipc -add test.zip red.txt

The command line adds file red.txt, in the current directory, to archive test.zip.
Archive test.zip is created (in the current directory) if it does not already exist, or it
is updated if it does exist.

 7

The original of the added file red.txt still remains in the current directory. Adding a
file to an archive only compresses and adds a copy (unless you use the move option
to delete the original).

 Adding Multiple Files
You can specify multiple files to add either by explicitly naming the files or by using
wildcard characters in a file name pattern.

 Specifying Multiple Files by Name
To specify multiple files by name, list them on the command line, separated by
spaces, after the name of the archive:

pkzipc -add test.zip green.doc blue.fil purple.txt

 Specifying File Names that Match a Pattern
You can use file name patterns to specify, for example, all files whose names begin
with p, or all .txt files. A file name pattern picks out all files whose names match the
pattern.

You can use these wildcard characters in file name patterns:

Wildcard character Matches

Asterisk (*) Zero or more characters

Question mark (?) Zero or one single character

For example, the following command line adds all files that have a particular file
name extension (such as .txt):

pkzipc -add test.zip *.txt *.doc

The pattern *.htm? in the command line below matches all files that end in .htm or
.html:

pkzipc -add test.zip *.htm?

Consult the documentation for your operating system to learn more about using
wildcards.

 Adding All Files in the Current Directory
If you want to add all files in the current directory, you do not need to specify any files
to add. Just use the add command with the name of the target archive:

pkzipc -add test.zip

This shorthand works only for adding all files in the current directory. To add all files
in some other directory, you must use wildcards (or specify the files).

For example, both of the following command lines do the same thing: they add all
files in the samples directory:

pkzipc -add test.zip samples*

pkzipc -add test.zip samples*.*

 Adding All Files in a Different Directory
To add files in a directory other than the current directory, specify the path to the files.
You can use either an absolute path or a path relative to the current directory.

8

For example, these command lines use an absolute path to specify files to add:
pkzipc -add test.zip F:\sales_reports*.xls

pkzipc -add test.zip "\Documents and Settings\john_d\My
Documents\samples*.txt"

Enclose the path in quotes, as shown above, if it contains spaces.

These command lines use a relative path to specify files to add:
pkzipc -add test.zip samples\sales_reports*.xls

pkzipc -add test.zip ..\records\jobs*.doc

 Working with an Archive in a Different Directory
If the target archive is not in the current directory, specify its location in the same way
that you specify the location of files to add: include the path in the command line. You
can use either an absolute or relative path.

pkzipc -add F:\sales_reports\test.zip *.xls

pkzipc -add samples\test.zip sales_reports*.xls

PKZIP still assumes that a relative path to files to add starts from the current directory
even if the target archive is somewhere else. How you specify the location of the files
is not affected by the location of the archive.

If a path contains spaces, enclose it in quotes.

 Moving Files into an Archive
Normally, after you add files to an archive, PKZIP leaves the original files on your
hard drive. If you would like PKZIP to delete the original files after adding copies to
an archive, you can include the move option in the command line when you add the
files.

pkzipc -add -move confidential.zip sales*.xls

The move option is useful if you want to remove files that you no longer expect to
use or if you do not want to leave behind unencrypted copies of files that you have
placed in an encrypted archive.

CAUTION: Be sure to keep backups of your important files. If you move your only
copy of a file into an archive, and the archive becomes lost or damaged, you may be
unable to recover your file.

For information on working with PKZIP options, see the section “Understanding
Commands and Options” later in this chapter.

 Viewing Files in an Archive
The view command produces a list of the files in an archive and various pieces of
information about the files. You can use the command to verify that files were added
as expected or simply to find out what files an archive contains. It is also useful to
see what path information is saved with a file. Path information is saved as part of the
file name and so must be taken into account when you reference the file to extract it.

pkzipc -view myfiles.zip

The display generated by the view command looks like this:

 Length Method Size Ratio Date Time CRC-32 Attr Name
 ------ ------ ---- ----- ---- ---- ------ ---- ----
 0B Stored 0B 0.0% 4/4/2006 7:25p 00000000 ---wD orderStatus_fi
les/

 9

 3557B DeflatN 3496B 1.8% 4/4/2006 7:24p 23ce6c93 -a-w- orderStatus_fi
les/bw_logo.gif
 1653B DeflatN 847B 48.8% 2/9/2006 11:06a 891d9c90 -a-w- caroline.txt
 71B DeflatN 66B 7.1% 1/27/2006 11:41a fa66929c -a-w- dummy_list.txt

 420B DeflatN 128B 69.6% 3/10/2006 6:23p 4b63fc2a -a-w- filelist.txt
 420B DeflatN 128B 69.6% 3/10/2006 6:23p 4b63fc2a -a-w- filelist2.txt
 420B DeflatN 128B 69.6% 3/10/2006 6:23p 4b63fc2a -a-w- filelist3.txt
 420B DeflatN 128B 69.6% 3/10/2006 6:23p 4b63fc2a -a-w- filelist4.txt
 308B DeflatN 122B 60.4% 5/10/2005 3:14p 5f177b65 -a-w- files.txt
 24B DeflatN 16B 33.4% 1/24/2006 2:27p f22154bb -a-w- mylist.txt
 7915B DeflatN 1701B 78.6% 10/27/2005 12:08p 7b38176a -a-w- shared.txt
 1463B DeflatN 816B 44.3% 1/9/2006 6:54p 2ef75758 -a-w- verisign.txt
 878B DeflatN 432B 50.8% 8/26/2005 10:40a d1c700e7 -a-w- What's New.txt

 ------ ---- ----- ----
 17KB 8008B 54.4% 13

The listing above was generated from a Windows command line.

For more information on the view command, see “Viewing the Contents of a ZIP
File” in Chapter 6.

See Chapter 0 for information on other options you can use when adding files,
including options to set the level of compression, add encryption, and so on.

 Extracting Files from an Archive

To get a copy of a file out of an archive in its original form so that you can use it
again, use the extract command. Extracting decrypts the file if it was encrypted,
decompresses it, and validates any digital signature attached when the file was
added.

You can extract all the files in an archive, or just selected files. As with adding files,
PKZIP gives you numerous options for picking files and for choosing how to extract
them. See Chapter 4.

 Extracting All Files
To extract all files in an archive, include in the command line just the extract
command and the name of the archive.

pkzipc -extract temp.zip

The files are extracted to the current directory.

 Extracting Some Files
To extract only a selection of files, additionally specify the files to extract. For
example, the following command line extracts all .txt files in the archive into the
current directory.

pkzipc -extract temp.zip *.txt

You can also extract multiple files by explicitly listing their pathnames, separated by a
space:

pkzipc -extract temp.zip green.doc blue.fil purple.txt

How you identify files in an archive depends on the path information that was
archived with them. In an archive, path information is treated as part of a file name for
purposes of identification. (Use the view command to see any path information
saved with files.) For example, if you want to extract file august.xls, and the
pathname of the file in the archive is records\august.xls, either of the following

10

command lines will extract the file. The command line that contains the * wildcard
character also extracts all other .xls files whose pathnames start with r.

pkzipc -extract temp.zip records\august.xls

pkzipc -extract temp.zip r*.xls

 Extracting Files to a Different Directory
By default, files are extracted to the current directory. To extract files to a different
location, specify a path. For example, the following command line uses the two-dots
(..) notation to specify a path to the parent of the current directory, one level up.

pkzipc -extract temp.zip *.txt ..

A destination pathname can occur in the command line anywhere after (to the right
of) the name of the archive. For example, the following command line extracts all files
in data.zip to the january subdirectory of the current directory:

pkzipc -extract data.zip january

To create a january subdirectory if one does not already exist, append a backslash
(\):

pkzipc -extract data.zip january\

A folder name can appear before or after names of files to be extracted. Both of the
following command lines extract report.xls to january:

pkzipc -extract data.zip report.xls january

pkzipc -extract data.zip january report.xls

PKZIP evaluates file or folder possibilities in the order they appear, from left to right,
after the name of the archive. The first one found that is the name of a folder
determines the destination folder.

 Extracting New and Newer Files
By default, the extract command extracts all files if you do not specify particular
files. You can also configure the extract command to extract only files that are
newer versions of files already in the target directory, or only files that are newer
versions or do not already exist in the directory.

For example, the following command line uses the update sub-option of the
extract command to tell PKZIP to extract only files that are newer versions or do
not already exist in the directory:

pkzipc -extract=update temp.zip

Sub-options are explained in the section “Commands and Options with Values,” later
in this chapter.

 Using Filters When Selecting Files

You can use various criteria to identify a specified particular set of files to add or
extract, so that you only select the subset of files that meets the filter criterion.

For example, the command line below specifies all text files to add, but uses the filter
option after to add a constraint; namely, that a file must also have been modified
after the specified date (mmddyyyy). As a result, only those text files that meet the
additional requirement imposed by the after option are added.

 11

pkzipc -add -after=03152011 myfiles.zip *.txt

All the filter options described in this section work with both add and extract
commands.

 Selecting Files by Date

before, after
The before option selects files that were modified before a specified date. The
after option selects files that were modified on or after a specified date.

In the United States, enter dates in one of the following formats:

• mmddyy

• mmddyyyy

The order in which you enter the month, date, and year depends on your locale
setting. For more information on the locale setting, see Chapter 8.

The following sample command line adds files dated before February 24, 2011:
pkzipc -add -before=02242011 test.zip

The command line below adds files dated February 24, 2011, or later:
pkzipc -add -after=02242011 test.zip

 Selecting Files by Age

older, newer
The older and newer options select files that are older or newer than a specified
age. You can list the age in days (the default), hours, minutes, or seconds using the
abbreviations shown in the following table.

Time unit Abbreviation

Days
(default)

d (or nothing)

Hours h

Minutes m

Seconds s

For example, the following command lines each add files that are no more than five
days old:

pkzipc -add -newer=5 test.zip *

pkzipc -add -newer=5d test.zip *

The command lines below add files that are older than five days:
pkzipc -add -older=5 test.zip *

pkzipc -add -older=5d test.zip *

The following command line uses both options to select files to extract:
pkzipc -extract -newer=10 -older=5 test.zip *

12

With a time unit of days, the interval (for example, five days) is measured from the
beginning of the current day. So, for example, if it is currently 3:34 p.m. on June 15,
setting newer or older to 5 sets the cutoff to 12:00 a.m. June 10. The older option
gets files dated earlier than this; the newer option gets files dated on or after this.

With time units of hours, minutes, or seconds, the interval is measured from the
current system time. So, for example, the following command line selects files
modified within the last 48 hours:

pkzipc -add -newer=48h test.zip *

 Selecting Files by Size

larger, smaller
The larger and smaller options select files that are larger than or equal to, or
smaller than or equal to, a size specified in bytes.

The following command line adds files whose size is in the range 5000-7000 bytes,
inclusive:

pkzipc -add -larger=5000 -smaller=7000 test.zip

 Selecting Files to Include or Exclude

include
The include option has two uses:

• To specify a file name pattern to use by default when selecting files to add or
extract

• To override, in the current command line, a configured default setting that
excludes files from being selected

Ordinarily, to select files whose names match a pattern (for example, *.doc), simply
specify the pattern on the command line:

pkzipc -add test.zip *.doc

pkzipc -extract test.zip *.doc

To include one or more file patterns automatically when selecting files, you can
configure a default value for include. For example, if you want to automatically
include all files with the extension of .doc when adding files, enter the following:

pkzipc -config -add -include="*.doc"

This configured default causes a command line like the following to zip all .doc files
in addition to the *.txt files explicitly specified.

pkzipc -add test.zip *.txt

You can also use include to override a default setting of the exclude option.

For example, if you have configured PKZIP to exclude *.txt files by default when
adding, you can include such files in a particular case with the command line below:

pkzipc -add -include="*.txt" test.zip

If you do not need to override a default configuration setting, you do not need to
specify the include option in your command: the file pattern by itself is enough.

For more information on modifying default configuration values, see Chapter 7.

 13

exclude
The exclude option has two uses:

• To specify a file name pattern or list file to use to exclude files by default
when selecting files to add or extract

• To override, in the current command line, a configured default setting that
includes files

To exclude one or more file patterns automatically when selecting files, you can
configure a default value for exclude. For example, if you want to automatically
exclude all files with the extension of .doc when adding files, enter the following:

pkzipc -configuration -add -exclude="*.doc"

The command line below has the same effect but abbreviates the configuration
option:

pkzipc -config -add -exclude="*.doc"

The configured default value for exclude causes a command line like the following
to zip all files except .doc files.

pkzipc -add test.zip *.*

To exclude a list of files, specify the list file as the value of the exclude option:
pkzipc -add -exclude=@lst.txt test.zip

You can also use exclude to override a default setting of the include option. For
example, if you have configured PKZIP to include *.txt files by default, you can
exclude them in a particular case with the command line below:

pkzipc -add -exclude="*.txt" test.zip

For more information on modifying default configuration values, see Chapter 7.

 Understanding Commands and Options

A PKZIP command line includes a command and can also include options that affect
how the command is done or specify things to be done in conjunction with it. Many
commands and options also have sub-options that determine how the command or
option behaves.

 Difference between a Command and Option
A command tells PKZIP what to do; an option tells PKZIP to do the main task in a
particular way or to do some additional task in the course of doing the main task.

For example, the add command tells PKZIP to add files to an archive. You can use
the maximum option with the add command to tell PKZIP to use maximum
compression when adding the files. If you want to delete the original files after they
are added, you can include the move option too:

pkzipc -add -maximum -move myarchive.zip *.doc

A command line must always contain a command; it can contain any number of
options. A command stands alone in a command line, without requiring (or
permitting) any other command. For this reason, it is sometimes referred to as a
standalone to indicate that it is not an option. An option can be used only with a
command.

14

A few options bend the rules in that they can be used either as options or as
commands. These include comment, header, sfx, sign, and some of the mail…
options. For example, comment prompts you for a comment to attach to an archive.
This option can be used with the add command to attach a comment to a new
archive, or it can be used by itself to attach a comment to an archive that already
exists.

 Including an Option in Your Command Line
To use an option, prefix it with a hyphen and insert it in the PKZIP command line after
the main command.

For example, the following command line uses the maximum option with the add
command. This option tells PKZIP to use maximum compression:

pkzipc -add -maximum test.zip white.doc

The following example uses the overwrite option to turn off the usual prompting to
overwrite files with the same names as files to be extracted. The command line
directs that extracted files simply overwrite any files that have the same names,
without prompting:

pkzipc -extract -overwrite test.zip

 Abbreviating Commands and Options
In a command line, you can abbreviate commands and options by leaving off letters
at the end as long as you give enough of the name for PKZIP to know what
command or option you mean.

For example, you can abbreviate the name of the maximum option to max, as in the
command line below, because no other option name starts with those letters.

pkzipc -add -max test.zip white.doc

The command line below abbreviates the name of the extract command to ext:
pkzipc -ext test.zip

It’s good practice to avoid abbreviating commands and options when writing scripts,
as PKWARE adds new features with each new version. Using full commands
ensures that your scripts will work regardless of what other commands may be
introduced.

 Using Multiple Options
To use multiple options in the same command line, separate them by spaces.

For example, the following command line includes both the maximum and comment
options. These tell PKZIP to use maximum compression and to prompt you for a
comment for each newly added file:

pkzipc -add -maximum -comment test.zip *.doc

The order in which options appear is not important.

Not all options can be used with all commands. For example, you cannot use
maximum with the extract command. Appendix A lists the commands with which
each option can be used.

 15

 Commands and Options with Values
Some commands and options have different possible values, called sub-options, that
let you customize how the command or option behaves. For example, the level
option enables you to specify how much compression you want to use (more
compression takes longer). When you use level, you specify a value for a particular
level of compression. For example:

pkzipc -add -level=9 myarchive.zip

To specify a sub-option or value with a command or option, attach it to the
command/option with an equal sign, as in the last example.

Commands as well as options can have sub-options. For example, you can use the
add command to add all selected files to an archive, or to add only files that are
newer versions of files that the archive already contains. You indicate how you want
add to work by specifying a sub-option. To have the command add only newer
versions of files that the archive already contains, use the command with the
freshen sub-option:

pkzipc -add=freshen myarchive.zip *.*

Most commands and options that have multiple possible predefined values or sub-
options use one of the values as a default. Some options are disabled by default, but
if an option has a default value, that value is implicitly used in any command line that
does not explicitly list the option.

For example, the level option has a default value of 5 (normal compression). The
following command line does not explicitly include the level option, but because the
option is not disabled and has a default value, the command line applies the option at
its default value and uses normal compression:

pkzipc -add myarchive.zip *.*

PKZIP uses the default value for a command (as opposed to an option) whenever the
command is used with no sub-option specified. In the preceding example, PKZIP
uses the default value for add.

You can replace original default settings with your own by using the
configuration command. See Chapter 7.

For a list of all commands and options together with their sub-options, see Appendix
A.

16

 Using Strong Encryption

PKZIP allows you to use either of two kinds of encryption to encrypt ZIP archives: the
older, traditional PKZIP encryption, or strong encryption. Strong encryption is much
more secure than traditional PKZIP encryption.

PKZIP and SecureZIP v14 add new support for encrypting and decrypting files using
the OpenPGP (RFC 4880) standard. You can open and decrypt any OpenPGP files
you receive with PKZIP and SecureZIP. Create OpenPGP-based archives and use
its encryption on any file (not just ZIP archives) with SecureZIPand PKZIP.

Two methods exist to ensure that encrypted files are only opened by the right people:
Symmetric keys (Passphrases) or public/private key pairs. The following table shows
the methods each encryption type supports.

Encryption type Passphrases Public/Private Keys
/Certificates

PKZIP Traditional Encryption •

PKZIP Strong Encryption • •

OpenPGP Encryption • • (SecureZIP only)

Traditional PKZIP encryption is passphrase-based and is applied using the
passphrase option. Strong encryption can be done with either a passphrase or a
digital certificate. When you encrypt using a digital certificate, only the owner of the
certificate—called a recipient—can decrypt.

You use the passphrase option to apply either traditional or strong passphrase-
based encryption, including OpenPGP.

To do certificate-based strong encryption, you use the recipient option to specify
the owners of the certificates for whom you want to encrypt. You must also have a
copy of each recipient’s certificate that contains the certificate’s public key.

With both certificate- and passphrase-based strong encryption, you use the
cryptalgorithm option to specify an encryption algorithm and key length (for
example, AES, 256 bits).

You need version 6.0 or later of PKZIP (or ZIP Reader) to decrypt archives that were
strongly encrypted using PKZIP. You may need SecureZIP to strongly encrypt
archives yourself.To learn much more about encryption in PKZIP, see “Encrypting
Files That You Add to an Archive” in Chapter 0, “Extracting Passphrase-Protected
Files” in Chapter 4, and “Working with OpenPGP Files” in Chapter 5.

 17

2 Getting Started

Welcome to PKZIP/SecureZIP Command Line. PKZIP Command Line and
SecureZIP Command Line provide a command-line interface to PKZIP and
SecureZIP that enables you to access the functions of these two powerful data
security and data archiving programs in scripts and batch files.

SecureZIP Command Line is an enhanced version of PKZIP Command Line. Both
programs enable you to create and manage ZIP files and archives of other types, and
both programs enable you to decrypt archives encrypted with either program. But
SecureZIP Command Line provides additional features—most notably, commands
and options for using digital certificates to do strong encryption and attach digital
signatures.

This table and the following sections describe the additional features included with
SecureZIP Command Line that are not in PKZIP Command Line.

Feature PKZIP SecureZIP

Large file size support X X

Very large archive support X X

Self-extracting files for end-users
and other platforms

X X

Decryption of PKI public-key
encrypted ZIP archives

X X

Attaching digital signatures to
archives

 X

Strong passphrase-based AES and
3DES data file protection

X X

Strong encryption using a digital
certificate instead of a passphrase

 X

Strong, certificate-based file name
encryption

 X

Creating OpenPGP (RFC 4880)
encrypted files

X X

Opening OpenPGP files X X

Add digital timestamp from secure
Time Stamp Authority

 X

18

Feature PKZIP SecureZIP

Error reporting for both attended
and unattended operations

X X

Application Integration X X

Preserving Zone Identifier
information added by Internet
Explorer

X X

 Learning More and Getting Help

This manual is not the only way to learn about PKZIP and SecureZIP. You can find
additional information inside the program itself, and on the World Wide Web.

 Using Help
PKZIP provides a help system for the PKZIP commands and options. The help
system describes syntax and shows sample command lines.

Access the help system directly from the command line:

• At the command prompt, type the following and press ENTER:
pkzipc -help

A screen with PKZIP version and usage information appears. You can get
help for any PKZIP command or option from here.

• To bypass the command/option menu and go directly to a help file for a
particular command or option, type the help command followed by an equal
sign (=) and the command or option for which you want information.

For example, to access online help for the add command, type the following
at the command prompt and press ENTER:

pkzipc -help=add

The help information for the add command appears.

 Getting Version Information

version
To list the version of PKZIP that you are using, use the version command:

pkzipc -version

This command line outputs two lines like the following after the usual header
information:

Program File Version (pkzipc): 12.50.1087
Product Version: 12.50.0005

The first line lists major, minor, and step version numbers of the program:
Program File Version (pkzipc): <major>.<minor>.<step>

The second line lists the major and minor version numbers and the build number of
the product.

 19

Product Version: <major>.<minor>.<build>

Major and minor version numbers of the program are always the same as those for
the product.

In addition to producing this display output, the version command returns a version
number as a value to the shell. The version number returns as a positive integer
value less than 256. This value is only returned to the shell and is not displayed in
normal output. It can be used to verify PKZIP version numbers in a .BAT file or shell
script.

Sub-options of the version command (described in the following table) determine
which version number is returned. The major version number is returned by default.

Sub-Option PKZIP Returns For example

major The major release number. For
example, if the version number is
12.10.1054, the value returned is 12.
This is the default return.

pkzipc -version

pkzipc -version=major

minor The minor number of the release. For
example, if the version number is
12.10.1054, the value returned is 10.

pkzipc -version=minor

step The step or patch value (minus 1000 if
≥ 1000). For example, if the program
version is 12.10.1054, the value
returned is 54.

pkzipc -version=step

product The build number of the product. For
example, if the product version is
12.10.0003, the value returned is 3.

pkzipc -version=product

 Technical Support
For support, visit our Web site at:

www.pkware.com/support

 Working With Your License

 Entering License Keys
Ordinarily, you enter license keys during installation. If you need to enter a license
key after installation—for an add-on module, for example—use the
enterlicensekey command.

To enter a license key:

1. At the command prompt, type the following and press ENTER:
pkzipc -enterlicensekey

PKZIP prompts you for a product license key.

2. Enter a product license key and press ENTER.

Repeat these steps for each license key.

20

 Setting PKZIP in the Path

The installation puts PKZIP on your system's search path so that you can access the
program from any directory without specifying a path. However, if for any reason you
need to specify the path yourself, you can.

The search path in Windows is normally specified in the system’s Environment
Variables. To add the PKZIP installation directory to your search path, follow the
steps below (some items may have different labels depending on your version of
Windows).

1. Close any open Command Prompt windows.

2. Select Settings | Control Panel from the Start Menu.

3. In the Control Panel, double click the System icon (or click Advanced System
Settings). The System (Properties) dialog appears.

4. Click the Advanced tab and then click the Environment Variables button.

5. Select the PATH variable in the System (Environment) Variables or User
(Environment) Variables boxes. If you are unable to locate the PATH variable,
enter the following in the Variable box:
path

6. In the Value box, enter (in quotes) the path to the folder where PKZIP is installed.

For example, assuming that PKZIP (pkzipc.exe) is installed in the default
location, enter:
c:\program files\pkware\pkzipc

If necessary to separate the path from another path designation, precede your
path with a semicolon.

7. Click the Set (or OK) button.

8. Click the OK button.

You may now access PKZIP from any directory without specifying a path. This
change will take effect the next time you open a Command Prompt window to run
PKZIP.

If necessary, consult your systems administrator for further information on setting the
path environment variable.

3 Adding Files to an Archive

This chapter contains detailed information on the features and options available
when you add files to an archive.

 21

 Default Values for Commands and Options

For each operation in this chapter, the command or option that represents that
operation has a default value. The default value determines the way that the
command or option is done when the command or option is used on the command
line by itself, with no sub-option explicitly specified.

For example, the initial default value for the add command is all, which causes the
command to add all files. See Chapter 7 for information on how to change default
settings.

 Creating and Updating Archives

add
The add command adds files to an archive.

To add files to a new or existing archive, specify the name of the archive on the
command line, then list one or more files to add. If the archive does not already exist,
PKZIP creates it.

The command line below adds all .txt files in the current directory to
myarchive.zip.

pkzipc -add myarchive.zip *.txt

 Adding All Files in a Directory
You can choose to compress all files in a particular directory with a single command.
To do this, you do not have to specify each file. Simply type pkzipc -add, and the
name of your ZIP file, as shown below:

pkzipc -add test.zip

In the example above, all files in the current directory are compressed into the
test.zip file. (To learn how to compress files that appear in subdirectories,
see,”Compressing Files in Subdirectories” later in this chapter.)

You can also specify files from a different directory if you wish. For example, if you
were in a parent directory to a directory called temp and you wanted to compress all
the files in the temp directory, you could type the following:

pkzipc -add test.zip temp/*

The resulting test.zip file is stored in the current directory (the parent directory to
the temp directory in our example).

Note: The add command adds all files in a specified directory to your archive file by
default. You do not need to specify the all sub-option with the add command to
compress all files unless you have used the configuration command to modify
the default setting for add.

For information on how to modify default values for commands and options, see
Chapter 7.

 Adding New and Modified Files

22

add=update
PKZIP allows you to specify that only new or modified files are added to an archive.
When the update sub-option is used, dates on the files specified for archiving are
compared against dates of files having the same name already present in the
archive. A file is added only if no file with the same name is already in the archive or
if the file to be added is newer.

The update sub-option can save time when you repeatedly archive the same files.
The sub-option differs from the freshen sub-option in that it adds files which are not
in the archive already.

To compress only updated files or files not already archived in a specific .ZIP file, use
the update sub-option with the add option, as shown below:

pkzipc -add=update test.zip *.doc

In this example, a .ZIP file called test.zip is created in the current directory. All files in
the current directory matching the file specification (*.doc) will be added or updated
into the test.zip archive.

 Adding Only Files That Have Changed

add=freshen
The freshen value allows you to compress only changed files that exist in the .ZIP
file . No new files will be added to the .ZIP file.To update files that have changed, use
the freshen value with the add option, as shown below:

pkzipc -add=freshen test.zip

The following command line abbreviates the value but has the same effect:
pkzipc -add=fre test.zip

If you only want to re-compress specific files, simply include those files in your
command. For example, if you wanted to re-compress a file called resume.doc, you
would type something like this:

pkzipc -add=freshen test.zip resume.doc

In the above example, only resume.doc will be re-compressed into the test.zip file.
This assumes that the version of resume.doc being added is newer than the version
of resume.doc that already exists in the .ZIP file.

 Incremental Archiving
A file has various attributes, or items of information about it, such as its date. One
such attribute is called the archive attribute. This attribute is set ON when a file is
created or altered. A backup program that uses this attribute switches the attribute off
when the file is backed up. By using the archive attribute to select files, you can get
all (and only) files that are new or changed since the last backup. A backup that uses
the attribute in this way is called an incremental backup.

add=incremental
If you wish to add files to a .ZIP file that have the archive attribute set and
subsequently clear the archive attribute on the original files, use add with the
incremental sub-option. If you wish to add files to a .ZIP file that have the archive

 23

attribute set and not clear the archive attribute on those files, use add with the
 -incremental sub-option.

The incremental and -incremental sub-options can be very useful when
backing up files. If, for example, the incremental sub-option is specified, only files
with the archive attribute will be compressed, and the archive attribute will be set to
OFF when the ZIP operation is complete for these files.

In the following command line example, PKZIP will add only those files to test.zip
with the archive attribute set. Additionally PKZIP will clear the archive attribute on any
of the source files that have been added to test.zip.

pkzipc -add=incremental test.zip

The next time you run this command, only those files that have the archive attribute
set (new or updated files) will be added to the test.zip file.

add=archive
By using this option, you can create a complete backup of your disk, while clearing
the archive attributes to make way for incremental archiving.

Incremental archiving makes use of the archive attribute to take only the files which
have been modified since the last backup. For this process to work smoothly, you
must first have a complete backup and clear the archive attribute for all files.

pkzipc -add=archive -dir f:backup.zip

This prepares the files set for future incremental backups. For future incremental
backups, use

pkzipc -add=incremental test.zip

Use the archive sub-option only if you are doing a full backup of your disk to
prepare for doing incremental backups.

 Encrypting Files That You Add to an Archive

You can encrypt files when you add them to an archive. When you encrypt files, only
people that you designate or who know a passphrase that you assign can decrypt
and extract the files.

Depending on whether you have PKZIP or SecureZIP, you can encrypt using either
traditional ZIP encryption or strong encryption. Strong encryption is far more secure
than the older, traditional ZIP encryption, but people who want to decrypt your files
are likely to need access to PKZIP. Other ZIP utilities generally cannot decrypt
strongly encrypted files.

The passphrase and recipient options control encryption when you add files to
an archive.

• With the passphrase option, you specify a passphrase to use to decrypt the
files. The passphrase option is available in both PKZIP and SecureZIP. It is
used to do both strong and traditional ZIP passphrase-based encryption.

A passphrase is just a password. It is called a passphrase in the program to
emphasize that PKZIP and SecureZIP support passwords that can contain
spaces and other non-alphanumeric symbols.

• With the recipient option, you specify a recipient list. A recipient list is a
list of digital certificates that belong to people whom you want to allow to

24

decrypt. PKZIP automatically decrypts the files for the owners of the
certificates when the owners extract the files. You will learn more about
digital certificates in Chapter 5.

The recipient option is used only to do strong encryption and is available only in
SecureZIP. Both PKZIP and SecureZIP can decrypt files encrypted with either kind of
strong encryption (passphrase or recipient list).

When you use strong encryption, you also have the option to encrypt not only the
contents but the names of files and folders that you add to an archive. When you
encrypt file names, you essentially encrypt the archive itself: the archive cannot even
be opened except by someone who can decrypt its contents.

 Encrypting Files with a Passphrase

passphrase
Use the passphrase option (with the add command) to encrypt files so that users
can use a passphrase to decrypt them. You can do either strong or traditional ZIP
encryption with the passphrase option.

To include a passphrase on the command line, use the passphrase option and
enter a passphrase of at least eight characters (preceded by an equal sign). For
example (where the passphrase is mypassphrase):

pkzipc -add -passphrase=mypassphrase test.zip

Note: Passphrases are case sensitive.

For more security, you can enter your passphrase separately from the command line,
at a prompt. This method prevents other users from learning your passphrase by
reviewing previously entered PKZIP command lines.

To have PKZIP prompt for a passphrase, include the passphrase option in the
command line but do not specify a passphrase. For example:

pkzipc -add -passphrase test.zip

When you press ENTER, a prompt like the following appears:
Passphrase?

Type your passphrase. The characters appear on your screen as asterisks. Press
ENTER. PKZIP asks you to confirm the passphrase:

Re-enter passphrase for verification.
Passphrase?

Re-enter the passphrase and press ENTER. If your entry matches the original one,
PKZIP proceeds and compresses the files. If the passphrases do not match, PKZIP
prompts you again:

Passphrases don’t match! Please try again.
Passphrase?

Another way to enter a passphrase is to point PKZIP to a text file that contains one.
For example:

pkzipc -add -passphrase=@secret.txt test.zip

The file (secret.txt in the example) should contain just the passphrase, on a line
by itself.

For best security, choose a passphrase that is not easy for someone to guess.
Ideally, a passphrase should be at least eight characters long, should contain a mix

 25

of numbers and upper- and lower-case letters, and should not be a word in the
dictionary.

Note: Use a passphrase of no more than 245 characters for files to be decrypted
using PKZIP or SecureZIP for z/OS on a mainframe, or PKZIP or SecureZIP for
i5/OS on the AS/400, iSeries, or i5.

 Specify an Encryption Method

listcryptalgorithms, cryptalgorithm
When you use strong encryption,) PKZIP gives you a choice of encryption algorithms
to use. To list the available algorithms, use the listcryptalgorithms command.

pkzipc -listcryptalgorithms

The following output from listcryptalgorithms lists all supported algorithms:
AES,256 AES (256-bit)
AES,192 AES (192-bit)
AES,128 AES (128-bit)
3DES,168 3DES (168-bit)

Use the cryptalgorithm option to specify a particular algorithm. .
pkzipc -add -passphrase -cryptalgorithm=aes,128 test.zip

By default, cryptalgorithm specifies AES,256. If you do not use
cryptalgorithm when encrypting with a passphrase, PKZIP applies traditional
PKWARE encryption.

 Encrypting Files with a Recipient List

recipient
Use the recipient option (with the add command) to strongly encrypt files and
specify a recipient list. A recipient list is a list of digital certificates that belong to the
people whom you want to allow to decrypt.

Note: The recipient option is available only with SecureZIP. You will learn more
about digital certificates and recipient lists in Chapter 5.

To encrypt using a recipient list, you must have a digital certificate, containing a
public key, for each intended recipient. Any recipient on the list—that is, any person
whose system has access to the private key for that certificate—can decrypt and
extract the files simply by using the extract command. No one else can decrypt
(unless a passphrase was also specified).

If you use the recipient option together with the passphrase option, PKZIP
decrypts automatically for listed recipients when they extract the files, and other
people can decrypt if, and only if, they have the passphrase.

Note: Ordinarily, PKZIP decrypts automatically for anyone on a recipient list.
However, if necessary, a recipient can tell PKZIP where to find a private key that is
not in one of the usual places. See the keyfile and keypassphrase options.

 Specifying Recipients
You can specify a list of recipients either by specifying each recipient individually on
the command line, or by specifying a file that contains a recipient list.

26

Be sure to specify yourself as a recipient if you want to be able to use your own
certificate to decrypt.

By default, SecureZIP searches for certificates for listed recipients only in the
system’s local certificate stores.

Use any of the following criteria to specify recipients:

Criterion To use For example

Common name Specify, in quotes, the common
name of the subject of the
certificate (that is, the cn field in a
string representation of a
certificate); optionally, precede
with:

 cn=

By default, SecureZIP searches
for recipients by common name
unless another sub-option is used
or the value appears to be an
email address.

-recipient=cn=”John Public”

-recipient=”John Public”

Email address Specify the email address of the
certificate (that is, the e field in a
string representation of a
certificate); optionally, precede
with:

 e=

-recipient=e=john.public@xyz.com

-recipient=john.public@xyz.com

For example, if the common name of the subject is John Q. Public, you can specify
that certificate as a recipient as follows:

pkzipc -add -recipient="John Q. Public" test.zip

You can specify multiple recipients by using the recipient option multiple times:
pkzipc -add -recipient="John Q. Public" -recipient="Mary
Samplename" test.zip

You can also reference a recipient by email address:
pkzipc -add -recipient=john.public@nowhere.com test.zip

pkzipc -add -recipient=e=john.public@nowhere.com test.zip

The prefix e= when using an email address is optional. SecureZIP automatically
looks for an email address if the string contains an @ and a dot and looks like an
email address.

Note that a certificate must contain an email address in order to be found by this
method. Not all certificates embed an email address.

 Specifying a File That Contains a Recipient List
PKZIP can extract a recipient list from these kinds of files:

• An ordinary text file that lists the common name of each recipient’s certificate
on a line by itself

To use the recipient option with a text file list of recipients as a sub-
option, prefix the file name with the listfile character (@, by default):
pkzipc -add -recipient=@recipient_list_file.txt test.zip

 27

• Key container files: These kinds of files contain one or more actual
certificates, and conform to one of two standards. PKCS#7 files have the file
name extensions .p7b and .p7c and do not contain private keys, only
public ones. PKCS#12 files have the file name extensions .pfx and .p12
and may contain private keys as well as public keys.

To use recipient to specify a key container file to define a recipient list,
prefix the file name with a hash (#) character:
pkzipc -add -recipient=#recipient_list_file.p7b test.zip

The recipient list will contain the owners of all certificates included in the key
container file.

 Specifying an Encryption Method with a Recipient List
With the passphrase option, you can select either strong encryption or weaker,
traditional ZIP encryption. The recipient option, however, always causes
SecureZIP to use strong encryption. If you do not use the cryptalgorithm option
to explicitly specify a strong encryption method with a recipient list, and no encryption
method is configured for use by default, SecureZIP uses the first method listed in the
output from the listcryptalgorithm command.

The listcryptalgorithm command and the recipient and cryptalgorithm
options are available only in SecureZIP.

 Encrypting with OpenPGP
You can also use OpenPGP keyrings to define a recipient list. You must first
configure SecureZIP to enable OpenPGP on your system. See “Setting Up
OpenPGP Keyrings ” in Chapter 5.

When OpenPGP is enabled, and you use the -recipient command, SecureZIP
will search for your keyring using your system’s default keyring directories and
environment variables. If you store your public and private keyrings in a non-default
location, you should set the PGP_HOME_DIR environment variable to identify the
location. Consult your OpenPGP application’s documentation for instructions.

Do not use the cryptalgorithm option to explicitly specify a strong encryption
method, as ZIP archives with PGP files must use the RSA encryption algorithm.

 Encrypting File Names

cd
The cd option uses strong encryption and is available only with SecureZIP.

Someone who cannot decrypt the contents of an archive may still be able to infer
sensitive information just from the unencrypted names of files and folders. To prevent
this, you can encrypt the names of files (and folders) in addition to their contents.
Encrypted file names can be viewed in the clear—that is, unencrypted—only when
the archive is opened by an intended recipient if the archive was encrypted using a
recipient list, or by someone who has the passphrase, if the archive was encrypted
using a passphrase.

Use the cd option (stands for “archive central directory”) with the add command to
encrypt file names. The cd option applies strong encryption to an archive’s central
directory, where file names and virtually all other metadata about the archive are
stored.

28

An archive that contains encrypted file names requires PKZIP or SecureZIP version
8.0 or later to open it.

The cd option has two sub-options:

Sub-Option Effect Example

encrypt Encrypts file names and the
archive’s central directory.

This is the default sub-option,
used if you enter -cd and do not
explicitly specify a sub-option.

-cd=encrypt

normal Does not encrypt file names;
produces a normal ZIP file.

Use to override a configured
default setting that would
otherwise encrypt file names.

-cd=normal

You must use strong encryption when you use the cd option. You can use either
strong passphrase encryption or a recipient list (or both), but you must use one of the
strong encryption methods. You cannot encrypt file names using traditional,
passphrase encryption.

The following sample command line encrypts file names using a recipient list:
pkzipc -add -recipient="John Q. Public" -cd test.zip

The sample command line below encrypts file names using a passphrase. When you
use the cd option with a passphrase, SecureZIP uses the default strong encryption
algorithm (ordinarily AES 256) if you do not explicitly specify an algorithm.

pkzipc -add -passphrase=mysecret -cryptalgorithm=aes,256 -cd
test.zip

 Encrypting File Names in an Existing Archive
You can encrypt file names in either a new or an existing archive.

• If you add files to an archive that already contains files with unencrypted file
names and specify cd to encrypt file names, SecureZIP encrypts the names
of all files in the archive, not just names of newly added files.

If the archive contains files whose contents are already encrypted,
SecureZIP decrypts these files and then re-encrypts them, and their names,
using the currently specified encryption method (passphrase/recipient list)
and algorithm.

If SecureZIP cannot decrypt the files, SecureZIP does not update the
archive: no files are added, and file names are not encrypted.

• If you update an archive in which file names are encrypted, SecureZIP
encrypts the newly added files and their names using the same passphrase
or recipient list originally used to encrypt file names in the archive.

 Encrypting Using Only FIPS-Approved Algorithms

fipsmode
“FIPS” is an abbreviation for “Federal Information Processing Standards,” a set of
standards for information processing in federal agencies. The standards are

 29

published by NIST (National Institute of Standards and Technology), a branch of the
US government. The FIPS 140-2 standard defines security requirements for
cryptographic modules and specifies the algorithms that federal agencies may use for
cryptographic operations—encrypting, decrypting, signing, and authenticating digital
signatures.

The fipsmode option restricts SecureZIP to using only algorithms that comply with
the FIPS 140 standard to perform cryptographic operations.

With fipsmode on, SecureZIP exclusively uses FIPS-validated algorithms not only
to encrypt but also to decrypt. If you try to decrypt a file that is encrypted using an
algorithm that is not FIPS-validated, SecureZIP responds with an error or warning
and does not decrypt it.

When applying or authenticating signatures, SecureZIP again uses only FIPS-
validated hashing algorithms when the fipsmode option is on. If a signature was
created using a hashing algorithm that is not FIPS-validated, SecureZIP shows a
warning even if the signature is otherwise valid.

The fipsmode option is not compatible with the 204 option (which cannot create
archives with strong encryption).

For the fipsmode option to work—that is, to actually result in FIPS-mode
processing—a FIPS-validated cryptographic module must be installed on your
system. On UNIX, SecureZIP supplies such a module itself. On Windows, however, it
is the system administrator’s responsibility to ensure that a version of the Microsoft
CryptoAPI cryptographic module appropriate to the operating system is installed and
that no non-FIPS-validated cryptographic providers (for example, a non-FIPS-
validated smart card) are used.

For reference, see the list of FIPS-validated cryptographic modules grouped by
vendor at the following NIST Web site:

http://csrc.nist.gov/cryptval/140-1/1401vend.htm

The following table lists FIPS-validated encryption and hashing algorithms that can
be set for various Windows operating systems.

 FIPS-validated hashing algorithms

XP SP3 SHA-1, SHA-256, SHA-384, SHA-512

2003 Server SHA-1, SHA-256, SHA-384, SHA-512

Vista SHA-1, SHA-256, SHA-384, SHA-512

Windows 7 SHA-1, SHA-256, SHA-384, SHA-512

Note: In response to NIST Special Publication 800-131A from the National Institute of
Standards and Technology, the SHA-1 hashing algorithm is not supported in FIPS
140 mode.

In response to NIST Special Publication 800-131A from the National Institute of
Standards and Technology, the 3DES-112 (also known as "two key" 3DES) algorithm
is not supported in FIPS 140 mode.

When used with the fipsmode option, the commands listcryptalgorithms and
listhashalgorithms list only available FIPS-validated algorithms. For example:

pkzipc -fipsmode -listcryptalgorithms

http://csrc.nist.gov/cryptval/140-1/1401vend.htm�

30

pkzipc -fipsmode -listhashalgorithms

The fipsmode option has two sub-options, Enabled and Disabled, used to
configure the default state of the option or, on the command line, to override the
configured default.

On Windows, SecureZIP sets the default state of the fipsmode option according to
the Windows FIPS policy setting System cryptography: Use FIPS
compliant algorithms for encryption, hashing, and signing. This
setting is set by an administrator in the Local Security Policy or as part of Group
Policy. It affects the behavior of Microsoft Internet Explorer and various areas of the
operating system, depending on the version of Windows. If the setting is enabled, the
default value of fipsmode is Enabled.

Note: The fastest version of the Advanced Encryption Standard (AES) is not FIPS-
compatible. If your system is FIPS-enabled, you will not be able to use the FastAES sub-
option with the -cryptoptions command. See “Advanced Encryption Options in
Windows” in Chapter 5.

The following example turns on fipsmode for the current command line:
pkzipc -add -recipient="John Public" -fipsmode save.zip *.doc

The next example turns on fipsmode and uses the sfx option to create a graphical
Windows self-extracting archive mysfx.exe. A self-extracting (SFX) archive created
with fipsmode on extracts in FIPS mode, by default, too.

pkzipc -add -recipient="John Public" -fipsmode -sfx=win32_x86
mysfx *.doc

For more information on self-extracting archives, see “Working with Self-Extracting
(PKSFX) Archives” later in this chapter.

The example below overrides a configured default setting of fipsmode=enabled to
turn off fipsmode for the current command line:

pkzipc -extract -fipsmode=disabled wedding_plans.zip *.*

The following command line prefixes the fipsmode option with two hyphens (--) to
turn off FIPS mode when extracting an SFX archive that was created with the
fipsmode option on. Ordinarily, an SFX archive that was created with the
fipsmode option on extracts in FIPS mode too. This example shows how to override
the FIPS flag set internally in the SFX archive to allow files in the archive to be
decrypted and authenticated without using only FIPS-validated algorithms:

mysfx.exe --fipsmode

Conversely, the fipsmode option can also be used with a single hyphen to apply
FIPS-mode constraints on extraction to an SFX archive that was not created with the
fipsmode option on.

mysfx.exe -fipsmode

 Creating OpenPGP Files
Some organizations use encryption tools based on the OpenPGP standard, rather
than X.509. OpenPGP uses the same Public Key Infrastructure principles for
exchanging encrypted files, but uses a decentralized “Web of Trust” method of
authenticating signatures. See “Working with OpenPGP Files” in Chapter 5 for more
information.

 31

When you create a file using -archivetype=pgp, as in the following example,
SecureZIP creates a GNU TAR archive, copies the selected file(s) to the archive, and
then encrypts the TAR archive using OpenPGP. This command-line takes all text
files in the current directory, creates a PGP archive called myfile.pgp, encrypts it
with 128-bit AES and makes it available to a recipient, Test:

pkzipc -add -archivetype=pgp -cryptalg=AES,128 -recipient="Test"
-cert="Test" myfile.pgp *.txt

Note: Always use the -archivetype command when working with OpenPGP files.

 Attaching Digital Signatures

With SecureZIP, you can attach a digital signature to files in an archive, or to an
archive itself. A digital signature assures people who receive the signed file that it is
really from the person who signed it and has not been changed.

Note: PKZIP authenticates digital signatures on files signed by others, but you must
have SecureZIP to attach digital signatures of your own.

SecureZIP allows you to digitally sign either individual files in an archive or the
central directory of the archive, or both. The central directory contains a list of files in
the archive. Signing the central directory enables a recipient to confirm that the
archive as a whole has not changed. Both PKZIP and SecureZIP authenticate digital
signatures on extraction.

Find more information on using digital certificates in Chapter 5.

 Commands and Options for Signing Archives

certificate
Use the certificate option to specify a certificate to use to sign files. To specify a
certificate, use one of the sub-options described in the following table.

Note: The certificate, hash, and sign options described below and the ability
to use certificates to attach digital signatures are available only with SecureZIP.

Sub-Option To use For example

<Common name> Specify, in quotes, the
common name of the subject
of the certificate (that is, the
cn field in a string
representation of a
certificate); optionally,
precede with:

 cn=

SecureZIP searches for
certificates by common name
by default.

-certificate=cn="John Public"

-certificate="John Public"

<Email
address>

Specify the email address of
the certificate (that is, the e
field in a string representation
of a certificate); optionally,
precede with:

 e=

-
certificate=e=john.public@xyz.com

-certificate=john.public@xyz.com

32

Sub-Option To use For example

#<file name> Specify the name and

location of a file containing
the certificate to use.

If the certificate’s private key
is not in the file with the
certificate, use the keyfile
option to point to the separate
file that contains the private
key. If necessary, use the
keypassphrase option to
specify a passphrase to read
the private key.

pkzipc -add -
certificate=#mycert.pem
-keyfile=mykey.key save.zip *.doc

pkzipc -add -
certificate=#mycert.p12
-keypassphrase="my passphrase"
save.zip *.doc

For example, if the common name of the subject is John Q. Public, you can specify
that certificate as follows:

pkzipc -add -certificate="John Q. Public" test.zip

The command uses the John Q. Public certificate to sign files. By default, both the
files in the archive and the archive itself are signed. Use the sign option to change
what is signed. Use the hash option to change the hash method used for signing.

The following examples reference a certificate by email address:
pkzipc -add -certificate=john.public@nowhere.com test.zip

pkzipc -add -certificate=e=john.public@nowhere.com test.zip

The prefix “e=” when using an email address is optional. SecureZIP automatically
looks for an email address if the string contains an “@” and a dot and looks like an
email address.

Note that a certificate must contain an email address in order to be found by this
method. Not all certificates embed an email address.

keyfile
You can reference a file that contains a certificate to use for signing with the
#<filename> sub-option of certificate. If the private key is not included in the
file with the certificate, use the keyfile option to specify the file that contains the
private key. For example:

pkzipc -add -certificate=#mycert.pem -keyfile=mykey.key save.zip
*.doc

The keyfile option specifies a file containing the private key for the certificate
specified by the certificate option. The option is most useful with SSL server
certificates, which often have the private key and certificate in separate files.

keypassphrase
A private key in a file by itself or in a file that contains a certificate may be encrypted
and require a passphrase for PKZIP to decrypt it to use. Use the keypassphrase
option to supply the passphrase. For example:

pkzipc -add -certificate=#mycert.p12 -keypassphrase="my
passphrase" save.zip *.doc

pkzipc -add -certificate=#mycert.pem -keyfile=mykey.key -
keypassphrase="my passphrase" save.zip *.doc

 33

The keypassphrase option specifies the passphrase used to decrypt private key
information. This can be the passphrase used for your certificate store (UNIX only),
for a PKCS#12 file (specified with the certificate option), or a key file specified
with the keyfile option.

hash
You can use the hash option with the certificate option to specify the hash
method/algorithm to use for signing. The option has the sub-options shown in the
following table.

Sub-option Description

sha1 Uses the SHA-1 hashing algorithm (default) (not
FIPS-compatible; cannot be used with the
fipsmode option)

sha256 Uses the SHA-256 hashing algorithm (fipsmode
default)

sha384 Uses the SHA-384 hashing algorithm

sha512 Uses the SHA-512 hashing algorithm

md5 Uses the MD5 hashing algorithm (not FIPS-
compatible; cannot be used with the fipsmode
option)

The SHA algorithms are all stronger than the MD5 algorithm. Among the SHA
algorithms, the higher-numbered ones are stronger than the lower-numbered ones.
See the fipsmode option for information on which algorithms are supported for FIPS
processing on different versions of Windows.

Use the listhashalgorithms command to list hashing algorithms available on
your system. If fipsmode is on, the listhashalgorithms list shows only FIPS-
validated algorithms.

The hash option’s default is configurable.

The following example specifies the SHA-256 algorithm and the “My Cert” certificate
to use to sign files:

pkzipc -add -certificate="My Cert" -hash=sha256 test.zip *.*

sign
You can use the sign option with the certificate option to specify whether to
sign the central directory of the archive itself, the archived files, or both.

Signing the files enables a user to verify that the files are the same files you signed;
signing the archive itself enables a user to verify that the contents of the archive have
not changed—that, for example, no files have been added or removed. By default,
SecureZIP signs both.

The sub-options are listed in the following table.

Sub-option Description Example

cd Sign only the central directory of
the archive, not the files in the

-sign=cd

34

Sub-option Description Example

archive

files Sign only the files in the archive,
not the archive itself

-sign=files

all

(Default)

Sign both the archived files and
the archive itself

-sign=all

none Do not sign files. This sub-option
is used to turn signing off if it has
been configured.

-sign=none

For example:
pkzipc -add -certificate="My Cert" -sign=cd test.zip *.*

You can also use sign to add a digital signature to an existing archive. See
“Attaching a Signature to an Existing Archive” in Chapter 5 for more information.

listcertificates
Use the listcertificates command to list the certificates that are in a specified
store on your system. Information for each certificate tells whether the certificate is
Valid, Expired, Not Trusted, or Revoked (if known). If OpenPGP certificates are
enabled and available on the system, these will be displayed.

Specify the store using one of the sub-options in the following table. Personal
certificates in the MY store are listed by default if no sub-option is used.

Sub-option Description Example

my Lists certificates in the MY store.
This store contains your personal
certificates with private keys.

pkzipc -listcertificates

or

pkzipc -listcert=my

addressbook Lists certificates in the
AddressBook store. This store
contains public certificates and
public keys belonging to other
people.

pkzipc -listcert=addressbook

ca Lists certificates in the CA store.
These are intermediate
certificates in a trust chain,
created by a certificate authority
to validate other certificates.

pkzipc -listcert=ca

root Lists certificates in the Root store.
These are certificates at the
beginning of a trust chain, which
are trusted by the system.

pkzipc -listcert=root

For example, the following command line lists certificates in the MY store:
pkzipc -listcertificates

The command line produces output like the following. In this case, the MY store
contains four certificates, three of which have the same name, John Doe.

 John Doe: Valid

 35

 John Doe: Expired
 John Doe: Expired
users,John Doe: Valid

 Setting a Default Certificate
If you only use one digital certificate to sign your archives, you can skip the
certificate command in your scripts. Do this by defining that certificate as your
default.

To define the “John Q. Public” certificate as your default, use the following command:
pkzipc -config -certificate="John Q. Public"

Once you have a certificate configured, each time you use sign, whether as a
command or option, SecureZIP will attach this certificate to your archive.

You can still use the certificate option to attach a different certificate than your
default.

See Chapter 7 for more information on setting and changing defaults.

 Time Stamping Your Signed ZIP Archive
When you need to establish not only who is responsible for a file or set of files, but
also when it was created, digital timestamping is a critical service. As you know,
dates are critical for establishing original intellectual property rights, including
copyright and patents. While all files carry a creation date as part of its default
metadata, it is not very hard to manipulate this date before you create and sign the
archive in question. The goal is to create a timestamp that cannot be changed, even
by the owner of the file. Using a Time Stamp Authority outside of your computing
environment takes the guesswork out of confirming the validity of a document.

The Internet Engineering Task Force governs digital timestamps through two
standards: RFC 3161 establishes the method by which a client can connect to a
secure computer that will stamp the document with its current date and time. This
secure computer is called the Time Stamp Authority (TSA) or Time Stamp Server
(TSS). RFC 4998, among many other things, defines what happens when a time
stamp authority’s certificates expire, or are otherwise compromised.

With SecureZIP Command Line’s support for digital timestamping, you can add a
timestamp to any signed archive.

Note: Digital timestamping, along with other features related to digital signatures are
available only with SecureZIP.

SecureZIP only supports digital timestamping for ZIP archives.

Before beginning the process, you need to know the URL of your Time Stamp
Authority. The TSA server may be on your network or on a public server.

To sign a new archive containing all documents in the current directory, and add a
digital time stamp, type:

pkzipc -add -sign=timestamp -ts=<TSA_URL> test.zip *.docwhere <TSA_URL> is the
location of your Time Stamp Authority’s service.

SecureZIP will calculate a hash based on the archive’s data and send that to the
TSA. The TSA adds a timestamp to the hash and calculates the hash of this
combination of the original hash with the timestamp. This second hash is then
digitally signed with the TSA’s private key. All this information is then sent back to
you. SecureZIP then adds the timestamp to the archives central directory signatures.

36

 Updating and Renewing Time-Stamped Archives
The IETF standards permit multiple timestamps on a file, allowing for time-stamped
archives to be updated and refreshed. In this way, you can establish a record of
creation and updates. SecureZIP automatically handles updating the timestamp
when you update the archive. Because the archive has changed, a new timestamp
will be generated, but the original file signatures will be preserved by nesting the two
signatures.

You must renew your time-stamped archives before the TSA’s certificate expires.
Use the sign command:

pkzipc -sign=timestamp -ts=http://<TSA URL> test.zip

When renewing the timestamp, the original items and their order in the archive will be
preserved normally.

Note: Renewing timestamped archives spanned across different media is not supported.

 Writing an Archive to STDOUT and Special Files

Ordinarily, when you use the add command to archive files, you write the resulting
archive to a physical file that you specify in the command line. For example, the
following command line archives text files to the archive myfiles.zip:

pkzipc -add myfiles.zip *.txt

An archive can also be written, as a data stream, to some other destinations besides
a physical file, notably, to STDOUT, a named pipe, a UNIX domain socket, or a
device file.

Note: When PKZIP compresses and encrypts data to write an archive to a data stream,
the data goes to the stream without ever appearing on disk in unencrypted form. PKZIP
does create a temporary file to get the size of the data to put in local headers, which must
be written before file data. But the data is already compressed and encrypted when it’s
placed in the temporary file. No security vulnerability is created.

 Writing an Archive to STDOUT
You can write an archive to standard output, or STDOUT, instead of to a physical file.
Data written to STDOUT appears on your computer screen but is not saved to disk
(unless you do something extra to save it). It can also be piped to another program or
be redirected to (for instance) a file.

To have PKZIP write the output of the add command to STDOUT, use a hyphen “-”
in place of the name of an archive file. You must also use the
noarchiveextension option to prevent PKZIP from outputting to a file named
-.zip instead of to STDOUT. And finally, you should include the silent option to
suppress the informational messages that PKZIP normally outputs so that these are
not inserted in the archive data stream. For example:

pkzipc -add -noarchiveextension -silent=normal - *.txt

PKZIP creates ZIP-format archives by default. To write a different type of archive to
STDOUT, use the archivetype option to specify the type. For example, the
following command line tells PKZIP to write a TAR-format archive to STDOUT:

pkzipc -add -archivetype=tar -noarchiveextension -silent=normal -
*.txt

 37

The command line below sends output to STDOUT and then redirects that output to
archive myfile.zip.

pkzipc -add -noarchiveextension -silent=normal - *.txt >
myfile.zip

When redirecting STDOUT to a file, you can use the exclude option to make sure
that PKZIP does not include the file to receive the output in the set of files to be
zipped. Unlike when writing directly to a specified archive file, PKZIP cannot infer
from the command line that it should skip a file to which you redirect output. The
exclude option explicitly tells PKZIP to skip specified files.

For example, the following command line archives all files in a directory and redirects
output to a file in the same directory. The exclude option tells PKZIP not to add that
file.

pkzipc -add -noarchiveextension -silent=normal -exclude=myfile.zip
- *.* > myfile.zip

You can use a hyphen “-” in place of the name of an archive file when you extract, as
well. Used in a command line with the extract command, the hyphen tells PKZIP to
extract files from STDIN (standard input).

For example, the following command line extracts files from STDIN instead of from a
named archive.

pkzipc -extract -noarchiveextension -silent=input -

When extracting from STDIN, set silent to the input sub-option, as in the
command line above, to suppress any PKZIP requests for input (a passphrase, for
example). If input is needed, the extraction fails with an error.

The noarchiveextension option is needed so that PKZIP does not try to extract
from a file named -.zip. If the archive is not a ZIP archive, use the archivetype
option to specify its type. For example, the following command line tells PKZIP that
the file is a BZIP2 archive:

pkzipc -extract -archivetype=bzip2 -noarchiveextension -
silent=input -

You can combine writing to STDOUT and extracting from STDIN to securely transfer
files between two systems. For example, the following (UNIX) command line
compresses and encrypts the files to be transferred and adds them to a ZIP archive.
The archive is written to STDOUT instead of to a file. The command line pipes the
output to the rsh (remote shell) system command, which runs PKZIP on the remote
system to extract the files from STDIN.

pkzipc -add -noarchiveextension -cryptalgorithm=aes,256 -
recipient=Jon -silent
- | (rsh user@remote_system pkzipc -extract -noarchiveextension -
silent=input -)

 Writing an Archive to a Named Pipe
An archive can be written to a named pipe instead of to a physical file.

The named pipe, socket, or device must already exist. You can then write an archive
to it with a command line like the following. Use the name of the pipe in the command
line in place of the name of an archive file.

pkzipc -add -noarchiveextension <name of pipe> <files to zip>

As when writing to STDOUT, you must use the noarchiveextension option to
prevent PKZIP from outputting to a .zip file—in this case, one named for the pipe.

38

PKZIP creates ZIP-format archives by default. To write a different type of archive,
use the archivetype option to specify the type. For example, the following
command line tells PKZIP to write a TAR-format archive:

pkzipc -add -archivetype=tar -noarchiveextension <name of pipe>
<files to zip>

You must use the full UNC path when referring to a named pipe on Windows. For
example:

pkzipc -add -noarchiveextension \\.\pipe\mypipe *.doc

In the preceding example, the dot in the path
\\.\pipe\mypipe

references the current machine. To reference a pipe on a different machine—named
boulder—specify the machine.

\\boulder\pipe\mypipe

You can use either a name or an IP address to specify a machine.

 Compressing Files in Subdirectories

recurse
PKZIP does not automatically compress files that appear in subdirectories, unless
you specify those directories, or use the recurse option with the add command.
With the recurse option, all specified files in a directory structure, including files
located in subdirectories will be compressed.

If you have a directory called tut with a nested subdirectory called test, to compress
all of the files in the tut directory and all files in the tut/test directory, you would type
the following in the tut directory:

pkzipc -add -recurse test.zip *

All files in the tut directory as well as those files in subdirectories of the tut directory
are compressed. However, directory path information is not stored within the .ZIP file.
If you want to store directory information within your .ZIP file (in addition to
compressing all the files in those directories), use the path option with the recurse
option or simply use the directories option.

 Compressing Open Files

OpenFile
In Windows, PKZIP does not automatically include files that are open in other
applications in archives, as there is a small chance there could be differences
between the file on screen (or in memory) and the file saved to disk. Use the
OpenFile option to include open files in your archive.

The OpenFile option has sub-options that allow you to set notification and inclusion
for open files that match the pattern you want to archive. These sub-options are listed
in the table below. By default, using the OpenFile option without a sub-option
includes all matching open files in your archive.

 39

Sub-Option Description For example

never PKZIP does not include any
open files. A warning will
appear if a matching file is
open.

pkzipc -add -OpenFile=never
test.zip *.bmp

all PKZIP includes all matching
open files without prompting
first. A message noting
each open file is included in
the standard output.

pkzipc -add -OpenFile test.zip
*.bmp

prompt PKZIP notifies you when a
matching file is open, and
asks whether to add the
open file or skip it.

pkzipc -add -OpenFile=prompt
test.zip *.bmp

 Storing Directory Path Information

path
Normally, when PKZIP compresses files, only the files are stored within the .ZIP file,
not the paths of those files. However, you can instruct PKZIP to store the directory
path information of a file within the .ZIP file. This enables you to restore the directory
structure when you extract the files.

For example, if a file you are compressing appears in the doc/temp directory, you can
store the file within the .ZIP file as:

doc/temp/<file name>

To do this, use the path option with the add command. For example, the following
command line adds all .TXT files in the specified directories and saves the specified
path information:

pkzipc -add -path test.zip doc/temp/*.txt

If path information is saved, you can use the directories option with the extract
command to extract files to the saved paths. PKZIP creates the directories on the
saved path if they do not already exist.

Note that the path option gets files only from the specified directory. To get files in
subdirectories of that directory as well, use the directories option instead of
path. Or use path together with recurse.

 Additional Methods for Storing Directory Path
Information

The path option has sub-options that enable you to specify the path information
stored. These sub-options are listed in the table below. By default, using the path
option without a sub-option stores relative path information for all files added.

40

Sub-option To For example

current Store the directory path
relative to the current
location.

pkzipc -add -path=current docs.zip
docs/*

In this example, only directory information
under the docs directory will be stored. Parent
directory information will not be stored.

root,
full

Store the full path,
starting from the root
directory down.

pkzipc -add -path=root docs.zip
docs/*

In this example, the entire directory path,
starting from "root" directory will be stored.

specify Stores path information
for subdirectories under
the specified directories

pkzipc -add -path=specify docs.zip
temp/docs/*

Stores path information for subdirectories under
temp\docs.

relative Store the directory path
relative to the current
working directory of the
drive specified.

pkzipc -add -directories=relative
docs.zip c:*.doc z:*.doc

In this example the path information for those
directories recursed under the current working
directory (for both the C: and Z: drives) will be
stored.

none Turn off the path option.
(Used to override
configuration file).

pkzipc -add -path=none docs.zip
/temp/docs/*

In this example, only the file names are stored.

 Storing and Recreating Directory Path Information

directories
The directories option works with both the add and extract commands.

• With the add command, the directories option is equivalent to using the
recurse and path options together. It instructs PKZIP to search
subdirectories for files and to save the files and their directory path
information in the .ZIP file.

• With the extract command, the directories option extracts any
directory tree structure saved with files.

The following example uses the directories option with the add command to add
any files called whatsnew.htm in the current directory or in any subdirectory of the
current directory:

pkzipc -add -directories testdir.zip whatsnew.htm

Or abbreviated:
pkzipc -add -dir testdir.zip whatsnew.htm

Screen output lists any matching files found in subdirectories:
Creating .ZIP: testdir.zip

 Adding File: Win/PK/Whatsnew.htm Deflating (67.0%), done.
 Adding File: Win/SZ/Whatsnew.htm Deflating (66.7%), done.

The following example gets all .htm files in the current directory or its subdirectories:
pkzipc -add -dir testdir.zip *.htm

 41

To tell PKZIP to start looking for matches from a subdirectory of the current directory,
specify the path to the subdirectory. The following example gets all whatsnew.htm
files in mysub\ or any of its subdirectories:

pkzipc -add -directories testdir.zip mysub\whatsnew.htm

The example below gets all .htm files in mysub\ or any of its subdirectories:
pkzipc -add -directories testdir.zip mysub*.htm

If you have multiple mysub\ subdirectories under the current directory, you can get
files from just those subdirectories by using a wildcard for the subdirectory from
which to start the search:

pkzipc -add -directories testdir.zip *\mysub\whatsnew.htm

The command line below is similar, but it limits the search for mysub\ subdirectories
to just those under the nextsub\ subdirectory:

pkzipc -add -directories testdir.zip nextsub*\mysub\whatsnew.htm

Even if the command line includes the directories option, you can turn off the
searching of subdirectories for matching files by specifying a full path beginning with
a backslash (for the root directory) or (on Windows) a drive letter (for example, C:) in
the pattern. The pattern must also not include any wildcard characters (* or ?).

For example, the following command line adds only the specified file; it does not add
matching files from subdirectories of MyFiles:

pkzipc -add -directories testdir.zip C:\MyFiles\whatsnew.htm

For information on extracting files saved with directory information, see the section
“Retaining Directory Structure while Extracting” in Chapter 4.

As with the path option, PKZIP provides several choices for saving directory path
information. The following table lists the sub-options you can use with directories
option:

Sub-option To For example

current Store the directory path
relative to the current
location.

pkzipc -add -directories=current
docs.zip docs/*

In this example, only directory information
under the docs directory will be stored. Parent
directory information will not be stored.

root or
full

Store the full path,
starting from the root
directory down.

pkzipc -add -directories=root
docs.zip docs/*

In this example, the entire directory path,
starting from "root" directory will be stored.

specify Store path information
for subdirectories under
the specified directories

pkzipc -add -directories=specify
docs.zip temp/docs/*

Stores path information for subdirectories under
temp\docs.

relative Store the directory path
relative to the current
working directory of the
drive specified.

pkzipc -add -directories=relative
docs.zip c:*.doc z:*.doc

In this example, the path information for those
directories recursed under the current working
directory (for both the C: and Z: drives) will be
stored.

42

Sub-option To For example

none Turn off the path option.
(Used to override
configuration file).

pkzipc -add -directories=none
docs.zip /temp/docs/*

In this example, only the file names are stored.

Setting the Compression Level

Native ZIP compression (which uses the Deflate compression algorithm) and the
bzip2 and deflate64 compression options each support a range of compression
levels from 0 (no compression) to 9 (maximum). By default, each of these options
uses level 5, or normal, compression. Normal compression strikes a middle balance
between compression and performance. In general, greater compression takes more
time.

You can use the level option to specify a compression level from 0 to 9 when you
create or update a ZIP file using one of the compression methods named above.

Alternatively, you can use the options normal, store, speed, fast, and maximum
to specify a desired balance between speed and degree of compression. See
“Specifying a Compression Level by Name” later in this chapter.

With the dclimplode option, you set the compression level in a different way,
namely, by specifying the dictionary type and size as sub-options.

 Specifying a Compression Level from 0-9

level
The level option enables you to specify a level or degree of compression to use
when creating or updating a ZIP archive with the Deflate64, BZIP2, or default Deflate
compression methods. (See the deflate64 and bzip2 options to learn about using
these compression methods.)

To set a compression level with the level option, specify a numeric value for the
option from 0 to 9. A value of 0 specifies zero compression.

The following command line specifies a compression level of 2 and uses the native
Deflate compression method:

pkzipc -add -level=2 test.zip *.doc

The following command line specifies level 2 compression and the BZIP2
compression method to create or update a ZIP archive:

pkzipc -add -bzip2 -level=2 test.zip myfile.doc

Level 5 is the default compression level for level. You can use the
configuration command to set a different default. For example, the following
command line sets the default value for level to 9:

pkzipc -config -level=9

For information on changing default settings, see Chapter 7.

 43

 Specifying a Compression Level by Name

store, speed, fast, normal, maximum
As an alternative to setting numeric compression levels with level, you can use the
options normal, store, speed, fast, and maximum.

These options enable you to use non-numeric names to specify a desired balance
between speed and degree of compression. For example, the following command
line specifies the fast compression option:

pkzipc -add -fast test.zip *.doc

The non-numeric compression level options are described in the following table:

Option Description Example

speed Provides the fastest
performance and the
least compression:
some files are
compressed with the
Deflate method, using
level 1 compression;
others* are stored
(level 0)
uncompressed.

pkzipc -add -speed test.zip *.doc

pkzipc -add -bzip2 -speed test.zip
*.doc

fast Provides the second
fastest compression:
some files are
compressed with the
Deflate method, using
level 2 compression;
others* are stored
(level 0) uncompressed

pkzipc -add -fast test.zip *.doc

maximum Provides the highest
level of compression
(level 9)

pkzipc -add -max test.zip *.doc

store Provides zero
compression: just
stores files inside the
archive (level 0)

pkzipc -add -store test.zip *.doc

normal

(Default)

Provides a middle
balance of
compression and
speed (level 5)

pkzipc -add -norm test.zip *.doc

You would only need to use this option if you
changed the default compression level. See
Chapter 7 for information on setting defaults.

44

* Types of files that the speed and fast options store uncompressed are listed
below. The other named options (except store) compress files of these types. You
can also use the level option to compress files of these types.

*.bz2 *.jpeg

*.bzip2 *.jpg

*.cab *.mp3

*.gz *.mpeg

*.gzip *.mpg

*.rar *.sxw

*.gif

 Compressing Files with a List File

Instead of specifying a specific file or file pattern in your command line, you can point
PKZIP to a list file that lists all the files or file patterns that you want to operate on. A
list file is an ASCII text file that contains file names or file patterns and path
information. A list file can be an ideal solution for users who archive specific file sets
on a regular basis. Using a list file saves time in that you do not need to type file
names and paths each time you wish to compress these files with PKZIP. A list file
may contain wildcard specifications (*,?) as well as exact file names and paths.

A list file in a DOS based environment might look similar to the following:
*.exe
*.doc
\tut*.doc
\tut\?????.*
pkzip.html

You reference a list file in the command line by prefixing its name with the list
character—“@” by default. See the listchar option if you want to use a different
character.

The following example adds the files listed in list file lst.txt to the archive test.zip:
pkzipc -add test.zip @lst.txt

You can also use a list file to specify files to exclude from an archive, based on some
criteria, using the exclude option. The exclude option is discussed in Chapter 1.
For more information on the listchar option, see “Changing the List Character for
List Files” in Chapter 8.

Note: The way you list files to extract is slightly different from the way you list files to
add to an archive. See “Extracting Files with a List File” in Chapter 4 for more
information.

 Getting a List of Files from Standard Input
Use a hyphen (-) prefixed with the list character (“@” by default) to identify a set of
files in standard input as a list. For example, in the following command line, PKZIP
treats a list of files output from some program as a list file and compresses the files
into test.zip:

<some program> | pkzipc -add test.zip @-

The special, dynamically constructed list can also be used with the include and
exclude options. For example:

 45

<some program> | pkzipc -add test.zip -include=@-

<some program> | pkzipc -add test.zip -exclude=@- *.doc

 Compressing Files with the Deflate64 Method

deflate64
The deflate64 option enables you to use the Deflate64 compression method to
compress files and create ZIP archives. The Deflate64 method can produce greater
compression than the Deflate method that PKZIP uses by default because Deflate64
uses a larger dictionary window (64K compared to 32K).

Not all ZIP-compatible programs from other vendors can extract files compressed
with the Deflate64 method.

You can use the level option with deflate64 to specify a level of compression
from 0 to 9 (0 is zero compression).

The following command line uses the Deflate64 method with the level option set for
maximum compression:

pkzipc -add -deflate64 -level=9 mydocs.zip *.doc

 Compressing Files with the BZIP2 Method

bzip2
BZIP2 is an open-source compression algorithm that requires more memory and
processing power than standard ZIP compression but provides greater compression.
PKZIP can use BZIP2 compression to create either ZIP or BZIP2-format archives
(.bz2 files). A BZIP2 archive, unlike a ZIP archive, can contain only a single file.

Files compressed with the BZIP2 method can be extracted with most versions of
PKZIP, 4.6 and later, but other ZIP-compatible programs may not be able to extract
files compressed with BZIP2.

You can use the level option with bzip2 to specify a level of compression from 0 to
9 (0 is zero compression).

The following command line uses the BZIP2 method to create a ZIP file. The level
option specifies maximum compression:

pkzipc -add -bzip2 -level=9 mydocs.zip *.doc

 Compressing Files with the LZMA Method

lzma
The LZMA compression algorithm often produces a higher compression ratio than
Bzip2 but uses a lot of memory—as much as 16 MB—and takes more time than
Deflate.

Files compressed with the LZMA method can be extracted with PKZIP versions 12.3
and later, but other ZIP-compatible programs may not be able to extract such files.

46

 Compressing Files Compatible with the Data
Compression Library

dclimplode
The dclimplode option enables you to use the same compression algorithms used
by the PKWARE Data Compression Library. Files compressed with this method can
be extracted by most versions of PKZIP 2.5x and later, though not by other .ZIP-
compatible programs.

When using the Implode compression method, you must specify dictionary type
(ASCII or BINARY) and dictionary size (1024, 2048, or 4096). In general, the larger
the dictionary, the greater the compression. Use the BINARY dictionary when
compressing binary files (for example, executable programs) or when the type of the
file is unknown. Use the ASCII dictionary with ASCII (text) files.

For example, to use the DCL Implode method to compress all text files in a directory,
type the following:

pkzipc -add -dclimplode=ascii,4096 text.zip *.txt

 Compressing Files with the PPMd Method

ppmd
The ppmd option achieves especially good compression for natural language text but
can use a lot of memory (~16 MB) and takes more time than Deflate.

Files compressed with the PPMd method can be extracted with PKZIP versions 12.3
and later, but other ZIP-compatible programs may not be able to extract such files.

 Compressing Files to a Specified Type of Archive

archivetype
The archivetype option explicitly tells PKZIP the type of archive to create or
extract. Use the option when PKZIP cannot figure out the correct archive type from
the archive’s file name. For some examples, see “Writing an Archive to STDOUT.”

PKZIP creates ZIP archives by default: When you use the add command to create a
new archive, PKZIP creates a ZIP archive if you do not specify a file name extension
that PKZIP recognizes as associated with a particular archive type.

For example, the following command creates a ZIP archive called myfile.foo.zip:
pkzipc -add myfile.foo

Similarly, if the command line does not tell PKZIP the type of archive to extract from,
PKZIP tries to extract files from a ZIP-format file.

With the archivetype option, you can explicitly tell PKZIP the type of archive to
work with.

For example, the following command line creates an archive myfile.foo.bz2 of the
BZIP2 archive type. The file name extension bz2 associated with the BZIP2 archive
type is added to the file name:

 47

pkzipc -add -archivetype=bzip2 myfile.foo

A simpler way to create a BZIP2 archive called myfile.foo.bz2 is to specify the file
name extension as part of the file name In this case, you do not need the
archivetype option:

pkzipc -add myfile.foo.bz2

Note: You cannot create an OpenPGP-based archive by using the .pgp extension.
Always use archivetype=pgp when working with OpenPGP files.

When you specify the archive type with archivetype, you can include the
noarchiveextension option to tell PKZIP not to add an extension to the file name.
For example, the following command suppresses the bz2 extension that would
normally be appended and creates a BZIP2 archive named myfile.foo:

pkzipc -add -archivetype=bzip2 -noarchiveextension myfile.foo

 Compressing Files to Diskette

span
With PKZIP, you can save your .ZIP file or self-extracting file to one or more diskettes
when you create it (instead of saving it on your hard disk drive). You can also create
a split archive that is saved as multiple files on your hard disk. You can also have
PKZIP format or wipe your removable media before writing to it.

 Creating a Spanned Archive
You can save a ZIP file to multiple diskettes if it is too large to fit on a single one. This
is called disk spanning. PKZIP prompts you to insert diskettes (or other media) as
they are needed.

Depending on the size of the ZIP file, it may be necessary for PKZIP to save the file
on multiple diskettes. This process is called "spanning".

To create a spanned archive:

1. Insert a diskette (or other appropriate medium) into its drive.

2. Type your PKZIP command, and press ENTER. Make sure to specify the drive
letter or path that corresponds to your destination drive. A sample command line
appears below:
pkzipc -add -span a:\test.zip *.doc

Note: Ordinarily, PKZIP recognizes removable media as such and spans them as
necessary automatically, even if you do not specify the span option. However, if PKZIP is
unable to detect that you are creating your ZIP file on removable media, use the span
option to tell PKZIP to span.

 Creating a Split Archive
The span option is also used to create a split archive. A split archive is an archive
created in segments, all of which are written to your hard disk as separate files.

To create a split archive on your computer disk, specify a size in bytes, or use a
predefined size from the following table:

48

Predefined size Comment

360 360KB floppy disk (362496
bytes)

720 720KB floppy disk (730112
bytes)

1.2 1.2MB floppy disk (1213952
bytes)

1.44 1.44MB floppy disk (1457664
bytes)

2.88 2.88MB floppy disk (2915328
bytes)

95.7 100MB ZIP disk (100431872
bytes)

650 650MB CD-ROM (681574400
bytes)

700 700MB CD-ROM (734003200
bytes)

For example, to create a split archive of size 1.44 Mb to your local system, type the
following command:

pkzipc -add -span=1.44 c:\test.zip *.doc

To have PKZIP format or wipe removable media before writing to it, use the span
command with format or wipe. For example, the following command line formats
the media prior to creating a ZIP archive:

pkzipc -add -span=format a:\test.zip *.doc

 Preserving International Characters in File Names

utf8
The utf8 option enables UTF-8 characters in file names and file comments to be
correctly displayed when an archive’s contents are viewed or extracted in compatible
non-UTF-8 locales.

For example, with the utf8 option, you can archive files in a Japanese locale using
the EUC character set (and the utf8 option) and then correctly view or extract the
files in a Japanese locale using the Shift-JIS character set.

The option can be used with these commands/options (comment can be either a
command or an option):

• Add

• Comment

If a command line containing the utf8 option modifies an archive in any way, UTF-8
characters are used in the names of all files in the archive.

 49

Comments will always follow the format of the file name it is attached to. Applying --
utf8 to a comment on a file with UTF-8 character formatting will not remove UTF-8
characters from the comment.

In general, use the utf8 option when you add to an archive files that contain
international (that is, non-English) characters in file names and file comments. For
example:

pkzipc -add test.zip -utf8 *.*

PKZIP displays the following message to highlight that the option is used:

Using UTF-8 file names and comments

PKZIP uses the utf8 option automatically when run on UNIX in a UTF-8 locale
(such as ja_JP.UTF-8); you do not need to use it explicitly.

The utf8 option is incompatible with the 204 option: an error results if the two
options are used together. (PKZIP does not turn on the utf8 option automatically on
UNIX if the 204 option is used.)

PKZIP/SecureZIP Server version 8.6 or SecureZIP for Windows version 11 is
required to extract files added with the utf8 option, so use the option only with
archives that you expect to be extracted with these (or later) versions of these
programs.

 Creating Multiple, Respective Archives

archiveeach
With the archiveeach option, you can create a separate archive for each of
multiple files specified in a single command line.

pkzipc -add -archiveeach *.*

With archiveeach, you do not specify names for new archives. PKZIP names each
new archive after the file it contains, with an archive-type file name extension (ZIP by
default) appended to the end. For example, a ZIP archive created for file
mydata.xls is named mydata.xls.zip. An archive created for file mydata.zip
is named mydata.zip.zip.

If an archive with the same name already exists in the target location, PKZIP
appends a number to the archived file name before appending the .zip (or other file
name extension). For example: mydata.xls2.zip.

To specify a particular archive type, use the archivetype option with the
archiveeach option. The archiveeach option can also be used with the encode
option, to convert the archive initially created to a different type. By using
archivetype and encode together with archiveeach, you can, for example,
create multiple .tar.gz files:

pkzipc -add -archiveeach -archivetype=tar -encode=gz C:\data*.*

You can specify a destination for the new archives in a sub-option to archiveeach:
pkzipc -add -archiveeach=C:\newzips C:\myfiles*.*

50

You can use the substitution option to have PKZIP add a timestamp to the name
of a new destination directory created for the archives. See “Inserting a Timestamp in
the Archive File Name” in Chapter 6.

 Storing File Information

PKZIP allows you to store specific file attribute/information within your .ZIP file. You
can:

• Store file attributes, including hidden, system, archive, and read-only.

• Store extended file attribute information.

• Remove (mask) file attributes.

Refer to the sections that follow for more information.

 Compressing Files with Specified Attributes

attributes
PKZIP allows you to compress files based on the attributes that they possess. These
attributes are usually assigned either by the creator of a file, a system administrator,
or by the operating system. The following are attributes you can store:

• Hidden

• System

• Read-only

• Archive

The attributes set by default for compression are archive and read-only. With this
setting, if you do not use the attributes option on your command line, PKZIP
compresses all files except any having the attributes hidden or system.

To specify a file attribute, you must include it with the attributes option in your
command line. Each attribute is a value for the attributes option. You can:

• Specify which file attributes to compress

• Override configured default values

• Turn off the attributes option

The table below lists all of the available sub-options for storing file attribute
information:

Sub-Option To For example

hidden Compress files including those that
contain the "hidden" file attribute.

pkzipc -add -
attributes=hid test.zip

system Compress files including those that
contain the "system" file attribute.

pkzipc -add -
attributes=sys test.zip

readonly Compress files including those that
contain the "read-only" file attribute.

pkzipc -add -
attributes=read test.zip

 51

Sub-Option To For example

archive Compress files including those that
contain the "archive" file attribute.

pkzipc -add -
attribute=archive test.zip

all Compress files including those that
contain the hidden, system, or read-
only file attribute.

pkzipc -add -
attributes=all test.zip

none Turn off the attributes option in the
configuration file or compress files that
do not have any attributes set.

pkzipc -config -
attributes=none

You may use a hyphen (-) before an attributes sub-option on your command line
to exclude files with a specific attribute from being added regardless of the default
attributes configuration setting. If, for example, the default attributes configuration
setting was set to "all", you could enter the following command line to exclude hidden
files from being added to the test.zip file.

pkzipc -add -attributes=-hidden test.zip

Extended Attribute Storage

noextended
When PKZIP adds files to an archive, PKZIP stores the standard FAT file system
attributes (Read-Only, Archive, System, Hidden, Directory). By default, various
extended attributes are stored as well. These include NTFS times on Windows The
extended attribute timestamps are more accurate than the DOS modification time,
but you can slightly reduce the size of an archive by omitting this extended attribute
information.

To exclude extended attribute information, use the noextended option, as in the
following example:

pkzipc -add -noextended test.zip readme.doc

Note: The noextended option does not affect storage of the offline, temporary, and
system attributes.

 Extended Attributes and the OS
Extended attributes are automatically added to .ZIP archives when they are created.
PKZIP does not display a message indicating that it is saving extended attributes.

PKZIP stores the following extended attributes:

• Create time

• Last modification time

• Last access time

Caution: Typically, PKZIP automatically extracts extended attributes with archived
files and/or directories.Whether any existing files, directories and extended attributes
on your system are replaced with those stored in the extracted archive depends on
your file system privileges and the options and sub-options you use.

52

 Extended Attributes and 204g Compatibility

204
By default, PKZIP does not enable PKZIP for DOS 2.04g compatibility. When 204g
compatibility is enabled, extended attribute data is stored in both the Local header
and Central header records. This will result in a slightly larger .ZIP file size, but
improves the chance that extended attribute information can be recovered if the .ZIP
file should become damaged. It also ensures the extended attribute information is
always retained if the file is generated with a version of PKZIP other than 2.04g. This
option is ignored when extracting. The 204 option also limits the number of files that
can be added to a .ZIP archive to 16,383. To enable 204g compatibility, use the 204
option as in the following example:

pkzipc -add -204 test.zip *

Including Additional Information in a ZIP File

With PKZIP, you can include additional information in your .ZIP file, such as a
"comment", to identify that .ZIP file.

You can include a:

• Text comment.

• Header comment.

• Date for the .ZIP file (other than the creation date).

Refer to the sections that follow for more information.

 Including a Text Comment

comment
With PKZIP, you can include a comment for the individual files within a .ZIP file.
There are several options for adding comments to your .ZIP files. To include a
comment, use the comment option alone or with the add command. When you run
the command, PKZIP prompts you to enter the comment.

The table below lists the available sub-options for adding comments to your .ZIP
archives:

Sub-Option To For example

all Comment all of the files and
any new files added.

pkzipc -add -comment=all test.zip
*

unchanged Comment only files existing
in the ZIP file that are not
either updated or being
added.

pkzipc -add -comment=unchanged
test.zip *

add Comment all files added. pkzipc -add -comment=add test.zip
*

none Disable the comment
option.

pkzipc -add -comment=none test.zip
*

 53

Sub-Option To For example

freshen Comment all of the files
updated in the ZIP file.

pkzipc -add -comment=freshen
test.zip *

update Comment all files added
and updated in the zip file.

pkzipc -add -comment=update
test.zip *

Note: Comment length is limited to 59 characters.

Including a Header Comment

header
With PKZIP, you can include a general comment for a .ZIP file. This is called a
"header" comment because it appears in the header portion of a .ZIP file. This differs
from the comment option in that the "header" comment applies to the entire .ZIP file,
not to individual files within the .ZIP file.

Headers for .ZIP files are limited to 16K in size. PKZIP truncates headers larger than
16K.

To include a header comment, use the header option with the add command.
PKZIP provides several ways to specify the comment. You can enter the comment
with the header option, or you can specify a file that contains the comment.

To include the comment in the command line, specify the comment as a value for the
header option. Enclose the comment text in quotes if the text includes spaces. For
example:

pkzipc -add -header="This is the comment" test.zip *

If you include the header option alone, without a value, PKZIP prompts you for text
to use, as follows:

Zip Header ?

Type your header comment and press ENTER.

To use header text from a file, specify the file name (and path, if necessary) as a
value for the header option. Prefix the file name with the list character (@). Put the
file name in quotes if it contains spaces. For example:

With this method, you type the header=@filename.ext option. If there are no spaces
in the file name, it is not necessary to use quotation marks. For example:

pkzipc -add -header=@header.txt test.zip *

pkzipc -add -header=@"my header.txt" test.zip *

Specifying the Date of a .ZIP File

archivedate
When you create an archive file, PKZIP gives it the current date by default. You can
specify a different date for the file by using the archivedate option with the add
command.

Note: The archivedate option replaces the older zipdate option, which is now
deprecated.

54

PKZIP provides several methods for applying a date to an archive file. The table
below lists the available sub-options for applying date information to your archives:

Sub-Option To use For example

retain The date that the file was created. pkzipc -add -archivedate=retain
test.zip *

none

(Default)

The current date. pkzipc -add -archivedate=none
test.zip *

oldest The date of the oldest file within
the archive file.

pkzipc -add -archivedate=oldest
test.zip *

newest The date of the newest file within
the archive file.

pkzipc -add -archivedate=newest
test.zip *

 Removing File Attributes

mask
If you use the attributes option to have PKZIP process files that have attributes,
such as hidden or system, specified with the attributes option, you can use the
mask option to strip those attributes from the files when they are archived or
extracted.

You can only use the mask option with attributes specified with the attributes
option. Attributes can be specified with this option either on the command line or as
configured defaults.

The table below lists all of the available sub-options for masking file attribute
information:

Sub-Option To For example

hidden Remove the hidden file attribute
from files.

pkzipc -add -mask=hidden
test.zip *

system Remove the system file attribute
from files.

pkzipc -add -mask=system
test.zip *

readonly Remove the read-only file
attribute from files.

pkzipc -add -mask=readonly
test.zip *

archive Remove the archive attribute from
the file.

pkzipc -add -mask=archive
test.zip *

none Turn off file masking. pkzipc -add -mask=none
test.zip *

all Remove all attributes from files. pkzipc -add -mask=all
test.zip *

The mask sub-options can be used on the command line either individually or in a
comma-separated list.

You may use a dash (-) before a mask sub-option on your command line to preserve
a file attribute being added or extracted with a file, regardless of the default mask

 55

configuration setting. For example, if the default mask configuration is set to all, you
can enter the following command line to preserve the hidden attribute associated
with any of the files to be added:

pkzipc -add -mask=-hidden test.zip

 Sorting Files Within a .ZIP File

sort
With PKZIP, you can sort the files in an archive in several ways. If you do not change
the sort order, the files are automatically sorted in the order in which they were
compressed into the archive. This is called the "natural" order.

The sort option works with add, extract, test, and view. The value you include
with sort depends on the command you select.

Sub-Option To sort by For example

date File date. pkzipc -add -sort=date temp.zip

size Original uncompressed
size of the file ("length"
in display).

pkzipc -add -sort=size temp.zip

extension File extension. pkzipc -add -sort=ext temp.zip

name Sorts files and folders
by name in a single
series. (Contrast with -
sort=none.)

pkzipc -add -sort=name temp.zip

none Groups folders first,
sorted by name, and
then groups files,
sorted by name. (The
default.)

pkzipc -view -sort=none temp.zip

natural Preserves the order in
which files were added
to an archive.

pkzipc -view -sort=natural
temp.zip

ratio Ratio of uncompressed
size to compressed
size.

pkzipc -view -sort=ratio
temp.zip

Note: The ratio sub-option will not work
with the add command.

crc CRC (Cyclic
Redundancy Check)
number.

pkzipc -view -sort=crc temp.zip

Note: The crc sub-option will not work with
the add command.

comment File comment. pkzipc -view -sort=comment
temp.zip

Note: The comment sub-option will not
work with the add command.

The name sub-option sorts entire path names; it does not sort file names directly if
folder information is present.

56

For example, the name sub-option sorts the two files abacus.txt and zebra.txt as
follows if they are added to an archive without including any path or folder
information:
abacus.txt
zebra.txt

However, if the files are added with folder information, the name of the outermost
folder in the path determines their order of appearance. This is because name sorts
the entire path name whether or not it includes folder names. For example:
all\junk\zebra.txt
everything\important\abacus.txt

By contrast, the none sub-option groups path names that contain folder names and
sorts this group in a separate series from file names that do not include folder
information. The names below are sorted by none:
all\junk\zebra.txt
everything\important\abacus.txt
anotherfile.txt
lonefile.doc
somepix.gif

If no sort option is specified, files are sorted as if sort=none was specified (unless
you have changed configuration defaults).

If you specify the sort option on your command line but do not specify a sub-option
value, the name sub-option is applied.

Note: Using the sort option with the add command only works on new archive files. It
does not work with an archive that is being updated.

 Moving Files to a .ZIP File

move
Normally, when you compress files, you end up with two copies of each file: the
original file and the compressed file. With PKZIP, you can choose to remove the
original file "after" you compress it into the .ZIP file.

If you want to move only specific files, you must compress them separately since you
can only move all or none of the files that you are compressing.

To move files, use the move option with the add command, as shown below:
pkzipc -add -move test.zip *.doc

This sample command line tells PKZIP to compress and add to archive test.zip all
files that end in .doc and then to delete the original files.

CAUTION: Like any operation that deletes files, the move option should be used
with care.

 Shredding Deleted Files

shred
A deleted file still remains on your disk and can often be fully or partly recovered. So
can the temporary files that PKZIP creates when updating an archive. To erase these

 57

files to prevent information from being retrieved from them, use the shred option
with the add command. Shredding a file overwrites the file’s data so that it cannot be
read.

Shredding overwrites these files:

• Deleted originals that have been moved into an archive with the move option

• Temporary files that contain the previous version of an archive that has just
been updated

Note that overwriting files with the shred option takes some additional time.

Shredding can overwrite files only if the file system applies the overwriting to the
same physical disk sectors that the file to be overwritten used. Most UNIX and Linux
file systems do not do this. For this reason, shredding works most reliably on
Windows.

Shredding has a couple of other constraints:

• Files on the Windows NTFS file system that have been encrypted or
compressed by NTFS itself have a special NTFS attribute. PKZIP cannot
shred these files.

• The system temporary folder must be local; it cannot be on a removable or
network drive for shredding to work. PKZIP can delete files that are on a
removable or network drive but cannot shred them.

The shred option has these sub-options:

Sub-Option Description

None Turns shredding off if it is configured on

Random Overwrites files once with random data (the default)

Dod5220 Overwrites files three times, to the DOD 5220.22-M specification

NSA Overwrites files seven times, to the NSA standard. (Takes much longer.)

For example:
pkzipc -add -move -cryptalgorithm -passphrase -shred=NSA
secret.zip *.*

 Working with Self-Extracting (PKSFX) Archives

sfx
If you have the PKZIP Self-Extractor add-on, you can use PKZIP to create PKSFX
archives. A PKSFX archive is self-extracting: it has an .exe file name extension
(instead of .zip, for instance), and it can be extracted just by executing it, even by
someone who does not have PKZIP or another ZIP utility. (PKSFX archives are also
called self-extractors or SFX files, for short.)

Note: You must have PKZIP Enterprise or SecureZIP to create a PKSFX archive.

You can create self-extractors of two general types:

58

• A native command line self-extractor for use in the command line
environment of the operating system on which PKZIP is running. The native
command line self-extractor extracts without using any graphical user-
interface features such as dialog boxes.

• A graphical 32-bit Windows self-extractor for use in the graphical Windows
environment. When run, a graphical Windows self-extractor opens a dialog
that contains controls to view progress or set options for extracting files.

To create a self-extracting archive, use the sfx option with the add command. For
example, the following line creates a native command line self-extractor mysfx.exe:

pkzipc -add -sfx mysfx *.doc

When used without a sub-option, the sfx option creates a native command line self-
extractor by default.

Use the listsfxtypes command to list sfx sub-options for the types of self-
extractors available to you. The exact types vary with your system and license. For
example, the following command

pkzipc -listsfxtypes

may produce a display like this:

The SFX sub-option choices are:

 WIN32_X86_C1230 - V12.30 Command Line SFX for Windows on X86
 WIN32_X86_G1230 - V12.30 Windows SFX for Windows on X86

In the list above, win32_x86_c… designates the native Windows command line self-
extractor, and win32_x86_g… designates the graphical Windows self-extractor. The
digits at the end give the version number.

To create a graphical Windows self-extractor, use the sfx option with the
win32_x86_g1230 sub-option. For example:

pkzipc -add -sfx=win32_x86_g1230 mysfx *.doc

You only need to enter enough of the name of an SFX type to uniquely identify it; you
can leave off the version number at the end:

pkzipc -add -sfx=win32_x86_g mysfx *.doc

You can also use sfx as a command to convert an existing, ordinary ZIP file to a
self-extractor. To do so, use the sfx command by itself on the command line, without
the add command, and specify the ZIP file to convert. For example:

pkzipc -sfx=win32_x86_g1230 myfiles.zip

Notes:

• You cannot use the sfx option with the cd option to create or convert an
archive with encrypted file names

• The sfx command can only convert ZIP archives that are physical files. It
cannot convert ZIP archives that are special files (named pipes, sockets) or
are presented from STDIN.

 Converting a Standard Archive to a Self-Extractor
To convert a standard ZIP file to a self-extracting archive, use the sfx command,
without the add command.

 59

For example, the following command line converts standard archive test.zip to
self-extractor test.exe. PKZIP replaces zip in the file name with exe.

pkzipc -sfx test.zip

 Converting to a Self-Extractor with a Different
Name

Ordinarily, when you use the sfx command to convert a standard archive to a self-
extracting archive, the archive keeps its original name except for the extension, which
PKZIP changes from zip to exe. To give an archive a different name, use the
namesfx option to specify a new name when you convert the archive:

pkzipc -sfx -namesfx=test123.exe test.zip

If you omit the .exe in the new name, PKZIP supplies it.

Note: You cannot use the sfx option with the cd option to create or convert an archive
with encrypted file names.

 Options for Creating Self-Extractors
You can use the following options together with the sfx command/option to
customize a self-extractor in various ways when you create it. The options are
described in the following sections. Default values for all the options can be
configured with the configuration command.

As indicated in the table below, some of the options require a GUI (that is, a
graphical) self-extractor and do not work with command line self-extractors.

Option Works only with GUI Self-Extractors

SFXDestination X

SFXDirectories X

SFXLogfile

SFXOverwrite X

SFXUIType X

RunAfter

SFXDestination
The SFXDestination option specifies a default target folder for extracted files. For
example:

pkzipc -add -sfx=win32_x86_g -sfxdestination="My
Documents\newstuff" mysfx *.doc

If no drive letter is listed in the path, the self-extractor chooses the drive that contains
the temporary folder and appends the path to the temporary folder.

If the specified destination folder or path does not exist, the self-extractor prompts the
user whether to create it.

The SFXDestination option works only with a GUI self-extractor.

60

SFXDirectories
The SFXDirectories option causes the self-extractor to restore saved directory
paths on extraction. To recurse subdirectories and save path information (relative to
the current directory) when you add files to a self-extractor, use the directories
option.

For example, the following command line archives the docs folder and all its files
and subfolders. The docs folder and the saved subfolders are restored on extraction.

pkzipc -add -sfx=win32_x86_g -sfxdirectories -directories mysfx
"docs*.*"

The SFXDirectories option works only with a GUI self-extractor.

SFXLogfile
The SFXLogfile option creates an ASCII text SFX error log named pkerrlog.txt
in the destination directory on extraction.

pkzipc -add -sfx -sfxlogfile test.exe *.doc

SFXOverwrite
The SFXOverwrite option specifies when the self-extractor overwrites files that
have the same name as a file being extracted. The option has the sub-options listed
in the table below.

Sub-option Description

prompt (Default) The user is asked whether to overwrite files

always Files that have the same name in the destination folders are overwritten
without prompting

update Only files that do not already exist or are newer than same-named files

freshen Only newer versions of files that already exist in the destination folders
are extracted; the older files are overwritten without prompting

never Files are never overwritten

For example:
pkzipc -add -sfx=win32_x86_g -sfxoverwrite=freshen mysfx *.doc

The SFXOverwrite option works only with a GUI self-extractor.

SFXUIType
The SFXUIType option specifies the type of graphical interface that the self-extractor
presents to the user. This option only affects GUI self-extractors. (Command line self-
extractors do not present a GUI.) The option has the sub-options listed in the table
below.

Sub-option Description

AutoSFX Presents a dialog that displays a bar to show progress extracting, and a
Cancel button

 61

Sub-option Description

EasySFX (Default) Presents a dialog that enables the user to select a destination
folder and to turn off any runafter option set. (See “Run Programs with
the Self-Extractor,” below.)

RegularSFX Presents a dialog that enables the user to change the destination folder
and other options before the archive is extracted

For example:
pkzipc -add -sfx=win32_x86_g -sfxuitype=regularsfx mysfx *.doc

 Run Programs with the Self-Extractor
Use the runafter option with the sfx option to create a self-extracting archive that
runs a program after the self-extractor is run. This option enables you to create a self-
extractor that runs a script or opens a file after the contents of the self-extractor are
extracted.

The runafter option does not work with the following types of self-extractors:

• DOSJR_X86_C250 - 2.04g compatible SFX Junior for DOS

• DOS_X86_C250 - 2.04g compatible SFX for DOS

Use the listsfxtypes command to list the types of self-extractors available to you:
pkzipc -listsfxtypes

Here are examples showing uses of the runafter option.

Create a self-extractor to open a readme.txt file after extraction:
pkzipc -add -sfx -runafter="notepad.exe readme.txt" test.exe *

Create a self-extractor to open a file by means of its associated application:
pkzipc -add -sfx -runafter ="${}readme.txt" test.exe *

Create a self-extractor to run an install script:
pkzipc -add -sfx -runafter ="${install}install.inf" test.exe *

Create a self-extractor to run an install script, with the full path prepended (%0):
pkzipc -add -sfx -runafter ="${install}%0install.inf" test.exe *

 Extraction Options for the Native Self-Extractor
To extract files from a self-extracting archive, you run the archive. For example, to
extract files from self-extractor test.exe, use the following command line:

test.exe

Note: When extracting encrypted files on UNIX systems from a self-extracting
archive, you may encounter a “Recipient not found” error message. This results from
a change in the certificates database file in SecureZIP Server version 14.0. You
should be able to extract the file as an ordinary ZIP archive using the
noarchiveextension command:

pkzipc -extract -noarchiveextension test.exe

62

When you run a native command line self-extractor, you can use the command line
options listed below. The options can be used only with a native self-extractor; they
cannot be used with a Windows graphical self-extractor:

after locale silent
before lowercase smaller
console mask sort
directories more test
exclude newer times
extract noextended translate
help older version
include overwrite warning
larger passphrase
license print

For example, the following command line excludes all text (.txt) files from the set of
files to be extracted:

test.exe -exclude="*.txt"

 63

4 Extracting Files

This chapter describes the options PKZIP offers for extracting files from archives.
These options give you various ways to choose what files to extract and where to
extract them to and help you manage every aspect of extracting files.

 Default Values for Commands and Options

Commands and options that have sub-options generally have a default value. This is
the sub-option value that is used if none is explicitly specified on the command line.
For example, the default behavior for the extract command is to unzip or
uncompress all files in an archive. This behavior is set with the all sub-option of the
extract command.

See Chapter 7 for information on configuring default sub-option values for commands
and options.

 Extracting New and Existing Files

When you extract files from a .ZIP file, you can select those files you wish to extract
and those you do not. If the directory into which you extract the files contains files
that have the same name as those being extracted, you have to decide if you want to
overwrite those files.

PKZIP provides several ways to choose which files to extract. You can extract:

• All files in an archive (the all sub-option)

• Files that are not in the target extract directory plus files that are more recent
versions of files that are in the extract directory (the update sub-option)

• Only files that are more recent versions of—that is, have the same names
as—files that are already in the extract directory (the freshen sub-option)

 Extracting All Files from an Archive

extract=all
To extract all files from an archive file, type pkzipc -extract and the name of your
archive file, as shown below:

pkzipc -extract test.zip

64

In this example, all files in the archive are extracted into the current directory.

By default, extract uses the all sub-option; you do not need to specify this sub-
option unless you have changed the default for extract to some other sub-option.

The following example explicitly specifies the sub-option. This command does the
same thing as the first example but also overrides any changed default setting. The
override applies only to this instance of the command; it does not reset the default
you have defined.

pkzipc -extract=all test.zip

 Extracting Newer Versions of Existing Files and
New Files

extract=update
Update extracts to the target extract directory only files that are not already in the
directory or are newer versions of files that are already there. Archive files that are
older versions of files already in the directory are not extracted.

pkzipc -extract=update test.zip

 Extracting Only Newer Versions of Files

 extract=freshen
Freshen extracts only files that are newer versions of files that already exist in the
target extract directory. It does not add any files to the directory that are not already
there in an earlier version.

pkzipc -extract=freshen test.zip

 Checking for Viruses when Extracting

avscan, avargs
PKZIP can use your anti-virus program to scan for viruses when you extract files.

The avscan option controls whether extracted files are scanned for viruses and
specifies the anti-virus program to run to do scans.

When you extract with the avscan virus scanning option turned on, PKZIP first
extracts the specified files and then runs the anti-virus program to recursively scan all
files in the specified destination directory and its subdirectories. PKZIP relays to you
any messages returned by the virus scanning program.

If your virus scanner is set up to scan files dynamically as they are read or written,
you do not need launch a virus scan from PKZIP. Your virus scanner will
automatically scan the files as they are extracted.

How your anti-virus program deals with files infected by a virus is determined by the
way the program is configured and by the arguments, if any, included in the PKZIP
command line used to run the scanner. The contents of the command line used to
run the scanner and the arguments that may be available for it depend on your anti-
virus program.

 65

Use the PKZIP avargs option to specify any anti-virus command line arguments. To
tell the anti-virus program what directory to scan, include the variable %e. PKZIP
replaces this variable with the full path to the extraction directory before passing the
command line to the anti-virus program.

The following example shows avscan used to run a virus-scanning program. The
variable %e and arguments for the virus-scanning program’s command line are given
in the avargs option.

pkzipc -extract -avscan=f-prot.exe -avargs="%e /silent /nomem
/noboot" myfiles.zip

In avscan, specify the full path to the anti-virus program if the executable is not on
the search path.

PKZIP assumes that the anti-virus program will not launch any graphical interfaces
that require user interaction and that the program will automatically clean up any
viruses that it finds.

Most virus scanning programs return a value of 0 when a scan completes
successfully and finds no viruses. If a program returns any other value as the result
of a scan, PKZIP issues a warning that some of the extracted files may not have
passed the scan.

Both avscan and avargs can be configured for use by default. Configuring avscan
causes PKZIP to do virus scans by default whenever files are extracted, using the
specified anti-virus program executable and whatever anti-virus command line
arguments, if any, are given in avargs.

 Extracting from an Archive Embedded in an Archive

embedded
An archive can contain other archive files. For example, a ZIP file can contain other
ZIP archives, or a GZIP archive might contain a TAR archive. Such contained
archives are said to be embedded in the archive that contains them.

If PKZIP encounters a lone embedded archive file in another archive whose contents
PKZIP is extracting, PKZIP prompts you whether you would like to extract the
contents of the embedded archive or just the archive itself. For example, if PKZIP is
extracting the contents of outerarchive.zip, and outerarchive.zip contains
innerarchive.zip, PKZIP asks you whether you want to extract the files in
innerarchive.zip or just innerarchive.zip itself.

The embedded option can be used with extract to tell PKZIP to omit the prompt
and just go ahead and extract the files contained in any lone archive file embedded in
an archive of the specified type. You must specify the type of the outer, container
archive for which you want to extract files from embedded archives.

For example:
pkzipc -extract -embedded=zip outerarchive.zip

In the example, if outerarchive.zip contains a single embedded archive (it may also
contain non-archive files), PKZIP extracts the files from the embedded archive
instead of extracting the embedded archive itself, and does not prompt.

66

The embedded option can be configured to operate by default. For example, the
following command line configures embedded so that files are routinely extracted
from single archives (such as .tar archives) embedded in .gz files:

pkzipc -config -embedded=gz

Put a hyphen in front of the embedded sub-option to tell PKZIP not to prompt or
extract the contents of an embedded archive in an archive of a specified type. A
command line containing a hyphenated sub-option overrides a configured setting.
For example, the following command line extracts only an embedded archive, not its
files:

pkzipc -extract -embedded=-gz outerarchive.gz

Note that PKZIP extracts the contents of an embedded archive, with or without
prompting, only if that archive is the only embedded archive in the outer archive file. If
the outer archive file contains multiple embedded archives, the embedded archive
files themselves are extracted.

 Extracting Passphrase-Protected Files

To extract files from a passphrase-protected archive, use the extract command
with the passphrase option.

• Type the passphrase (preceded by an equal sign) as part of your command.
For example:

pkzipc -extract -passphrase=mysecret test.zip

If the passphrase is correct, the files are extracted (to the current directory,
by default). If the passphrase is incorrect, PKZIP displays a warning
message:

PKZIP: (W20) Warning! Incorrect passphrase for file: filename.ext

Re-type your command line with the correct passphrase.

• If you specify the passphrase option without a passphrase, PKZIP prompts
for a passphrase. For example:

pkzipc -extract -passphrase test.zip

When you press ENTER, a prompt appears:
Passphrase?

Type the passphrase. The characters appear on the screen as asterisks, for
security. Press ENTER. If you specified the correct passphrase, the files will
be extracted to the current directory. If the passphrase you entered is
incorrect, a warning message displays:

PKZIP: (W20) Warning! Incorrect passphrase for file: filename.ext

Retype your command line and when prompted enter the correct
passphrase.

• If you do not specify the passphrase option when extracting an archive that
contains passphrase-protected files, PKZIP warns that the encrypted files are
being skipped, and the files are not extracted.

Note: Many other ZIP utilities can decrypt archives encrypted with traditional ZIP
encryption. When a ZIP utility that can read strongly encrypted ZIP files is not
available, use ZIP Reader

 67

Note: Passphrases are case sensitive.

Note: For greater security, enter passphrases at the prompt so that asterisks hide the
characters you are entering. For information on using passphrases in scripts, see
Appendix Error! Reference source not found..

 Extracting an Archive on STDIN or a Special File

Ordinarily, when you use the extract command to extract files from an archive, you
extract the files from a physical archive file. For example, the following command line
extracts all .txt files from the archive myfiles.zip:

pkzipc -extract myfiles.zip *.txt

PKZIP can also extract files from an archive that is not a physical file but is presented
from an input source such as STDIN or a named pipe.

Note: Some options are not supported when extracting from an archive that is not a
physical file. In particular:

 • Signatures (added with the sign option) on either files or the archive central
directory are not processed.

 • Because signatures are not processed, the verifysigner extraction option
always fails. (This option requires verification that an archive was signed
using a specified certificate.)

 • File name encryption (cd option) is not supported.

 Extracting from an Archive on STDIN
You can specify STDIN (standard input) instead of a physical file as the location or
source of an archive from which to extract files. To do so, use a hyphen “-” in place of
the name of an archive file. In a command line with the extract command (or the
test or view command), the hyphen tells PKZIP to read the archive from STDIN.
For example:

pkzipc -extract -noarchiveextension -silent=input -

The noarchiveextension option is needed so that PKZIP does not take the
hyphen as a file name and try to extract from a file named -.zip. If the archive is not
a ZIP archive, use the archivetype option to specify its type. For example, the
following command line tells PKZIP that the file is a BZIP2 archive:

pkzipc -extract -archivetype=bzip2 -noarchiveextension -
silent=input -

The option silent is set to the input sub-option to suppress any PKZIP requests
for input (a passphrase, for example). If input is needed, the extraction fails with an
error.

See “Writing an Archive to STDOUT” in Chapter 0 for a way to create an archive that
is presented through STDIN.

 Extracting an Archive from a Named Pipe
You can specify a named pipe instead of a physical file as the location of an archive
from which to extract files. The pipe or socket must first be created, perhaps by

68

another program, and an archive must be written to it. To extract, use the name of
the pipe in the command line in place of the name of an archive file. For example:

pkzipc -extract -noarchiveextension <name of pipe>

As when extracting from STDIN, you must use the noarchiveextension option to
prevent PKZIP from trying to extract from a .zip file—in this case, one named for
the pipe or socket.

PKZIP tries to extract from ZIP-format archives by default. To extract from a different
type of archive, use the archivetype option to specify the type. For example, the
following command line tells PKZIP that the archive is a BZIP2-format file:

pkzipc -extract -archivetype=bzip2 -noarchiveextension <name of
pipe or socket>

You must use the full UNC path when referring to a named pipe on Windows. For
example:

pkzipc -extract -noarchiveextension \\.\pipe\mypipe *.doc

In the preceding example, the dot in the path
\\.\pipe\mypipe

references the current machine. To reference a pipe on a different machine—named
boulder—specify the machine.

\\boulder\pipe\mypipe

You can use either a name or an IP address to specify a machine.

You must use the noarchiveextension option to prevent PKZIP from trying to
extract from an archive file named .zip.

substitution
With the substitution option, you can extract the contents of an archive to a
folder whose name and path are constructed on the fly from tokens embedded in the
specification for the destination folder on the command line. PKZIP creates the actual
name of the folder by substituting values for the tokens when the archive is extracted.
Tokens are supplied that enable you to name the folder after the archive to be
extracted to it, replicate the path to the archive, and embed timestamp elements.

With this option, you can use a single command line to extract multiple archives each
to its own custom-named folder.

The table below lists the tokens for use with the substitution option when
extracting.

Token Replaced by

{archivename} Base name of archive, without the extension

{archiveext} The file name extension of the archive

{archivepath} The path of the archive, without the file name, preceded by a slash or
backslash and excluding the drive letter or share path if the name is a
UNC name

{id} A job ID specified separately with the jobid option. For example, if run
in 2006:

pkzipc -add -jobid=myJob -substitution {id}{yyyy}.zip *.doc

 69

produces a ZIP file named:

myJob2006.zip

{mm} Month, 2-digit

{m} Month, 1-digit (if possible); no leading 0

{dd} Day, 2-digit

{d} Day, 1-digit (if possible); no leading 0

{yyyy} Year, 4-digit

{yy} Year, 2-digit

{HH} Hour, 2-digit, 24-hour format

{H} Hour, 1-digit (if possible), 24-hour format

{hh} Hour, 2-digit, 12-hour format

{h} Hour, 1-digit (if possible), 12-hour format

{MM} Minute, 2-digit

{M} Minute, 1-digit (if possible); no leading 0

{SS} Second, 2-digit

{S} Second, 1-digit (if possible); no leading 0

{ampm} a.m. or p.m. indicator to identify current 12-hour segment of the day

The following command line shows a straightforward example of the substitution
option. The command line extracts all ZIP files in the current directory, each to a
subdirectory named after the ZIP archive extracted there. If two ZIP files,
myfiles.zip and myfiles2.zip, are in the current directory, the command line
extracts them to subfolders named myfiles and myfiles2, respectively.

pkzipc -extract -substitution *.zip {archivename}\

The example below uses the {archivepath} token to specify the archive path for the
destination folder. The {archivepath} token includes a leading backslash (or slash).
The command line extracts all ZIP files in folder \home\thomas\ each to its own
subfolder in other\location\home\thomas\. For example, it extracts
myfiles.zip in folder \home\thomas\ to subfolder
other\location\home\thomas\myfiles.

pkzipc -extract -substitution \home\thomas*.zip
\other\location{archivepath}\{archivename}\

If run from C:\myproject, the command line below extracts all ZIP files to
C:\myproject\test. The dot in the specification for the target folder locates the
start of the extraction path in the current folder. The drive letter is stripped.

pkzipc -extract -substitution D:\test*.zip .{archivepath}\

If the date is July 31, 2008, and the directory C:\app1\ contains myfiles.zip and
test2.zip, the command line below extracts test1.zip to folder test1-
07312008 and test2.zip to folder test2-07312008:

pkzipc -extract -substitution C:\app1*.zip {archivename}-
{mm}{dd}{yyyy}\

70

The following example shows how {archivepath} strips out a share path. If
\\server\share\path\to\zips contains test1.zip and test2.zip, and the
current directory is d:\testme, the command line extracts test1.zip to
d:\path\to\zips\test1 and extracts test2.zip to
d:\path\to\zips\test2:

pkzipc -extract -substitution \\server\share\path\to\zips*.zip
{archivepath}\{archivename}\

The example below uses the substitution option when extracting an archive from
STDIN, represented by a hyphen (-) in the command line (see “Extracting an Archive
on STDIN or a Special File”). If the date is July 31, 2008, an archive provided on
STDIN is extracted to directory \-07312008. In this case, {archivepath} and
{archiveext} are replaced with nothing, and {archivename} is replaced with a hyphen.

pkzipc -extract -substitution -noarchiveextension -
{archivepath}\{archivename}{archiveext}{mm}{dd}{yyyy}

The substitution option can also be used with the add command and a slightly
different set of tokens to insert a timestamp in the name of a newly created or
updated archive. See “Inserting a Timestamp in the Archive File Name” in Chapter 6.

 Extracting Files in Lower Case

lowercase
The lowercase option allows you to extract files in lower case regardless of how the
file name was originally archived. To force the file names to be extracted in
lowercase, use the following example:

pkzipc -extract -lowercase test.zip

 Preserving File Times

times
The times option allows you to preserve the access, creation and modification times
of the extracted files. Specify the sub option all to preserve all times, use access to
preserve the access times only, use modify to restore the time of last modification
times or create to restore the creation times.

To preserve all the file times, use the following example:
pkzipc -extract -times=all test.zip

 Retaining Directory Structure while Extracting

directories
If you stored directory path information within a .ZIP file, you can re-create those
directory paths when you extract the files. For example, if you compressed a file
called apples.doc in the temp/fruit directory, and you stored temp/fruit you can re-
create temp/fruit in the location in which you extract the files.

 71

To re-create directories, use the directories option with the extract command,
as in the following example:

pkzipc -extract -directories test.zip

When you use this command, all directories that were stored in the .ZIP file will be
retained during extraction. The directory path stored is appended to the directory in
which you extract the files. For example, if your extract directory is /doc, and a
directory path stored with the files is temp/fruit, the files would now be extracted to
/doc/temp/fruit.

 Retaining Zone Identifier Information for Downloaded
Files

zoneidentifier
When you download a file from any other computer with Microsoft Internet Explorer,
the browser attaches “security zone” information about the computer hosting the file.
These zones are labeled Local Intranet, Trusted Sites, Internet, and Restricted Sites.
As a result of this “zone identifier,” you may receive a warning about files received
from the Internet from Windows before you open or activate the file, depending on
your Internet Options settings.

By default, PKZIP does not retain this information when you extract files from an
archive that contains this information. The zoneidentifier command allows you
to preserve that information if you are extracting from an NTFS-formatted drive to
another NTFS-formatted drive.

Note: Only NTFS volumes can preserve and process Zone Identifier information.
Volumes created with FAT (the default file system for Windows 98 and earlier), or UNIX-
based file systems will not preserve this alternate stream. This would include files saved
in IE to temporary directories on non-NTFS systems.

To specify that all extracted files in MyDownloadedFiles.zip retain its Zone
information, type:

pkzipc -extract -zoneidentifier MyDownloadedFiles.zip

To configure PKZIP to preserve the Zone information whenever possible, use this
command:

pkzipc -config -zoneidentifier=enable

 Sorting Files in the Extract Directory

sort
PKZIP allows you to specify the sort order of files that are compressed in a .ZIP file
or extracted into a destination directory. For example, if you wish to extract files in a
specified sort order (by date), you would type the following and press ENTER:

pkzipc -extract -sort=date test.zip

In this example, all files that exist in the test.zip file are extracted into the current
directory sorted in ascending order by date. For more information on sort options, see
Appendix A.

72

 Extracting Files Only for Display

console
PKZIP gives you the option of displaying specific files contained in a .ZIP file to your
computer monitor. For example, if you wish to view the contents of all of the .txt files
contained in a .ZIP file, type the following and press ENTER:

pkzipc -console test.zip *.txt

In this example, all files with a .txt extension that exist in the test.zip are displayed on
the monitor. Since many .ZIP files contain an information document (e.g.,
readme.txt), the console option is a good way to determine the contents of a .ZIP
file without requiring you to extract a file or file(s) to your hard drive.

Note: You can also use the console and silent options to redirect files to pipe
files directly to another program on Windows XP (and later) systems.

 Extracting Files with a List File

You can use a list file to specify files to extract from an archive. In the list file, specify
file and path name information to identify the target files. You can explicitly list
individual files to extract, or you can use wild card characters (*, ?) to specify
multiple files in a single entry. For example, entries like the four below are permitted:

Fred\My Documents\tmp\yparent\ychild\ychild1.txt
Documents and Settings\Fred\My Documents\tmp\yparent*.txt
dparent?.txt
*.xls

How you identify files in an archive depends on the path information that was
archived with them. In an archive, path information is treated as part of a file name for
purposes of identification. So d*.txt does not just get all .txt files whose names
start with d in the root folder of an archive; it gets all .txt files whose pathname
starts with d. For example, it would get these files:

Documents and Settings\Fred\My Documents\tmp\yparent*.txt
dparent?.txt

Do not use drive letters in a list file used to extract. Drive letters are not saved with
other path information in an archive and are not allowed in extraction list file entries.

To specify a list file to use to extract, prefix the pathname of the list file with the @
character on the command line after the name of the archive. For example, the
following line extracts using list file mylist.txt:

pkzipc -extract test.zip @tmp\mylist.txt

See the listfile option for information on using this option to create a list file. See
the view option for information on viewing path information saved in an archive.

 Authenticating Digital Signatures

When you extract files from an archive or test an archive with the test command,
PKZIP authenticates any digital signatures attached to the files or the archive. A
digital signature, like a pen-and-ink signature, warrants that the signed item really
comes from the signer and has not been changed.

 73

You can use the test command on an archive to check for a signature before
extracting files. Testing tells you whether files are signed, authenticates any
signatures, and gives you information about certificates used to sign files. PKZIP
authenticates signatures automatically when extracting.

Use the crl option to have PKZIP check an accessible certificate revocation list
(CRL) to see if a certificate used for signing has been revoked. (See “Checking for
Revoked Certificates” in Chapter 5.)

Signatures can be applied to particular files and/or to the central directory of an
archive (that is, to the archive itself).

The following table lists warning messages that can appear when you test or extract
signed files, causing PKZIP to authenticate signatures.

Message Explanation What to do?

Signature
is invalid

The file or archive has
changed since it was
signed.

The archive may be
corrupt.

You may want to try to obtain the file again (for
example, download the file again from the
Web site).

Contact the archive creator as the file/archive
has been compromised. If the file was
downloaded from a Web site, you may want to
contact a person at that company about the
file.

If a file has an invalid signature, then the file
may have been modified.

If the central directory has an invalid signature,
then file(s) have been modified, added or
deleted from the archive since the archive was
signed.

Certificate
is not
trusted

The certificate used to
sign is currently not to be
trusted.

This message indicates that the certificate is
not to be trusted, but there may be no problem
with the archive.

Contact the issuer of the certificate to validate
the certificate/signature.

Certificate
is expired

The certificate has
expired (perhaps
because the archive was
signed a long time ago).

Contact the owner of the certificate.

This message indicates that the certificate is
not to be trusted, but there may be no problem
with the file or archive.

Certificate
is revoked

Indicates the issuer has
revoked the certificate.

Contact the issuer or owner of the certificate.

This message indicates that the certificate is
not to be trusted, but there may be no problem
with the file or archive.

Certificate
not found:
XXX

The certificate for the
signature could not be
found on your system.

Check to see if the certificate name was
misspelled.

Confirm that the certificate is on the system.

74

 Extracting Only Trusted Archives

verifysigner
With the verifysigner option, you can set PKZIP to extract an archive only if the
archive is signed using one of a specified set of certificates. If the verifysigner
option is used, PKZIP will extract an archive only if these two conditions are met:

• The archive central directory is signed using a certificate specified with the
option

• PKZIP can find a copy of each certificate specified with the option, containing
the public key, in the local store

For example, the following command line extracts only if the archive is signed by
John Smith, and PKZIP can find the certificate used to sign:

pkzipc -extract -verifysigner="John Smith" important.zip

You can use the option multiple times in the same command line to specify more
than one acceptable, trusted signer:

pkzipc -extract -verifysigner="John Smith" -verifysigner="Jane
Doe" important.zip

The command line above extracts if the archive is signed by either John Smith or
Jane Doe, but certificates for both John Smith and Jane Doe must be found.

The requirement that PKZIP be able to find a copy of a signer’s certificate locally (or
on a directory server) ensures that the signer is the person you think he is. If PKZIP
only authenticated the signature without also checking its certificate, you would know
that an archive really was signed by someone named John Smith, but you would not
know if this John Smith is the same John Smith whose certificate you have.

 Specifying Trusted Signers
You can specify a list of trusted certificates/signers either by specifying each
certificate individually on the command line or by specifying a file that contains a list.

By default, PKZIP searches for certificates for listed recipients only in the system’s
local certificate stores.

 Specifying Trusted Signers Individually
You can specify a trusted signer using any of the following criteria:

Criterion To use For example

Common name Specify, in quotes, the common
name of the subject of the
certificate (that is, the cn field in a
string representation of a
certificate); optionally, precede
with:

 cn=

By default, SecureZIP searches
for certificates by common name
unless another sub-option is used
or the value appears to be an
email address.

-verifysigner=cn="John
Public"

-verifysigner="John Public"

 75

Criterion To use For example

Email address Specify the email address of the
certificate (that is, the e field in a
string representation of a
certificate); optionally, precede
with:

 e=

SecureZIP automatically looks for
an email address if the string
contains an @ and a dot and looks
like an email address.

Note that a certificate must
contain an email address in order
to be found by this method. Not all
certificates embed an email
address.

-
verifysigner=e=john.public@xy
z.com

-
verifysigner=john.public@xyz.
com

 Specifying a File That Lists Trusted Signers
PKZIP can extract a list of certificates from these kinds of files:

• An ordinary text file that lists the common name of each certificate on a line
by itself

To use the verifysigner option to specify an ordinary text file list as a
sub-option, prefix the file name with the listfile character (@, by default):
pkzipc -extract -verifysigner=@my_list_file.txt test.zip

• A PKCS#7 or PKCS#12 file: These kinds of files can contain one or more
actual certificates. PKCS#7 files have the file name extensions .p7b and
.p7c and do not contain private keys, only public ones. PKCS#12 files have
the file name extensions .pfx and .p12 and may contain private keys as
well as public keys.

To use the verifysigner option to specify one of these types of file to
define a list comprising the owners of the certificates in the file, prefix the file
name with a hash (#) character:
pkzipc -extract -verifysigner=#my_cert_file.p7b test.zip

The verifysigner option can be configured for use by default.

76

5 Working with Digital Signatures

With SecureZIP, you can attach a digital signature to files in an archive, or to an
archive itself. A digital signature assures people who receive the signed file that it is
really from the person who signed it and has not been changed.

Note: PKZIP authenticates digital signatures on files signed by others, but you must
have SecureZIP to attach digital signatures of your own.

SecureZIP allows you to digitally sign either individual files in an archive or the
central directory of the archive, or both. The central directory contains a list of files in
the archive. Signing the central directory enables a recipient to confirm that the
archive as a whole has not changed. Both PKZIP and SecureZIP authenticate digital
signatures on extraction.

SecureZIP signing functionality is based on the X.509 certificate standard and is
compatible with standard authenticity functionality in other applications such as
Microsoft's Internet Explorer. These certificates must be in 1024-bit (minimum) RSA
format and must contain a private key.

SecureZIP also supports digital signatures under the OpenPGP (RFC 4880)
certificate standard. PKZIP will authenticate certificates validated by PGP key rings
on your system.

To use SecureZIP to sign files, you must have a digital certificate. Digital certificates
are available from various certificate authorities. Visit the PKWARE Web site for
information on obtaining a certificate:

http://www.pkware.com

This chapter describes the SecureZIP tools and commands that work with digital
certificates under both X.509 and OpenPGP standards.

 Public-Key Infrastructure and Digital Certificates

SecureZIP uses digital certificates in two important contexts:

• Confirming and authenticating a person’s identity through a digital signature

• Encrypting and decrypting files through the use of recipient lists

To apply or authenticate digital signatures, or to encrypt or decrypt files for recipients,
PKZIP needs to access keys in the certificates used. In this section, you’ll learn some
background and terminology that will help you understand how digital certificates
work.

http://www.pkware.com/�

 77

 Public-Key Infrastructure (PKI)
Use of digital certificates for encryption and digital signing relies on a combination of
supporting elements known as a public-key infrastructure (PKI). These elements
include software applications such as SecureZIP that work with certificates and keys
as well as underlying technologies and services.

The heart of PKI is a mechanism by which two cryptographic keys associated with a
piece of data called a certificate are used for encryption/decryption and for digital
signing and authentication. The keys look like long character strings but represent
very large numbers. One of the keys is private and must be kept secure so that only
its owner can use it. The other is a public key that may be freely distributed for
anyone to use to encrypt data intended for the owner of the certificate or to
authenticate signatures.

 How the Keys Are Used
With encryption/decryption, a copy of the public key is used to encrypt data such that
only the possessor of the private key can decrypt it. Thus anyone with the public key
can encrypt for a recipient, and only the targeted recipient has the key with which to
decrypt.

With digital signing and authentication, the owner of the certificate uses the private
key to sign data, and anyone with access to a copy of the certificate containing the
public key can authenticate the signature and be assured that the signed data really
proceeds unchanged from the signer.

Authentication has one additional step. As an assurance that the signer is who he
says he is—that the certificate with Bob’s name on it is not fraudulent—the signer’s
certificate itself is signed by an issuing certificate authority (CA). The CA in effect
vouches that Bob is who he says he is. The CA signature is authenticated using the
public key of the CA certificate used. This CA certificate too may be signed, but at
some point the trust chain stops with a self-signed root CA certificate that is simply
trusted. The PKI provides for these several layers of end-user public key certificates,
intermediate CA certificates, and root certificates, as well as for users’ private keys.

 X.509
X.509 is an International Telecommunication Union (ITU-T) standard for PKI. X.509
specifies, among other things, standard formats for public-key certificates. A public-
key certificate consists of the public portion of an asymmetric cryptographic key (the
public key), together with identity information, such as a person’s name, all signed by
a certificate authority. The CA essentially guarantees that the public key belongs to
the named entity.

 Digital Certificates
A digital certificate is a special message that contains a public key and identity
information about the owner, usually including name and perhaps email address. An
ordinary, end-user digital certificate is digitally signed by the CA that issued it to
warrant that the CA issued the certificate and has received satisfactory
documentation that the owner of the certificate is who he says he is. This warrant,
from a trusted CA, enables the certificate to be used to support digital signing and
authentication, and encryption of data uniquely for the owner of a certificate.

For example, Web servers frequently use digital certificates to authenticate the server
to a user and create an encrypted communications session to protect transmitted
secret information such as Personal Identification Numbers (PINs) and passphrases.

78

Similarly, an email message may be digitally signed, enabling the recipient of the
message to authenticate its authorship and that it was not altered during
transmission.

To use PKI technology in SecureZIP for encryption and to attach digital signatures,
you must have a digital certificate.

 Certificate Authority (CA)
A certificate authority (CA) is a company (usually) that, for a fee, will issue a public-
key certificate. The CA signs the certificate to warrant that the CA issued the
certificate and has received satisfactory documentation that the owner of the new
certificate is who he says he is.

 Private Key
A private key is used to decrypt data encrypted with the associated public key and to
attach digital signatures.

A private key must be accessible solely by the owner of the certificate because it
represents that person and provides access to encrypted data intended only for the
owner.

SecureZIP may use a private key maintained in X.509 PKCS#12 format. To access
such keys, a password must be entered for each SecureZIP request.

 Public Key
A public key consists of the public portion of an asymmetric cryptographic key in a
certificate that also contains identity information, such as the certificate owner’s
name.

The public key is used to authenticate digital signatures created with the private key
and to encrypt files for the owner of the key’s certificate.

 Certificate Authority and Root Certificates
End entity certificates and their related keys are used for signing and authentication.
They are created at the end of the trust hierarchy of certificate authorities. Each
certificate is signed by its CA issuer and is identified in the “Issued By” field in the end
certificate. In turn, a CA certificate can also be issued by a higher level CA. Such
certificates are known as intermediate CA certificates. At the top of the issuing chain
is a self-signed certificate known as the root.

SecureZIP uses public-key certificates in PKCS#7 format. The intermediate CA
certificates are maintained independently from the ROOT certificates.

 Using Digital Signatures

This section describes less common tasks relating to signing archives and files inside
archives. You will also see special tasks for using and handling certificates in
Windows and UNIX systems. See “Attaching Digital Signatures” in Chapter 3 and
“Authenticating Digital Signatures” in Chapter 4 for information on these tasks.

 79

 Attaching a Signature to an Existing Archive
You can use sign as a command to sign an existing archive’s files as well as its
central directory.

Examples:

To digitally sign all files and central directory in save.zip using the "My Name"
certificate:

 pkzipc -certificate="My Name" -sign=all save.zip

To digitally sign *.doc in save.zip using the "My Name" certificate
 pkzipc -certificate="My Name" -sign=files save.zip *.doc

To digitally sign the central directory of save.zip using the "My Name" certificate
 pkzipc -certificate="My Name" -sign=cd save.zip

Note: If you intend to perform multiple operations on the archive, always put -sign last.

 Applying Strict Checking to Certificates

strict
The strict option is for use when doing certificate-based encryption or attaching
digital signatures. The option turns on strict checking: in other words, it checks to be
sure that certificates are

• Valid

• Designated (on the certificate) to be used for the purpose for which they are
about to be used in the current command line, namely, encryption or signing

A field on the certificate shows whether the certificate is designated for use only for a
specified purpose. Strict checking excludes certificates that are either not designated
for any purpose or are designated for the wrong one. For example, strict checking
excludes a certificate from being used for encryption if it is designated for signing.

Note: Strict checking only applies to X.509 certificates.

The usage flags listed in this table can optionally be turned off before a strict check is
performed:

 Option Description

KeyUsage Check the purpose for which the certificate is designated (encryption or
signing).

TimeNesting Check whether the period of validity of the certificate does not extend
past the dates when the issuer certificate is valid. For example, if the
issuer certificate is valid from February 1, 2005, to January 31, 2008,
the date range during which the selected certificate is supposed to be
valid does not begin before February 1, 2005, or end after January 31,
2008.

TimeValid Check whether the current date is within the valid range of dates for the
certificate

The following command line applies strict checking to the certificate to be used to
encrypt for a recipient:

80

pkzipc -add -cryptalgorithm -recipient="John Q. Public" -strict
test.zip *.doc

If a certificate does not pass strict checking, it is not used, and PKZIP displays a
warning like the following:

(W76) Warning! John Q. Public does not pass the strict certificate
checks, and will not be used.

When a certificate fails strict checking and is not used, other warnings may display as
well. For example, if the certificate in the sample command line above fails strict
checking, PKZIP also displays the following two warnings because a strong
encryption method was specified (cryptalgorithm) but no certificate survived
strict checking:

(W47) Warning! No recipients specified

(W63) Warning! You must specify -passphrase or -recipient to encrypt
files!

 Checking for Revoked Certificates

crl
Digital certificates used to apply signatures and to do recipient-based encryption are
issued by a certificate authority (CA).

Periodically, CAs publish lists of certificates that have been revoked for one reason or
another. For example, an employer might request revocation of a certificate that
belongs to an employee who has left the company. Or revocation might be requested
for a certificate that has been lost or stolen with its private key.

A CA’s list of revoked certificates is called a certificate revocation list (CRL). It
consists of a file that contains serial numbers of certificates that have been revoked
and the dates. The CRL is signed by the issuing CA.

The crl option tells PKZIP to check to see if a certificate that you propose to use for
digital signing, encryption, or authentication appears in a CRL accessible to PKZIP. If
it does, PKZIP displays a warning, (W42) Certificate was revoked.

Note: CAs periodically update CRLs. The fact that you can use the crl option and not
receive a warning only guarantees that the certificate you accessed is not on a CRL that
PKZIP checked. The certificate could still have been revoked subsequent to publication
of your list.

The following sample command line checks any certificates used for signatures in an
archive to be extracted:

pkzipc -extract -crl test.zip

You can configure the crl option so that it is used by default.

The following command line checks the certificate used to encrypt for a recipient:
pkzipc -add -recipient="John Q. Public" -crl test.zip *.doc

The command line below checks the certificate used to apply John Adams’ signature
to an archive:

pkzipc -add -certificate="John Adams" -crl test.zip

To have PKZIP refuse to use a revoked certificate for signing or encrypting, use the
strict option. Unless you include the strict option, PKZIP merely warns if a
certificate is revoked and uses it anyway for signing or encrypting.

 81

The following sample command line checks the certificate used to encrypt for a
recipient and uses the strict option to ensure that the certificate is used only if it is
not known to be revoked:

pkzipc -add -recipient="John Q. Public" -crl -strict test.zip
*.doc

 Obtaining a CRL
Certificate authorities commonly make CRLs available for downloading on their Web
sites. A CA is apt to provide different CRLs for different series or types of certificates.
You must find the CRL for the type of certificate that you want to use it for.

For PKZIP to access a CRL, the CRL must be downloaded and imported into a
certificate store that PKZIP checks for certificates. Such a downloaded and imported
CRL is called a static CRL to distinguish it from a dynamic CRL that may be
published on the Web. PKZIP does not access CRLs published on the Web.

In Windows, you can import a CRL by double-clicking the downloaded file.

 Using Digital Certificates on Windows
Microsoft Windows sets up certificate stores on the local system, and you can use
the Windows Control Panel to work with certificates, private and public keys.

 Exporting Public Keys in Windows
If an archive is signed or contains signed files, certificates that have the public keys
needed to authenticate the signatures are included in the archive. You can export
these public key certificates to install on your system if you do not already have them.
(A method that works on most Windows systems is to right-click the exported
certificate file in Windows Explorer and choose Install certificate.) Once the certificate
is installed, you can use its key with email that you send or receive from the owner.To
export public keys for certificates used to sign files in the current archive:

1. Choose Export to open a Save As dialog.

2. Enter a name and location for the file.

Typically, this type of file will have the file name extension.p7c unless you specify a
different one.

Note: A .p7c file can contain all the certificates in a certificate chain. Certificates are
issued in chains: one certificate may be issued by another certificate further back in the
chain. The chain starts with a root certificate issued by a trusted certificate authority.

 Backing Up Private Keys in Windows
You can back up a private key to a .pfx file from the Windows Control Panel or
Internet Explorer. The following steps describe how to do this in Windows 7 with
Internet Explorer version 8. The specific process will differ, depending on your
version of Internet Explorer.

1. Go to Start > Control Panel > Internet Options.

2. Select the Content page and click Certificates.

3. Select a certificate and choose the Export button to open the Certificate
Export Wizard.

4. In the Export Wizard screen, click Next >.

5. The Export Private Key screen appears. Select “Yes, export the private key.”

82

6. In the Certificate Export File Format screen select "Personal Information
Exchange” and check the box "Include all certificates in the certificate path if
possible" and check the box "Enable strong protection". Click Next >.

7. Type an export password twice. Click Next >.

8. Use the Browse button to identify the directory where the certificate is to be
stored. Name the file. Click Next >.

9. Click Finish to complete the Certificate Manager Export Wizard.

 Importing an Exported Certificate
To restore a previously exported certificate to your Windows system:

1. Go to Start > Control Panel > Internet Options.

2. Select the Content page and click Certificates.

3. Click Import… to open the Certificate Import Wizard.

4. In the Export Wizard screen, click Next >.

5. In the File to Import box, click Browse and locate the saved Certificate file.
Use the dropdown menu on the right to change X.509 Certificate (*.cer;*.crt)
to the .PFX extension, Click the file, click Open, and then click Next >.

6. Type the password in the Password Protection for Private Keys box to
access the file, click to select both the Enable strong private key
protection and the Mark the private key as exportable boxes, and then
click Next >.

7. In the Certificate Store screen, choose whether to Automatically select the
Certificate Store based on the type of certificate, or keep all certificates in a
specific store (most likely Personal). Click Next .

8. Click Finish to complete the Certificate Import Wizard.

9. In the screen that appears, click Set Security Level.

10. Select "High" to activate password protection for your certificate. Click Next.

11. Enter the new password twice and click Finish.

See the second note in “Notes on Using Certificates in Windows” for more
information on setting security levels.

 Notes on Using Certificates in Windows
• PKZIP does not work directly with Netscape certificate stores. For PKZIP to

access a certificate that you used Netscape to install, you must export the
certificate from Netscape and then install it in the Windows certificate stores
(usually by double-clicking on the certificate file in Windows Explorer).

• When you install a certificate on your system, the level of security configured
can affect what you may see when compressing files with digital certificates.
The level of security— medium or high—determines what type of notification
you may see when your private key is accessed by an application. Since
SecureZIP uses your private key to sign a file, you may receive additional
prompts or dialogs when signing a file.

If you selected low security, SecureZIP will be allowed to access your private
key as needed with no additional prompts or dialogs. If you use medium
security (the default), you will receive an additional notification dialog each
time you access the private key. If you use high security, you will be

 83

prompted to enter the passphrase (the one entered when the certificate was
installed on your computer) before the certificate can be used.

 Advanced Encryption Options in Windows

cryptoptions
This option covers three special cases involving encryption under Windows. One
sub-option enables Windows systems equipped with newer Intel processors that
include an AES instruction set to take advantage of the increased encryption speed.
The other two sub-options enable PKZIP to support certificate-based encryption
compatible with most smart cards.

The FastAES sub-option tells PKZIP to use the fastest version of the Advanced
Encryption Standard (AES) available on the system. This option is only available if
FIPS Mode is disabled, as this option is not FIPS-compatible. See “Encrypting Using
Only FIPS-Approved Algorithms” for more information on FIPS. By default, this sub-
option is turned off.

On Windows, PKZIP can access certificates stored on smart cards to decrypt
strongly encrypted files if the smart cards work with Windows’ facilities for managing
digital certificates.

These two cryptoptions sub-options are both on by default. They can be turned
off to provide compatible certificate-based encryption for two special cases:

• smartcard sub-option: Turn off to support certificate-based encryption for
recipients using versions of PKZIP v6.0 or earlier.

• win2000 sub-option: Turn off to provide pure AES certificate-based
encryption

The smartcard sub-option enables smart cards to decrypt files encrypted for a
recipient list. However, if the smartcard sub-option is set, versions of PKZIP prior to
6.1 cannot decrypt files encrypted for a recipient list. To enable users of these earlier
versions of PKZIP to decrypt such files, turn off the smartcard sub-option. Note,
though, that files encrypted with this sub-option off cannot be decrypted by smart
cards.

The sub-option affects only recipient-list encryption (that is, encryption using the
recipient option). All versions of PKZIP can decrypt passphrase-encrypted files
regardless of how the smartcard sub-option is set.

The win2000 sub-option enables recipients using smart cards or running on
Windows NT or Windows 2000 to extract files encrypted with AES for a recipient list.

By default when using a certificate to encrypt data with AES, PKZIP uses 3DES to
protect the key. This is necessary to enable recipients using smart cards or running
on Windows NT or Windows 2000 to decrypt the files.

Turn off the win2000 sub-option if you want to avoid any use of the 3DES encryption
algorithm when doing AES encryption. Turning off the option causes PKZIP to use
only AES but has the result that recipients using smart cards or running on Windows
NT or Windows 2000 will likely be unable to extract files encrypted for a recipient list
with AES.

Like the smartcard sub-option, the win2000 sub-option affects only recipient-list
encryption (that is, encryption using the recipient option). Users of Windows NT
or Windows 2000 can decrypt files encrypted using AES with a passphrase even with
the sub-option off. (Smart cards do not support passphrase-based encryption.)

84

All three sub-options are set independently of one another. Turning smartcard off
does not affect Win2000. Nor does turning on FastAES affect the other sub-options.

For example, the configuration display of initial defaults shows both of these sub-
options turned on (see “Viewing Configuration Settings” in Chapter 7):

CryptOptions = Smartcard, Win2000

To configure one of the sub-options off, prefix it with a hyphen:
pkzipc -config -cryptoptions=-smartcard

or, to configure both off:
pkzipc -config -cryptoptions=-smartcard,-win2000

Either option can also be turned off just for the current command line, to override a
configured default setting:

pkzipc -add -cryptoptions=-smartcard -recipient="John Q. Public"
test.zip

To turn one of the sub-options on, omit the hyphen prefix. For example, the following
command line configures all sub-options on:

pkzipc -config -cryptoptions=smartcard,win2000,fastaes

 Working with OpenPGP Files

Some organizations use encryption tools based on the OpenPGP standard, rather
than X.509. OpenPGP uses the same basic Public Key Infrastructure principles for
exchanging encrypted files, but uses a decentralized “Web of Trust” method of
authenticating signatures.

PKZIP and SecureZIP extract and decrypt files that comply with the OpenPGP
standard, RFC 4880. SecureZIP can also create OpenPGP-compliant files and sign
files with OpenPGP certificates. In this section, you’ll learn more about the OpenPGP
standard, and how to use PKZIP with OpenPGP.

 Overview: OpenPGP vs. X.509
As described in “Public-Key Infrastructure and Digital Certificates” earlier in this
chapter, the X.509 standard relies on a hierarchical “trust chain” model, where an
individual digital signature is issued by an intermediate Certificate Authority (CA),
which is assumed to have received enough documentation to determine that an
individual is who he says he is. The intermediate CA’s certificate gets its certificate, in
turn, from a Root CA. Each certificate says who issued it, and theoretically if you
question the authenticity of a certificate, you can find the documentation presented to
the original CA.

OpenPGP certificates are typically created by individuals, and authenticated by other
individuals. In the real world, you have friends who can vouch that you are who you
say you are. If you walk into a room full of strangers, your friend can introduce you to
the people he knows. Since you trust that your friend is correctly identifying his
friends and acquaintances, that trust extends to his friends too.

When you translate the above experience to the electronic, OpenPGP world, it works
this way: You create an OpenPGP certificate to identify yourself. When a friend
comes to visit, display the certificate. The friend can now sign your certificate (often
called “key signing”) and certify that this certificate represents you. Now everyone
who trusts the person who signed your key can also trust that your certificate is

 85

authentic. A Web of Trust is developed as more people authenticate each certificate.
Everyone in the Web of Trust can also exchange messages in the OpenPGP format.

 Supported OpenPGP Algorithms
This table lists the supported OpenPGP algorithms used for encryption, signing, and
hashing.

Algorithm Type

RSA Public-Key Signature or Encryption

Elgamal Public-Key Encryption

DSA Public-Key Signature

3DES Symmetric-Key

CAST5 Symmetric-Key

AES (128-bit) Symmetric-Key

AES (192-bit) Symmetric-Key

AES (256-bit) Symmetric-Key

Uncompressed Data Compression

ZIP (RFC 1951) Data Compression

BZIP2 Data Compression

SHA-1 Hash

SHA-256 Hash

SHA-384 Hash

SHA-512 Hash

MD5 Hash

 Setting Up OpenPGP Keyrings
To configure SecureZIP to identify your OpenPGP private and public key pairs for
inclusion in a recipient list, type:

pkzipc -archivetype=pgp -config -recipient=enabled

SecureZIP will always search for public keyring(s) in the system’s environment
variables, starting with PK_OPENPGP_PUBLIC_RING. If this environment variable is
not set in Windows, SecureZIP will then search these folders until it locates the
keyring:

• <Documents>\PGP\

• <AppData>\gnupg\

To identify existing OpenPGP keys for use in creating and signing OpenPGP files,
type:

pkzipc -archivetype=pgp -config -certificate=enabled

SecureZIP will search the same folders listed above for secret keyring(s).

86

 Configuring Other OpenPGP Settings
You can configure both the default hash and encryption algorithm for OpenPGP files
separately from the X.509 algorithms. To do this, you must always include the
archivetype=PGP option. For example, to use SHA-256 as the default hash
algorithm for OpenPGP files, use this command:

pkzipc -archivetype=pgp -config -hash=sha256

 87

 87

6 Miscellaneous Operations

This chapter describes commands and options that are not tied specifically to
compressing or extracting or can be done with both of these operations.

 Overwriting Files

overwrite
When you add or extract files, the target archive or directory may already contain files
that have the same names as the files you are adding or extracting. Use the
overwrite option to tell PKZIP how to proceed. Available choices are represented
by the sub-options described in the following table.

Sub-Option Description For example

all (Default) PKZIP overwrites
all same-named files
without prompting first

pkzipc -extract -overwrite=all
test.zip *.bmp

pkzipc -add -overwrite test.zip
*.bmp

prompt PKZIP prompts you
whether to overwrite a
same-named file before
proceeding

pkzipc -extract -overwrite=prompt
test.zip *.bmp

pkzipc -add -overwrite=prompt
test.zip *.bmp

increment Increment file name to
make it unique.

pkzipc -extract -
overwrite=increment test.zip *.bmp

pkzipc -add -overwrite=increment
test.zip *.bmp

never PKZIP does not overwrite
any same-named files

pkzipc -extract -overwrite=never
test.zip *.bmp

If you use add or extract alone, without the overwrite option, you are prompted
to overwrite same-named files. If you use the overwrite option but do not specify a
sub-option, PKZIP overwrites all files without prompting you.

88

88

 Viewing the Contents of a ZIP File

view
PKZIP allows you to view the contents of a .ZIP file, without performing any action on
that .ZIP file (for example, compress or extract). To view a .ZIP file, use the view
option with PKZIP, as in the following example:

pkzipc -view test.zip

When you type this command, information similar to the following appears:
Viewing .ZIP: test.zip

 Length Method Size Ratio Date Time CRC-32 Attr Name
 ------ ------ ---- ----- ---- ---- ------ ---- ----
 8369B DeflatN 3084B 63.2% 06/01/2001 4:50a 87b3c388 -a-w- red.txt
 8369B DeflatN 3084B 63.2% 06/01/2001 4:50a 87b3c388 -a-w- tan.txt
 ------ ------ ----- ----

 16KB 6168B 63.2% 2PKZIP also provides two
additional methods for displaying information from a .ZIP file. Specify the desired
method as a value in addition to the view option. These methods include:

• brief - a compact, less informative view of the .ZIP file.

• detail - more information than the default view.

 Displaying a Brief View of a ZIP File
To display a more compact (brief) view of a .ZIP file, use the brief value with the
view option, as in the following example:

pkzipc -view=brief test.zip

When you press ENTER, information similar to the following appears:
Viewing .ZIP: test.zip

 Length Method Size Ratio Date Time Name
 ------ ------ ---- ----- ---- ---- ----
 8369B DeflatN 3084B 63.2% 06/01/2001 4:50a red.txt
 8369B DeflatN 3084B 63.2% 06/01/2001 4:50a tan.txt
 ------ ------ ----- ----
 16KB 6168B 63.2% 2

 Displaying a Detailed View of the ZIP File
To display a more detailed view of a .ZIP file, use the details value with the view
option, as in the following example:

pkzipc -view=details test.zip

 89

 89

When you press ENTER, information similar to the following appears:
Viewing .ZIP: test.zip

 FileName: red.txt
 FileType: text
 Attributes: -a-w--------
 Date and Time: Jun 01,2001 4:50:00a
Compression Method: DeflatN
 Compressed Size: 3084
 Uncompressed Size: 8369
 Compression: 63.2% - 2.948 bits/byte
 32 bit CRC value: 87b3c388
Version created by: PKZIP: 4.5
 Needed to extract: PKZIP: 2.0 or later

 FileName: tan.txt
 FileType: text
 Attributes: -a-w--------
 Date and Time: Jun 01,2001 4:50:00a
Compression Method: DeflatN
 Compressed Size: 3084
 Uncompressed Size: 8369
 Compression: 63.2% - 2.948 bits/byte
 32 bit CRC value: 87b3c388
Version created by: PKZIP: 4.5
 Needed to extract: PKZIP: 2.0 or later

 Total Files: 2
 Compressed Size: 6168
 Uncompressed Size: 16738
Compression: 63.2% - 2.948 bits/byte

 Translating End-of-Line Sequence

translate
The translate option translates text end-of-line characters to the character
sequence used by a different platform. The option can be used with add or extract.
Specify a sub-option from the following table to translate line endings to the
sequence used by the desired platform.

The ebcdic sub-options are for use with data compressed using SecureZIP for z/OS
with the Zip Descriptor Word (ZDW) option to preserve variable length records. If a
file is not in ZDW format, these sub-options cause no change to line endings.

Sub-Option Description

none Does not change line endings

dos DOS/Windows (carriage return/newline)

mac MacOS (carriage return)

unix UNIX (newline)

ebcdic,nl With ZDW files, substitute EBCDIC newline (0x15)

ebcdic,lf With ZDW files, substitute EBCDIC linefeed (0x25)

90

90

Sub-Option Description

ebcdic,crlf With ZDW files, substitute EBCDIC carriage return/linefeed (0x0D25)

ebcdic,lfcr With ZDW files, substitute EBCDIC linefeed/carriage return (0x250D)

ebcdic,crnl With ZDW files, substitute EBCDIC carriage return/newline (0x0D15)

The following command line translates text line endings to UNIX on extraction:
pkzipc -extract -translate=UNIX test.zip

 Converting File Names to a Short Format

shortname
The shortname option enables you to convert file names in long file name format to
DOS-format short (8+3) file names on the copies of the files added to an archive. Use
shortname with the dos sub-option, or no sub-option at all, to specify DOS format:

pkzipc -add -shortname=dos save.zip

pkzipc -add -shortname save.zip

Or, abbreviated:
pkzipc -add -short save.zip

The option can be configured to be on by default.

Use shortname with the none sub-option to turn short name formatting off if it’s
configured on.

 Inserting a Timestamp in the Archive File Name

substitution
The substitution option causes PKZIP to insert a timestamp in the name of an
archive created or updated (or refreshed) by the add command. You specify the
elements of the timestamp and its placement in the archive name.

The substitution option can also insert a timestamp in the same way in the name
of a destination directory specified as a sub-option of the archiveeach option.

NOTE: See “Time Stamping Your Signed ZIP Archive” in Chapter 3 for information on
using an independent Time Stamp Authority to securely establish when a file was
created or modified. This feature is available only with SecureZIP.

Construct the timestamp using tokens (replaceable elements) from the table below.
When embedded in an archive file name, the tokens serve as named parameters.
The substitution option causes PKZIP to replace the tokens with the
corresponding values listed in the table. (If the substitution option does not
appear in the command line, the tokens become literal parts of the file name.)

Token Replaced by

{id} A job ID specified separately with the jobid option. For example, if run

 91

 91

in 2006:

pkzipc -add -jobid=myJob -substitution {id}{yyyy}.zip *.doc

produces a ZIP file named:

myJob2006.zip

{mm} Month, 2-digit

{m} Month, 1-digit (if possible)

{dd} Day, 2-digit

{d} Day, 1-digit (if possible)

{yyyy} Year, 4-digit

{yy} Year, 2-digit

{HH} Hour, 2-digit, 24-hour format

{H} Hour, 1-digit (if possible), 24-hour format

{hh} Hour, 2-digit, 12-hour format

{h} Hour, 1-digit (if possible), 12-hour format

{MM} Minute, 2-digit

{M} Minute, 1-digit (if possible)

{SS} Second, 2-digit

{S} Second, 1-digit (if possible)

{ampm} a.m. or p.m. indicator to identify current 12-hour segment of the day

For example, the following archive name contains several tokens. The name is
enclosed in quotes to group the elements, including the spaces:

"Design Spec {yyyy}-{mm}-{dd}-{h}-{MM}-{SS}{ampm}.zip"

Note: Most UNIX shells treat { and } as metacharacters, which need to be escaped
for the command line to work properly. To be safe, put the whole file name or path
name in quotation marks when using the substitution option.

The following command line adds files to an archive having this name and includes
the substitution option to tell PKZIP to replace the tokens with their system
values:

pkzipc -add -substitution "Design Spec {yyyy}-{mm}-{dd}-{h}-{MM}-
{SS}{ampm}.zip" plan.doc

If the current date and time are August 09, 2006 12:06:29 a.m., the resulting archive
will be named Design Spec 2006-08-09-12-06-29am.zip.

The substitution option can also be used to embed a timestamp in the name of a
destination directory specified with the archiveeach option. For example:

pkzipc -add -substitution -archiveeach="C:\newzips {yyyy}-{mm}-
{dd}-{h}-{MM}-{SS}{ampm}" C:\myfiles*.*

92

92

The preceding command line causes each file zipped from the myfiles directory to
be added to its own archive in a directory named newzips 2006-08-09-12-06-
29am.zip if the date and time are August 09, 2006 12:06:29 a.m.

The substitution option can be configured to be used by default.

 Printing the Contents of a ZIP File

print
PKZIP gives you the option of printing files contained in a .ZIP file to a selected
printer. For example, if you wish to print all of the .txt files contained in a .ZIP file,
type the following:

pkzipc -print=lpt1 test.zip *.txt

When you press ENTER, information similar to the following will appear:
Extracting files from .ZIP: test.zip

 Inflating: readme.txt <to LPT1>
 Inflating: whatsnew.txt <to LPT1>

In this example, all files with a .txt extension that exist in the test.zip are printed to the
LPT1 printer. If you do not specify a print device, the 'default' printer is used. Since
many .ZIP files contain an information document (e.g., readme.txt), the print option
is a good way to determine the contents of a .ZIP file without requiring you to extract
a file or file(s) to your hard drive.

 Testing the Integrity of an Archive

test
You can test an archive to confirm that it is not damaged and that its files can be
extracted. Testing also authenticates any digital signatures attached.

Testing extracts the contents of an archive but discards the output instead of saving it
to disk.

It's a good idea to test an archive before you delete your only copy of an important
file you placed in the archive.

The following sample command line tests test.zip:
pkzipc -test test.zip

When you press ENTER, information similar to the following will appear:
Testing files from .ZIP: test.zip

Testing: readme.txt OK
Testing: whatsnew.txt OK

As each file is tested, an OK is displayed next to the name. If the archive has been
damaged, use the fix command to try to repair it.

 93

 93

 Pausing on Warnings

warning
PKZIP, issues an error or a warning when it encounters a problem or unexpected
condition. In general, PKZIP issues a warning when the condition does not prevent
PKZIP from completing its operation, and an error when it does. For example, PKZIP
issues a warning if a digitally signed file in an archive cannot be authenticated; this
condition does not prevent PKZIP from extracting the file. PKZIP issues an error if it
cannot find a specified archive or is unable to open it.

The warning option causes PKZIP to pause after issuing a warning and to prompt
you whether to proceed. The option can be set for specified warning conditions. If
used without any specified values, the warning option causes PKZIP to pause on
every warning. For example:

pkzipc -extract -warning save.zip *

To have PKZIP pause and prompt on particular warnings, list the warning numbers
with the option. For example, the following command line directs PKZIP to pause on
warning 43 (Certificate not found):

pkzipc -add -warning=43 -recipient=xxx foo.zip *.doc

To specify multiple warning conditions, separate the warning numbers with commas.
For example, the following command line tells PKZIP to pause and prompt on either
warning condition 42 (Certificate was revoked) or 43:

pkzipc -add -warning=42,43 -recipient=xxx foo.zip *.doc

You can use the configuration command to specify warning numbers as default
values for the warning option. If default warning values are specified, you do not
need to explicitly include the warning option in a command line to pause on those
warnings.

To override a particular configured default warning setting for the warning option in
the current command line, precede the warning number with a hyphen. For example,
the following setting (in a command line) overrides a configured value of (warning)
43. The example causes PKZIP not to pause on warning 43.

-warning=42,-43

The warning option can be used with the add, extract, test, and view
commands. See Appendix B for a list of error and warning conditions.

 Treating Warnings as Errors

error
The error option enables you to designate warnings, by number, to treat as errors
such that PKZIP halts processing if a specified warning condition is encountered.

A designated warning is treated as error number 73, Warning configured as an error.

Multiple warning numbers can be specified, separated by commas:
-error=42,43

94

94

For example, the following command line tells PKZIP to treat the conditions that
produce warnings 42 (Certificate was revoked) and 43 (Certificate not found) as error
conditions:

pkzipc -add -error=42,43 -recipient=xxx foo.zip *.doc

If a specified warning is generated, PKZIP halts processing. Both the triggered
warning and an error 73 are issued.

For example, if warning 43 is generated, the display looks like this:
PKZIP: (W43) Warning! Certificate not found: xxx
PKZIP: (E73) Warning configured as an error

You can use the configuration command to specify warning numbers as default
values for the error option. If default warning values are specified for the error
option, you do not need to explicitly include the error option in a command line to
treat those warnings as errors.

You can override a particular configured default warning setting for the error option
in the current command line. To override a warning setting, precede the warning
number with a hyphen.

The following example (in a command line) overrides a configured value of (warning)
43. The example causes warning 43 not to be treated as an error.

-error=42,-43

The error option can be used with add, extract, test, and view. See Appendix
B for a list of error and warning conditions.

 Previewing Command and Option Operations

preview
PKZIP allows you to preview the results of a set of commands and options. The
commands and options specified will be completed and the resulting output will
display, but no changes will be made that result in creating a new .ZIP file or in
modifying an existing .ZIP file. For example, if you wish to preview an add operation
without actually creating or modifying any files, enter the following:

pkzipc -add -preview test.zip *.txt

When you press ENTER, information similar to the following appears on your
console:
 Using Preview Option

Creating .ZIP: test.zip
 Adding File: readme.txt Deflating (62.0%), done.
 Adding File: whatsnew.txt Deflating (59.2%), done.

The compressed .ZIP file size would be: 2237 bytes

The information, including the size of the resulting .ZIP file, is displayed. However,
PKZIP has not actually modified any of your files. The preview option will work with
add, delete, header, sfx, and comment.

 95

 95

 Fixing a Corrupt ZIP File

fix
The fix command attempts to repair a damaged ZIP archive so that its files can be
extracted.

For example, if you have determined that test.zip is damaged, type the following to
attempt to fix it:

pkzipc -fix test.zip

When you press ENTER, information similar to the following appears on your
console:

Enter a new .ZIP file name (pkfixed): test1.zip

Running PKZipFix utility.

Scanning .ZIP file: test.zip
Building new directory.
Writing new .ZIP file: test1.zip

Recovered 2 files.

When you enter the fix command, PKZIP prompts you to enter a new ZIP file name.
The example above used test1ZIP. If you do not enter a file name, the name
pkfixed.ZIP is used. PKZIP scans the original file, attempts to repair the archive,
and saves the updated file with the new name. The original, damaged file is not
updated.

Note: The fix command can only fix ZIP archives that are physical files. It cannot fix
ZIP archives read from STDIN or special files (named pipes, sockets). Nor can it
output fixed archives to such targets.

 Use an Alternate Drive for PKZIP Temporary Files

temp
The temp option enables you to specify an alternate location for the temporary file
that PKZIP needs to create to update an existing ZIP file or create a spanned
archive. PKZIP also creates a temporary file when writing an archive to a data stream
(see “Writing an Archive to STDOUT and Special Files”).

When you, for example, update a ZIP file, PKZIP first creates and updates a
temporary copy of the file. When the update is completed, PKZIP replaces the
original archive with the updated copy.

In the case of an archive written to a data stream, PKZIP compresses and encrypts
the data (if encryption is specified) before writing it to the temporary file, so no
security vulnerability is created. The temporary file is needed to get size information
for local headers, which are written out before file data.

The amount of disk space PKZIP needs for the temporary file is equal to the size of
the original ZIP file plus the compressed size of any files to be added. So, for
example, if you have an existing ZIP file of 500K, and you are updating it with
another file that is 10K compressed, you need a work space of at least 510K for
PKZIP to do the update.

96

96

Ordinarily, the temporary file is created in the system’s default temporary folder. With
the temp option, you can span, update, or stream ZIP files that are larger than the
space available to create a temporary file in the default location.

Specify the drive and/or path for the temporary file as a sub-option of temp. For
example, the following command lines specify a custom temporary file location to
update big_file.zip.

pkzipc -add -temp=z:/public big_file.zip myfile.doc

Notes:

• You need to provide a path in addition to the drive letter only if you have a
particular reason to specify a subdirectory—for example, space or access
constraints on a local area network.

• The shred option cannot erase temporary files created using the temp
option to specify a location on a removable or network drive.

 Suppressing Screen Output

silent
The silent option suppresses screen output when compressing or extracting. This
option is useful when compressing or extracting files as part of .BAT, .CMD, or shell
script operations. Messages that normally appear when compressing or extracting
are not displayed. Sub-options provide control over whether to display error
messages, warning messages, requests for input, and so on.

pkzipc -add -silent test.zip *.doc

To suppress confirmation messages printed by the configuration command, use
the configuration command with its own silent sub-option.

 Setting Internal Attributes

ASCII/BINARY
The ASCII and BINARY option is used to override the data type of a file. Normally,
PKZIP will determine whether the data of a file is ASCII or Binary. If this option is
used with no sub option, each file that is added, you will be prompted for the file to be
set to ASCII, BINARY or if you want PKZIP to determine the best type. The following
examples show the different uses for this option.

To set all the internal attributes to ASCII for each file added:
pkzipc -add -ascii="*" test.zip

To set all the internal attributes for the file test.txt to BINARY and auto detects the
other files:

pkzipc -add -binary=test.txt test.zip *

To prompt the type for each file:
pkzipc -add -ascii test.zip *

 97

 97

 Encoding an Archive to Another Type

encode
With the encode option, you can convert an archive from one type to another.

The encode option is useful to encode a binary archive type to a text format such as
UUEncode or XXEncode. It can also be used to convert a non-compressed archive to
a compressed archive type.

For example, a TAR archive can contain multiple files but does not compress them,
and a GZIP archive compresses but can contain only one file. You can use encode
with add to create (or update) a TAR archive and encode it to GZIP format:

pkzipc -add -encode=gzip myfiles.tar

The example creates two archives: a TAR file and a GZIP file myfiles.tar.gz.

If you want only the archive created by encode (the GZIP archive in the example),
you can include the movearchive option to delete the intermediate (TAR) archive:

pkzipc -add -encode=gzip -movearchive myfiles.tar

You can also use encode as a command to convert an existing archive. To do so,
use the encode command by itself on the command line, without the add command,
and specify the archive to convert. For example, the following command line creates
an archive save.tar.gz:

pkzipc -encode=gz save.tar

Note: The encode command/option can only convert physical archive files. It cannot
read an archive to be converted from STDIN or a special file (named pipe, socket). Nor
can it write an encoded archive to STDOUT or a special file.

 Removing an Intermediate Archive

movearchive
The movearchive option deletes an archive that is created only as an intermediate
archive—for example, to be converted by the encode option to an archive of a
different type.

When you add files with the encode option, PKZIP creates two archives: an
intermediate archive created by the add command, and an archive of the type
specified with the encode option. The encoded archive is created from the
intermediate archive.

If you do not want to keep the intermediate archive, you can include the
movearchive option to delete it. For example:

pkzipc -add -encode=gzip -movearchive myfiles.tar

The command line above creates a TAR archive, encodes a copy of this archive as a
GZIP archive, and then deletes the intermediate TAR archive.

98

98

 Generate a List File

listfile
The listfile option is used with add and extract to create a list of the files that
would be added or extracted if the command line were run without the listfile
option. A command line that contains the listfile option just creates a list file; it
does not add or extract any files.

For example, the following command line creates a file mylist.txt with the names of all
the files that would be added to, or updated in, myarchive.zip if the listfile option
were omitted from the command line:

pkzipc -add=update -listfile=mylist.txt myarchive.zip *.*

When listfile is used with add, you can omit the archive name unless you want
to reference a particular archive. For example, the following command line creates a
list of the files that the command line would add to any new archive:

pkzipc -add -listfile=mylist.txt *.*

On the other hand, if you want to see what files would be updated in some particular
archive, as in the following command line, you must name the archive:

pkzipc -add=freshen -listfile=mylist.txt myarchive.zip *.txt

When used with add (though not with extract), the listfile option takes
account of other options—for example, the options path, recurse, and
directories that specify path information to save with the added files. For
example, the path option in the following command line causes full path names to
be saved with added files, so this information is saved in the list file as well:

pkzipc -add -path=full -listfile=mylist.txt myarchive.zip *.*

When used with extract, the listfile option lists files with any path information
saved for them in the archive even if current option settings would otherwise extract
the files without using saved path information.

For example, the following command line creates a list file that includes any path
information in the archive even though the path option directs that files be extracted
without using saved path information:

pkzipc -extract -path=none -listfile=mylist.txt myarchive.zip

 99

7 Changing Defaults for
Commands and Options

You can use the configuration command to view current default settings for
commands and options. You also use this command to change default values.
Another command—default—restores default settings for all commands and
options to their original values.

With the altconfig option, you can create and apply alternate configuration profiles
for special purposes.

 Viewing Configuration Settings

To use the configuration command to view current default values for all
commands and options, enter the command by itself on the command line:

pkzipc -configuration

A list of current default settings displays:

204 = Disabled Add = Add All Files
ArchiveDate = None CD = Normal
Comment = None Comp Method = Deflate
CRL = Disabled Encode = Disabled, UUE
Extract = Extract All Files FIPSMode = Disabled
Hash = SHA-1 Hash (OpenPGP) = SHA-1
KeyPassphrase = Disabled Level = Normal
ListChar = @ Locale = Enabled
Lowercase = Disabled More = Disabled
MoveArchive = Disabled NoArchiveExtension = Disabled
NoExtended = Disabled NoFix = Disabled
OpenFile = Never (skip) OptionChar = -
Passphrase = Disabled Recurse = Disabled
Shortname = None Shred = None
Sort = None Span = None, Auto-Detect
Substitution = Disabled Test = All Files
Times = All UTF8 = Disabled
View = Normal ZoneIdentifier = Disabled

ASCII = Disabled
AVArgs = Disabled
AVScan = Disabled
Binary = Disabled
Certificate = John Public
Certificate (OpenPGP) = Disabled
CryptAlgorithm = Traditional
CryptAlgorithm (OpenPGP) = AES (256-bit)
CryptOptions = Smartcard, Win2000, FastAES
Embedded = Disabled
Error = None

100

Header = Disabled
Recipient = Disabled
Recipient (OpenPGP) = Disabled
Sign = Disabled, Central directory and individual files
Silent = Copying
Strict = Disabled : KeyUsage, TimeValid, TimeNesting
TS = Disabled
Temp = Disabled
VerifySigner = Disabled
Warning = None

PKSFX Options
 Create Folders = Disabled Display Messages = Disabled
 Overwrite = Prompt Sfx = WIN32_X86_C1230
 SfxLogfile = Disabled Type = EasySFX
 Destination =
 Title Bar = Disabled
 RunAfter = Disabled
 Program Group = Disabled
 Extensions = Disabled

Compression Options
 After = Disabled
 Attributes = Read-Only, Archive
 Before = Disabled
 Exclude = Disabled
 Include = Disabled
 Larger = Disabled, 0
 Mask = None
 Newer = Disabled
 Older = Disabled
 Overwrite = Always Overwrite
 Path = No Path Information
 Smaller = Disabled, 18,446,744,073,709,551,615
 Translate = None - No Conversion

Extraction Options
 After = Disabled
 Attributes = Read-Only, Hidden, System, Archive
 Before = Disabled
 Exclude = Disabled
 Include = Disabled
 Larger = Disabled, 0
 Mask = None
 Newer = Disabled
 Older = Disabled
 Overwrite = Prompt
 Path = Full Path
 Smaller = Disabled, 18,446,744,073,709,551,615
 Translate = None - No Conversion

In the display, the command/option is to the left of the equal sign, and the default
setting is to the right. An option listed as Disabled is disabled by default. An option
listed as None has a None sub-option that is its default value. A command or option
that has any other value has that value as its default. In most of these cases, the
value is a predefined sub-option.

The PKSFX options appear only if you have PKZIP Enterprise or SecureZIP.

 How Default Settings Work

Configurable options that have a default value are applied, with their default value,
even when they are not explicitly entered on the command line. This includes options
that have a default value of None: these options are applied with the value of their
None sub-option. Disabled options are not applied.

 101

For example, Comment = None indicates that, by default, PKZIP does not prompt
for comments to attach to files in an archive. If you want PKZIP to always prompt for
comments on files, you can configure the default to a different value—for example,
Comment = All. All is another sub-option of comment. With this default, PKZIP
will routinely prompt even when the comment option is not used in the command line.

For a command, the default setting determines what the command does when the
command is listed on the command line without an explicit sub-option.

A command must explicitly appear in the command line to be used. This is a
difference between commands and options. A default value for a command
determines what the command does when it is used by itself, without any specified
sub-option.

For example, the add command can add all specified files to an archive (the all
sub-option), or it can just add ones that are not in the archive already or are newer
versions of files that are (the update sub-option). Initially, add has the default value
of all, so a command line like the following adds all specified files indiscriminately:

pkzipc -add myfiles.zip *.*

To have this same command line add only new and newer files instead, you can use
the configuration command to change the default behavior of add from all to
update (see the section “Changing a Default Value,” below):

pkzipc -configuration -add=update

Some options also have a value—distinct from any configurable default value—that is
used automatically if the option is used on the command line without an explicit sub-
option. This value overrides any configured default value.

For example, the initial configurable default for the compression filter path option,
which saves or restores path information, is None. The option has several other sub-
options that can be set as the default value instead, but no matter which sub-option is
the default, path has the value of current (one of the sub-options) when used
without a sub-option, as in this command line:

pkzipc -add -path myarchive.zip *.txt *.doc

Appendix A lists the defaults and override values for all commands and options.

 Filter Options
At the bottom of the listing of defaults are two sets of filter options, one for
compression and one for extraction. These are called filter options because they filter
out files that do not meet their criteria. Only files that are not filtered out are selected.
For example, the after option filters out all files whose date falls before the date
specified with the option.

Each of the filter options takes a different default value for compression and for
extraction.

102

 Changing a Default Value

To change a default setting in the configuration file, use the configuration
command. You can abbreviate this command to: config.

To specify a value (sub-option) to use as the default value for a command/option:

 Type pkzipc -config and the name of the command/option followed by an
equal sign and the sub-option value you want to set as the default.

For example, to change the default for the add command to update (instead
of the original default, all), type the following:

 pkzipc -config -add=update

To turn on and use by default an option that has either no sub-options or a sub-
option that is used by default:

 Type pkzipc -config and the name of the option.

For example, to do virus scanning by default when extracting files, set the
avscan option on by default:

pkzipc -config -avscan

To turn on the silent option and use its default sub-option:
pkzipc -config -silent

After you use the configuration command to change a default setting, an
updated list of settings displays. You can suppress this list so that it is not displayed.
To do so, use the configuration command with its silent sub-option.

For example, the following command line sets a default value for the overwrite
option and suppresses display of the updated list of settings that the
configuration command ordinarily prints to the screen:

pkzipc -config=silent -overwrite=never

Note that the silent sub-option of the configuration command is different from
the silent option proper, which suppresses messages when adding or extracting.

See Appendix A for a list of PKZIP commands, options and sub-options, and
information about which commands and options have configurable defaults.

 Changing Defaults for Filter Options
Options listed as filter options in the display of default settings take separate defaults
for compression and extraction. To specify a default for a filter option for one of these
operations, include the related command (add or extract) on the command line.
For example:

pkzipc -config -add -newer=1d

If you specify a default for a filter option without including the related command, as in
the following example, PKZIP asks whether you want to specify the default for
compression, extraction, or both:

pkzipc -config -newer=1d

 Changing Defaults for Compression Method
The Comp Method item in the screen of configuration settings shows the current
default setting for compression method. To set a default compression method,

 103

specify the compression method that you want to make the default. For example, the
following command makes BZIP2 the default compression method:

pkzipc -config -bzip2

The options in the table below set compression method:

Compression Method
Options

Description

deflate64 Sets the compression method to Deflate64

bzip2 Sets the compression method to BZIP2

dclimplode Sets the compression method to DCL Implode

lzma Sets the compression method to LZMA

ppmd Sets the compression method to PPMd

store Sets the compression method to Store (that is, no compression)

The options in the next table set both compression method and level:

Option Description

speed Sets the compression method to Deflate—the initial PKZIP default
method—and the level of compression to 1 (the lowest)

fast Sets the compression method to Deflate and the level of compression to
2

normal Sets the compression method to Deflate and the level of compression to
5. Normal is the initial default setting for compression method and level
for PKZIP.

maximum Sets the compression method to Deflate and the level of compression to
9

level=0 When set to 0, the level option sets the compression method to Store
(no compression)

For example, the following command sets the default compression method to Deflate
and the default compression level to 9:

pkzipc -config -maximum

 Using the Options Dialog to Change Defaults
As an alternative to using the command line to change defaults, you can use the
graphical Options dialogs if you have PKZIP or SecureZIP for Windows Desktop
installed:

104

To display the graphical Options dialog:

 Use the configuration command with the gui sub-option:
pkzipc -config=gui

In the dialog, the Help button opens the online help for the Windows version of
PKZIP or SecureZIP. There you can read how to set options in the dialog.

Settings that you make in the Options dialog when you use the gui sub-option apply
only to the command line version of the product, not to the Windows version.
Similarly, if you open the Options dialog from the Windows version, options that you
set in the dialog apply only to the Windows version.

If you use the gui sub-option without having PKZIP for Windows installed, the sub-
option is ignored, and the command works as if you had entered it with no sub-
option.

 Resetting to Original Defaults

Command or option default values that you have changed can be reset back to their
original values. You can reset changed defaults either for individual commands and
options that you specify, or wholesale, for all.

 Resetting Individual Defaults
To reset an individual command or option to its original default value in the
configuration file, use the config command and put two hyphens in front of the
command or option that you want to reset.

For example, to reset the add value back to its original default without resetting any
other default values that you may have modified, type the following and press
ENTER:

pkzipc -config --add

Notice that there are two hyphens in front of the add command. The command
changes the update value we set in a previous example back to all.

 105

You can also use two hyphens without the config command to reset, or turn off, a
configured default for an option just for the current command line. The example
below turns off a configured default value (for instance, AES,256) for the
cryptalgorithm option to do traditional encryption instead just for the current
command line:

pkzipc -add --cryptalgorithm -passphrase wedding_plans.zip *.txt

 Resetting All Defaults
To reset default values for all commands and options, use the default command.
Type the following and press ENTER:

pkzipc -default

 Using an Alternate Configuration File

altconfig
You can create alternate configuration profiles to use for special purposes. The
altconfig option creates and loads alternate configuration profiles. With an
alternate configuration profile, you can temporarily change multiple default command
or option settings in a single pass just by loading the configuration profile that defines
them.

 Creating an Alternate Configuration File
To create an alternate configuration profile, use the altconfig option with the
configuration command. This creates a copy of the current main configuration
file with the file name and at the location specified by the altconfig option and
updates default settings in the copy with any new settings specified in the command
line. If an alternate configuration file of that name already exists at the specified
location, the file is updated with the new default settings from the command line.
Other settings in the file are left unchanged.

For example, the command line below creates or updates an alternate configuration
file secure.xml in the root directory of drive C and specifies default values for the
cryptalgorithm, sign, and certificate options:

pkzipc -config -altconfig=c:\secure.xml -cryptalg=aes,256 -
sign=all
-cert="John Public"

If you have PKZIP for Windows Desktop installed, you can use config=gui to
configure defaults in the graphical Options dialogs. For example, the following
command line opens the Options dialogs:

pkzipc -config=gui -altconfig=c:\secure.xml

If secure.xml exists, PKZIP displays its settings in the graphical Options dialogs. If
the file does not already exist, PKZIP displays the settings of your main configuration
file. In either case, saving settings from the Options dialog saves to secure.xml.

 Using an Alternate Configuration File
To use the settings in an alternate configuration file, use the altconfig option to
specify the file in a command line with which you want to use the alternate settings.

106

You can use the altconfig option with any command. For example, the following
command line loads the alternate configuration file secure.xml to use its settings
with the add command. The settings cause PKZIP to use the specified certificate to
sign the archive central directory and all files added to foo.zip and to encrypt the files
using the strong encryption algorithm AES 256.

pkzipc -add -altconfig=c:\secure.xml -pass foo.zip *.doc

Loading the settings from the alternate configuration file saves the trouble of
specifying them all on the command line and does not require changing the main
configuration file.

To view settings in an alternate configuration file, use the configuration
command and specify the file with altconfig:

pkzipc -config -altconfig=c:\secure.xml

An alternate configuration file must already exist for you to use it in a command line
with the add command or any other command besides configuration. The only
time you can use the altconfig option to specify an alternate configuration file that
does not already exist is when you use the option with the configuration
command to create an alternate configuration file.

 107

8 Command Characteristics

This chapter describes changes you can make to the PKZIP infrastructure. For
example, you can specify different characters to use for the list character and the
option character, and you can cause PKZIP to display dates and times using a
different format from the one used by default on your system.

Ordinarily, the original values for the settings described in this chapter should be
satisfactory. You should not change them without a good reason.

 Changing Date and Time Environment Variables

locale
The locale option causes PKZIP to use your system’s format for displaying dates
and times. The option has two sub-options, enable and disable, to set it on or off.
The option is configurable and is set on by default.

Formerly PKZIP used a date format of MMDDYY and a 12-hour time format of
HH:MM. If you prefer PKZIP to use this format, you can revert to it by setting locale
to disable.

If you have disabled the locale option by default, you can enable it for a particular
command line by setting the option to enable in the command line. For example:

pkzipc -add -locale=enable test.zip *.doc

This command line causes PKZIP to use the system-defined settings regardless of
the default settings.

 Changing the List Character for List Files

listchar
PKZIP allows you to specify an ASCII file as a source list of the files to be archived.
By default, you specify this ASCII file by pointing to it with the "@" character in your
command line. However, if you have files that begin with an "@", you may experience
problems when trying to add these files to a .ZIP archive. Fortunately, PKZIP allows
you to change the default list character to avoid such problems. This is accomplished
using the listchar option. For example, if you wish to define the "+" character in
place of the "@" as your default list character, type the following and press ENTER:

pkzipc -config -listchar=+

108

If you wish to specify an alternate list character on the command line itself, could type
a command line similar to the following and press ENTER:

pkzipc -add -listchar=+ test.zip +file1.txt

When used as a command line option, the listchar option only applies to the
options that follow it on that particular command line. In our example the listchar
option allows you to add files that begin with an "+" character (e.g., +file1.txt). For
more information on using list files with PKZIP see “Compressing Files with a List
File” in Chapter 0 and “Extracting Files with a List File” in Chapter 4.

Note: Avoid using metacharacters as list characters. Metacharacters have a special
significance to the shell and as such their usage may cause unpredictable results.
This would include the following characters:

; , & () | < > # NEWLINE SPACE TAB

 Changing the Command/Option Character

optionchar
The optionchar option specifies the character to use to identify commands and
options as such in command lines. By default, PKZIP uses the hyphen “-” to flag
commands and options in a command line. You can use optionchar to change this
option character to a different character instead. For example, to make it easier to zip
files whose names begin with a “-”, you might change the option character to a “+”.

You can change the option character either just for a single command line or
indefinitely, to define a new default character. The following command changes the
option character just for the immediate command:

pkzipc -optionchar=+ +add save.zip *.doc

In a Windows command line, you can also always use the “/” character to indicate a
command or option in a particular command line.

pkzipc /add save.zip *.doc

You can also use optionchar with the configuration command to define a
different option character to use by default. For example:

pkzipc +config -optionchar=+

Note that the newly defined option character is used immediately, in the same
command line in which it is defined, by every command or option other than
optionchar itself.

Note: Avoid using metacharacters as option characters. Metacharacters have a
special significance to the shell and as such their usage may cause unpredictable
results. This would include the following characters:

; , & () | < > # NEWLINE SPACE TAB

 109

A Reference to Commands and
Options

This appendix contains reference information on every PKZIP command and option.
For each command/option, the following information is provided:

Column Purpose

Name/Description Gives the name of the command/option and a brief description of
what it does.

If a default value can be configured for the command/option, the
word "Configurable" appears.

Value(s) Lists any sub-options or values associated with the command/option
and specifies any initial default values

Example usage Shows examples of the command/option used in a PKZIP command
line

Used with Identifies the item as a command or an option: a listing of standalone
in this column means that the item is a command.

For options, the column lists commands that the option can be used
with.

If standalone is included with a list of commands, the item can be
used as an option with any of the listed commands or can be used by
itself as a command.

Information on each command/option follows:

Name/Description Value(s) Example usage Used with

204

Turns on PKZIP for
DOS 204g
compatibility

Configurable

No sub-options.

No default value.

pkzipc -add -204
save.zip *

add

110

Name/Description Value(s) Example usage Used with

add

Add files to an
archive

Configurable

all - Compress
and add files that
are new to the
archive as well as
files that the
archive already
contains a (maybe
newer) copy of

archive - Turn off
archive attribute of
all added files
(prepares backup
file set for
incremental
archiving).

freshen - Add
only files that the
archive already
contains an older
copy of

update - Freshen
files that are in the
archive already
and add any new
ones

incremental -
Add only files that
have the archive
attribute on, and
then turn off the
archive attribute

-incremental -
Add only files that
have the archive
attribute on, and
do not turn off the
archive attribute
afterward

Default = all

pkzipc -add save.zip
*.doc

pkzipc -add=freshen
save.zip *.doc

pkzipc -add=incremental
save.zip *.doc

pkzipc -add=-incremental
save.zip *.doc

Outputs the archive to STDOUT
instead of to a file:

pkzipc -add
-noarchiveextension
-silent=normal - *.txt

standalone

after

Process files that
have the specified
date or a later one

Configurable
separately for add
and extract
operations.

Any date in format
specified in
Country-Settings
or the locale
option.

For example, the
US date format is:

 mmddyy

 or

 mmddyyyy

No default value.

For compression:

pkzipc -add -
after=09152003 save.zip
*.doc

For extraction:

pkzipc -ext -
after=09152003 save.zip
*.doc

add,
extract,
delete, test,
view,
delete,
console

 111

Name/Description Value(s) Example usage Used with

altconfig

Creates or updates
an alternate
configuration file
containing alternate,
specified defaults
when used with the
configuration
command; loads the
specified alternate
configuration file
when used in a
command line with
any command other
than configuration.

Path and name of
alternate
configuration file
to create, update,
or load

Create or update an alternate
configuration file secure.xml
with specified defaults. File is
created if it does not exist
already, or updated if it does:

pkzipc -config
-altconfig=c:\secure.xml
-cryptalgorithm=aes,256
-sign=all
-certificate="John
Public"

Use the default settings
specified in alternate
configuration file secure.xml
when adding files to archive
foo.zip:

pkzipc -add
-altconfig=c:\secure.xml
-passphrase foo.zip
*.doc

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

archivedate

Sets the modification
date of the archive
file.

Configurable

Note: The
archivedate option is
the same as the
older zipdate option,
which is now
deprecated.

newest - Sets
date of the archive
to the date of the
newest file in the
archive

oldest - Sets date
of the archive to
the date of the
oldest file in the
archive

retain - When
updating, keeps
the date the
archive had
before it was
updated. When
creating a new
archive, behaves
the same as none

none - Sets the
date of the archive
to the date of its
latest modification

Default = none

pkzipc -add=update
-archivedate=retain
save.zip *.txt

add, delete,
fix, header,
comment,
sfx

112

Name/Description Value(s) Example usage Used with

archiveeach

Creates a separate
archive for each of
multiple files
specified in a single
command line.

Can be used with
archivetype and
encode to create
.tar.gz archives.

<destination> -
Directory in which
to create the
archives

By default,
archives are
created in the
current directory.

Creates a separate ZIP archive
for each file in the current
directory:

pkzipc -add -archiveeach
.

Creates the archives in a
specified destination:

pkzipc -add
-archiveeach=C:\newzips
.

Creates .tar.gz archives:

pkzipc -add -archiveeach
-archivetype=tar -
encode=gz C:\data*.*

add

archivetype

Explicitly specifies
the type of archive to
be acted on by the
command. PKZIP
works with ZIP
archives by default
or infers the archive
type from the archive
name. Use the
archivetype option if
PKZIP would
assume or infer the
wrong type.

Always use the
archivetype option
to specify OpenPGP
files.

bzip2 - Specifies
the Bzip2 archive
type.*

zip - Specifies the
.ZIP archive type.
(default)

gzip - Specifies
the GZIP archive
type.*

pgp – Specifies
the OpenPGP
archive type.

tar - Specifies the
TAR archive type.

uue - Specifies
the UUENCODED
archive type.*

xxe - Specifies an
XXENCODED
archive type.*

* These archive
types can contain
only one file. To
use with multiple
files, create an
archive of one of
the other archive
types and use the
encode option to
encode this
archive as the
single-file archive
type that you
want.

pkzipc -add -
archivetype=tar
myfile.foo

Creates a TAR archive named
myfile.foo.tar

pkzipc -extract
-archivetype=bzip2
-noarchiveextension
-silent=input -

Extracts from a BZIP2 archive
on STDIN

pkzipc -add -
archivetype=pgp -
cryptalg=AES,128 -
recipient="Test" -
cert="Test" myfile.pgp
*.txt

 Creates a PGP archive called
myfile.pgp

add,
extract,
test, view

 113

Name/Description Value(s) Example usage Used with

ascii

Set the internal
attribute bit
(ASCII/Binary) to
ASCII.

Configurable

The file(s) or file
pattern whose
internal attribute
bit you wish to set
to ASCII; if no files
are specified,
PKZIP prompts for
each file.

No default value.

pkzipc -add -
ascii="*.txt" save.zip *

pkzipc -add -ascii
save.zip *

add

attributes

Stores files with the
specified file
attribute information
in the archive file.

Configurable
separately for add
and extract
operations.

hidden - select
hidden files.

system - select
system files.

readonly - select
read-only files.

archive - select
files with the
archive bit set.

all - select all
types of files.

none - do not
select files that
have hidden,
system, or read-
only attributes;
overrides the
default attributes
setting in
configuration file.

<hex value> -The
hex value of an
attribute to be
selected, or the
logical OR of
multiple hex
values

Default =
readonly, archive

pkzipc -add
-
attributes=system,hidden
save.zip *

add, extract

avargs

Specifies any
command line
arguments to use
when running the
anti-virus program
given in avscan

Configurable

<command line>
- A command line
that runs an anti-
virus program

pkzipc -extract
-avscan= f-prot.exe
-avargs="%e /silent
/nomem /noboot"
myfiles.zip

extract

114

Name/Description Value(s) Example usage Used with

avscan

Turns on virus
scanning: runs the
specified anti-virus
program using the
anti-virus command
line arguments in
avargs

Configurable

<executable> -
The name of the
anti-virus program
executable—with
path, if necessary

pkzipc -extract
-avscan= f-prot.exe
-avargs="%e /silent
/nomem /noboot"
myfiles.zip

extract

before

Process files that are
older than a
specified date.

Configurable
separately for add
and extract
operations.

Any date in format
specified in
Country-Settings
or the locale
option.

For example, the
US date format is
one of the
following:

mmddyy
mmddyyyy

No default value

For compression:

pkzipc -add
-before=09152003
save.zip *.doc

For extraction:

pkzipc -extract
-bef=09152003 save.zip
*.doc

add,
extract,
delete, test,
view, print,
console

binary

Treats the files to be
added as binary
files: sets the
internal ASCII/Binary
attribute bit of the
files to binary.

Configurable

The file(s) or file
pattern whose
internal attribute
bit you wish to set
to binary; if no
files are specified,
PKZIP will prompt
for each file.

pkzipc -add -
binary="*.exe" save.zip
*

pkzipc -add -binary
save.zip

add

bzip2

Compress files using
the BZIP2 method.

Note: Files
compressed with this
method can be
extracted with most
varieties of PKZIP
version 4.6 and later.
Other .ZIP programs
may not be able to
extract files
compressed with
BZIP2.

No sub-options

Default
compression
level: 5

To compress files using the
bzip2 algorithm and level 9
compression:

pkzipc -add -bzip2 -
level=9 save.zip
doc1.txt

To compress files using the
default compression level (level
5):

pkzipc -add -bzip2
save.zip *.doc

add

 115

Name/Description Value(s) Example usage Used with

cd

Encrypt file names
and other metadata
in a ZIP archive’s
central directory.

Requires that
passphrase and or
recipient options
also be used. Uses
strong encryption;
does not work with
traditional ZIP
encryption.

Encrypting file
names produces an
archive that requires
PKZIP or SecureZIP
version 8.0 or later
to open it.

Configurable

encrypt - Encrypt
file names and the
archive’s central
directory

normal - Do not
encrypt file
names; produces
a normal ZIP file.
Use to override a
configured default
setting that would
otherwise encrypt
file names.

Default = encrypt

pkzipc -add -
recipient="John Q.
Public" -cd test.zip

pkzipc -add -
recipient="John Q.
Public" -cd=normal
test.zip

pkzipc -add
-passphrase=mysecret
-cryptalgorithm=aes,256
-cd test.zip

add

certificate

Specifies the
certificate to use to
digitally sign a .ZIP
file.

Configurable

Note: This option is
available only with
SecureZIP.

<Name> - The
common name of
the subject of the
certificate (that is,
the cn field in a
string
representation of
a certificate; this is
the name as
viewed in Outlook,
Internet Explorer,
or PKZIP for
Windows);
optionally,
precede with:

 cn=

If the certificate
name contains a
space, enclose
the certificate
name in quotation
marks ("My
Name”).

<Email address>
- The email
address of the
certificate (that is,
the e field in a
string
representation of
a certificate);
optionally,
precede with:

 e=

The specified
certificate must
exist in the MY
certificate store. If
more than one

pkzipc -add
-certificate="John
Smith" save.zip *.doc

pkzipc -add
-certificate=cn="John
Smith" save.zip *.doc

pkzipc -add
-certificate=e=
john.public@xyz.com
save.zip *.doc

pkzipc -add
-certificate=#mycert.p12
save.zip *.doc

add, delete,
comment,
header

116

Name/Description Value(s) Example usage Used with

certificate in the
MY store has the
specified name,
the first certificate
is used.

#<file name> -
Specifies a
PKCS#12 file that
contains the
certificate you
want to use.

If the certificate’s
private key is not
in the PKCS#12
file with the
certificate, use the
keyfile option to
point to the
separate file that
contains the
private key. If
necessary, use
the
keypassphrase
option to specify a
passphrase to
read the private
key.

The certificate
option can be
used with the
hash and sign
options. By
default, the .ZIP
file is signed using
the SHA-1
method, and both
the central
directory and files
are signed.

 117

Name/Description Value(s) Example usage Used with

comment

Include a text
comment for files
within an archive file.
When you run the
command, PKZIP
prompts you to enter
the comment.

Configurable

all - All files
already in the
archive and all
files added to or
updated in the
archive are
commented

unchanged -
Only files that are
not changed in the
archive are
commented

add - Only newly
added files and
versions of files
are commented

freshen - Only
newly added
versions of files
already in the
archive are
commented

update - Only
newly added files
and versions of
files already in the
archive are
commented (the
opposite of
unchanged)

none - No
comments added

Default = none

Value if used on
command line
without a sub-
option = add

pkzipc -add -comment=all
save.zip *.doc

add,
standalone

118

Name/Description Value(s) Example usage Used with

configuration

Defines default
values for PKZIP
commands and
options

<command or
option> - Any
configurable
command or
option

GUI - Invokes the
configuration
dialogs from the
graphical PKZIP
product. If
specified, no other
command line
arguments are
processed for
configuration
except more and
silent, which can
be set to govern
the screen display
of configuration
settings.

silent -
Suppresses list of
configured
settings that is
ordinarily
displayed after a
command or
option is
configured.

No default value.

pkzipc -config
-extract=freshen

To see the current configuration
values, type:

pkzipc -config

To open the Configuration
dialogs of the GUI product for
use in setting configuration
defaults:

pkzipc -config=gui

Configures overwrite option
and suppresses display of
settings afterward:

pkzipc -config=silent
-overwrite=never

Configures silent option and
suppresses display of settings
afterward:

pkzipc -config=silent -
silent

standalone

console

Extracts files to the
screen (standard
output) instead of to
disk

No sub-options.

No default value.

pkzipc -console save.zip
*.txt

standalone

crl

Warns if a certificate
to be used for digital
signing, encryption,
or authentication is
listed as revoked in
an accessible CRL
(certificate
revocation list).

Use with strict
option to prevent the
certificate from being
used.

Configurable

No sub-options.

No default value.

pkzipc -add
-certificate="John
Adams"
-crl test.zip

pkzipc -add -
recipient="John Q.
Public" -crl -strict
test.zip *.doc

pkzipc -extract -crl
test.zip

add,
comment,
delete,
extract,
header,
listfile, print,
test, view

 119

Name/Description Value(s) Example usage Used with

cryptalgorithm

Encrypts files using
the specified
encryption algorithm.

Configurable

The encryption
algorithm to use.
The
listcryptalgo
rithms
command lists the
strong encryption
algorithms
available to you.
Specify a strong
encryption
algorithm as it is
listed in the output
from the
listcryptalgo
rithms
command.

Default =
Traditional
PKWARE
encryption

Value if used on
command line
without a sub-
option = The
strongest
algorithm
available on the
system

Encrypt all files added with 128-
bit AES using the specified
passphrase:

pkzipc -add
-cryptalgorithm=aes,128
-passphrase save.zip
*.doc

Encrypt all files added with
3DES using the certificate
named "My friend":

pkzipc -add -
cryptalgorithm=3DES,168
-recipient="My friend"
save.zip *.doc

Override a configured strong
encryption setting to use
traditional encryption just for the
current command line:

pkzipc -add
--cryptalgorithm
-passphrase save.zip
*.doc

Create an OpenPGP archive
called myfile.pgp using CAST5:

pkzipc -add -
archivetype=pgp -
cryptalg=cast5 -
myfile.pgp *.txt

add

120

Name/Description Value(s) Example usage Used with

cryptoptions

Controls advanced
encryption
compatibility options.

Makes possible a
choice of support for
smart cards or for
certain other target
scenarios when
doing certificate-
based encryption.
Only affects
encryption done
using the recipient
option.

Configurable

FastAES –
Enables the use
of the fastest AES
algorithm
available,
OpenSSL for AES
over CryptoAPI. If
FIPS 140 mode is
enabled, this
option is not
effective.

smartcard -
Supports
certificate-based
encryption for
recipients using
smart cards, but
produces
encrypted files
that cannot be
decrypted by older
versions of
PKZIP. Turn off to
support certificate-
based encryption
for recipients
using versions of
PKZIP prior to 6.1
at cost of support
for smart cards.

win2000 -
Supports
certificate-based
encryption for
recipients using
smart cards or
running on
Windows NT or
Windows 2000,
but uses 3DES
encryption to
protect access to
the key when
encrypting with
AES. Turn off to
use no 3DES
when encrypting
with AES at cost
of support for
smart cards and
recipients running
Windows NT or
Windows 2000.

–smartcard and
win2000 sub-
options are on by
default. FastAES
is not.

To configure FastAES on :

pkzipc -config -
cryptoptions=FastAES

To turn off smartcard in a
command line:

pkzipc -add
-cryptoptions=-smartcard
-recipient="John Q.
Public" test.zip

To configure both sub-options
off:

pkzipc -config -
cryptoptions=
-smartcard,-win2000

To configure both sub-options
on:

pkzipc -config -
cryptoptions=
smartcard,win2000

Add

Windows:

Extract,
Test

 121

Name/Description Value(s) Example usage Used with

dclimplode

Instructs PKZIP to
use the data
compression library
compression
scheme.

Configurable

ascii - use with
ASCII files.

binary - use with
BINARY or
unknown data
files.

Specify the size of
the dictionary
(1024, 2048, or
4096) after the
type (ascii or
binary). Use a
comma to
separate type and
size. A larger size
provides more
compression.

No default value

pkzipc -add
-dclimplode=ascii,4096
text.zip *.txt

add

default

Reset the original
defaults in the
configuration file for
all commands and
options

No sub-options

No default value.

To reset all defaults:

pkzipc -default

standalone

deflate64

Compress files using
the Deflate64
method.

Configurable

Note: Files
compressed with this
method can be
extracted by most
versions 2.5x and
later of PKZIP, but
not all ZIP programs
from other vendors
can extract such
files.

No sub-options.

No default value.

To compress files using
Deflate64 algorithm and level 9
compression:

pkzipc -add -deflate64
-level=9 save.zip
doc1.txt

To compress files using the
normal, default compression
level (level 5):

pkzipc -add -deflate64
save.zip *.doc

add

delete

Remove (delete)
files from an archive

<files> -Names or
file name pattern
of files to delete

No default value.

For individual files:

pkzipc -delete save.zip
doc1.txt

For a specific file pattern:

pkzipc -delete save.zip
*.doc

standalone

122

Name/Description Value(s) Example usage Used with

directories

When adding,
includes matching
files in subdirectories
and stores directory
path names; when
extracting, recreates
saved directory
paths.

Configurable

Note: Using this
command is the
same as combining
the path and recurse
commands.

current - Store
the path from the
current directory.

root or full - Store
the entire path
beginning at the
root of the drive;
also referred to as
"full" path.

specify or
relative - Store
path information
relative to the
specified
directories, for
their
subdirectories

none - No path
information stored

Default = none
when used with
add; full when
used with extract

Value if used on
command line
without a sub-
option = current

Compression example
(assumes you are in \wp):

pkzipc -add -
directories=root
save.zip docs*

The path stored is wp/docs/.

pkzipc -add
-directories=current
save.zip docs*

The path stored is: "docs\”.

Extraction:

pkzipc -extract -
directories save.zip *

add, extract

embedded

Suppresses prompt
and, depending on
the sub-option,
extracts or does not
extract the contents
of a lone archive file
embedded in
another archive file
of the type specified
in the sub-option.

Configurable

arj - Extract the
contents of lone
archives
embedded in ARJ
archives, without
prompting

-arj - Do not
extract the
contents of lone
archives
embedded in ARJ
archives, and do
not prompt

BinHex - Extract
the contents of
lone archives
embedded in
BinHex archives,
without prompting

-BinHex - Do not
extract the
contents of lone
archives
embedded in
BinHex archives,
and do not prompt

bzip2 - Extract the
contents of lone
archives
embedded in

To extract an embedded archive
from a ZIP file without
prompting:

pkzipc -extract
-embedded=zip
outerarchive.zip

To suppress the prompt and not
extract archives embedded in
ZIP files:

pkzipc -extract
-embedded=-zip
outerarchive.zip

extract,
console,
print

 123

Name/Description Value(s) Example usage Used with

BZIP2 archives,
without prompting

-bzip2 - Do not
extract the
contents of lone
archives
embedded in
BZIP2 archives,
and do not prompt

cab - Extract the
contents of lone
archives
embedded in CAB
archives, without
prompting
(Windows only)

-cab - Do not
extract the
contents of lone
archives
embedded in CAB
archives, and do
not prompt
(Windows only)

gzip - Extract the
contents of lone
archives
embedded in
GZIP archives,
without prompting

-gzip - Do not
extract the
contents of lone
archives
embedded in
GZIP archives,
and do not prompt

lzh - Extract the
contents of lone
archives
embedded in LZH
archives, without
prompting

-lzh - Do not
extract the
contents of lone
archives
embedded in LZH
archives, and do
not prompt

rar - Extract the
contents of lone
archives
embedded in RAR
archives, without
prompting
(Windows only)

-rar - Do not
extract the
contents of lone
archives

124

Name/Description Value(s) Example usage Used with

embedded in RAR
archives, and do
not prompt
(Windows only)

uue - Extract the
contents of lone
archives
embedded in
UUENCODED
archives, without
prompting

-uue - Do not
extract the
contents of lone
archives
embedded in
UUENCODED
archives, and do
not prompt

xxe - Extract the
contents of lone
archives
embedded in
XXENCODED
archives, without
prompting

-xxe - Do not
extract the
contents of lone
archives
embedded in
XXENCODED
archives, and do
not prompt

zip - Extract the
contents of lone
archives
embedded in ZIP
archives, without
prompting

-zip - Do not
extract the
contents of lone
archives
embedded in ZIP
archives, and do
not prompt

Disabled by
default. When
used, a sub-option
must be set.

 125

Name/Description Value(s) Example usage Used with

encode

As an option, used
with add, creates an
archive and converts
it to the archive type
specified by the sub-
option. As a
standalone
command, converts
a specified existing
archive.

Configurable

Note: PKZIP
creates two files
when the encode
option is invoked: an
intermediate archive
of the type specified
for the add
command (ZIP, by
default), and an
archive of the type
specified for the
encode option.

Use the
movearchive
option with encode
to remove (delete)
the intermediate
archive.

bzip2 - Creates a
BZIP2 file

gzip - Creates a
GZIP file

uue - Creates a
UUENCODED file

xxe - Creates an
XXENCODED file

Default value =
uue

Value if used on
command line
without a sub-
option = uue

Add files to save.zip and encode
to UUE:

pkzipc -add -encode
save.zip *

Add files to a TAR archive and
encode to a GZIP archive:

pkzipc -add -encode=gz
save.tar

Encode the archive as a GZIP
archive and delete the
intermediate archive created by
the add command:

pkzipc -add -encode=gz
-movearchive save.tar *

As a command, creates
save.tar.gz from existing archive
save.tar:

pkzipc -encode=gz
save.tar

add

enterlicensekey

Prompts for a
product license key

None pkzipc -enterlicensekey standalone

error

Designates warning
conditions, by
warning number, to
treat as error
condition 73
(Warning configured
as an error)

Configurable

<warning
number> - One or
more warning
numbers,
separated by
commas. To
override a warning
number
configured for the
option (and thus
not treat that
warning as an
error), precede
the number with a
hyphen.

pkzipc -extract -
error=42,43 files.zip

pkzipc -extract -
error=42,-43 files.zip

add,
extract,
test, view

126

Name/Description Value(s) Example usage Used with

exclude

Exclude files from
being compressed or
extracted.

Configurable
separately for add
and extract
operations.

Note: You must
specify a sub-option
(for example, file
pattern or list
file name
preceded by an
appropriate list
character “@”) with
the exclude option.

The file(s) or file
pattern (for
example, *.doc)
being excluded.

No default value.

Compression example:

pkzipc -add -
exclude="*.doc" save.zip

Extraction example:

pkzipc -extract
-exclude="*.txt"
save.zip

Setting exclude default:

pkzipc -config
-exclude="*.txt"

Note: When you use the
exclude option with the
configuration command,
PKZIP prompts you to configure
the exclude default for add
and/or extract operations.

add,
extract,
delete, test,
view, print,
console

extract

Extracts files from an
archive file

Configurable

all - Extracts all
files in an archive
file

freshen - Extracts
only files in the
archive that are
newer versions of
files that already
exist in the target
directory

update - Extracts
files in the archive
that are newer
versions of files
that already exist
in the target
directory or that
do not exist in the
target directory

Default = all

pkzipc -extract save.zip

pkzipc -extract=update
save.zip

standalone

fast

Uses the Deflate
algorithm and sets
the level of
compression to level
2 on a scale of 0 - 9.
Files having the
following extensions
are added
uncompressed: bz2,
bzip2, cab, gz, gzip,
rar, gif, jpeg, jpg,
mp3, mpeg, mpg,
sxw

Configurable

No sub-options.

No default value.

pkzipc -add -fast
save.zip *.doc

pkzipc -config -fast

add

 127

Name/Description Value(s) Example usage Used with

fipsmode

Causes SecureZIP
to use only
algorithms that
comply with the
FIPS 140 standard
to perform
cryptographic
operations.

Use the commands
listcryptalgorithms
and
listhashalgorithms
with the fipsmode
option to see lists of
algorithms available
with fipsmode.

Configurable

enabled - Turns
the option on

disabled - Turns
the option off

On Windows XP
and later, the
option is enabled
or disabled by
default according
to the Windows
FIPS policy
setting “System
cryptography: Use
FIPS compliant
algorithms for
encryption,
hashing, and
signing.”
Otherwise,
disabled by
default.

Turns on fipsmode for the
current command line:

pkzipc -add -
recipient="John Public"
-fipsmode save.zip *.doc

Overrides a configured default
setting of fipsmode=enabled
and turns off fipsmode for the
current command line:

pkzipc -extract
-fipsmode=disabled
wedding_plans.zip *.*

Lists encryption algorithms
available with fipsmode:

pkzipc -
listcryptalgorithms
-fipsmode

add,
extract,
test,
listCryptAlg-
orithms,
listHashAlg-
orithms

With file
name-
encrypted
(FNE)
archives,
also applies
to:
comment,
delete,
header,
view

fix

Attempts to repair a
corrupt ZIP archive
file

<file name> - The
name of the ZIP
archive to fix

No default value.

pkzipc -fix save.zip standalone

hash

Sets the hashing
algorithm to use
when signing an
archive. Use
listhashalgorithms
to list hashing
algorithms available.

Configurable

Note: This option
requires SecureZIP.

The hashing
algorithm to use,
as listed in the
output from the
listhashalgor
ithms command.

Default = sha1

pkzipc -add
-certificate="John
Smith"
-hash=sha1 save.zip
*.doc

add, delete,
comment,
header

header

Creates a comment
for a ZIP archive file
in the header area of
the file

Configurable

<file name> - The
file that contains
the header
comment. The file
name must be
prefixed with the
ListChar symbol
("@" by default) to
distinguish it from
the other sub-
option

<comment> - The
literal comment to
be used

-

No default value.

To include literal text:

pkzipc -add -header
save.zip *.doc

Note: PKZIP prompts for the
header text

To include an existing file:

pkzipc -add
-header=@text.doc
save.zip *.doc

add,
standalone

128

Name/Description Value(s) Example usage Used with

help

Displays help screen
for PKZIP

<command or
option> - Any
command or
option for which
help is desired.

No default value.

pkzipc -help

Display help for the add
command:

pkzipc -help=add

standalone

include

Include files to
compress or extract.

Configurable
separately for add
and extract
operations.

Note: You must
specify a sub-option
(for example, file
pattern or list file
name preceded by
an appropriate list
character “@”) with
the include option.

The file(s) or file
pattern (for
example, *.doc)
being included.

No default value.

Compress only .doc files:

pkzipc -add -
include="*.doc" save.zip

Configure default behavior to
always include .txt files in
folders accessed by the
command line even if the
command line does not explicitly
include them, as long as the
command line does not explicitly
exclude them:

pkzipc -config
-include="*.txt"

Note: When you use the
include option with the
configuration command,
PKZIP prompts you to specify
whether to configure the option
for add and/or extract
operations.

add,
extract,
delete, test,
view, print,
console

jobid

Specifies a job ID
token used with
substitution to
construct a
destination folder
name.

<ID> - The job ID
to use

pkzipc –add –jobid=myJob
–substitution {id}{yyyy}.zip *.doc

substitution

keyfile

Specifies a file
containing the
private key for the
certificate specified
by the certificate
option. The option is
most useful when
using SSL server
certificates, which
often have the
private key and
certificate in
separate files.

Configurable

<file name> - The
name and location
of the file

pkzipc -add
-certificate=#mycert.pem
-keyfile=mykey.key
save.zip *.doc

add,
extract,
test, view

 129

Name/Description Value(s) Example usage Used with

keypassphrase

Specifies the
passphrase used to
decrypt private key
information. This can
be the passphrase
used for a PKCS#12
file (specified with
the certificate
option), or a key file
specified with the
keyfile option.

<passphrase> -
The passphrase,
in quotes

pkzipc -add
-certificate=#mycert.p12
-keypassphrase="my
password" save.zip *.doc

pkzipc -add
-certificate=#mycert.pem
-keyfile=mykey.key
-keypassphrase="my
password" save.zip *.doc

add,
extract,
test, view

larger

Process only those
files whose size is
greater than (in
bytes) or equal to a
specified file size.

Configurable
separately for add
and extract
operations.

Numerical value
(in bytes) that
indicates a
minimum desired
file size.

No default value.

Add only files that are at least
5000 bytes in size:

pkzipc -add -larger=5000
save.zip *

add,
extract,
test, view,
delete, print
console

level

Sets the level of
compression.

See also the options
store, speed, fast,
normal, and
maximum, which
provide non-numeric
names for various
compression
settings with (except
store) the Deflate
compression
method.

Configurable

Any digit from 0
through 9, with 0
being no
compression at
the fastest speed,
and 9 being the
most compression
at the slowest
speed.

Default = level 5
(normal)

pkzipc -add -level=9
save.zip *.doc

add

license

Displays the product
license information
for PKZIP

No sub-options.

No default value.

pkzipc -license standalone

130

Name/Description Value(s) Example usage Used with

listcertificate
s

Lists digital
certificates in a
certificate store.

Note: This option is
available only with
SecureZIP.

my - Lists
personal
certificates in the
MY store

addressbook -
Lists public
certificates in the
AddressBook
store

ca - Lists
intermediate,
certificate
authority
certificates in the
CA store

root - Lists trusted
certificates in the
Root store

Default = my

pkzipc -listcertificates

pkzipc -listcertificates
=addressbook

standalone

listchar

Set the list character
to the specified
ASCII character.
Prefixing a file name
with the list
character identifies it
as a list file.

Configurable

Any character in
the printable
ASCII range. Must
not be the same
as OptionChar
and must not be "-
”.

default = @

pkzipc -config -
listchar=+

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

listcryptalgori
thms

Displays a list of the
strong encryption
algorithms available
for use with the
cryptalgorithm
option. With
fipsmode on, it lists
only FIPS-validated
algorithms.

When OpenPGP is
enabled through
configuration or –
archivetype=pgp,
CAST,128 will also
be listed.

Note: This option is
only available in
versions that have
strong encryption.

None pkzipc -
listcryptalgorithms

standalone

 131

Name/Description Value(s) Example usage Used with

listfile

Generates a text file
that lists the files to
be added to or
extracted from an
archive. The option
causes a list file to
be created instead of
actually adding or
extracting files.

Requires a name
for the list file

No default value.

Create a list file of files that the
command line minus the listfile
option would add to
myarchive.zip:

pkzipc -add=update
-listfile=mylist.txt
myarchive.zip *

Generate a list file that lists all
files, with any saved path
information, that the command
line minus the listfile option
would extract from the save.zip
archive

pkzipc -extract -
listfile=list.txt
save.zip

add, extract

listhashalgorit
hms

Displays a list of the
hash algorithms
available to the hash
option. With
fipsmode on, it lists
only FIPS-validated
algorithms.

None pkzipc -
listhashalgorithms

standalone

listsfxtypes

Display a list of the
types of SFX files
that can be created
with PKZIP

No sub-options.

No default value.

pkzipc -listsfxtypes standalone

locale

Sets the default
PKZIP time and date
settings to match
your system time
and date formats.
When disabled,
PKZIP uses a 12-
hour time format and
a date format of
MMDDYY.

Configurable

enable - Turns
the option on

disable - Turns
the option off

Default = enable

Configure the option to be off by
default:

pkzipc -config
-locale=disable

Turn the option off for the
current command line

pkzipc -add -
locale=disable test.zip
*.doc

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

132

Name/Description Value(s) Example usage Used with

lowercase

Extracts file name(s)
in lower case
regardless of how it
was originally
archived.

Configurable

disable – Do not
change the case
of extracted files.

archive - extracts
file name(s) such
that only path
information stored
in the archive
becomes lower
case.

full - Extracts file
name(s) such that
all path
information stored
in the archive
becomes lower
case, and any
extract path
specified on the
command line
also becomes
lower case.

default = archive.

pkzipc -extract -
lowercase=full save.zip
MixedCaseExtract/

Extracts all files from save.zip
using lower case letters to a
directory named
mixedcaseextract. That
directory’s name will have lower
case letters.

pkzipc -extract -
lowercase-archive
save.zip
MixedCaseExtract/

Extracts all files from save.zip
using lower case letters to a
directory named
MixedCaseExtract. That
directory’s name will have mixed
case letters.

extract

lzma

Compress files using
the LZMA method.

Configurable

Note: Files
compressed with this
method can be
extracted by PKZIP
versions 12.3 and
later, but not all ZIP
programs from other
vendors can extract
such files.

No sub-options.

No default value.

pkzipc -add -lzma
save.zip doc1.txt

add

 133

Name/Description Value(s) Example usage Used with

mask

Strips file attributes
that the attribute
option would
otherwise cause to
be stored or set for
extracted files

Configurable

Note: You can only
mask attributes that
are specified with
the attributes option.

hidden - hidden
attributes.

archive - archive
attribute.

system - system
attributes.

readonly - read-
only attributes.

none - no
attributes (turns
off attribute mask
in the PKZIP
Configurations
Settings file for
this instance
only).

all - all attributes

<hex value> -The
hex value of an
attribute to be
masked, or the
logical OR of
multiple hex
values

Default (add) =
none

Default (extract) =
all

Value if used on
command line
without a sub-
option (add and
extract) = all

pkzipc -add -
attributes=all
-mask=hidden save.zip

pkzipc -extract -
mask=none save.zip

pkzipc -config -
mask=hidden

add, extract

maximum

Uses the Deflate
compression method
and sets the level of
compression to level
9, the highest level
on a 0 - 9 scale, but
gives the lowest
speed

Configurable

No sub-options.

No default value.

pkzipc -add -maximum
save.zip *.doc

pkzipc -config -maximum

add

134

Name/Description Value(s) Example usage Used with

messagedigest

Display one or more
message digests for
files inside an
archive.

All – Calculates
and displays the
message digest
for all of the
algorithms.

None – Don’t
display any
message digests
or checksums.
This is useful for
displaying only
one.

CRC32 –
Calculates and
displays CRC32
checksum

MD5 – Calculates
and displays MD5
message digest.

SHA1 –
Calculates and
displays SHA-1
message digest.

SHA256 –
Calculates and
displays SHA-256
message digest.

SHA384 –
Calculates and
displays SHA-384
message digest.

SHA512 –
Calculates and
displays SHA-512
message digest.

Prefix an
algorithm with - to
indicate it should
not be used

Default = all

Shows the message digest
using all available hash
algorithms for all files inside
archive.zip

pkzipc -messagedigest
archive.zip

Shows the message digest
using all available hash
algorithms for only file.doc
inside archive.zip

pkzipc -messagedigest
archive.zip file.doc

Uses the sha256sum program
to verify that file.doc inside
archive.zip is the same as
file.doc in the current directory.

pkzipc -
messagedigest=none,sha25
6 -silent=banner
archive.zip file.doc |
sha256sum --check

Standalone

more

Pauses after one
screen of output and
prompts to continue.

Configurable

The number of
rows of
information you
want to define as
a screen

Default = one
screen of
information

pkzipc -view -more=22
save.zip

pkzipc -config -more

All
commands

 135

Name/Description Value(s) Example usage Used with

move

Removes (deletes)
files from the source
drive after adding
them to an archive.

No sub-options.

No default value.

pkzipc -add -move save.zip
*.doc

add

movearchive

Deletes an archive
that is created only
as an intermediate
archive—for
example, to be
converted by the
encode option to an
archive of a different
type, or to be
transferred by FTP.

Configurable

No sub-options.

No default value.

pkzipc -add -encode=gzip
-movearchive myfiles.tar

add

namesfx

Specify a file name
when converting to a
self-extracting file.

<file name> - File
name for the SFX
file

No default value.

pkzipc -sfx -
namesfx=test.exe
docs.zip

sfx

newer

Selects files that are
no older than a
specified interval

Configurable
separately for add
and extract
operations

Note: With a time
unit of days, the
interval is measured
from the beginning
of the current day.
With time units of
hours, minutes, or
seconds, the interval
is measured from
the current system
time.

Note: To specify an
explicit date, see
after..

<numeric value>
A number of days,
hours, minutes, or
seconds defining
the interval, plus a
suffix identifying
the kind of units
used:

Suffixes:

d - Days (default)
h - Hours
m - Minutes
s - Seconds

No default value.

Add files no older than 24 hours:

pkzipc -add -newer=24h
save.zip *

Add files no older than five
days:

pkzipc -add -newer=5d
save.zip *

pkzipc -add -newer=5
save.zip *

add,
extract,
test, view,
print,
console

136

Name/Description Value(s) Example usage Used with

noarchiveextens
ion

Suppresses adding
a file name
extension to the
specified archive file
name

Configurable

Note: This option is
identical to
nozipextension,
which is now
deprecated.

No sub-options.

No default value.

pkzipc -add
-noarchiveextension
file.ibm *.doc

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

noextended

Suppress the
storage of extended
attribute information
(excluding file
permission attributes

Configurable

No sub-options.

No default value.

pkzipc -add -noextended
save.zip *

add

nofix

Suppress the
attempt to fix any
problems PKZIP
encounters in
extracting from an
archive

Configurable

No sub-options.

No default value.

pkzipc -add -nofix
save.zip *.doc

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

normal

Uses the Deflate
algorithm and sets
the level of
compression to 5
(normal) on a scale
of 0 - 9 for a balance
of compression and
speed. Unlike with
the fast option, all
files are
compressed.

Configurable

No sub-options.

No default
value.dod5220 -
Overwrites files
three times, to the
DOD 5220.22-M
specification

pkzipc -add -normal
save.zip

pkzipc -config -normal

add

 137

Name/Description Value(s) Example usage Used with

nosmartcard

Note: This option is
deprecated. Instead
of setting
nosmartcard, turn
off the smartcard
sub-option of
cryptoptions.

Turns off smart card
compatibility when
set in conjunction
with the recipient
option.

Set this option to
enable users of
versions of PKZIP
prior to 6.1 to
decrypt files
encrypted using the
recipient option.

Note: Smart cards
cannot decrypt files
encrypted using a
recipient list if this
option is set.

configurable

No sub-options.

No default value.

pkzipc -add
-recipient="Thomas
Francis, Jr."
nosmartcard save.zip
*.doc

add

nozipextension

Note: This option is
deprecated. Use the
option
noarchiveextensio
n instead.

Suppress PKZIP’s
adding of an
identifying file
extension to an
archive file name

Configurable

No sub-options.

No default value.

pkzipc -add -
nozipextension file.ibm
*.doc

All
commands

138

Name/Description Value(s) Example usage Used with

older

Selects files that are
older than a
specified interval

Configurable
separately for add
and extract
operations

Note: With a time
unit of days, the
interval is measured
from the beginning
of the current day.
With time units of
hours, minutes, or
seconds, the interval
is measured from
the current system
time.

Note: To specify an
explicit date, see
before.

<numeric value>
A number of days,
hours, minutes, or
seconds defining
the interval, plus a
suffix identifying
the kind of units
used:

Suffixes:

d - Days (default)
h - Hours
m - Minutes
s - Seconds

No default value.

Adds files older than 24 hours:

pkzipc -add -older=24h
save.zip *

Adds files older than five days:

pkzipc -add -older=5d
save.zip *

pkzipc -add -older=5
save.zip *

add,
extract,
test, view,
print,
console

OpenFile

Determines whether
to include files that
are open for write
access in another
application

Note: This option is
not needed in UNIX
and Linux systems,
as this is the default
behavior.

Never - PKZIP
does not include
any open files. A
warning will
appear if a
matching file is
open

All - PKZIP
includes all
matching open
files without
prompting first. A
message noting
each open file is
included in the
standard output.

Prompt - PKZIP
notifies you when
a matching file is
open, and asks
whether to add
the open file or
skip it.

Default = Never

pkzipc -add -
OpenFile=never test.zip
*.bmp

pkzipc -add -OpenFile
test.zip *.bmp

pkzipc -add -
OpenFile=prompt test.zip
*.bmp

add

 139

Name/Description Value(s) Example usage Used with

optionchar

Specifies the prefix
character used to
identify a command
or option as such on
the command line

Note: On Windows,
the “/” (slash)
character can also
always be used.

Configurable

Any valid single
character.

Default = -
(hyphen)

pkzipc -optionchar=+
+add save.zip *.doc

pkzipc +config -
optionchar=+

All
commands

overwrite

Specifies whether to
overwrite existing
files with files being
added or extracted.
By default, PKZIP
prompts before
overwriting when
extracting but not
when adding.

Configurable

prompt - Prompt
every file
individually on
whether to
overwrite a file
that has the same
name as the one
being added or
extracted

all - Overwrite all
files that have the
same name

increment -
Increment file
name to make it
unique.

never - Never
overwrite a file
that already exists
in the target
directory or
archive

Value if used on
command line
without a sub-
option = all.

pkzipc -extract -
overwrite=all save.zip

pkzipc -add
-overwrite=prompt
save.zip

add, extract

140

Name/Description Value(s) Example usage Used with

passphrase

Protects an archive
with passphrase-
based encryption

PKZIP prompts for a
passphrase if none
is specified with the
option.

Configurable

<passphrase> -
The passphrase
that must be
supplied to extract
and decrypt the
files

<file name> -
Name of a file that
contains the text
of the passphrase.
The file name
must be prefixed
with the list
character (@ by
default) defined
with the listchar
option.

No default value.

To include a passphrase in the
command:

pkzipc -add
-passphrase=beowulf
save.zip

To have PKZIP prompt for a
passphrase after you type the

command:

pkzipc -add -passphrase
save.zip

To have PKZIP get the
passphrase from a file:

pkzipc -add
-passphrase=@secret.txt
save.zip

To extract passphrase-protected
files from an archive:

pkzipc -extract
-passphrase=beowulf9
save.zip

add,
extract,
test, print,
console

path

Stores or restores
directory path names
for files within a .ZIP
file

By default, PKZIP
does not store path
information

Configurable

current - Store
the path from the
current directory.

root or full - Store
the entire path
beginning at the
root of the drive;
also referred to as
"full" path.

specify or
relative - Store
path information
relative to the
specified
directories, for
their
subdirectories

none - No path
information stored

Default = none
when used with
add; full when
used with extract

Value if used on
command line
without a sub-
option = current

Assuming you are in "/temp":

pkzipc -add -path=root
save.zip docs/*

(the complete path is stored
including "temp/docs/").

pkzipc -add -
path=current save.zip
docs/wp/*

(the path stored is "docs/wp").

add, extract

 141

Name/Description Value(s) Example usage Used with

ppmd

Compress files using
the PPMd method.

Configurable

Note: Files
compressed with this
method can be
extracted by PKZIP
versions 12.3 and
later, but not all ZIP
programs from other
vendors can extract
such files.

No sub-options.

No default value.

pkzipc -add -ppmd
save.zip doc1.txt

add

preview

Prints out messages
to preview the
results of a set of
commands or
options without
actually performing
the tasks

No sub-options.

No default value.

pkzipc -add -preview
save.zip

add, delete,
header, sfx,
comment

print

Print a file within a
.ZIP file.

(Windows)

<print device> -
The print device
use, for example,
"lpt1".

Default = the
default printer on
your system.

pkzipc -print=lpt1
save.zip readme.txt

Uses default printer if no printer
is specified.

standalone

142

Name/Description Value(s) Example usage Used with

recipient

Specifies one or
more recipients for
certificate-based
encryption. The
option can appear
more than once on
the command line to
specify multiple
recipients.

Configurable

Note: Use the
recipient option with
the nosmartcard
option if you want
users of versions of
PKZIP prior to 6.1 to
be able to decrypt
your files.

Note: This option is
available only with
SecureZIP.

cn=<Common
name> - The
Common Name
(CN) field of the
subject of the
certificate. The
“cn=” prefix is
optional. This sub-
option is the
default: PKZIP
searches the
Common Name
field if no other
field is specified.

<Friendly name>
- The friendly
name associated
with the
certificate. This is
often the same as
the common
name of the
subject.

e=<email
address> - The
email address
embedded in the
subject of a digital
certificate. (Note:
Not all certificates
contain an email
address.) The
“e=” prefix is
optional.

@<file name> -
Specifies a text
file which contains
the names of
recipients, one on
each line.

#<file name> -
Specifies a
PKCS#7 or
PKCS#12 file that
contains
certificates of the
recipients you
want to list.

Default = cn=

pkzipc -add
-recipient="Thomas
Jones, Jr." save.zip
*.doc

pkzipc -add
-recipient="cn=Thomas
Jones, Jr." save.zip
*.doc

pkzipc -add
-
recipient=e=john.public@
nowhere.com save.zip
*.doc

pkzipc -add
-recipient=john.public@
nowhere.com save.zip
*.doc

pkzipc -add -recipient=
f=(&(userCertificate=*)
(ou=Sales)) save.zip
*.doc

pkzipc -add -recipient=
"f=(&(userCertificate=*)
(ou=Sales With A
Space))" save.zip *.doc

pkzipc -add
-
recipient=@recipients.tx
t save.zip *.doc

pkzipc -add
-
recipient=#recipients.p7
b save.zip *.doc

pkzipc -add
-
recipient=#recipients.p1
2 save.zip *.doc

add

 143

Name/Description Value(s) Example usage Used with

recurse

Search
subdirectories for
files to compress

Use with path to
store path
information for files
in subdirectories.
Tip: You can use
directories to
combine the
functionality of
recurse and path.

Configurable

No sub-options.

No default value.

pkzipc -add -recurse
save.zip *

add

rename

Uses regular
expressions to
rename files as they
are added or
extracted.

@<list file> - A
list file specifying
replacement
expressions, one
on each line

<Replacement
expression> - A
separator
character followed
by a regular
expression
followed by
another separator
character followed
by a replacement
string followed by
a final separator
character
optionally followed
by “i” to ignore
case

pkzipc -add
-rename=/blue/green/
mydata.zip *.txt

pkzipc -add
-rename=/blue/green/i
mydata.zip *.txt

pkzipc -extract
-rename=/-/output.txt/
data.zip output.txt

add,
extract, test

144

Name/Description Value(s) Example usage Used with

runafter

Run or open a
specified file after
extraction by a self-
extractor

Configurable

<file name> - The
file to run or open

No default value.

Launch the file (for example,
readme.txt) via the specified
applications (for example,
notepad.exe):

pkzipc -add -sfx
-runafter="notepad.exe
readme.txt" test.exe *

Launch the file (for example,
readme.txt) via the associated
application (Windows only):

pkzipc -add -sfx
-runafter="${}
readme.txt" test.exe *

Run the install script (for
example. install.inf) (Windows
only):

pkzipc -add -sfx
-
runafter="${install.inf}
" test.exe *

Run the install script (for
example, install.inf) with the full
short path pre-appended (for
example, c:\program~1\temp)
(Windows only):

pkzipc -add -sfx
-runafter=
"${install}%0install.inf
" test.exe

(add) sfx

runContext

Specifies that
program is running
in the context of the
Current User or
Local Machine

This option
processed earlier
than any other
option, even earlier
than the –
OptionChar, as a
result it is not
configurable and it
only works with '-' or
'/' as option
indicators.

user - program is
running in the
context of the
Current User

 machine -
program is
running in the
context of the
Local Machine

Default = user

pkzipc -extract
archive.zip

Extracts archive in the context
of the Current User

pkzipc -extract -
RunContext archive.zip

Extracts archive in the context
of the Current User

pkzipc -extract -
RunContext=user
archive.zip

Extracts archive in the context
of the Current User

pkzipc -extract -
RunContext=machine
archive.zip

Extracts archive in the context
of the Local Machine

extract

 145

Name/Description Value(s) Example usage Used with

sfx

With the add
command, creates a
self-extracting ZIP
file with a .exe file
name extension. As
a standalone
command, converts
an existing ZIP file to
a self-extracting
archive.

Configurable

Note: For a listing
of available self-
extractors, use the
listsfxtypes
command.

<no sub-option>
- Create a native
command line
self-extractor

win32_x86_g610
- Create a
graphical
Windows self-
extractor that,
when run, opens a
dialog to let the
user select a
target extract
folder

Default = Create a
native command
line self-extractor
for use in the
command line
environment of
the operating
system in which it
was created

To create myfiles.exe:

pkzipc -add -sfx myfiles
*.doc

To convert existing ZIP file
myfiles.zip to self-extracting
graphical Windows archive
myfiles.exe:

pkzipc -sfx=win32_x86_g
myfiles.zip

To convert existing ZIP file
myfiles.zip to a self-extractor
and specify a name for the self-
extractor:

pkzipc -sfx
-namesfx=newname
myfiles.zip

(Converts myfiles.zip to
newname.exe.)

add,
standalone

sfxdestination

Specifies a default
target folder for files
extracted from a
self-extractor

Configurable

<path> - Path to
target folder

No default value

pkzipc -add -sfx
-sfxdestination="My
Documents\newstuff"
mysfx *.doc

add, sfx

sfxdirectories

Causes a self-
extractor to restore a
saved path structure
on extraction. To
recurse
subdirectories and
store path
information when
adding files to the
archive, use with the
directories option.

Configurable

No sub-options

No default value

pkzipc -add -sfx
-sfxdirectories -
directories mysfx
"docs*.*"

add, sfx

sfxlogfile

Creates an ASCII
text error log (named
pkerrlog.txt) in the
destination directory
on extraction

Configurable

No sub-options

No default value

pkzipc -add -sfx -
sfxlogfile test.exe *

(add) sfx

146

Name/Description Value(s) Example usage Used with

sfxoverwrite

Specifies when a
self-extractor
overwrites files that
have the same name
as a file being
extracted

Configurable

prompt - (Default)
The user is asked
whether to
overwrite files

always - Files that
have the same
name in the
destination folders
are overwritten
without prompting

update - Only
files that do not
already exist or
are newer than
same-named files

freshen - Only
newer versions of
files that already
exist in the
destination folders
are extracted; the
older files are
overwritten
without prompting

never - Files are
never overwritten

Default = prompt

pkzipc -add -sfx
-sfxoverwrite=freshen
mysfx *.doc

add, sfx

sfxuitype

Specifies the type of
graphical interface
(GUI) that a self-
extractor presents to
the user.

This option only
affects GUI self-
extractors.
(Command line self-
extractors do not
present a GUI.)

Configurable

autosfx -
Presents a dialog
that displays a bar
to show progress
extracting, and a
Cancel button

easysfx -
(Default) Presents
a dialog that
enables the user
to select a
destination folder
and to turn off any
runafter option
set

regularsfx -
Presents a dialog
that enables the
user to change
the destination
folder and other
options before the
archive is
extracted

Default = easysfx

pkzipc -add -sfx
-sfxuitype=regularsfx
mysfx *.doc

add, sfx

 147

Name/Description Value(s) Example usage Used with

shortname

Convert long file
names of files added
to an archive to
WIN32-equivalent
"short" file names

Configurable

dos - Convert
long file names to
DOS-equivalent
short file names
(8+3)

none - Do not
convert file names

Default = none

Value if used on
command line
without a sub-
option = dos.

pkzipc -add -short=dos
save.zip

add

shred

Overwrites PKZIP
temporary files and
files deleted by
PKZIP to prevent
recovery of their
data

Configurable

Note: The shred
option is the same
as the older wipe
option, which is now
deprecated.

none - turns off
shredding: files
are not
overwritten

random -
Overwrites files
once with random
data

dod5220 -
Overwrites files
three times, to the
DOD 5220.22-M
specification

nsa - Overwrites
files seven times,
to the NSA
standard

Default = none

Value if used on
command line
without a sub-
option = random

pkzipc -add -move
-shred=nsa myfiles.zip *

add

148

Name/Description Value(s) Example usage Used with

sign

Indicates whether
the central directory
or only files should
be signed when
using digital
signatures. Use the
certificate option
(which can be
configured) to
specify the certificate
to use.

For maximum
security, sign both
the central directory
and local files.

Configurable

Note: This option
requires SecureZIP.

cd - sign central
directory.

files - sign files.

all - sign both the
central directory
and files.

timestamp – Sign
files and apply a
digital timestamp
to the central
directory.

none - do not sign
files (Used for
turning signing off
if it has been
configured)

Value if used on
command line
without a sub-
option = all.

pkzipc -add
-certificate="John
Smith"
-sign=cd save.zip *.doc

add

 149

Name/Description Value(s) Example usage Used with

silent

Suppresses the
display of some or
all of PKZIP’s
messages to the
user, including
warnings and errors.
It can also suppress
prompts for inputs.

Configurable

none - Turns off
the silent option;
displays all
messages

banner -
Suppresses
printing the
banner

copy -
Suppresses “Copy
file” messages
when updating
archives

error -
Suppresses all
error and warning
outputs

fileheader -
Suppresses file
headers when
using the console
command

input -
Suppresses all
requests for input.
If any operation
requests input, an
error is given

normal -
Suppresses all
message outputs
except warnings,
errors, and
prompts for input

output -
Suppresses all
normal, error, and
warning outputs

progress -
Suppresses
“percent
complete”
messages

all - Same as
specifying both
Input and Output.
(Default if option
is specified
without a sub-
option)

No default value.

pkzipc -add -silent
save.zip *.doc

pkzipc -config -silent

All
commands
except list-
certificates,
listcryptalgo-
rithms,
listsfxtypes,
license, and
version

150

Name/Description Value(s) Example usage Used with

smaller

Process only files
that are smaller than
or equal to a given
file size, specified in
bytes

Configurable
separately for add
and extract
operations.

Numerical value
that indicates a
maximum desired
file size (in bytes)

No default value.

pkzipc -add -
smaller=5000 save.zip *

In this example, PKZIP adds
only files no larger than 5000
bytes in size.

add,
extract,
test, view,
delete,
print,
console

sort

Sort files in an
archive based on
specific criteria (for
example, by file
size). Files are then
viewed, added, and
extracted in the
order sorted.

Configurable

Note: The crc and
ratio sub-options
do not work with the
add command and
sort option.

crc - sort by CRC
value

date - sort by file
date of file

extension - sort
by file extension

name -
alphabetically sort
files and folders
together in one
series by path
name

natural - sort in
the order files
occur in the
archive

ratio - sort by
compression ratio

size - sort by the
original,
uncompressed
size of the file
("length" in
display)

comment - sort
by file comment

none - first
alphabetically sort
path names that
contain folders
and then
separately sort file
names that lack
folder information.
(The default.)

Default = none

Value if used on
command line
without a sub-
option = name

pkzipc -add -sort=date
save.zip *.doc

pkzipc -config -
sort=date

add,
extract,
test, view,
delete,
print,
console

 151

Name/Description Value(s) Example usage Used with

span

Forces PKZIP to
create a split
archive, even when
creating the archive
on non-removable
media.

Also formats or
wipes removable
media prior to writing
an archive.

On Windows, the
option causes PKZIP
to write an archive in
segments if
necessary to span
multiple removable
media.

This option is
available only for ZIP
archives.

Note: On Windows,
spanning should
take place
automatically when
writing to removable
media, so the span
option does not
normally need to be
included on the
command line.

Configurable

Force - Fully
format media
without checking
for existing files

Format - Fully
format media
before attempting
to write to it

Quick - Quick-
format media
before attempting
to write to it

Wipe - Delete
contents of media
before attempting
to write to it

None - Do not
format or erase
media before
attempting to write
to it

<segment size> -
Split archive into
segments of
predefined size
(see choices
below) or a
specified size (in
bytes) greater
than 65535.

Predefined sizes:

360 = 360KB
floppy

720 = 720KB
floppy

1.2 = 1.2MB
floppy

1.44 = 1.44MB
floppy

2.88 = 2.88MB
floppy.

95.7 = 100MB ZIP
disk

650 = 650MB CD-
ROM

700 = 700MB CD-
ROM

Default = none

pkzipc -add -span
a:\save.zip *.doc

pkzipc -add -span=format
a:\save.zip *.doc

pkzipc -add -span=1.44
c:\save.zip *.doc

pkzipc -add -
span=1457664 c:\save.zip
*.doc

add

152

Name/Description Value(s) Example usage Used with

speed

Uses the Deflate
algorithm and sets
the level of
compression to 1 on
a scale of 0 - 9.
Some files are
stored (level 0)
uncompressed.

Provides the fastest
performance but the
least compression.
Files having the
following extensions
are stored
uncompressed: bz2,
bzip2, cab, gz, gzip,
rar, gif, jpeg, jpg,
mp3, mpeg, mpg,
sxw

Configurable

No sub-options.

No default value.

pkzipc -add -speed
save.zip *.doc

pkzipc -config -speed

add

store

Sets the level of
compression to 0 (no
compression) on a
scale of 0 - 9; stores
the files in the
archive without
compressing them

Configurable

No sub-options.

No default value.

pkzipc -add -store
save.zip *.doc

pkzipc -config -store

add

strict

Applies strict
checking to allow
X.509 certificates to
be used only if they
are valid and are
designated (on the
certificate) for use
for the intended type
of operation (signing
or encryption).

Configurable

KeyUsage -
Controls key
usage checks

TimeNesting -
Controls time
nesting checks

TimeValid -
Controls time
validity checks

No default value

pkzipc -add -cryptalg
-recipient="John Q.
Public"
-strict test.zip *.doc

pkzipc -add -
recipient="John Q.
Public" -crl -strict
test.zip *.doc

add, delete,
comment,
header

substitution

Used with add,
inserts a timestamp
constructed from
specified tokens in
the name of a new
or updated archive
or, when used with
the archiveeach
option, in the name
of the specified
destination directory.

Used with extract,

Available tokens.
These are
replaced by
associated values
on execution:

{archivename} -
(For use only with
extract) Base
name of archive,
without the
extension

{archiveext} -
(For use only with

This command line using
tokens:

pkzipc -add -
substitution "Design
Spec {yyyy}-{mm}-{dd}-
{h}-{MM}-{SS}{ampm}.zip"
plan.doc

produces a ZIP file with a name
like:

Design Spec 2006-08-09-12-06-
29am.zip

This command line uses the

add, extract

 153

Name/Description Value(s) Example usage Used with

dynamically
constructs the name
of the destination
folder from
embedded tokens. A
single command line
can extract multiple
archives each to a
custom-named
folder.

Configurable

extract) The file
name extension of
the archive
(without a leading
dot)

{archivepath} -
(For use only with
extract) The path
of the archive,
without the file
name, preceded
by a leading slash
or backslash and
excluding the
drive letter or
share path if the
name is a UNC
name

{id} - A job ID
specified
separately with
the jobid option

{mm} - Month, 2-
digit

{m} - Month, 1-
digit (if possible)

{dd} - Day, 2-digit

{d} - Day, 1-digit
(if possible)

{yyyy} - Year, 4-
digit

{yy} - Year, 2-digit

{HH} - Hour, 2-
digit, 24-hour
format

{H} - Hour, 1-digit
(if possible), 24-
hour format

{hh} - Hour, 2-
digit, 12-hour
format

{h} - Hour, 1-digit
(if possible), 12-
hour format

{MM} - Minute, 2-
digit

{M} - Minute, 1-
digit (if possible)

{SS} - Second, 2-
digit

{S} - Second, 1-
digit (if possible)

{ampm} - a.m. or
p.m. indicator to
identify current
12-hour segment

jobid option to set a value for
{id}:

pkzipc -add -jobid=myJob
-substitution
{id}{yyyy}.zip *.doc

and results in a ZIP file with a
name like:

myJob2006.zip

Extracts all ZIP files in the
current directory, each to a
subdirectory named after the
ZIP archive extracted there

pkzipc -extract -
substitution *.zip
{archivename}\

154

Name/Description Value(s) Example usage Used with

of the day

No sub-options

No default value

temp

Specifies the
directory to use for
temporary files
created by PKZIP

Configurable

The drive and/or
path. For
example: C: or
/root/temp

No default value.

Update the .ZIP file test.zip and
uses the z:\public directory
location for temporary files:

pkzipc -add -
temp=z:\public test.zip
*.txt

Updates the .ZIP file test.zip
and uses the /temp directory
location for temporary files:

pkzipc -add -temp=/temp
test.zip *.txt

add, delete,
sfx, header,
comment

test

Tests the integrity of
files in a ZIP file to
ensure that they can
be extracted. Also
authenticates
signatures.

Configurable

all - all files in the
archive file are
tested

freshen - tests
only those files in
the archive that
are newer
versions of files
that already exist
in the extract
directory

update - tests
files in the archive
that are newer
versions of files
that already exist
in the extract
directory or that
do not already
exist there

Default = all

pkzipc -test save.zip standalone

 155

Name/Description Value(s) Example usage Used with

times

Specifies that PKZIP
should restore the
extended time fields,
and/or other dates
stored in the archive.

Configurable

access - restores
the time of last
access to file(s)
on extraction.

modify - restores
the time of last
modification to
files on extraction.

create - restores
the time of
creation to files on
extraction
(Windows).

all - all file times
are restored.

none - file times
are not restored.

Default = all

pkzipc -extract
-times=access save.zip

extract

156

Name/Description Value(s) Example usage Used with

translate

Translates EOL
(“end of line”)
characters when
adding or extracting
files. For .ZIP
archives, the
translation occurs
only for files which
are marked as
ASCII. For other
archive types, the
translation may
occur on all files,
including binary files.

The ebcdic sub-
options work only
with data
compressed using
SecureZIP for z/OS
or SecureZIP for
i5/OS with the Zip
Descriptor Word
(ZDW) option to
preserve variable
length records.

Configurable

none - no
translation is
performed.

dos - translates
text files so that
lines end with a
return/newline pair
(Windows default)

mac - translates
text files so lines
end with a single
carriage return

unix - translates
text files so lines
end with a single
newline

ebcdic,nl - With
ZDW files,
substitute
EBCDIC newline
(0x15)

ebcdic,lf - With
ZDW files,
substitute
EBCDIC linefeed
(0x25)

ebcdic,crlf - With
ZDW files,
substitute
EBCDIC carriage
return/linefeed
(0x0D25)

ebcdic,lfcr - With
ZDW files,
substitute
EBCDIC
linefeed/carriage
return (0x250D)

ebcdic,crnl - With
ZDW files,
substitute
EBCDIC carriage
return/newline
(0x0D15)

remove - Remove
end of line marks

Default = none

Value if used on
command line
without a sub-
option = native
operating system
compatibility
translation.

pkzipc -extract
-translate=unix save.zip

pkzipc -add
-translate=unix
scripts.zip *.pl

add,
extract,
console,
print

 157

Name/Description Value(s) Example usage Used with

ts

Contact a Time
Stamp Authority
(TSA) with the
supplied URL to
apply a digital
timestamp to the
archive.

Configurable

Syntax (optional
fields in brackets):

ts=
[username[:pwd
@]server
[:port]/]page

where:

username
(optional) is the
user account with
which to log in if
the FTP server
requires a login

pwd (optional) is
the passphrase
associated with
the user account.
Colons are not
allowed in the
passphrase.

server is the TSA
server name

port is the TCP/IP
port to use.

No sub-options

Add files and digitally sign and
timestamp the archive test.zip
using the "My Name" certificate:

pkzipc -add -
sign=timestamp -
certificate="My Cert" -
ts=http://tsa.example.co
m/tsa test.zip *.txt

Digitally sign and timestamp
archive the archive test.zip
using the "My Name" certificate

 pkzipc -sign=timestamp
-
ts=http://tsa.example.co
m/tsa -certificate="My
Name" test.zip

sign

utf8

Enables UTF-8
characters in file
names and file
comments to be
correctly displayed
when an archive’s
contents are viewed
or extracted in
compatible non-
UTF-8 locales

Configurable

No sub-options.

No default value.

pkzipc -add -utf8
test.zip *.*

add,
comment

158

Name/Description Value(s) Example usage Used with

verifysigner

Specifies one or
more certificates and
constrains PKZIP to
extract only archives
whose central
directories are
signed using one of
these certificates.
PKZIP must also find
the specified
certificates locally.

The option can
appear more than
once in the same
command line, to
specify multiple
certificates.

Configurable

cn=<Common
name> - The
Common Name
(CN) field of the
subject of the
certificate. The
“cn=” prefix is
optional.

<Friendly name>
- The friendly
name associated
with the
certificate. This is
often the same as
the common
name of the
subject.

e=<email
address> - The
email address
embedded in the
subject of a digital
certificate. (Note:
Not all certificates
contain an email
address.) The
“e=” prefix is
optional.

@<file name> -
Specifies a text
file which contains
a list of
certificates, one
on each line.

#<file name> -
Specifies a
PKCS#7 or
PKCS#12 file that
contains the
certificates
themselves.

No default value.

pkzipc -extract
-verifysigner="Thomas
Jones, Jr." save.zip
*.doc

pkzipc -extract
-verifysigner="cn=Thomas
Jones, Jr." save.zip
*.doc

pkzipc -extract
-
verifysigner=e=john.publ
ic@
nowhere.com save.zip
*.doc

pkzipc -extract
-
verifysigner=john.public
@
nowhere.com save.zip
*.doc

pkzipc -extract -
verifysigner=
f=(&(userCertificate=*)
(ou=Sales)) save.zip
*.doc

pkzipc -extract -
verifysigner=
"f=(&(userCertificate=*)
(ou=Sales With A
Space))" save.zip *.doc

pkzipc -extract
-
verifysigner=@recipients
.txt save.zip *.doc

pkzipc -extract
-
verifysigner=#recipients
.p7b save.zip *.doc

pkzipc -extract
-
verifysigner=#recipients
.p12 save.zip *.doc

extract

 159

Name/Description Value(s) Example usage Used with

version

Gives information
about the version of
the release. Displays
complete version
information; also
returns to the shell
particular version
numbers specified
by sub-options.

major - Returns
the major release
number. For
example, if the
version number is
12.10.1054, the
value returned is
12.

minor - Returns
the minor number
of the release. For
example, if the
version number is
12.10.1054, the
value returned is
10.

step -
Returns the
step, or
patch value
(minus 1000
if ≥ 1000).
For example,
if the
program
version is
PKZIPC
12.10.1054,
the value
returned is
54.

product - Returns
the build number
of the product. For
example, if the
product version is
SecureZIP
12.10.0003, the
value returned is
3.

Default = major

The command line:

pkzipc -version

outputs two lines like the
following after the usual header
information:

Program File Version
 (pkzipc): 12.30.1062

Product Version: 12.30.0004

The minor sub-option outputs
just the minor version number,
for example, 10:

pkzipc -version=minor

standalone

view

Displays information
about the files in an
archive—for
example, the
compressed size of
a file

Configurable

brief - present
information in the
most compact
manner.

detail - present
information in the
most detailed
manner

normal - present
information in the
normal manner.

Default = normal

pkzipc -view save.zip standalone

160

Name/Description Value(s) Example usage Used with

warning

Pauses after every
specified warning
and prompts
whether to continue.
If no warning is
specified, pauses
after every warning.

Configurable

<warning
number> - One or
more warning
numbers,
separated by
commas. To
override a warning
number
configured for the
option (and thus
not pause and
prompt on that
warning), precede
the number with a
hyphen

No default value.

pkzipc -extract -
warning=43 save.zip *

pkzipc -extract -warning
save.zip *

pkzipc -extract -
warning=-43 save.zip *

add,
extract,
test, view

wipe

Overwrites PKZIP
temporary files and
files deleted by
PKZIP to prevent
recovery of their
data

Configurable

Note: This option is
deprecated. Use the
functionally identical
shred option
instead.

none - turns off
shredding: files
are not
overwritten

random -
Overwrites files
once with random
data

dod5220 -
Overwrites files
three times, to the
DOD 5220.22-M
specification

nsa - Overwrites
files seven times,
to the NSA
standard

Default = none

Value if used on
command line
without a sub-
option = random

pkzipc -add -move
-wipe=nsa myfiles.zip *

add

 161

Name/Description Value(s) Example usage Used with

zipdate

Note: This option is
deprecated. Use the
functionally identical
option archivedate
instead.

Set the file
modification date of
the archive file.

Configurable

newest - set to
the date of the
newest file within
the archive file.

oldest - set to the
date of the oldest
file in the archive
file.

retain - retain the
original date of the
archive file (the
date when the file
was created).

none - disable the
file date in the
configuration file
and set the
archive date as
the last
modification date.

Default = none

pkzipc -add=update
-zipdate=retain save.zip
*.txt

add,
delete,
fix,
header,
comment,
sfx

zoneidentifier

Specifies that any
Zone Identifier
information for the
archive should be
copied to all files
extracted from the
archive.

Configurable

 (Windows)

enable –
Indicates the Zone
Identifier should
be copied from
the archive.

disable –
Indicates the Zone
Identifier should
not be copied
from the archive.

Default = enable

pkzipc -extract -
zoneidentifier
archiveFromInternet.zip

Extract

162

B Error and Warning Messages
This appendix contains reference information on all error and warning messages that
can occur in PKZIP. An error usually causes the canceling of the task you are
performing such as compressing a file. A warning usually indicates that something is
wrong, but it is not severe enough to cancel an entire task. It might also be a
reminder or query prompt. PKZIP will also return any error codes to the shell. If there
were no warnings or errors, 0 is returned.

 Error Messages

When an error occurs, PKZIP displays an error message. The following is a
description of each error message.

Error Potential Cause(s)

(E2) Ambiguous option or command specified
- XXX.

If you abbreviate an option on your command line,
make sure that you are supplying enough characters
in the option to delineate it from similarly spelled
options. If, for example, you only specify -pr on your
command line, PKZIP will generate the (E2) error
because it cannot determine whether you are
specifying the print or preview option.

(E3) Ambiguous sub-option specified - XXX. If you abbreviate a sub-option on your command
line, make sure that you are supplying enough
characters in the
sub-option to delineate it from similarly spelled sub-
options. If, for example, you only specify -sort=na on
your command line, PKZIP will generate the (E3)
error because it cannot determine whether you are
specifying the name or natural sub-option.

(E4) Unknown or illegal option - XXX. The option you specified on the command line is
invalid. It does not match any known options. Verify
that you typed the option correctly. Check the
spelling.

(E5) Unknown or illegal sub-option - XXX. The sub-option you specified on the command line is
invalid. It does not match any known sub-options.
Verify that you typed the sub-option on your
command line correctly. Verify that you are not using
an illegal sub-option (-add -sort=crc). Check the
spelling.

(E6) No .ZIP file specified. There was not a .ZIP file specified on the command
line. PKZIP does not accept wildcards for .ZIP file
name when adding files to a .ZIP archive.

(E7) Can't create: XXX. PKZIP could not create a .ZIP file when fixing. PKZIP
could not create a volume label on a spanned
archive. PKZIP could not create a temporary file for a
spanned archive. Verify that you have write access
to the drive or diskette on which you are creating
these files.

 163

Error Potential Cause(s)

(E8) Nothing to do! You did not do something that is required for a
particular task. For example, PKZIP could not find
the file you are trying to open or access. You might
have specified to update a pattern such as *.txt and
PKZIP did not find any files that matched or that
needed updating.

(E9) No file(s) were processed PKZIP cannot find the file you are trying to access.
For example, you might be trying to extract files from
a .ZIP archive that do not exist in that archive. Verify
that the file(s) you specify on the command line
exactly match the file(s) in the .ZIP file. If, for
example, the file in the archive is stored with path
information, and you attempt to extract it but specify
only the file name, you will get the (E9) error.

(E10) No files specified for deletion. There are no files or file patterns specified for
deletion on the command line. In lieu of a specified
file or file pattern, PKZIP will not assume that the
user wishes to specify all (*) files.

(E11) Disk full, file: XXX. The hard disk or floppy disk you are writing to is full.
This error occurs when PKZIP attempts to write a
.ZIP file, or extract a file contained in a .ZIP file to a
hard or floppy disk that is full. Free up sufficient disk
space and try again.

(E12) Can't find file: XXX. PKZIP cannot find the .ZIP file you specified. This
error will only occur when you use
commands/options/sub-options that work with
existing .ZIP files. Verify that the file is specified
correctly. If you are adding files to an archive, verify
that you place the .ZIP file name before specifying
files to be added on the command line. If the .ZIP file
is not in the same directory where you typed the
command, make sure to include path information.

(e.g., pkzipc -add=freshen
/temp/test.zip *.txt)

(E13) Can’t open .ZIP file: XXX. The named .ZIP file is read-only or locked by another
application and cannot be modified. This may also
occur on a Network drive if you do not have sufficient
access rights to the file to allow you to modify it.

(E14) Can't create archive: XXX. PKZIP is not able to create the archive file. Verify
that the destination directory is not full, and the
archive file does not already exist. If you are creating
the file on a network drive, confirm that you have the
appropriate rights to the network file system.

(E15) Renaming temporary .ZIP file, saved as:
XXX.

PKZIP could not rename the temporary file to the
specified .ZIP file name. Verify that the destination
drive is not full. If you are updating a non-spanned
.ZIP file on removable media (floppy diskette) and
the updated archive exceeds the size available on
the removable media, you will receive the (E15)
error. You will need to recreate the archive for
spanning. Keep in mind that you cannot update a
spanned archive. If you are creating the file on a
network drive, confirm that you have the appropriate
rights to the network file system.

164

Error Potential Cause(s)

(E16) Can't open for write access, file: XXX. PKZIP is unable to write to the specified file or
device. Verify that you have write access to the file
or that your printer is configured correctly.
Additionally if you are using the PKSFXS.DAT file,
verify that you have PKSFXSDATA environment
variable configured correctly.

(E17) Error encrypting file data. PKZIP encountered a problem with the compressed
data that it was trying to encrypt. For example, the
disk on which the compressed data was located was
bad or corrupt.

(E18) Can’t open list file: XXX. The named list file could not be found. It does not
exist, was spelled incorrectly, is not located in the
specified directory, or cannot be accessed because
the user does not have the appropriate rights to the
file.

(E19) Aborted file extract. Extraction process was terminated by the user while
changing disks during a disk spanning operation.
The error also occurs on attempting to extract a bad
TAR archive.

(E20) Aborted file compression. Compression process was terminated by the user
while changing disks during a disk spanning
operation.

(E21) Can’t modify a spanned or split .ZIP file Spanned or split .ZIP files cannot be modified. The
archive will need to be recreated.

(E22) Cannot format removable media. The media cannot be formatted. The media may be
write-protected.

(E23) Suboption is too long The option is too long; that is, longer than 270
characters. See if you can abbreviate the name of
the option or its sub-option to make it shorter.

(E24) Insufficient disk space for ZIP comment. There is not enough space on the system or media
to write the ZIP comment.

(E25) Insufficient disk space for updated file. Insufficient disk space for the new archive. If you are
adding files to an archive on a removable media, the
media may not be large enough to write the modified
file (too large).

(E26) Device not ready: XXX. The removable media device is not ready. The disk
may not be in the drive properly.

(E27) 2.04g compatibility cannot be used with
the option - XXX

Option 204, which creates an archive compatible
with PKZIP for DOS v. 2.04g, was used with another
option that is not supported for that version of PKZIP

(E28) Share violation, file is in use by another
process: XXX

The archive XXX is not in a format which PKZIP can
understand or contains errors. The errors could be
caused by many things but usually mean the archive
is corrupted.

(E29) Missing sub-option –XXX Many options require a sub-option to work. In this
case, a required sub-option is missing. Add the
appropriate sub-option to your command.

(E34) Invalid archive format: <archive name> The file is not in a format currently supported by
PKZIP, or you attempted to use SecureZIP Partner
to extract a non-ZIP archive.

 165

Error Potential Cause(s)

(E58) Invalid archive - method not supported. The archive uses a compression method that
currently is not supported.

(E65) Could not encode archive file: XXX. The file could not be encoded.

(E71) Can’t open PKCS#7 file: XXX. PKZIP cannot open the PKCS#7 because the file
does not exist, user cannot read the file, or file is not
a valid PKCS#7.

(E72) PKZIP wanted user input, but
silent=input or silent=all was specified

If PKZIP needs user input—for example, to say
whether files should be overwritten—but -silent=input
or -silent=all is specified on the command line to hide
PKZIP messages and prompts, PKZIP halts
processing and issues this error.

(E73) Warning configured as an error The warning immediately preceding this error
message has been specified (with the error option)
to be treated as a fatal error.

(E75) Incorrect passphrase or certificate not
found, unable to open archive: <archive
name>

The archive contains encrypted file names that
PKZIP cannot decrypt. If the archive is passphrase-
protected, you must include the passphrase option
with the extract command in the command line.

(E76) Cannot open alternate config file: <file
name>

The altconfig option was used, but the specified file
could not be opened.

(E77) Archive can only support one file inside! You tried to add more than one file to an archive of a
type that cannot contain multiple files. For example,
a GZIP archive can contain no more than one file. If
you try to create a GZIP archive to contain three
files, PKZIP displays this error and does not create
the archive.

(E78) Unable to FTP archive file: <file name> PKZIP could not transfer the specified file.

(E79) Unable to E-mail archive file: XXX A problem, perhaps with the network or the mail
server, prevented PKZIP from emailing the specified
file.

(E80) Unable to run anti-virus PKZIP was unable to run the anti-virus scanning
program. The anti-virus program did not respond to
the command line used to launch the program.

(E81) Possible virus detected The anti-virus program returned a non-zero value
after doing a scan. Most anti-virus programs use this
return to indicate the possible presence of a virus.

(E82) Too many recipients, recipient count
limited to 3275 certificates

You specified too many recipients for encryption.
The ZIP file format limits the number of recipients to
3275.

(E83) Specified SFX cannot extract archive
created with the option - XXXX

You tried to create an SFX that is not able to handle
a feature turned on by the option XXXX. For
example, you tried to create a strongly encrypted
DOS SFX, or an SFX that uses FNE.

(E84) Fatal policy error - nnnnn, contact your
system administrator

A critical problem has occurred with a policy file or
policy certificate. The number is a policy error code
to help your administrator resolve the problem.

On this error, PKZIP goes into read-only mode. In
read-only mode, PKZIP will still extract files from
archives but will not add files to a new or existing
archive and disables the related controls.

166

Error Potential Cause(s)

(E85) Unable to encrypt, no certificates
passed -strict check

The strict option was used, and no recipient
certificates passed strict checking, so no certificate
was available to use to encrypt

(E86) Archive is not signed by a specified
verification certificate

The verifysigner option was used to specify one or
more certificates, but the archive to be extracted was
not signed using any of these certificates

(E87) Certificate not found: XXX The verifysigner option was used to specify one or
more certificates, but not all of the certificates could
be found, either locally or in a specified LDAP
directory

(E88) Multiple certificates found: XXX The verifysigner option was used to specify one or
more certificates, and multiple certificates were
found—probably in an LDAP directory—that
matched the criterion XXX

(E89) Policy requires the ZIP archive to be
encrypted

A policy requires encryption but no passphrase or
recipient was specified

(E90) Policy requires the ZIP archive and/or
files to be signed

A policy requires the archive to be signed but no
signing certificate was specified or none is available

(E91) Policy prohibits creation of non-ZIP
archives

Only ZIP archives can be created when a policy
requires encryption or signing

(E92) Timeout error on file: XXX The timeout period elapsed while PKZIP waited for a
response from another process before reading or
writing more of the specified archive file on a socket
or block device

(E94) Can’t modify a timestamped .ZIP:
<name>

You cannot change an archive (or files in an archive)
that has been timestamped.

(E100) Insufficient memory

Insufficient memory is available to process the
archive. Try making more memory available to
PKZIP. If this does not rectify the problem, then the
archive may be corrupted. The
-fix command may correct the problem. If you
receive this message when you try to create a new
archive, possibly you are attempting to compress too
many files. Reduce the number of files and try again.
If you are using a LIST file in your PKZIP command,
the LIST file may be too large. See “Compressing
Files with a List File” in Chapter 0

(E150) Error reading .ZIP file. PKZIP cannot read the .ZIP file or is unable to read
the central directory record. The file might be located
on a corrupt disk or part of a disk. This includes
floppy disks.

(E155) Too many files in XXX. PKZIP cannot add or extract files in excess of the
limit of 16,383 with the 204 option enabled. Reduce
the number of files you are trying to process.

(E156) File is now too big for valid zip data. The .ZIP archive is too large and PKZIP is unable to
locate the central end record in the .ZIP file. The file
is not a valid .ZIP archive or has been corrupted. The
fix command may repair the .ZIP file.

 167

Error Potential Cause(s)

(E157) This archive requires a product
compliant with ZIP APPNOTE version XX.X

The archive requires a more recent version of
PKZIP, or other archiving program, that supports the
version of the ZIP file format described in the
specified APPNOTE (“application note”). The
APPNOTE is a document that is available on the
PKWARE Web site.

(E158) Errors encountered reading archive PKZIP was unable to read the archive.

(E200) FIPS 140 mode is enabled, but archive
is not encrypted with a FIPS-approved
algorithm

With the fipsmode option, SecureZIP cannot work
with (test, extract, add to, update, view, or open) an
archive with encrypted file names that is encrypted
using a non-FIPS-approved algorithm.

(E201) FIPS 140 mode is enabled, but
encryption requested is not a FIPS-approved
algorithm

With the fipsmode option, SecureZIP cannot use the
specified algorithm to encrypt. Use
listcryptalgorithms with the fipsmode option on to
see FIPS-approved algorithms available.

(E202) FIPS 140 mode is enabled, but
signature hash requested is not a FIPS-
approved algorithm

With the fipsmode option, SecureZIP cannot use the
specified hashing algorithm. Use
listhashalgorithms with the fipsmode option on to
see FIPS-approved algorithms available.

(E203) FIPS 140 mode failed to initialize (UNIX only) FIPS 140 mode could not be initialized
for the fipsmode option. The pkzipc binary may be
corrupted.

(E253) This program is not licensed for use on
Windows Server platforms. Please contact
PKWARE to obtain an appropriate server
product for this machine.

PKZIP for Windows Command Line is intended for
single-user desktop use and cannot be run on server
platforms such as Windows 2003 Server.

(E254) Your evaluation period for PKZIP has
expired. Please register to continue using this
product.

This copy of PKZIP is an evaluation version. If you
have purchased PKZIP and have the serial number,
enter it when prompted.

(E255) User pressed ctrl-c or control-break. This error occurs when you press CTRL+BREAK or
CTRL+C in the middle of a PKZIP operation.

 Warning Messages

Sometimes a condition occurs that might cause a task to pause temporarily. This
could be something that prevents part of a task from happening, or simply a message
or reminder. For several of these conditions, PKZIP displays a warning message.
When a warning occurs, PKZIP returns a value of 1 to the shell.

The following is a description of each warning message:

PKZIP Warning Potential Cause(s)

(W1) Can't create: XXX. PKZIP could not create volume label, file, or
directory. Verify that you have appropriate
access rights to the file or directory.

(W2) Illegal path or drive specified: XXX. The file being extracted has an invalid name
or path. Verify that you have entered the
correct path in your command line and that
the file does not contain any inappropriate
characters such as a colon or leading slash.

168

PKZIP Warning Potential Cause(s)

(W3) Warning! This file requires a product
compliant with ZIP APPNOTE version XX.X

The file requires a more recent version of
PKZIP, or other archiving program, that
supports the version of the ZIP file format
described in the specified APPNOTE
(“application note”). The APPNOTE is a
document that is available on the PKWARE
Web site.

(W4) File fails CRC check. It is likely that the file PKZIP is trying to extract
is corrupt, and was not extracted correctly. For
more information, see the CRC section in
Appendix D.

(W7) file: XXX already exists. Overwrite
(<Y>es/<N>o/<A>ll/ne<V>er/<R>ename/
<Esc>)?

The file(s) you are trying to extract already
exists in the location to which you are
extracting. By default, PKZIP prompts you
before overwriting a file.

(W8) Could not open file: XXX. You may not have the proper permissions to
access the file or the file may have been
locked by another program while PKZIP was
trying to access it. If the file is located on a
network file system, consult your System
Administrator to verify your access rights.

(W9) Could not delete file: XXX. You do not have the proper permissions to
access and delete the file, or another
application has the file open. This warning
only occurs when the move option is used on
the command line.

(W12) Unexpected end of compressed data. Corrupt data caused PKZIP to abort the
extraction before it could finish.

(W13) Skipping encrypted file: XXX. PKZIP encountered a file that has been
passphrase protected. You need the
passphrase to access this file.

(W18) Unknown compression method for file:
XXX.

An unfamiliar compression method has been
used with the current .ZIP file.

(W19) Could not clear archive attribute on file:
XXX.

PKZIP could not clear the archive attribute on
a file. The file will be compressed but the
archive bit cannot be cleared. This warning
usually occurs when the add=incremental
option is used on the command line.

(W20) Incorrect passphrase for file: XXX. Verify that you entered the correct passphrase
for the file. When a file is passphrase
protected, you can only access its contents
with the correct passphrase.

Note: Passphrases are case sensitive.

(W21) Invalid temporary file directory: <dir> PKZIP creates a temporary file for the file(s)
being compressed when updating a .ZIP file.
PKZIP was unable to create the temporary
.ZIP file in the specified location and so used
the default temp directory for your system.

(W22) Authenticity Verification Failed! The Authenticity Verification (AV) information
contained in the .ZIP file is corrupt. Failure of
AV indicates a file that has been tampered
with or damaged. If the file has failed the AV
check, the contents are suspect.

 169

PKZIP Warning Potential Cause(s)

(W23) Authenticity Verification Failed! The stored Authenticity Verification (AV)
checksum value did not match the calculated
checksum value. The .ZIP file has been
tampered with or is perhaps corrupt.

(W26) directory: XXX already exists.
Overwrite
(<Y>es/<N>o/<A>ll/ne<V>er/<Esc>)?

Assuming the overwrite option is set to
prompt, this warning appears when PKZIP
attempts to extract a directory over an existing
directory with the same name. Answering Y at
this prompt will update any extended
attributes (EAs) stored in the .ZIP file.

(W29) Can't rename temporary file. Saved as
XXX.

PKZIP cannot rename the temporary archive
created when updating an archive. The
archive was saved under the specified name.

(W36) Empty passphrase, files will not be
passphrase protected.

When trying to passphrase protect your file,
you entered a passphrase containing no
letters or numbers.

(W37) Can't sign file. This warning appears when PKZIP fails to
sign a file using the specified digital certificate.
Common reasons are incorrect passphrase
for the certificate (not all certificates have
passphrases), no private key (certificate
needs to have a private key).

(W38) Can't sign central directory. PKZIP failed to sign the central directory.
Common reasons are that an incorrect
passphrase was supplied to access the
certificate (not all certificates have
passphrases) or the certificate lacks a private
key (needed to apply a digital signature).

(W39) Signature is invalid. Someone or something has changed the
archive since it was digitally signed. For
example, the archive may be corrupt.

(W40) Certificate not trusted. The certificate is currently not to be trusted.

(W41) Certificate expired. The certificate has expired. This does not
necessarily mean that the certificate or
signatures applied with it are not to be trusted.
They may simply be old.

(W42) Certificate was revoked. The issuer has revoked the certificate.

(W43) Certificate not found: XXX. PKZIP was unable to find a certificate of that
name on the system.

(W45) Bad data in compressed stream. Something was wrong in the stream of
compressed data. The ZIP file is corrupt.

(W46) Encryption algorithm is not available.
Using: XXX.

PKZIP cannot use the specified algorithm on
this system. Use the
ListCryptAlgorithms command to view a
list of the encryption algorithms that PKZIP
can use

170

PKZIP Warning Potential Cause(s)

(W47) No recipients specified. Recipients will
not be used.

You specified the recipient option, but did
not include any actual recipients (or specified
bogus recipients). When this occurs,
SecureZIP will not strongly encrypt files for
recipients. If you did not tell it to use
passphrases; that is, you did not use the -
passphrase option, it will not encrypt files at
all. In addition, if you specify passphrase
and did not also specify cryptalgorithm,
you will not get strong encryption. You will,
however, get traditional encryption.

(W48) Invalid item name The name of an item (file) in the archive is
invalid. Possible reasons are: The file has the
same name as another file in the same folder;
the path name of the archive item contains a
file or folder name that exceeds the maximum
number of characters allowed (254 for
Windows, 255 for UNIX); the name contains
characters that may not be used in file names
on your operating system (the characters
:*?\"<>|" may not be used in file names on
Windows).

(W52) Certificate verification failed! Something is wrong with the certificate.

(W53) Unknown exception caught: Exception
code: XXX

An internal error occurred. Please contact
PKWARE Technical Support with the exact
command you used and the error code.

(W54) Option 'XXX' is not licensed for use in
your copy of PKZIP

Your license key does not allow you to use
that option. You must purchase an
appropriate license key from PKWARE to use
it.

(W55) Command 'XXX' is not licensed for use
in your copy of PKZIP

Your license key does not allow you to use
that command. You must purchase an
appropriate license key from PKWARE to use
it

(W56) Recipient not found for file: XXX The file was encrypted only for recipients, and
PKZIP was unable to find a certificate for any
of them. Verify that you have access to the
private key for one of the recipients.

(W57) Incorrect passphrase or recipient not
found for file: XXX

Verify that you entered the correct passphrase
for the file. When an archived file is
passphrase protected, you can only access
the file if you have the correct passphrase.
Passphrases are case sensitive.

If the file is encrypted with a certificate, verify
that you have access to the private key for
one of the recipients.

(W58) Problem reading .ZIP file: <zipfile
name>

The .ZIP archive is corrupted. PKZIP can read
it, but probably other zipping programs
cannot. Use the -fix command to fix the
archive so that other programs can read it.

(W59) Multiple certificates found Multiple digital certificates were found that
match the same recipient. These certificates
may belong to different people. The archive is
encrypted using each of the certificates; the
owner of any of them can decrypt.

 171

PKZIP Warning Potential Cause(s)

(W60) Unable to connect to LDAP server:
<server name/address>

PKZIP was unable to access certificates on an
LDAP server specified using the ldap option:
the server address was bad.

(W61) Unable to login to LDAP server:
<server name/address>

PKZIP was unable to access certificates on an
LDAP server specified using the ldap option:
the LDAP login failed.

(W62) Central Directory can only be encrypted
with strong encryption. Central Directory will
not be encrypted.

The cd option was used, which requires
strong encryption, but one or both of the
following were neither explicitly specified nor
configured for use by default: encryption
method (passphrase, recipient options),
encryption algorithm (cryptalgorithm option).

(W63) You must specify -passphrase or
-recipient to encrypt files!

You specified -cryptalgorithm or -cd=encrypt
but did not specify either the recipient or
passphrase option. Files are not encrypted
unless one of these options is used.

(W68) Must specify MailTo, MailFrom and
MailServer to email the archive.

You tried to email an archive without
specifying all three options MailTo, MailFrom
and MailServer. Values for all three must be
specified on the command line or configured
for use by default.

(W69) Skipping FTP file transfer because of
encryption warning XXX.

PKZIP encountered a problem encrypting an
archive that you directed to send by FTP, so
PKZIP did not send the archive. This warning
occurs if, for example, PKZIP can encrypt for
only some but not all recipients, or if no
passphrase is supplied to use for passphrase
encryption.

(W70) Skipping mail file transfer because of
encryption warning XXX.

PKZIP encountered a problem encrypting an
archive that you directed to send by email, so
PKZIP did not send the archive. This warning
occurs if, for example, PKZIP can encrypt for
only some but not all recipients, or if no
passphrase is supplied to use for passphrase
encryption.

(W71) Could not attach unzip instructions to
the email message

PKZIP failed to attach instructions on how to
unzip, as specified by the MailOptions option

(W72) Could not find the unzip instructions PKZIP could not find the instructions on how
to unzip

(W73) Some of the encryption recipients do
not have email addresses

PKZIP was told to encrypt for recipients but
could not find email addresses for some of the
recipients

(W74) PKZIP is unable to access the default
user's private key.

PKZIP is unable to access the private key of
the default user. The logon passphrase
needed to access the certificate that contains
the key may have been reset or changed by
an administrator. To fix this warning, the user
must change his passphrase from his own
computer, rather than let an administrator
change it from another system.

(W75) Unable to resolve link: XXXX While updating an archive, PKZIP could not
find the original file or the new file

172

PKZIP Warning Potential Cause(s)

(W76) <certificate> does not pass the strict
certificate checks, and will not be used.

The certificate did not pass the strict checking
applied by the strict option, used in a
command line that updates an archive. The
certificate will not be used for the intended
signing or encryption.

(W78) Policy error - nnnnn, contact your
system administrator

A noncritical problem has occurred with a
policy file or policy certificate. Encryption may
be disabled. The number is a policy error code
to help your administrator resolve the
problem.

(W79) Certificate chain is not time nested A certificate lists a start date or end date that
falls outside the period during which an
issuing certificate in its trust chain is nominally
valid. This may not be cause for concern, but
it might indicate a problem.

(W80) Passphrase encryption not available in
SecureZIP Partner

You tried to encrypt using a passphrase.
SecureZIP Partner automatically applies
certificate-based encryption to every new or
updated archive for sponsor recipients but
does not do any other encryption.

(W85) Warning! Error shredding file: XXX You used the shred option, but PKZIP was
unable to overwrite the file. For example,
PKZIP can delete a file on a network drive but
cannot overwrite its data on disk.

(W87) Skipping file that is not encrypted with a
FIPS-approved algorithm

The same algorithm that was used to encrypt
must be used to decrypt. With the fipsmode
option, SecureZIP uses only algorithms that
are FIPS-validated for your operating system
and skips—does not decrypt—any file that
was encrypted using some other algorithm.
On Windows 2000, for example, files
encrypted with AES algorithms are skipped.

(W88) Warning! Signature cannot be verified,
because it does not use a FIPS-approved
algorithm

The file is signed, but the fipsmode option was
used, and the signature hash algorithm is not
FIPS-approved. The SHA-1 algorithm is not
approved after 2010. On some versions of
Windows, the algorithms SHA-256, SHA-384,
and SHA-512 are not approved.

(W92) Warning! File: <file name> is in use by
another program. You might have problems
opening the archived copy if it is currently
saving changes.

You are using the OpenFile option with the
prompt sub-option. Choose from the options
to Add the open file to your archive.

(W93) Unable to obtain timestamp: <url>

The URL you specified for your Time
Stamping Authority (TSA) is missing,
incorrect, unavailable, or you are not
connected to the Internet.

(W94) Evidence record verification failed Timestamp hash does not match.

(W95) Evidence record has expired Last timestamp certificate is no longer valid.

(W96) Evidence record missing file
signature(s)

All timestamped files must be signed with the
same hash algorithm as the central directory.

 173

C Frequently Asked Questions
This section lists some commonly asked questions about PKZIP and related
subjects. We hope you will find this information helpful.

Why do I get the message "SYS1041: The name specified is not recognized as
an internal or external command, operable program or batch file." or " Bad
command or file name" or "XXXX: not found"?

These messages tell you that your operating system cannot find the program to
which you are referring. This occurs because you are either not spelling the name of
the program correctly, or you did not put a space between the program name and its
options, or the program has not been properly installed. If you are trying to run PKZIP
and you get this error, it may be because pkzipc.exe is not in your search path.

Why didn't the files I zipped get any smaller?

On occasion, you may find that the files you add to a .ZIP file do not compress.
These files are "stored". This occurs when a file is either already compressed or
encrypted. You will often find that files distributed with commercial applications are
already compressed.

I zipped up a bunch of files but now I have LESS disk space?

When PKZIP compresses files, it makes a copy of the original file. The original file(s)
still exist. If you wish to recover space that was taken up by the original file(s), you
must either delete them yourself, or instruct PKZIP to delete the file(s) with the move
option.

What is the difference between add=freshen and add=update?

The freshen and update sub-options are very similar. This may be confusing at
first, but the difference between them is easy to understand.

Freshen tells PKZIP to archive any files which match those already in the .ZIP file.
These files are re-compressed only if they are newer than the files already in the .ZIP
file. Each file is evaluated individually.

Update archives all files, with one distinction. If the update option is not used, all
files specified are compressed and added to the .ZIP file, even if they already exist in
the .ZIP file. By using the update sub-option, you instruct PKZIP to compare what is
already in the .ZIP file against what it was asked to compress. If a file is already
present in the .ZIP file as well as the source directory, PKZIP compresses a file only
if it is newer than the copy of the file within the .ZIP file. If a file in the source directory
is not already present in the target .ZIP file, PKZIP adds it to the .ZIP file.

Is PKZIP compression "lossy" or "lossless"?

PKZIP uses a "lossless" compression scheme. This means that 100% of the original
data is preserved and re-created. There is no difference between the data that you
put in and the data that you get back out.

There are other compression methods that are known as "lossy." The idea behind
these compression methods is that if you throw away some of the data, it becomes

174

less complex and therefore can be compressed more. This type of compression is
only useful for data that need not be precise. This applies to some applications that
use pictures and sound.

How do I include subdirectory information in my .ZIP file?

In order to include subdirectory information in your .ZIP file, you must recurse the
subdirectories and preserve path names. This is done with the directories option.
For example:

pkzipc -add -directories test.zip *

In this example, the current directory as well as all subdirectories and files contained
therein are archived in a file called test.zip.

When a .ZIP file is created with paths stored, these paths are visible in a view of the
file (view).

To re-create these subdirectories, or to place files into their original subdirectories,
the directories option must be used with the extract command.

I zipped up some subdirectories, but I cannot get them to come back.

Did you remember to use the directories option when you originally created the
.ZIP file? Did you use the directories option when you extracted the contents of
your .ZIP file? To verify that there are paths in the .ZIP file, do a view of the file:

pkzipc -view test.zip

If you do not see paths as part of the file names within the .ZIP file, then paths are
not stored and therefore cannot be recovered. If you do see paths make sure that
you are using the directories option when you extract the files. For example:

pkzipc -extract -directories test.zip

How do I unzip a single file that is in a subdirectory in the .ZIP file?

Type pkzipc -extract with the name of the .ZIP file and the name of the particular file
you want. With a .ZIP file that contains paths, the procedure is the same.

Assume you are working with a file called test.zip that contains the following files:
 file1.txt
 temp/file2.txt
 temp/tut/file3.txt

To extract only "file3.txt" from this .ZIP file, you must specify the complete name and
path.

pkzipc -extract test.zip temp/tut/file3.txt

If you wanted to extract it with its subdirectory, simply include the directories
option on the command line.

How do I unzip a directory without also extracting its subdirectories?

Using the test.zip file we discussed in the previous question, we could extract the
entire contents of the temp subdirectory easily:

pkzipc -extract -directories test.zip "temp/*"

If we did it as shown above we would not only extract all the files in the "temp"
subdirectory, but also the "tut" subdirectory below it and any files it contains.

 175

To extract only the "temp" subdirectory but not its subdirectories, we must exclude
the subdirectories we do not wish to extract:

pkzipc -extract -directories test.zip "temp/*" -
exclude="temp/tut/*"

If the "temp" subdirectory had multiple subdirectories nested in it, you would need to
exclude each one individually on the command line.

I forgot my passphrase; what do I do?

• Try to remember the passphrase.

• Try passphrases that are "close" to what you think it was.

• Try mixed upper and lower case versions of your passphrase.

Do not forget or lose your passphrases! PKWARE has no special means for
“getting around” the encryption and may not be able to assist in the recovery of an
encrypted file. To help avoid the loss of data, you may wish to keep a written copy of
your passphrase(s) in a secure place.

What does "Unknown Compression Method" mean?

There are many different methods of compression. In the history of PKZIP alone,
there have been seven different methods to date. The .ZIP file format was designed
so that additional methods of compression can be added as they are developed.
Therefore, the .ZIP file format will never need to be abandoned. This means that the
.ZIP file in question was created or updated by a newer version of PKZIP than is
being used to extract the data. You must use a newer version of PKZIP to extract
these files.

How can I make PKZIP run faster?

PKZIP defaults to a compression method that is average in both compression
amount and speed. If you want to get the most speed out of PKZIP, try the following:

• Specify a faster compression method with a level sub-option
(for example, -level=0). See “Setting the Compression Level” in Chapter 0.

• Compression speeds are highly dependent on the location of files being
added, as well as the temporary file PKZIP creates when performing certain
compression operations. If these files are located on a network drive, you
may want to move them to a local drive before running PKZIP. Be aware of
the effects file location can have on PKZIP’s speed.

How many files can be in a .ZIP file?

There is no limit to the number of files you can add to a .ZIP file. However, if you use
the 204 option for PKZIP 204g compatibility, your .ZIP file may contain no more than
16,383 file entries.

Can I send a .ZIP file to a different type of computer?

As of the publication of this manual, PKWARE supports PKZIP on MS-DOS,
Windows (98, NT, Me, 2000, XP, Vista, 7), OpenVMS, HP-UX, IBM AIX, Linux, Sun
Solaris, MVS/ESA, OS/390, z/OS, VSE, and OS/400 platforms. PKWARE intends to
support additional platforms and will announce this support as it becomes available.

176

D How PKZIP Works
This Appendix provides a description of how PKZIP actually does its job. It is not
necessary for you to know or understand the information presented here, any more
than you need to know how your carburetor works to drive a car. It is presented to
help you feel more knowledgeable about the software.

 Two Processes

PKZIP performs two functions: compression and archiving. Although the two ideas
may seem related, they are actually completely separate.

• Compression is the process of representing a given piece of information
with a smaller piece of information.

• Archiving is the process of combining many files into a single unit, usually
along with vital information about each file.

 Compression

The actual process used by PKZIP for its compression is too complex to explain in
detail. Instead, some of the general principles behind information theory and
compression are explained.

To understand data compression, you need to understand two ideas: Information
Content and Binary Coding.

 Information Content
Everything in your computer, everything you ever read, is "information". The more
complex a message is, the higher the information content. The less complex, the less
"random" a message is, the lower the information content.

If a message contains a low amount of information, it should be possible to represent
it in a smaller amount of space. Look at this page, for example. How much of the
page is white space with no letters (information) on it? If you took away all of the
white space this page would be significantly smaller. How many times are the words
"the", "information" and "compression" on this page? If you could replace each of
these words with something smaller, you would save a significant amount of space.

The more frequently the same group of symbols (in this case, letters) appear, the
lower the information content of the message.

The "Field of Information Theory" uses the term entropy to describe the "true"
information content of a message. Formulas can be used to determine the entropy of
a message. The idea behind data compression is to derive a new smaller message
from a larger original message, while maintaining the entropy of the original
message.

As a simple example, consider this sentence:

she sells sea shells by the sea shore

 177

This sentence is 37 characters long, including spaces. The spaces cannot be simply
thrown away as the meaning of the original message would be lost.

There are obvious patterns to the sentence. The combination 'se' appears three
times, 'sh' three times, and 'lls' twice. In fact, the 'se' pairs all have a space in front of
them, so these can be ' se'.

she sells sea shells by the sea shore
We can replace each of these patterns with a single character:

#=" se"
$="sh"
%="lls"

Note that the first replacement string includes a space at the beginning. If we
reproduce the sentence with these symbols, it now looks like:

$e#%#a $e% by the#a $ore
The new representation is 24 characters long; this is a saving of 13 characters, or
36%.

 Binary Data Representation
All information used, stored, and processed by computers is represented by two
values, zero and one. Everything that you see on your screen, everything stored on
disk, is represented by combinations of zero and one.

You can think of it as a sort of Morse Code. In Morse Code there are also only two
values, dot and dash. When a computer stores a character, it uses a combination of
eight zeros and ones.

Having eight positions in which to store a zero or one gives the computer 256
different possible combinations. You arrive at this number of combinations in this
way:

If you have one coin, it can be in either of two positions: Heads(0) or Tails(1)

0 or 1
If you have two coins, there are four possible combinations:

00, 11, 10, 01
If you have three coins, there are eight possible combinations:

000, 001, 010, 011, 100, 101, 110, 111
As you can see, each time you add another coin (binary digit), the number of possible
combinations doubles: 2, 4, 8, 16, 32, 64, 128, 256.

The computer uses eight binary digits to get 256 possible values. These values are
mapped onto a table called ASCII (American Standard Code for Information
Interchange). Each different combination has a particular character that is mapped to
it, such as a letter, number or symbol. Each of these positions of 0 or 1 is called a bit.

she sells sea shells by the sea shore
The sample message above would be represented by 296 bits (37x8 bits).

If we follow standard ASCII, we have 256 different symbols being represented for our
use. The sample sentence we are using only contains alphabetical characters, and

178

only 11 of them at that. If we only need 11 different values, we could use a lower
number of bits per character.

The closest value to 11 using binary combinations is 16 combinations, using 4 bits
per character. If we wrote a new table of our own using four bits per character, and
used it to represent the message, we would use only 98 bits. This would be half as
many bits, a considerable savings.

We can do better!

It is possible to have binary codes of varying length. To do this we must use codes
with unique values that are not repeated as the beginning of another code. In this
way, we can find the codes in a long stream of zeros and ones.

If the codes were not constructed to have unique beginnings, it would not be possible
to find each individual code within a long stream of zeroes and ones.

There are many types of coding techniques that produce codes of varying length,
based upon symbol frequency. Some well-known coding schemes are Huffman and
Shannon-Fanno. PKZIP uses Huffman encoding. The scheme is too complex to
document here fully, however, we will discuss some rudiments of encoding. It is
necessary for you to understand the principles described here.

A table of variable length codes for 11 symbols would look like this:

11 1101
110 0100
101 1000
001 01010
1011 00000
0010

As you can see, the codes are getting longer and longer. Because of this, we will get
the best results if we map the shortest code to the most common symbol in the
message. If you know Morse code, or have occasion to look at it, you will notice that
frequent characters, such as 'e', 't', 's' and so on have shorter codes assigned to
them. Morse code tends to be about 25% more efficient because of this than it would
have been had the codes been assigned at random.

A useful idea here is to allow a symbol to be not only a character, but also a group of
characters.

Using the common patterns found in the first analysis of the message, we can map
the following table:

Occurrences Symbol New Code Bits in Message
4 e 11 8
4 (space) 110 12
3 'se' 001 9
3 sh 101 9
2 lls 1011 8
2 a 0010 8
1 b 1101 4
1 y 0100 4
1 t 1000 4
1 o 01010 5
1 r 00000 5

 179

Our new coding scheme can represent the message with only 74 bits. This is a
savings of 222 bits from the 296 bits used in the "natural" encoding. This is one
quarter of the original message size.

One important factor that would affect a real situation is the table we are using. In
order for the data to be re-created from the "compressed" representation, we must
include a copy of the table used to encode the data.

This can be a seriously limiting factor. If the data is too complex, or the encoding
scheme too inefficient, the table used can be as big as the space saved by the
encoding. In the worst cases, an attempt to re-encode the message using a table
results in the encoded message plus the table being larger than the original
message.

This is why data which uses a low number of symbols and frequently repeated
combinations of symbols, such as a text file, compresses well. Complex, highly
random data, such as the information representing a program on disk is difficult to
encode efficiently, and therefore compresses less.

 Speed vs. Size
Searching for these patterns, and determining an efficient way to encode the data,
takes a lot of computer power and time. The more time taken to analyze the data the
better the compression will be. To get more speed, you must sacrifice some level of
compression.

There are other steps and methods used in powerful compression schemes such as
those used by PKWARE products. Hopefully this explanation gives you a better
understanding of what happens when PKZIP compresses data.

 Archiving

Programs usually rely heavily on associated data files, or may actually consist of
several related programs. Some programs may require dozens or even hundreds of
files.

In the "dawn" of the PC age, people wanted a way to keep all of these associated
files in one location. "Library" programs were created to take a number of files and
group them together into a single file. This made them easier to find, easier to store,
and much easier to send to someone by modem. It makes much more sense to be
able to send someone a single "package" instead of many files. If you forget a file, all
sorts of problems arise.

These programs were the birth of Archiving. In order for a single file to hold many
files, information about each file also had to be stored in the archive. This information
could then be used by the archival software to locate a file and pull it out, or to list
information about the files contained within an archive.

Compression was first available as a utility that would take a single file and produce
its compressed equivalent. People began to group files together with a Library
program and then compress the archive file.

The next and obvious step in this process was to combine the two ideas. Compress
the files and archive them. This made storage very simple; the compression was no
longer a separate step and could be taken for granted as part of the archiving
process.

180

PKZIP is the second generation of these programs. PKZIP can not only compress
and archive files, but also stores a great deal of vital information about the files.
PKZIP even stores directory structures.

 How PKZIP builds a .ZIP File

When you specify a PKZIP command line, PKZIP goes through several steps:

1. Parsing the command line.

2. Reserves the memory it will need to perform the compression, archiving and
buffering.

3. Next, PKZIP looks for a .ZIP file with the same name as the one you specified on
the command line. If it finds one, PKZIP reads the information on the files that it
contains.

4. PKZIP then performs the requested action; it builds a new .ZIP file if none was
found.

5. PKZIP reads the information from the command line specifying what files it is
supposed to take, what files it should not take, and if there is an exclude
command.

 181

• If a @list file is used, PKZIP reads it, then checks for which files exist. If a
pattern is specified in the @list file, PKZIP generates a list of the files which
match this pattern.

• If directory recursion has been specified with the recurse option, PKZIP
next looks for any subdirectories. If it locates subdirectories it goes into them
and looks for any files matching the files specified on the command line or in
the @list file. If PKZIP finds subdirectories in the subdirectories, it repeats the
process. It will continue this process until it finds no additional subdirectories.

Startup

Check For
Existing .ZIP

File

How PKZIP Builds A .ZIP File

Read In Existing
.ZIP File

Y

N

New .ZIP File Created
Freshen or
Update .ZIP

File?

Old Files Are
Compared

Against New
Ones To

Determine Which
Get Replaced

Y N

Unchanged Files Are Copied
From OLD .ZIP File To New

.ZIP File

New .ZIP File Is Created
In Same Directory As

Old .ZIP File

New File Is Compressed And
Written Directly To .ZIP File

Local Header Updated In
.ZIP File

Last
File?

Any Pre-Existing .ZIP File Is
Deleted

.ZIP File Is Done

Files Being "Moved" Are
Deleted

Central End Directory
Appended To .ZIP File

YN

If A Password Is Specified,
Compressed Data Is

Encrypted

Local Header Written To
.ZIP File

182

Now PKZIP has a list in memory of all the files it should take. The files specified
for exclusion are now compared against this list, and any that match are
removed. If after this step is complete the list in memory is empty, PKZIP finishes
with a "Nothing to do!"message.

Now PKZIP reads-in each file, one at a time, and compresses it. When it is
finished compressing a file, it adds it to the .ZIP file being created.

6. As PKZIP reads each file, it computes a CRC value for it. This CRC value is
stored as part of the information concerning the file.

 CRC
This is an acronym for Cyclic Redundancy Check. When a CRC is performed, the
data making up a file is passed through an algorithm. The algorithm computes a
value based upon the contents resulting in an eight digit hexadecimal number
representing the value of the file.

If even a single bit of a file is altered, and the CRC is performed again, the resulting
CRC value will be different. By using a CRC value, it can be determined that there is
an exact match for a particular file.

PKZIP calculates a CRC value for the original file before it is compressed. This value
is then stored with a file in the .ZIP file. When a file is extracted it calculates a CRC
value for the extracted data and compares it against the original CRC value. If the
data has been damaged or altered, PKZIP can recognize and report this.

1. When PKZIP adds the compressed file to the .ZIP file, it first writes out a "Local
Header" about the file. This Header contains useful information about the file,
including:

• The minimum version of PKZIP needed to extract this file.

• The compression method used on this file.

• File time.

• File date.

• The CRC value.

• The size of the compressed data.

• The uncompressed size of the file.

• The file name.

2. After PKZIP has written all of the files to disk, it appends the "Central Directory"
to the end of the .ZIP file. This Directory contains the same information as the
Local Header for every file, as well as additional information. Some of this
additional information includes:

• The version of PKZIP that created the file.

• A comment about each file (if any).

• File attributes (Hidden, Read Only, System).

• Extended Attributes (If Specified).

 Deleting Files from a .ZIP File

PKZIP deletes files from a .ZIP file in the following manner:

 183

1. PKZIP reads in the names of all the files contained in the .ZIP file.

2. PKZIP compares this list against the files you wish to delete.

3. Whatever files remain are moved into a new .ZIP file.

4. The original .ZIP file is superseded by a newer version of the .ZIP file.

This means that in order to delete files from a .ZIP file, you must have enough disk
space to hold both the original .ZIP file and the new .ZIP file that lacks the deleted
files.

 Adding to an Existing .ZIP File

Adding files to a .ZIP file is the same as creating a .ZIP file, but with one difference.
Before PKZIP begins to add files, it first reads in the files that were in the existing
.ZIP file. These old files and the new files are then both written out to a new .ZIP file,
the old files being superseded by the new .ZIP files. This means that there must be
enough free space for the old .ZIP file as well as the new .ZIP file to co-exist.

184

Index
7

7Zip, 3, See also: archives

A

About This Manual, 1
anti-virus, 64
archive attribute, 22
archiveeach, 49
archives

adding to existing, 183
comments, 52
convert to self-extracting, 58
dates, 53
deleting files, 182
digital time stamping, 35
extracting, 9
fixing corrupt, 95
freshen, 22, 64
including open files, 38
intermediate, 97
moving files, 8, 56
naming conventions, 6
printing, 92
self-extracting, 57
sorting files, 55
span and split, 47
supported types, 2
testing, 92
update, 21
verify signature, 74
view contents, 8, 88
writing to STDOUT, 36

archiving, 176, 179
ARJ, 3, See also: archives
ASCII, 177
attributes, 50

extended, 51, 52
setting internal, 96

authentication, 72, 77
avargs, 64
avscan, 64

B

backup, 22
incremental, 22

binary, 176
binary data representation, 177
BinHex, 3, See also: archives
bzip2, 3, 45, See also: archives

C

CAB, 3, See also: archives
CDR, 3, See also: archives
Certificate Authority (CA), 78
certificate stores, 34
certificates, 77, See digital certificates
changing defaults, 99
command line, 3

changing command/option character, 108
options, 14
syntax, 4

commands, 13, 109
abbreviating, 14
changing character, 108
default values, 21, 100
difference from options, 13
values, 15

Commands/Options
204, 52, 109
add, 21, 110
after, 11, 110, 113
altconfig, 105, 111
archivedate, 53, 111, 161
archiveeach, 49, 112
archivetype, 46, 112
ascii, 96
attributes, 50, 113
avargs, 64, 113
avscan, 64, 114
before, 11, 114
binary, 96, 114
bzip2, 45, 114
cd, 27, 115
certificate, 31, 115
comment, 52, 117
configuration, 99, 118
console, 72, 118
crl, 80, 118
cryptalgorithm, 25, 119
cryptoptions, 83, 120
dclimplode, 121
default, 121
deflate64, 121
delete, 121
directories, 40, 70, 122
embedded, 65, 122
encode, 97, 125
enterlicensekey, 125
error, 93, 125
exclude, 13, 126
extract, 63, 126

 185

fast, 43, 126
fipsmode, 28
fipsmode, 127
fix, 95, 127
freshen, 22, 64
generate list file, 98
hash, 33, 127
header, 53, 127
help, 18, 128
include, 12, 128
jobid, 128
keyfile, 32, 128
keypassphrase, 32, 129
larger, 12, 129
level, 42, 129
license, 129
listcertificates, 34, 130
listchar, 107, 130
listcryptalgorithms, 25, 130
listfile, 131
listhashalgorithms, 33, 131
listsfxtypes, 131
locale, 107, 131
lowercase, 70, 132
lzma, 45, 132
mask, 54, 133
maximum, 43, 133
more, 134
move, 8, 56, 135
movearchive, 97, 135
namesfx, 59, 135
newer, 11
noextended, 51, 136
nofix, 136
normal, 43, 136
nosmartcard, 137
nozipextension, 136, 137
older, 11, 138
OpenFile, 38
optionchar, 108, 139
overwrite, 87, 139
passphrase, 23, 24, 140
path, 39, 140
ppmd, 46, 141
preview, 94, 141
print, 92, 141
recipient, 142
recurse, 38, 143
rename, 143
runafter, 61, 144
sfx, 57, 145
sfxdestination, 59, 145
sfxdirectories, 60, 145
sfxlogfile, 60, 145
sfxoverwrite, 60, 146
sfxuitype, 60, 146

shortname, 90, 147
shred, 56, 147
sign, 33
silent, 96, 149
smaller, 12, 150
sort, 55, 71, 150
span, 47, 151
speed, 43, 152
store, 43, 152
strict, 79, 152
substitution, 68, 90, 152
temp, 95, 154
test, 92, 154
times, 70, 155
translate, 89, 156
ts, 35
update, 21, 64
utf8, 157
utf8, 48
verifysigner, 74, 158
version, 18, 159
view, 8, 88, 159
warning, 93, 160
wipe, 160
zipdate, 53, 111, 161
zoneidentifier, 71

comments, 52
compress. See also: archives
compressing, 20, 176

all files in a directory, 21
ASCII/BINARY internal attribute, 96
compression level, 42
current directory, 6, 7
digital certificate, 31, 33
directories, 40
diskette, 47
encode, 97
file attribute information, 50
files in subdirectories, 38
filters, 10
freshen, 22
generate list file, 98
hash, 33
incremental archiving, 22
list files, 44
listcertificates, 34
methods, 45, 46, 102
only changed files, 22
only new files, 21
open files, 38
overview, 5
path information, 39
removing file attributes, 54
selected files, 7
signature, 31, 33
single file, 6

186

update, 21
with attributes, 50

configuration file, 99
alternate, 105

CRC, 182

D

dates, 53
environment variable, 107

dclimplode, 46
defaults

changing, 102
changing with Options dialog, 103
resetting, 104

deflate64, 45
deleting original files, 8, 56

shred, 56
digital certificates, 31, 76, 77

hash, 33
listcertificates, 34
revocation lists, 80
root, 78
setting a default, 35
sign, 33
strict checking, 79
Windows, 81

digital signatures, 72, 76
attaching, 31, 79
authenticating, 72, 92
time stamping, 35
verifying, 74

DOS file names, 90

E

encode, 97
encrypting files, 23

file names, 27
passphrase, 24
recipient list, 25
strong encryption, 16, 25
traditional ZIP encryption, 25

end-of-line characters, 89
entropy, 176
environment variables

date, 107
locale, 107
path, 20
time, 107

error messages, 162
treat warnings as, 93

extended attribute storage, 51
extracting

all files from an archive, 63
directory structure, 70
embedded files, 65

files only for display, 72
filters, 10
freshen, 64
from named pipe, 67
list files, 72
lowercase, 70
new and existing files, 63
newer versions and new files, 64
only newer versions of files, 64
overriding default settings, 64
overview, 9
sorting, 71
times, 70
to STDIN, 37
translate, 89
update, 10, 64

F

FastAES, 30, 83
Field Of Information Theory, 176
file name encryption (FNE), 27
filters, 10
FIPS mode, 28
format or wipe removable media, 48
freshen, 22, 64

G

GnuPG. See OpenPGP
GZIP, 3, See also: archives

H

hash algorithms, 33
header comments, 53
help system, 18

I

IMG, 3, See also: archives
information content, 176
integrity test, 92
international characters, 48
Internet Explorer, 71
ISO, 3, See also: archives

J

JAR, 3, See also: archives

K

keyfile, 32
keypassphrase, 32
keys, 77

 187

L

licenses
entering keys, 19

list files, 44, 72, 98
changing the list character, 107

LZH, 3, See also: archives
lzma, 45

M

md5, 33
moving files, 8, 56

N

namesfx, 59
naming conventions, 6
noextended, 51

O

OpenPGP, 3, 16, 30, 84, See also: archives
compared to X.509, 84
keyrings, 85
settings, 86

options, 13, 109
abbreviating, 14
changing character, 108
combining, 14
command line, 14
default values, 21, 100
difference from commands, 13
values, 15

overwriting existing files, 87

P

passphrase, 23, 175
password. See passphrase
PKI, 77
PKSFX, 57
PKWARE, 19
PKZIP, 176

configuring, 99
help, 18
license keys, 19
previewing command and option

operations, 94
support, 19
v2.04 compatibility, 29, 52
version information, 18

ppmd, 46
Pretty Good Privacy (PGP). See OpenPGP
printing, 92
private key, 77, 78

backup, 81
keyfile, 32

public key, 77, 78
exporting, 81

Public-Key Infrastructure (PKI), 77

R

RAR, 3, See also: archives
recipient list, 25

S

selecting files, 10
self-extracting archives, 57

command-line options, 61
converting from ZIP, 58
converting to, 59
graphical interface, 60
logging messages, 60
options, 59
overwrite rules, 60
run program, 61

sfxdestination, 59
sfxdirectories, 60
sfxuitype, 60
sha256, 33
shred, 56
signing, 77
smart cards, 83
sorting files, 55, 71
spanning/splitting, 47
split sizes, 47
STDIN, 37
STDOUT, 36
strict checking, 79
strong encryption, 16
subdirectories, 174, 175, 181
sub-options, 15
substitution, 68, 90
suppressing screen output, 96
syntax, 4

options, 14

T

TAR, 3, See also: archives
Technical Support, 19
test, 92
text comments, 52
time

environment variable, 107
time stamping, 35

U

update, 21, 64
extract, 10

utf8, 48
UUEncode, 3, 97, See also: archives

188

V

verifysigner, 74
version command, 18
viewing archive contents, 8, 88
virus scanning, 64

W

warning messages, 162, 167
pause, 93
treat as error, 93

wildcards, 7
Windows

file attributes, 22

including open files in archives, 38
path, 20

Windows 2000, 83

X

X.509, 77
compared to OpenPGP, 84

XXEncode, 3, 97, See also: archives

Z

ZIP archives. See archives
zone identifier, 71

	1 The Basics
	About This Manual
	Conventions in This Guide

	An Overview of What PKZIP Does
	Supported Archive Types
	Your Work Environment: The Command Line
	Entering Commands
	Creating a New Archive and Adding Files
	Archive File Naming Conventions
	Adding a Single File
	Adding Multiple Files
	Moving Files into an Archive
	Viewing Files in an Archive

	Extracting Files from an Archive
	Extracting All Files
	Extracting Some Files
	Extracting Files to a Different Directory
	Extracting New and Newer Files

	Using Filters When Selecting Files
	Selecting Files by Date
	Selecting Files by Age
	Selecting Files by Size
	Selecting Files to Include or Exclude

	Understanding Commands and Options
	Difference between a Command and Option
	Including an Option in Your Command Line
	Abbreviating Commands and Options
	Using Multiple Options
	Commands and Options with Values

	Using Strong Encryption

	2 Getting Started
	Learning More and Getting Help
	Using Help
	Getting Version Information
	Technical Support

	Working With Your License
	Entering License Keys

	Setting PKZIP in the Path

	3 Adding Files to an Archive
	Default Values for Commands and Options
	Creating and Updating Archives
	Adding All Files in a Directory
	Adding New and Modified Files
	Adding Only Files That Have Changed
	Incremental Archiving

	Encrypting Files That You Add to an Archive
	Encrypting Files with a Passphrase
	Encrypting Files with a Recipient List
	Encrypting File Names
	Encrypting Using Only FIPS-Approved Algorithms
	Creating OpenPGP Files

	Attaching Digital Signatures
	Commands and Options for Signing Archives
	Setting a Default Certificate
	Time Stamping Your Signed ZIP Archive

	Writing an Archive to STDOUT and Special Files
	Writing an Archive to STDOUT
	Writing an Archive to a Named Pipe

	Compressing Files in Subdirectories
	Compressing Open Files
	Storing Directory Path Information
	Additional Methods for Storing Directory Path Information
	Storing and Recreating Directory Path Information

	Setting the Compression Level
	Specifying a Compression Level from 0-9
	Specifying a Compression Level by Name

	Compressing Files with a List File
	Getting a List of Files from Standard Input

	Compressing Files with the Deflate64 Method
	Compressing Files with the BZIP2 Method
	Compressing Files with the LZMA Method
	Compressing Files Compatible with the Data Compression Library
	Compressing Files with the PPMd Method
	Compressing Files to a Specified Type of Archive
	Compressing Files to Diskette
	Creating a Spanned Archive
	Creating a Split Archive

	Preserving International Characters in File Names
	Creating Multiple, Respective Archives
	Storing File Information
	Compressing Files with Specified Attributes
	Extended Attribute Storage

	Including Additional Information in a ZIP File
	Including a Text Comment
	Including a Header Comment
	Specifying the Date of a .ZIP File

	Removing File Attributes
	Sorting Files Within a .ZIP File
	Moving Files to a .ZIP File
	Shredding Deleted Files
	Working with Self-Extracting (PKSFX) Archives
	Converting a Standard Archive to a Self-Extractor
	Converting to a Self-Extractor with a Different Name
	Options for Creating Self-Extractors
	Run Programs with the Self-Extractor
	Extraction Options for the Native Self-Extractor

	4 Extracting Files
	Default Values for Commands and Options
	Extracting New and Existing Files
	Extracting All Files from an Archive
	Extracting Newer Versions of Existing Files and New Files
	Extracting Only Newer Versions of Files

	Checking for Viruses when Extracting
	Extracting from an Archive Embedded in an Archive
	Extracting Passphrase-Protected Files
	Extracting an Archive on STDIN or a Special File
	Extracting from an Archive on STDIN
	Extracting an Archive from a Named Pipe

	Extracting Files in Lower Case
	Preserving File Times
	Retaining Directory Structure while Extracting
	Retaining Zone Identifier Information for Downloaded Files
	Sorting Files in the Extract Directory
	Extracting Files Only for Display
	Extracting Files with a List File
	Authenticating Digital Signatures
	Extracting Only Trusted Archives
	Specifying Trusted Signers

	5 Working with Digital Signatures
	Public-Key Infrastructure and Digital Certificates
	Public-Key Infrastructure (PKI)
	How the Keys Are Used
	X.509
	Digital Certificates
	Certificate Authority (CA)
	Private Key
	Public Key
	Certificate Authority and Root Certificates

	Using Digital Signatures
	Attaching a Signature to an Existing Archive
	Applying Strict Checking to Certificates
	Checking for Revoked Certificates
	Using Digital Certificates on Windows
	Advanced Encryption Options in Windows

	Working with OpenPGP Files
	Overview: OpenPGP vs. X.509
	Setting Up OpenPGP Keyrings
	Configuring Other OpenPGP Settings

	6 Miscellaneous Operations
	Overwriting Files
	Viewing the Contents of a ZIP File
	Displaying a Brief View of a ZIP File
	Displaying a Detailed View of the ZIP File

	Translating End-of-Line Sequence
	Converting File Names to a Short Format
	Inserting a Timestamp in the Archive File Name
	Printing the Contents of a ZIP File
	Testing the Integrity of an Archive
	Pausing on Warnings
	Treating Warnings as Errors
	Previewing Command and Option Operations
	Fixing a Corrupt ZIP File
	Use an Alternate Drive for PKZIP Temporary Files
	Suppressing Screen Output
	Setting Internal Attributes
	Encoding an Archive to Another Type
	Removing an Intermediate Archive
	Generate a List File

	7 Changing Defaults for Commands and Options
	Viewing Configuration Settings
	How Default Settings Work
	Filter Options
	Changing a Default Value
	Changing Defaults for Filter Options
	Changing Defaults for Compression Method
	Using the Options Dialog to Change Defaults

	Resetting to Original Defaults
	Resetting Individual Defaults
	Resetting All Defaults

	Using an Alternate Configuration File
	Creating an Alternate Configuration File
	Using an Alternate Configuration File

	8 Command Characteristics
	Changing Date and Time Environment Variables
	Changing the List Character for List Files
	Changing the Command/Option Character
	Error Messages
	Warning Messages
	Two Processes
	Compression
	Information Content
	Binary Data Representation
	Speed vs. Size

	Archiving
	How PKZIP builds a .ZIP File
	CRC

	Deleting Files from a .ZIP File
	Adding to an Existing .ZIP File

